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GROMOV-THURSTON MANIFOLDS AND ANTI-DE SITTER GEOMETRY

DANIEL MONCLAIR, JEAN-MARC SCHLENKER, AND NICOLAS THOLOZAN

Abstract. We consider hyperbolic and anti-de Sitter (AdS) structures on M × (0, 1), where M

is a d-dimensional Gromov–Thurston manifold. If M has cone angles greater than 2π, we show

that there exists a “quasifuchsian” (globally hyperbolic maximal) AdS manifold such that the
future boundary of the convex core is isometric to M . When M has cone angles less than 2π,

there exists a hyperbolic end with boundary a concave pleated surface isometric to M .

Moreover, in both cases, if M is a Gromov–Thurston manifold with 2k pieces (as defined
below), the moduli space of quasifuchsian AdS structures (resp. hyperbolic ends) satisfying this

condition contains a submanifold of dimension 2k − 3.

When d = 3, the moduli space of quasifuchsian AdS (resp. hyperbolic) manifolds diffeomor-
phic to M × (0, 1) contains a submanifold of dimension 2k− 2, and extends up to a “Fuchsian”

manifold, that is, an AdS (resp. hyperbolic) warped product of a closed hyperbolic manifold
by R.

We use this construction of quasifuchsian AdS manifolds to obtain new compact quotients

of O(2d, 2)/U(d, 1). The construction uses an explicit correspondence between quasifuchsian
2d+1-dimensional AdS manifolds and compact quotients of O(2d, 2)/U(d, 1) which we interpret

as the space of timelike geodesic Killing fields of AdS2d+1.
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1. Introduction and main results

Gromov and Thurston constructed in [21] families of closed manifolds of dimension at least 4
which carry negatively curved Riemannian metrics but do not admit any locally homogeneous
metric.

Roughly speaking, these manifolds are obtained by taking ramified covers and quotients of
certain closed hyperbolic manifolds which admit a dihedral group of symmetries generated by two
reflections along totally geodesic hypersurfaces, see Section 2. In particular, they carry a natural
hyperbolic metric with a cone singularity of rational angle along a totally geodesic submanifold
of codimension 2. Using arguments based on Mostow’s rigidity in codimension 1, Gromov and
Thurston prove that they cannot carry a smooth hyperbolic metric. However, their very geometric
origin suggests that one might endow them with geometric structures of a “weaker” type.

Indeed, Kapovich proved in [28] that Gromov–Thurston manifolds with cone singularity of
angle less than 2π carry a convex projective structure, namely, that they are quotients of a convex
open subset of a projective space by a discrete group of transformations. In particular, their
fundamental group admits quasi-isometric embeddings in a real linear group.

In a similar spirit, we will show here that, if M is a Gromov–Thurston manifold with cone
singularity larger than 2π, thenM ×R carries a globally hyperbolic maximal Cauchy compact anti-
de Sitter structure, later abreviated in GHMC AdS structure. Following a recent trend, we will
also use the term “quasifuchsian AdS manifold”, which brings to mind the analogy between those
AdS manifolds and quasifuchsian hyperbolic manifolds (see [34, 1]). This provides exotic examples
of such manifolds and answers negatively to Questions 5.1 and 5.2 of the survey [3]. Note that
counter-examples to these questions were also constructed by Lee–Marquis [32] in dimension up
to 8 + 1 using reflection groups.

By the work of Guéritaud–Guichard–Kassel–Wienhard [23], our construction of exotic AdS
quasifuchsian groups in dimension 2d + 1 also provides examples of exotic compact quotients
of the homogeneous spaces O(2d, 2)/U(d, 1). These are, to our knowledge, the first examples
of discrete groups acting properly discontinuously and cocompactly on a homogeneous space of
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reductive type which are not isomorphic to a uniform lattice in some other Lie group. We will
describe an explicit geometric relation between these two objects in Section 8.

In dimension 3, though Gromov–Thurston’s construction still makes sense, their manifolds also
carry a smooth hyperbolic metric, according (for instance) to Perelman’s geometrization theorem.
In that case, using Hodgson–Kerckhoff’s results on conical hyperbolic metrics in dimension 3,
we will construct a family of GHMC AdS structures on M × R that interpolates between the
“Fuchsian structure” and our general construction. We also show that this family “integrates”
linear combinations of infinitesimal “bending” deformations of the representation i : π1(M) →
SO(3, 1) within SO(3, 2).

1.1. AdS structures associated to Gromov–Thurston manifolds. Recall that a Lorentzian
manifold is called globally hyperbolic Cauchy compact if it admits a compact Cauchy hypersurface,
i.e. a topological hypersurface intersecting any inextendible timelike curve at a single point. It
is further called maximal (abreviated in GHMC) if it is maximal for the inclusion among such
spaces.

If N is a GHMC anti-de Sitter manifold (i.e. a GHMC Lorentzian manifold of constant sectional
curvature −1) of dimension d+1, then N is the quotient of a convex domain of the anti-de Sitter

space AdSd+1 by a discrete subgroup Γ of Isom(AdSd+1) ≃ O(d, 2) (see [34, 4]). If furthermore N
admits a convex Cauchy hypersurface, then the group Γ is Gromov-hyperbolic, its embedding into
O(d, 2) ⊂ GL(d + 2,R) has a refined discreteness property called P1-Anosov (see Theorem 3.29)
and, by a theorem of Barbot [5], any continuous deformation of the inclusion in Hom(Γ,O(d, 2))
is again the holonomy of a GHMC AdS manifold homeomorphic to N . In that case, we will call
N a quasifuchsian AdS manifold. We give more details on AdS geometry in Section 3.

We recall in Section 2 the construction of Gromov–Thurston cone-manifolds. The main point
that we will use here is that those are cone-manifolds of dimension d (for d ≥ 3), obtained by gluing
2k isometric “pieces” along a manifold of dimension d − 2. Each piece is a hyperbolic manifold
with “corner”, whose boundary is composed of two totally geodesic hypersurfaces meeting along
a manifold of codimension 2 with an interior dihedral angle of π/n. Gromov–Thurston manifolds
thus carry a hyperbolic metric with a cone singularity along a totally geodesic submanifold of
codimension 2, and the angle around this cone singularity can be smaller or greater than 2π,
depending on whether k < n or k > n.

The main result of this paper is the following:

Theorem 1.1. Let (M, g) be a d-dimensional Gromov–Thurston cone-manifold with cone angle
larger than 2π at the singularity, d ≥ 3. Then there is a quasifuchsian AdS spacetime N of
dimension d+ 1 for which the future boundary of the convex core is isometric to (M, g).

There is some flexibility in our construction which allows to construct a non-trivial moduli
space of such quasifuchsian AdS spacetimes.

Theorem 1.2. Let M be a d-dimensional Gromov–Thurston cone-manifold with 2k pieces, with
cone angle larger than 2π, d ≥ 3. Then there is a 2k − 3 parameter family of quasifuchsian AdS
manifolds for which the future boundary of the convex core is isometric to M .

Theorem 1.1 is partly motivated by Questions 5.1 and 5.2 of the survey [3]. When this survey
was written, the only known examples of GHMC AdS manifolds were either deformations of
Fuchsian AdS manifolds – those admitting a totally geodesic Cauchy hypersurface – or quotients
of an open convex domain of AdSd+1 by a uniform lattice in O(p, 1)×O(q, 1) ⊂ O(d, 2), p+ q = d.
In particular, such manifolds are always homeomorphic to M × R with M a compact quotient of
Hp×Hq by a uniform lattice. Question 5.1 of the survey [3] asked whether these are all the possible
topologies, while Question 5.2 asked whether every GHMC manifold could be deformed to one
of these standard ones. In the same direction, Barbot–Mérigot [6, Question 8.7] asked whether
any AdS quasifuchsian manifold is homeomorphic to the product of a hyperbolic manifold with R.
Note that the answer to these questions is known to be positive in dimension 2+1 by the work of
Mess (see [34]).

Question 5.1 (and thus Question 5.2) was answered negatively by Lee and Marquis [32] in
dimension 4 + 1 to 8 + 1: they constructed Coxeter reflection groups which are not hyperbolic
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lattices but admit AdS quasifuchsian representations. However, as often with reflection groups,
these can only exist up to a certain dimension. In contrast, Theorem 1.1 provides a negative
answer to Question 5.1 in every dimension d + 1 ≥ 4 + 1. Indeed, Gromov–Thurston manifolds
of dimension d ≥ 4 are not diffeomorphic to quotients of Hp × Hq. In fact, we have the stronger
result:

Theorem 1.3 (Gromov–Thurston). The fundamental group of a Gromov–Thurston manifold M
of dimension d ≥ 4 is not commensurable to a lattice in any Lie group.

Remark 1.4. One easily sees that π1(M) cannot be a lattice in a Lie group with non-trivial solvable
radical. Since π1(M) surjects onto a uniform hyperbolic lattice, Margulis superrigidity implies that
π1(M) is not a lattice in a higher rank semisimple Lie group either.

With arguments involving Mostow’s rigidity, Gromov and Thurston prove that it is not a lattice
in Isom(Hd). They also construct a Riemannian metric on M with sectional curvature pinched
between −1 − ϵ and −1, which cannot exist on quotients of other rank 1 symmetric spaces by a
result of Yau–Zheng [42]. To construct such a metric, one needs the additional assumption that
the “injectivity radius” of the singular locus is sufficiently large (so that one has enough room to
smoothen the singular hyperbolic metric).

However, Giralt proved in her thesis [19] that π1(M) is always cubulable and virtually special.
By a theorem of Delzant–Py [17], it is thus not isomorphic to a complex hyperbolic lattice, without
any additional geometric assumption. Another consequence is that π1(M) has the Haagerup
property (see [14]). This rules out the possibility that π1(M) be a lattice in the remaining rank 1
simple Lie groups Sp(n, 1) and F−20

4 , which have Kazhdan’s property (T).

As another consequence of Theorem 1.1, one obtains the existence of nice linear representations
of fundamental groups of Gromov–Thurston cone-manifolds with cone angle larger than 2π.

Corollary 1.5. Let M be a Gromov–Thurston cone-manifold of dimension d with cone angle
larger than 2π. Then π1(M) admits a quasi-isometric embedding into O(d, 2). In particular,
π1(M) is linear.

Remark 1.6. Kapovich, on the other hand, constructed convex projective structures on Gromov–
Thurston cone-manifolds with cone angle less than 2π [28]. Combining his result with ours, we get
that fundamental groups of d-dimensional Gromov–Thurston manifolds embed quasi-isometrically
in PGL(d+ 2,R) without any angle condition.

Remark 1.7. In fact, both our representations and those of Kapovich satisfy a stronger form of
quasi-isometric property called P1-Anosov property. We refer to [29, 16, 23] for more details on
P1-Anosov representations.

Remark 1.8. Giralt’s cubulation theorem combined with the work of Haglund–Wise [24] implies
that fundamental groups of Gromov–Thurston manifolds virtually embed into right-angled Artin
groups and are thus linear. These arguments, however, give little control on the dimension of a
faithful linear representation.

Yet another consequence of Theorem 1.1 is that a quasifuchsian AdS manifold of dimension d+1
does not always contain a Cauchy hypersurface whose geometry is intrinsically locally isometric
to the hyperbolic space Hd when d ≥ 3. The fact that this is true for d = 2 was crucial in the
proof of the rigidity theorem in [20], stating that the limit set of a quasifuchsian AdS manifold
of dimension 2 + 1 has Lorentzian Hausdorff dimension smaller than 1, with equality only in the
Fuchsian case. Such a statement is believed to be true in higher dimension, but Theorem 1.1
confirms that the techniques used in [20] cannot be used in this case.

1.2. Exotic compact Clifford–Klein forms. A compact Clifford–Klein form of a homogeneous
space G/H is a quotient of G/H by a discrete subgroup Γ ⊂ G acting properly discontinuously
and cocompactly on G.

Guéritaud–Guichard–Kassel–Wienhard remarked in [23] that AdS quasifuchsian subgroups Γ
of O(2d, 2) act properly discontinuously and cocompactly on the pseudo-Riemannian symmetric
space O(2d, 2)/U(d, 1). Hence, we obtain as a direct consequence of Theorem 1.1:
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Corollary 1.9. Let M be a Gromov–Thurston cone-manifold of dimension 2d with cone an-
gle larger than 2π. Then there exists a faithful representation ρ : π1(M) → O(2d, 2) such that
ρ(π1(M)) acts properly discontinuously and cocompactly on O(2d, 2)/U(d, 1).

Very few pseudo-Riemannian symmetric spaces G/H are known to admit compact quotients
that are non-standard, i.e. where Γ is not commensurable to a lattice in a connected subgroup
of G. The space O(2d, 2)/U(d, 1) is one of them. So far, however, these non-standard quotients
were obtained as deformations of the standard ones (corresponding to AdS Fuchsian manifolds).
Together with the work of Lee–Marquis [32], Corollary 1.9 thus provides the first exotic examples
of compact Clifford–Klein forms of O(2d, 2)/U(d, 1) (i.e. which are not deformations of standard
ones). In fact, to our knowledge, these are the first examples of a compact Clifford–Klein form
Γ\G/H for which Γ is not virtually isomorphic to a lattice in some Lie group.

Guéritaud–Guichard–Kassel–Wienhard’s argument to associate compact Clifford–Klein forms
to AdS quasifuchsian manifolds is rather indirect. In Section 7, we provide a direct, geometric
explanation of this correspondence, which also allows for a more precise analysis of the Clifford-
Klein forms which are obtained. We start by interpreting O(2d, 2)/U(d, 1) as the space of timelike

unit geodesic Killing vector fields in AdS2d+1. The correspondence follows from the fact that given
a smooth, complete strictly convex Cauchy hypersurface H in a quasifuchsian AdS manifold of
dimension 2d+ 1, any unit timelike geodesic Killing vector field on AdS2d+1 is orthogonal to the
lift to AdS2d+1 of H at a unique point. This gives a natural projection of the Clifford–Klein form
to the Cauchy hypersurface.

Theorem 1.10. Let N be an AdS quasifuchsian manifold of dimension 2d + 1 with fundamen-
tal group Γ ⊂ O(2d, 2) and H a Cauchy hypersurface. Then there exists a smooth fibration
π : Γ\O(2d, 2)/U(d, 1) → H whose fibers are translates of the compact homogeneous subspace
O(2d)/U(d).

This Theorem confirms, for the case of O(2d, 2)/U(d, 1) a general conjecture formulated by the
third author in [39, Section 8].

1.3. Hyperbolic ends associated to Gromov–Thurston manifolds. Our anti-de Sitter ge-
ometrization of Gromov–Thurston manifolds with cone angle larger than 2π has a hyperbolic
counterpart when the cone angle is smaller than 2π. In that case, one can realize a Gromov–
Thurston manifold M of dimension d as the boundary of a hyperbolic end of dimension d+ 1.

Definition 1.11. A hyperbolic end of dimension d + 1 is a manifold with boundary of the form
M × [0,+∞) with M closed of dimension d equipped with a hyperbolic metric, such that a
neighbourhood of M × {0} is developped to the exterior of a convex hypersurface in Hd+1, and
which is maximal (in the sense of inclusion) under this condition.

A simple example of a hyperbolic end is provided by the closure a connected component of the
complement of the convex core in a quasifuchsian hyperbolic 3-dimensional manifold.

The following theorems are the hyperbolic counterparts of Theorems 1.1 and 1.2

Theorem 1.12. Let M be a d-dimensional Gromov–Thurston cone-manifold with cone angle
smaller than 2π at the singularity. Then there exists a hyperbolic end N of dimension d + 1 for
which the boundary is isometric to M .

Moreover, if k ≥ 2, then there is a non-trivial moduli space of deformations of the hyperbolic
ends realizing M as their concave pleated boundary.

Theorem 1.13. Let M be a Gromov–Thurston cone-manifold with 2k pieces, with cone angles
smaller than 2π. Then there is a 2k− 3 parameter family of hyperbolic ends for which the concave
pleated boundary is isometric to M .

Remark 1.14. The construction of hyperbolic ends associated to Gromov–Thurston manifolds is
already suggested in the initial paper of Gromov–Thurston and was a starting point for Kapovich’s
investigation of the geometry of these manifolds. Though it might be considered folklore knowl-
edge, its details do not seem to appear in the litterature, hence our decision to include them
here.
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A hyperbolic end N = M × [0,+∞) admits a conformal compactification obtained by adding
a “boundary at infinity” ∂∞N = M × {+∞}. This boundary admits an atlas with charts in
∂∞Hd+1 ≃ Sd and transitions maps in O(d + 1, 1) ≃ Möb(Sd), providing M with a conformally
flat structure. We thus have the following:

Corollary 1.15. Let M be a d-dimensional Gromov–Thurston cone-manifold with cone angle
smaller than 2π. Then M admits a conformally flat metric.

Remark 1.16. One can show that different hyperbolic ends yield different conformal structures (see
Theorem 3.45 and [31]). Hence we also have a 2k − 3-dimensional moduli space of flat conformal
structures on M .

Finally, each flat conformal structure on M is also the conformal boundary at infinity of a
unique maximal globally hyperbolic de Sitter structure on M × R, which is in some sense “dual”
to the hyperbolic end. Hence we get:

Corollary 1.17. Let M be a d-dimensional Gromov–Thurston cone-manifold with cone angle
smaller than 2π. Then there exists a GHMC de Sitter spacetime diffeomorphic to M × R.

We refer to Scannell’s thesis [36] for more details on the correspondence between hyperbolic
ends, conformally flat manifolds and GHMC de Sitter spacetimes.

An important difference between the AdS and hyperbolic settings is the following: for GHMC

AdS manifolds M × R, the fact that the universal cover M̃ is developed to a spacelike hyper-
surface forces this development to be an embedding and the holonomy ρ : π1(M) → O(d, 2) to

be discrete and faithful. In contrast, if M × [0,+∞) is a hyperbolic end, the development of M̃
need not be an embedding and the holonomy representation is not in general discrete and faithful.
Gromov and Thurston remark in their paper that, for cone singularities sufficiently close to 2π
and assuming that the singular locus of M has a sufficiently large injectivity radius, one could

construct hyperbolic ends for which M̃ is quasi-isometrically embedded in Hd+1 and the holonomy
ρ : π1(M) → O(d + 1, 1) is convex-cocompact. We will not prove this result which is beyond the
scope of this paper.

1.4. Deformations in dimension 3+1. In this section we consider the case d = 3. Contrary to
higher dimension, Gromov–Thurston manifolds of dimension 3 do carry smooth hyperbolic struc-
tures. Thanks to the rich deformation theory for hyperbolic cone-manifolds in this dimension [25],
we can provide more precise results and show that our AdS spacetimes with Gromov–Thurston
Cauchy hypersurfaces (as defined in Section 2) can be deformed continuously to Fuchsian AdS
spacetimes.

Theorem 1.18. Let M be a 3-dimensional Gromov–Thurston cone-manifold with 2k pieces, with
cone angle larger than 2π. Then there is a connected 2k − 2 parameter family of quasifuchsian
AdS spacetimes diffeomorphic to M × (0, 1) containing a 2k − 3-dimensional family of spacetimes
with future boundary of the convex core isometric to M and a point corresponding to a Fuchsian
AdS spacetime.

Theorem 1.19. Let M be a 3-dimensional Gromov–Thurston cone-manifold with 2k pieces, with
cone angle smaller than 2π. Then there is a connected 2k− 2 parameter family of hyperbolic ends
diffeomorphic to M×(0,∞) containing a 2k−3-dimensional family of hyperbolic ends with pleated
boundary isometric to M and a point corresponding to a Fuchsian end.

1.5. Integrating bending deformations. In dimension d = 3, Theorems 1.18 and 1.19 can be
interpreted in terms of integration of infinitesimal deformations of the holonomy representation of
a hyperbolic 3-dimensional manifold in O(3, 2) and O(4, 1) respectively.

When a d-dimensional hyperbolic manifold M contains a 2-sided totally geodesic hypersurface,
then its holonomy representation can be deformed into larger Lie groups such as O(d+1, 1), O(d, 2)
or GL(d + 1,R), via some generalized “bending” (see for instance [27]). It was already noted in
[27] that if M contains r such disjoint hypersurfaces, then the deformation space has dimension
at least r. On the other hand, when the hypersurfaces intersect, for d ≥ 3, the deformation space
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might be singular, and some infinitesimal deformations given by sums of infinitesimal bending
deformations along two intersecting hypersurfaces may not be integrated into actual deformations.

Theorems 1.18 and 1.19 show that, in dimension d = 3, a significant degree of flexibility exists
to deform Fuchsian representations of Gromov–Thurston manifolds.

Theorem 1.20. LetM be a 3-dimensional Gromov–Thurston manifold with 2k pieces and no cone
singularity (that is, total angle 2π at the gluing curve). Then there exists a neighbourhood U of 0
in Rk such that, for every (θ1, · · · , θk) ∈ U , there exists a quasifuchsian AdS 4-manifold Nθ with
a Cauchy hypersurface which is a Gromov–Thurston manifold homeomorphic to M , consisting of
2k totally geodesic pieces pleated at angles tθ1, tθ2, · · · , tθk, tθ1, · · · , tθk (in cyclic order around the
singular curve).

Theorem 1.21. Let M be a 3-dimensional Gromov–Thurston manifold, with 2k pieces and no
cone singularity (that is, total angle 2π at the gluing curve). Then there exists a neighbourhood
U of 0 in Rk such that, for every (θ1, · · · , θk) ∈ U , there exists a quasifuchsian hyperbolic 4-
manifold Nθ containing a hypersurface which is a Gromov–Thurston manifold homeomorphic to
M , consisting of 2k totally geodesic pieces pleated at angles tθ1, tθ2, · · · , tθk, tθ1, · · · , tθk (in cyclic
order around the singular curve).

The holonomy of Nθ is a representation ρθ : π1(M) → SO◦(3, 2) or SO◦(4, 1). When all but one
of the θi vanish, the representation ρθ corresponds to Johnson–Millson “bending deformation” of
ρ0 : π1(M) → SO◦(3, 1). Theorem 1.20 gives a geometric construction of representations which
combine several bendings along intersecting hypersurfaces. In particular, it shows that linear
combinations of infinitesimal bendings can be integrated (see Section 6.4). Those deformations
should be compared to the stamping deformations defined by Apanasov [2] (see also [7]) which
seem to be closely related (in the hyperbolic setting).

1.6. Initial singularity of GHMC spacetimes. The results presented above, concerning the
induced metrics on the future boundary of the convex cores of quasifuchsian AdS spacetimes, or
on the concave boundary of hyperbolic ends, have consequences for the possible geometry of the
initial singularity of GHMC AdS or dS spacetimes.

In dimension 2 + 1, the geometry of the initial singularity of an AdS or dS spacetime is rather
well understood, thanks to the work of Mess [34, 1]. The initial singularity is the quotient of a real
tree by an action of the fundamental group of the spacetime. In some cases, the initial singularity
is a finite graph (the quotient of a simplicial tree by the fundamental group of the manifold) but
this is rather exceptional.

In higher dimension, however, the geometric structure of the initial singularity is much more
mysterious. Here we provide examples of spacetimes for which the initial singularity is remarkably
simple. We do not know to what extent this phenomenon is “generic”, or whether “generic”
spacetimes in dimension d+ 1, for d ≥ 3, have a much more intricate initial singularity.

Theorem 1.22. Let M be a d-dimensional Gromov–Thurston manifold with 2k pieces, with cone
angles larger than 2π at the singularities. There is a 2k − 3-dimensional family of quasifuchsian
AdS spacetimes of dimension d + 1 with Cauchy hypersurfaces diffeomorphic to M for which the
initial singularity is a 2-dimensional cell complex, with exactly one 2-dimensional cell.

Theorem 1.23. Let M be a d-dimensional Gromov–Thurston manifold with 2k pieces, with cone
angles smaller than 2π at the singularities. There is a 2k − 3-dimensional family of GHMC dS
spacetimes of dimension d+1 with Cauchy hypersurfaces diffeomorphic to M for which the initial
singularity is a 2-dimensional cell complex, with exactly one 2-dimensional cell.

Those two statements follow from the description of the geometry of the pleated boundary (resp.
the future boundary of the convex core) for the hyperbolic ends (resp. AdS manifolds) appearing
in Theorem 1.13 and Theorem 1.2, through the duality between hyperbolic and de Sitter space,
resp. between the AdS space and itself. This correspondence is briefly recalled in Section 7, where
Theorem 1.22 and Theorem 1.23 are proven.



8 DANIEL MONCLAIR, JEAN-MARC SCHLENKER, AND NICOLAS THOLOZAN

1.7. Outline of the paper. In Section 2, we recall the construction of Gromov–Thurston man-
ifolds. We then recall in Section 3 a number of background definitions and statements that are
needed, such as the key definitions of AdS geometry, hyperbolic ends, and properties of hypersur-
faces in hyperbolic and AdS manifolds. We explain in particular that the data of a quasifuchsian
AdS manifold with Cauchy hypersurface homeomorphic to M is equivalent to the data of a space-
like embedding structure on M i.e. an atlas of local embeddings of M as spacelike hypersurfaces
in AdS, with coordinate changes in Isom(AdS). When M is a Gromov–Thurston manifold, one is
then reduced to prescribing a way to “bend” the hyperbolic pieces in the anti-de Sitter space.

Such bendings are parametrized by their link along the codimension 2 singularity, which is
a spacelike polygon in the de Sitter space of dimension 2. Section 4 focuses on the geometry of
polygons in the sphere and the de Sitter plane. It starts with a characterization of the infinitesimal
variations of lengths and angles of spherical and de Sitter polygons, and further describes various
families of polygons (equilateral polygons, polygons with a central symmetry), which give us the
material to prove our main theorems.

In Section 5 we prove the main results of the paper concerning the geometrization of Gromov–
Thurston manifolds in dimension d, for d ≥ 4, while Section 6 contains the proofs of the main
results for Gromov–Thurston manifolds in dimension 3. Finally, Section 7 is focused on the initial
singularities of de Sitter and anti-de Sitter spacetimes, and Section 8 on the applications to compact
Clifford–Klein forms of O(2d, 2)/U(d, 1).

2. Gromov–Thurston (cone-)manifolds

Here we describe a fairly general version of the Gromov–Thurston construction, providing us
with a family of cone-manifolds that we will “geometrize”, in the sense that we will show that
they occur as either the future boundary of the convex core of a quasifuchsian AdS manifold, or
the concave boundary of a hyperbolic end.

2.1. Hyperbolic cone-manifolds. We first recall the definition given by Thurston [40, Section
3], [10, Def. 3.1] of a hyperbolic cone-manifold. The definition is recursive in the dimension. We
briefly recall this definition here for hyperbolic, Euclidean and spherical cone-manifolds.

• A one-dimensional cone-manifold is simply a one-dimensional Riemannian manifold.
• For d ≥ 2, a d-dimensional spherical (resp. hyperbolic, Euclidean) cone-manifold M
is a compact metric space, together with a singular metric in which every point has a
neighborhood isometric to N × [0, ϵ] equipped with the singular metric dr2 + sin2(r)h
(resp. dr2+sinh2(r)h, dr2+ r2h) where N is a spherical cone-manifold of dimension d−1
equipped with the singular metric h.

For instance, a 2-dimensional hyperbolic cone-manifold – also called hyperbolic surface with cone
singularities – contains a finite set of singular points. It is hyperbolic outside of those singular
points, and each singular point has a neighborhood isometric to a “model” which only depends
on one parameter, an “angle” which is the length of the 1-dimensional manifold appearing in the
definition.

2.2. Dihedral hyperbolic manifolds. Gromov–Thurston’s construction starts with the data of
a closed oriented hyperbolic manifold M of dimension d and two isometric involutions σ1 and σ2
of M with the following properties:

• The fixed loci of σ1 and σ2 are connected embedded totally geodesic hypersurfaces,
• The intersection S = Fixσ1 ∩ Fixσ2 is connected,
• Fixσ1 and Fixσ2 intersect along S with an angle π

n .
• Fixσ1 and Fixσ2 are homologically trivial.

The existence of manifolds M of any dimension d ≥ 2 with those properties is proved in [21].
Under these conditions, σ1 and σ2 generate a dihedral group of isometries of M of order 2n,
denoted Dn. We denote by Rn its cyclic subgroup of order n, spanned by ρ = σ1σ2. We call the
data of (M,σ1, σ2) a n-dihedral hyperbolic manifold.

Let H1 ⊂ Fixσ1 be the closure of a connected component of Fixσ1 \ S, and H2 ⊂ Fixσ2 the
closure of a connected component of Fixσ2 \ S chosen so that the oriented angle at S from H1 to
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H2 is π
n . We then consider the copies of H1 and H2 under the isometry ρ = σ1σ2 which we denote

H2i+1 = ρi(H1) and H2i = ρi−1(H2) for i = 1, . . . , n− 1. Together, they divide M into 2n pieces
V1, . . . , V2n which are fundamental domains for the action of Dn. Note that Fixσ1 = H1 ∪Hn+1

and Fixσ2 = H2 ∪Hn+2.
When considering the action of the cyclic subgroup Rn, a fundamental domain is given by the

union of two of the former small pieces, e.g. the domain bounded by H1 and H3 containing H2

(see Figure 1).
The quotientM = Rn\M is a topological manifold and the quotient mapM →M is a ramified

covering of degree n: it is n to 1 on the complement of S and injective in restriction to S. We
still denote by S its image under the quotient map. One can show (see [21]) that S bounds two
codimension 1 submanifolds with boundary H1, H2 ⊂M , which are the respective projections of
H1 and H2.

S
π
n

σ1

σ2

H1

H2

H3

H4

H2n−1

H2n

H1

H2

Figure 1. A n-dihedral manifold M , its fundamental piece and the quotient M .

2.3. Gromov–Thurston manifolds.

Definition 2.1. Let M be an n-dihedral hyperbolic manifold. For every a ∈ 1
nN>0, we define the

Gromov–Thurston manifold Ma of ramification a associated to M as the cyclically ramified cover
of M along S of degree na.

More visually, H1, H3, . . . ,H2n−1 cutM into n copies of the aforementioned fundamental piece,
and Ma is obtained by gluing na copies of this fundamental piece (see Figure 1).

Example 2.2. We have M1/n = M and M1 = M . If a is an integer, then Ma is the cyclically
ramified cover of M along S of degree a.

The hyperbolic metric gH on M induces a singular hyperbolic metric on Ma with a cone
singularity of angle 2πa along S ⊂Ma, the preimage of S ⊂M by the covering map. In particular,
for a ≥ 1, this metric is locally CAT (−1), implying that the fundamental group π1(M

a) is Gromov
hyperbolic.

We will denote by H1, . . . ,H2k the lifts of H1 and H2 to Ma (in cyclic order around S), and

denote by Vi the component of Ma\
⋂2k

i=1Hi bounded by Hi and Hi+1. (These notations are
compatible with the ones introduced in the previous paragraph in the particular case k = n.)

Applying Mostow’s rigidity in dimension d−1 (and more precisely to the hypersurfaces H1 and
H2), Gromov and Thurston show that in dimension d ≥ 4 the fundamental group of Ma is never
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isomorphic to a hyperbolic lattice when a ̸= 1. Gromov–Thurston manifolds in dimension d ≥ 4
are thus never homeomorphic to quotients of the hyperbolic space. In fact, their fundamental
group is not commensurable to a lattice in any Lie group (see Remark 1.4).

3. Globally hyperbolic AdS manifolds and hyperbolic ends

We recall in this section some key notions concerning AdS geometry and more specifically
the geometry of globally hyperbolic AdS spacetimes. Additional results can be found e.g. in
[34, 1, 6, 12]. We also present hyperbolic ends.

3.1. The anti-de Sitter space. Here we use the hyperboloid model of the anti-de Sitter space.
Let Rd,2 denote the real vector space Rd+2 endowed with the standard quadratic form q of signa-
ture (d, 2):

q(x) = x21 + . . .+ x2d − x2d+1 − x2d+2 .

We denote by ⟨·, ·⟩ the associated bilinear form.

Definition 3.1. The anti-de Sitter space of dimension d+ 1 is the quadric:

AdSd+1 = {x ∈ Rd,2 | q(x) = −1} .

The restriction of q to the tangent bundle of AdSd+1 endows the anti-de Sitter space with a
Lorentzian metric of constant sectional curvature −1, which we denote by gAdS. This metric is
homogeneous under the action of the group O(d, 2) of linear transformations of Rd,2 preserving q.
We denote by SO◦(d, 2) the connected component of the identity in O(d, 2). This is an index 4

subgroup consisting of those isometries of AdSd+1 preserving an orientation of space and time.
We call it for short the group of orientation-preserving isometries.

The subgroup of SO◦(d, 2) fixing the point (0, . . . , 0, 1) ∈ AdSd+1 is the group SO◦(d, 1) em-
bedded via

A 7→
(
A

1

)
.

The (space and time-oriented) anti-de Sitter space of dimension d+ 1 can thus be identified with
the coset space

SO◦(d, 2)/SO◦(d, 1) .

Boundary. The space AdSd+1 can also be identified with an open set of the d+ 1-dimensional
sphere, seen as the double cover of PRd,2, via the map

AdSd+1 → Sd+1 = (Rd,2 \ {0})/R>0Id
x 7→ R>0x .

Its boundary in Sd+1 is called the Einstein space.

Definition 3.2. The Einstein space Eind is defined as

Eind = ∂∞AdSd+1 = {x ∈ Rd,2\{0} | q(x) = 0}/R>0Id .

The Einstein space carries a conformally flat Lorentz metric which is conformally invariant
under the action of SO◦(d, 2).

Geodesics and causality in AdSd+1. The geodesics of AdSd+1 are its intersections with 2-
planes P in Rd,2. These are of three kinds:

• If q|P is negative definite, then P ∩AdSd+1 is an ellipse. It is a timelike geodesic, i.e. the
Lorentz metric is negative along that geodesic.

• If q|P is non-positive with 1-dimensional kernel, then P ∩AdSd+1 consists of two parallel
affine lines, each of which is a lightlike geodesic, i.e. the Lorentz metric vanishes along that
geodesic.

• If q|P has signature (1, 1), then P ∩ AdSd+1 consists of two branches of hyperbolas, each
of which is a spacelike geodesic, i.e. the Lorentz metric is positive along that geodesic.
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We call two points x and y in AdSd+1 space (resp. light, time) related if they belong to the
same spacelike (resp. lightlike, timelike) geodesic. We have the following characterization:

Proposition 3.3. Two points x and y ∈ AdSd+1 are

• space related if and only if ⟨x, y⟩ < −1,
• light related if and only if ⟨x, y⟩ = −1,
• time related if and only if −1 < ⟨x, y⟩ < 1.

Remark 3.4. If ⟨x, y⟩ ≥ 1 then x and y do not belong to a common geodesic, but x and −y are

light or space related. In the projective model AdSd+1/ ± Id, any two points are either space,
light, or time related.

Photons and causality in Eind. A photon in Eind is the projectivisation of a totally isotropic
2-plane in Rd,2. We call two points [x] and [y] ∈ Eind light related if they belong to the same

photon and space related if they are the endpoints of a spacelike geodesic in AdSd+1. We have
again a characterization in terms of scalar products:

Proposition 3.5. Two points [x] and [y] ∈ Eind are

• space related if and only if ⟨x, y⟩ < 0,
• light related if and only if ⟨x, y⟩ = 0.

Note that [x] is always space or light related to either [y] or [−y]. Causality thus does not make

sense in the projective model Eind = Eind/± Id. A more robust notion is space relation for triples
of points.

Definition 3.6. We call a subset S of Eind acausal if any two points in S are space related, and
achronal if any two points in S are space or light related.

Proposition 3.7. If {[x], [y], [z]} ⊂ Eind is acausal, then the restriction of q to Span(x, y, z) has
signature (2, 1).

Conversely, if the restriction of q to Span(x, y, z) has signature (2, 1), then there exist unique
ϵy and ϵz ∈ {−1, 1} such that {[x], [ϵyy], [ϵzz]} is acausal.

3.2. Spacelike hypersurfaces in AdSd+1. A smooth hypersurface H in AdSd+1 is called
spacelike when the restriction of the Lorentz metric to H is positive definite. Here, we will
construct hypersurfaces that are piecewise geodesic, and it is thus useful to generalize this
definition to a lower regularity.

Let H be a Lipschitz manifold of dimension d. Let dH be a Lipschitz distance on H (i.e. a
distance which is locally bi-Lipschitz to the Euclidean distance in local coordinates).

Definition 3.8. A map i : H → AdSd+1 is a spacelike immersion if it is locally Lipschitz and if
every point in H has a neighbourhood U such that there exists a constant c > 0 satisfying

⟨i(p), i(p′)⟩ ≤ −1− c d2H(p, p′)

for all p, p′ ∈ U .
A Lipschitz hypersurface H of AdSd+1 is called spacelike if the inclusion i : H → AdSd+1 is a

spacelike immersion.

By Proposition 3.3 the above condition implies that i(p) is space related to i(p′) when p, p′ ∈ H
are sufficiently close. The constant c prevents the hypersurface to be “tangent” to the light cone
through p. In particular, we have:

Proposition 3.9. If H and i are of class C1, then i is a spacelike immersion if and only if i∗gAdS

is positive definite at every point.

Before we prove Proposition 3.9, let us interpret spacelike immersions in terms of graphs in an
appropriate model for AdSd+1. Consider the open hemisphere Sd+ = {(x0, . . . , xd) ∈ Sd |x0 > 0}.
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The map

Φ :

{
S1 × Sd+ → AdSd+1

(θ, x) 7→
(

x1

x0
, . . . , xd

x0
, cos θx0

, sin θ
x0

)
is a diffeomorphism, and Φ∗gAdS = x−2

0 (−dθ2 + gSd). An important feature of this model is that
Sd+ equipped with x−2

0 gSd is isometric to the hyperbolic space Hd, in particular the hypersurfaces

θ = cst are totally geodesic copies of Hd. Another one is that it extends to the boundary as a
conformal map ∂Φ : S1 × Sd−1 → ∂AdSd+1 = Eind.

Lemma 3.10. Let H be a Lipschitz manifold, and i : H → AdSd+1 a spacelike immersion. Write
i(p) = Φ(θ(p), x(p)) for p ∈ H. Then the map x : H → Sd+ is locally bi-Lipschitz.

Proof. For (θ, x), (θ′, x′) ∈ S1 × Sd+ we find

⟨Φ(θ, x),Φ(θ′, x′)⟩ = x1x
′
1 + · · ·+ xdx

′
d − cos(θ − θ′)

x0x′0

=
1− 1

2∥x− x′∥2 − cos(θ − θ′)

x0x′0
− 1

≥ −∥x− x′∥2

2x0x′0
− 1

This shows that for p, p′ ∈ H, we have

∥x(p)− x(p′)∥2 ≥ −x0(p)x0(p′)(1 + ⟨i(p), i(p′)⟩

Since p 7→ x0(p) is continuous, it is locally bounded from below by some c′ > 0, and locally we
find

∥x(p)− x(p′)∥ ≥
√
c

c′
dH(p, p′)

□

Lemma 3.10 means that a Lipschitz spacelike hypersurface is locally a graph in the conformal
model AdSd+1 ≈ S1 × Sd+. Now given a function from Sd+ to S1, we wish to know under which
condition its graph is a Lipschitz spacelike hypersurface.

Lemma 3.11. Let U ⊂ Sd+ be an open subset, and consider a map θ : U → S1. The map i : U →
AdSd+1 defined by i(x) = Φ(θ(x), x) is a spacelike immersion if and only if θ is locally contracting
(i.e. every point in U has a neighbourhood on which θ is k-Lipschitz for some k ∈ (0, 1)).

Remark 3.12. As a distance on Sd+ we can pick either the spherical distance or the Euclidean
distance. The condition on θ being locally contracting does not depend on this choice, since for
every ε > 0 we can find a neighbourhood of any point on which they are 1 + ε-bi-Lipschitz. We
will use the Euclidean distance in the proof.

Proof of Lemma 3.11. For x, x′ ∈ U we have

⟨i(x), i(x′)⟩ =
1− 1

2∥x− x′∥2 − cos(θ(x)− θ(x′))

x0x′0
− 1.

If θ is k-Lipschitz for some k ∈ (0, 1), then up to shrinking U we obtain

1− cos(θ(x)− θ(x′)) ≤ k

2
∥x− x′∥2

Since x0, x
′
0 ≤ 1, we find

⟨i(x), i(x′)⟩ ≤ −1− 1− k

2
∥x− x′∥2 ,

hence i is a spacelike immersion.



GROMOV-THURSTON MANIFOLDS 13

Now assume that i is a spacelike immersion, and let c ∈ (0, 12 ) be a constant given by the
definition (note that c can always be replaced by a smaller constant). The map θ is continuous,
so we can shrink U in order to have

1− cos(θ(x)− θ(x′)) ≥ 1− c

2
|θ(x)− θ(x′)|2

for all x, x′ ∈ U . This in turn leads to

|θ(x)− θ(x′)|2 ≤
1
2 − c
1
2 − c

2︸ ︷︷ ︸
<1

∥x− x′∥2 .

□

Proof of Proposition 3.9. If i is C1, then the map x : H → Sd+ from Lemma 3.10 is bi-Lipschitz

and C1, hence a local diffeomorphism. So we may assume that H is an open subset of Sd+ and that
i(x) = Φ(θ(x), x) where θ : H → S1 is C1. Now Lemma 3.11 shows that i is a spacelike immersion
if and only if θ is locally contracting, which is equivalent to ∥dθ∥ < 1.
But i∗gAdS is in the same conformal class as −dθ2 + gSd , so it is positive definite if and only if
∥dθ∥ < 1. □

More generally, if i : H → AdSd+1 is a spacelike Lipschitz immersion and γ : [0, 1] → H is a
Lipschitz path, then i ◦ γ is Lipschitz hence differentiable at Lebesgue almost every point. The
derivative of i ◦ γ is never timelike, so one can then define the length of i(γ) as

LAdS(i(γ)) =

∫ 1

0

√
gAdS((i ◦ γ)′(t), (i ◦ γ)′(t))dt .

Finally, for x, y ∈ H, set

i∗dAdS(x, y) = inf
γ(0)=x,γ(1)=y

LAdS(i ◦ γ) .

The spacelike immersion property of i implies that i∗dAdS is a Lipschitz distance on H (the usual
proof for smooth Riemannian metrics can be easily adapted thanks to the graph description of
Lemma 3.10). When H and i are C1, it is simply the Riemannian distance associated to i∗gAdS.

Definition 3.13. The spacelike immersion i is called complete when the distance i∗dAdS is com-
plete.
A spacelike hypersurface H ⊂ AdSd+1 is called complete if the inclusion i : H → AdSd+1 is a
complete spacelike immersion.

The following proposition brings together a number of key properties of spacelike hypersurfaces
in AdSd+1.

Proposition 3.14. Let H be a connected Lipschitz manifold of dimension d and i : H → AdSd+1

a complete spacelike immersion. Then

(1) H is homeomorphic to the open ball Bd of dimension d,
(2) i is an embedding,
(3) i(x) and i(y) are space related for any x ̸= y ∈ H,
(4) i extends continuously to an achronal embedding

∂i : Sd−1 = ∂Bd → Eind .

Proof. Write i(p) = Φ(θ(p), x(p)) for p ∈ H. We have seen in Lemma 3.10 that x : H → Sd+ is
locally bi-Lipschitz. We can use it to define another distance on H by defining the length of a
Lipschitz curve γ : [0, 1] → H as the hyperbolic length LHd(x ◦ γ), and the distance x∗dHd as the
infimumum of lengths of paths joining two points.
Note that LAdS(i ◦ γ) ≤ LHd(x ◦ γ), so i∗dAdS ≤ x∗dHd . Completeness of i and the Hopf–Rinow
Theorem for length spaces (see [22, Theorem 1.9] or [13, Proposition I.3.7]) imply that closed
balls for i∗dAdS are compact, so x∗dHd is also complete. This shows that x is a local isometry
between length spaces, the source being complete, so it is a covering map (see [13, Proposition
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I.3.28] for a proof in the context of length spaces). This implies that the hyperbolic metric on
x(H) is complete, so x is onto. Since it is a covering, it must be a homeomorphism. This proves
(1) and (2).

Now consider a lift ĩ : H → ÃdS
d+1

to the universal cover. Lemma 3.10 shows that ĩ(H̃) is weakly
spacelike as defined in [12, Section 3.2], so property (3) follow from [12, Proposition 3.5]. This in
turn implies that H is (globally) the graph of a 1-Lipschitz function θ : Sd+ → R (for the spherical
distance), so (4) follows from the extendability of Lipschitz functions.

□

As a consequence of this proof we get the following description of complete spacelike hypersur-
faces in AdSd+1.

Corollary 3.15. Let H ⊂ AdSd+1 be a complete spacelike hypersurface. There is a distance
decreasing function θ : Sd+ → S1 (i.e. |θ(x) − θ(x′)| < dSd(x, x′) whenever x ̸= x′) such that

H = {Φ(θ(x), x)|x ∈ Sd
+}.

Remark 3.16. Here it is important to use the spherical distance on Sd+ rather than the Euclidean
distance.

3.3. Second fundamental form. Here we recall the classical notion of second fundamental
form in a setting which applies both to spacelike hypersurfaces in AdSd+1 and to AdSd+1 itself
inside the flat pseudo-Riemannian space Rd,2.

Let (M, g) be a smooth oriented pseudo-Riemannian manifold of signature (p, q), and letH ⊂M
be an oriented hypersurface of class C2 such that the restriction of g to H has signature (p, q− 1).
Let us denote by TM|H the pull-back of the tangent bundle TM by the inclusion H ↪→ M . The
tangent bundle TH is a sub-bundle of TM|H and TM|H splits orthogonally (with respect to g) as

TM|H = TH⊕ RN ,

where N is the unit normal to H (i.e. g(N,N) ≡ −1 and the orientation of N is compatible with
those of M and H).

The Levi–Civita connection ∇M of M restricts to a connection on TM|H (that we still denote

∇M ). Since g(N,N) is constant, ∇M
XN is orthogonal to N and thus tangent to H for every vector

X tangent to H.

Definition 3.17. The second fundamental form of H is the bilinear form on TH defined by

IIH(X,Y ) = g(∇M
XN,Y ) .

The second fundamental form relates the Levi–Civita connection ∇H of (H, g|H) to the ambient

connection ∇M :

Proposition 3.18. For every vector fields X and Y on H, we have

∇M
X Y = ∇H

XY + IIH(X,Y )N .

Remark 3.19. The reader familiar with Riemannian geometry will notice a sign difference in the
definition of the second fundamental form. This is due to the fact that we assume here that g is
negative in the normal direction.

3.4. Convexity in AdSd+1. Let V be a hyperplane in Rd,2 in restriction to which the quadratic
form q has signature (d, 1). Then V ∩ AdSd+1 is a two-sheeted hyperboloid of dimension d,
each connected component of which is a totally geodesic spacelike hypersurface. We call such a
connected component a spacelike hyperplane. They are the totally geodesic copies of Hd in AdSd+1.
For any θ0 ∈ S1 the set Φ({θ0}× Sd+), where Φ : S1 × Sd+ → AdSd+1 is the diffeomorphism defined
above, is a spacelike hyperplane.

If W ⊂ V ∩ AdSd+1 is a spacelike hyperplane, we denote by W the other component of V ∩
AdSd+1, i.e. the image of W by x 7→ −x. We say that a point x ∈ AdSd+1\W is in the past of W
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if there exists a future-oriented timelike geodesic segment from x to a point of W which does not
intersect W .

Definition 3.20. Let H ⊂ AdSd+1 be a Lipschitz spacelike hypersurface. We say that H is convex
if for every x ∈ H, there exists a spacelike hyperplane W containing x such that H is contained
in the past of W .

The hypersurface H is locally convex if every point x ∈ H has an open neighbourhood U such
that H ∩ U is convex.

For complete hypersurfaces, the local convexity property globalizes.

Proposition 3.21. Let H be a complete Lipschitz spacelike hypersurface. Then H is convex if
and only if it is locally convex.

Proof. Let p ∈ H and consider a spacelike hyperplane W containing p such that a neighbourhood
of p in H is in the past of W .

Up to the action of SO◦(d, 2), we may assume that W = Φ({0} × Sd
+), and write p = Φ(0, x).

We have seen in the proof of Proposition 3.14 that H is the graph of a function θ : Sd+ → S1 in

the conformal model AdSd+1 ≈ S1 × Sd+. Since θ is distance decreasing, it is not onto and we may
consider θ as a real valued map.

Assume by contradiction that H is not in the past ofW , i.e. θ > 0 at some point y ∈ Sd+. Along

the spherical geodesic γ : [0, 1] → Sd+ joining x and y, the function θ possesses a local minimum. If

z = γ(t0) is such a point of Sd+, consider a spacelike hyperplaneW ′ containing Φ(θ(z), z) such that
a neighbourhood of Φ(θ(z), z) in H is in the past of W ′. Note that W ′ is the graph of a function
α : Sd+ → S1. For t near t0, we have α ◦ γ(t) ≥ θ ◦ γ(t) ≥ θ(z), with equality at t = t0. Hence

(α ◦ γ)′(t0) = 0, and the geodesic t 7→ Φ(α ◦ γ(t), γ(t)) is tangent to Φ({θ(z)},Sd+) at Φ(θ(z), z),
therefore α ◦ γ is constant. It implies that θ ◦ γ is constant on a neighbourhood of every point
where a local minimum is obtained, hence θ ◦ γ ≥ 0 which is a contradiction. □

For hypersurfaces of class C2, convexity is characterized by the sign of the second fundamental
form:

Proposition 3.22. Let H be a spacelike hypersurface of class C2. Then H is locally convex if and
only if its second fundamental form is non-negative.

This motivates the following strengthenings:

Definition 3.23. A complete spacelike hypersurface H of class C2 is called strongly convex if its
second fundamental form IIH is positive definite, and uniformly strongly convex if there exists a
constant c > 0 such that

IIH ≥ c g|H .

3.5. Globally hyperbolic spacetimes. Let N be a Lorentzian manifold. A C1 curve on N is
called causal if its tangent direction is nowhere spacelike. Such a curve is called inextensible if it
is maximal among causal curves (for the inclusion).

Definition 3.24. A Cauchy hypersurface in N is a topological hypersurface intersecting every
inextensible causal curve at exactly one point. A Lorentzian manifold admitting a Cauchy hyper-
surface is called globally hyperbolic.

A globally hyperbolic Lorentzian manifold N always admits a temporal function, i.e. a function
to R with no critical points whose level sets are spacelike hypersurfaces, see e.g. [9]. Moreover, all
smooth Cauchy hypersurfaces are diffeomorphic, and if M is a smooth Cauchy hypersurface, then
N is diffeomorphic to M × R.

Definition 3.25. A globally hyperbolic Lorentzian manifold is Cauchy compact if its Cauchy
hypersurfaces are compact.

Definition 3.26. A globally hyperbolic Cauchy compact AdS manifold is maximal if it is not
isometric to a proper subset of another globally hyperbolic AdS manifold.
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From now on, we abreviate “globally hyperbolic Cauchy compact” into “GHC”, and “globally
hyperbolic maximal Cauchy compact” into “GHMC”.

We recall here a description of GHMC AdS spacetimes, due to Mess [34, 1]. (It is only stated
in dimension 2+1 in [34], but the argument works in higher dimension as pointed in [4]. For other
proofs see [4, Corollary 11.2] and [6, Proposition 4.8].)

Definition 3.27. Let Λ be a closed subset of Eind. The domain of dependence of λ is the open
set

Ω(Λ) = {x ∈ AdSd+1 | ⟨x, y⟩ < 0 for all [y] ∈ Λ} .

The following theorem describes GHMC AdS manifolds as quotients of the domain of depen-
dence of the boundary at infinity of a Cauchy hypersurface. Il was proved by Mess in dimension
2+1 and extended by Barbot in higher dimensions.

Theorem 3.28 (Mess). Γ be a subgroup of SO◦(d, 2) acting freely, properly discontinuously and

cocompactly on a spacelike hypersurface H and let ∂∞H be the boundary of H in Eind. Then Γ
acts properly discontinuously on Ω(∂∞H), the quotient N = Γ\Ω(∂∞H) is a GHMC AdS manifold
and Γ\H ⊂ N is a Cauchy hypersurface.

Conversely, let N be a GHMC AdS manifold of dimension d + 1. Then there exists a discrete
subgroup Γ of SO◦(d, 2) and a Γ-invariant complete spacelike hypersurface H ⊂ AdSd+1 such that
Γ acts properly discontinuously and cocompactly on H and N is isometric to Γ\Ω(∂∞H).

The following statement combines results from Barbot–Mérigot [6], Barbot [5] and Danciger–
Guéritaud–Kassel [15].

Theorem 3.29 (Barbot–Mérigot, Barbot, Danciger–Guéritaud–Kassel). Let N = Γ\Ω be a
GHMC AdS manifold. The following properties are equivalent:

(i) The group Γ is Gromov hyperbolic,
(ii) The limit set ΛΓ is acausal,
(iii) The manifold N contains a convex Cauchy hypersurface,
(iv) The manifold N contains a strongly convex Cauchy hypersurface,
(v) The group Γ acts convex-cocompactly on Ω.

We call such a GHMC AdS manifold quasifuchsian. It is called Fuchsian if it possesses a totally
geodesic Cauchy hypersurface.

Sketch of the proof. (v) ⇒ (iv) is Lemma 6.4 in [15].
(iv) ⇒ (iii) is straightforward.
(iii) ⇒ (i) follows from Proposition 8.3 in [6].
(i) ⇒ (ii) is Theorem 1.4 in [5].
Finally, the main result of [6] is that (ii) is equivalent to Γ being P1-Anosov, and the latter is
equivalent to (v) according to Theorem 1.7 in [15]. □

3.6. Spacelike AdS structures. In this section we introduce a notion spacelike AdS structure
on a manifold M , in a way that emulates the notion of (G,X)-structure. The “developing map”
of such a structure is an equivariant spacelike immersion of the universal cover of M , from which
one obtains a GHMC AdS manifold homeomorphic to M × R. This will allow us to reduce the
construction of GHMC manifolds with prescribed Cauchy hypersurfaces to the construction of a
spacelike AdS structure on a manifold one dimension lower.

Let M be a Lipschitz manifold of dimension d.

Definition 3.30. A spacelike AdS atlas on M is the data of an atlas (Ui, ϕi)i∈I where (Ui)i∈I is

an open cover of M and ϕi : Ui → AdSd+1 is a Lipschitz spacelike immersion, such that for all
i, j ∈ I and all x ∈ Ui ∩Uj , there exists an orientation preserving isometry g of AdSd+1 such that

ϕj = g ◦ ϕi
in a neighbourhood of x.

A spacelike AdS structure on M is a maximal spacelike AdS atlas.
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Two spacelike AdS atlases (Ui, ϕi)i∈I and (Vj , ψj)j∈J on M are equivalent if for every (i, j) ∈
I×J and every x ∈ Ui∩Vj , there exists an orientation preserving isometry g of AdSd+1 such that

ψj = g ◦ ϕi
in a neighbourhood of x.

Note that this definition is almost identical to that of a (G,X)-structure, except that the
charts are required to be spacelike immersions instead of local homeomorphisms.

Emulating the theory of (G,X)-structures, we want to “patch together” the local charts into
an equivariant spacelike immersion of the universal cover. In order to do so, remark first that
there is a unique way to patch together two local charts:

Lemma 3.31. Let U be a non empty open subset of M , ϕ : U → AdSd+1 a spacelike immersion,
and g an orientation preserving isometry of AdSd+1 such that g ◦ ϕ = ϕ. Then g = Id.

Proof. Consider a point x ∈ ϕ(U) at which ϕ(U) is differentiable (it exists because of Rademacher’s
Theorem). The tangent space Txϕ(U) is spacelike because of Lemma 3.11. Now g fixes every point
of the spacelike hyperplane tangent to ϕ(U) at x, hence g = Id. □

As a consequence, we can still define the holonomy representation and the developing map of a
spacelike AdS structure.

Corollary 3.32. Let (Ui, ϕi)i∈I be a spacelike AdS atlas on M . Then there exists a representation

ρ : π1(M) → SO◦(d, 2) and a ρ-equivariant spacelike immersion ϕ : M̃ → AdSd+1 such that, for

all x ∈ M̃ and all Ui containing π(x), there exists g ∈ SO◦(d, 2) such that

ϕi ◦ π = g ◦ ϕ

in a neighbourhood of x. (Here, π : M̃ →M denotes the covering map.)
Moreover, if another pair (ρ′, ϕ′) satisfies the same properties, then there is a unique g ∈

SO◦(d, 2) such that ρ′ = gρg−1 and ϕ′ = g ◦ ϕ.

Proof. The proof is the same as for (G,X)-structures. Let us write G = SO◦(d, 2) and H =

SO◦(d, 1), so that AdSd+1 = G/H.
Given i, j ∈ I and x ∈ Ui ∩ Uj , write gij(x) ∈ G the element such that ϕi = gij(x) ∩ ϕj on a
neighbourhood of x (it is unique thanks to Lemma 3.31). Because of its uniqueness, it satisfies the
cocycle rule gik(x) = gij(x)gjk(x) whenever x ∈ Ui ∩Uj ∩Uk, and we can consider the G-principal
bundle P over M with transitions gij .
Another consequence of Lemma 3.31 is that the map x 7→ gij(x) is locally constant, so P inherits
a flat connection, and we can consider its holonomy representation ρ : π1(M) → G.
Now let E be the associated G/H-bundle over M . The relation ϕi = gij ◦ϕj shows that there is a

section σ of E that locally reads as ϕi. This section lifts to a ρ-equivariant map ϕ : M̃ → G/H =

AdSd+1 with the required properties.

If another pair (ρ′, ϕ′) satisfies the same properties, then for any x ∈ M̃ there is an element
g(x) ∈ G such that ϕ′ = g(x) ◦ ϕ on a neighbourhood of x. Using Lemma 3.31 once again, we
see that the map x 7→ g(x) is locally constant, hence constant. The equivariance implies that
ρ′ = gρg−1. □

Conversely, a representation ρ : π1(M) → SO◦(d, 2) and an equivariant spacelike immersion

ϕ : M̃ → AdSd+1 define a spacelike AdS structure on M by choosing an open cover (Ui)i∈I of M

so that π : M̃ →M is invertible on each Ui, with ϕi : Ui → AdSd+1 defined as ϕ ◦ π−1 on Ui.

Let now ϕ : M̃ → AdSd+1 be a ρ-equivariant spacelike immersion. Note that the pulled-back
distance ϕ∗dAdS (as defined in Section 3.2) is π1(M)-invariant. If M is moreover compact, then
it is complete, and ϕ is thus an embedding (see Proposition 3.14). This implies that ρ is discrete

and faithful and ρ(π1(M)) acts properly discontinuously on ϕ(M̃). By Theorem 3.28, ρ is the thus
the holonomy of a GHMC AdS spacetime N and ϕ embeds M as a Cauchy hypersurface in N .
We thus obtain the following:
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Theorem 3.33. Let M be a closed manifold of dimension d, let ρ be a representation of π1(M)

into SO◦(d, 2) and let ϕ : M̃ → AdSd+1 be a ρ-equivariant spacelike embedding. Then there exists

a unique ρ-invariant open domain Ωρ ⊂ AdSd+1 such that:

(1) π1(M) acts properly discontinuously on Ωρ via ρ,
(2) the quotient Nρ = ρ(π1(M))\Ωρ is a GHMC AdS manifold,
(3) the map ϕ factors to an embedding of M into Nρ whose image is a Cauchy hypersurface.

3.7. Convex ruled spacelike AdS structures.

Definition 3.34. Let N be a quasifuchsian AdS spacetime of dimension d + 1. A Lipschitz

hypersurface M ⊂ N is called spacelike if its lift M̃ to the universal cover of N (which is an open

subset of AdSd+1 by Mess’s Theorem) is a Lipschitz spacelike hypersurface.

We say that M is past-convex if M̃ is past-convex.
We say that M is ruled if each x ∈M lies in the relative interior of a geodesic segment of N which
is contained in M .

Lemma 3.35. Let N be a quasifuchsian AdS spacetime. Then N contains a unique past-convex
ruled Cauchy hypersurface.

Proof. For the existence, write N = Γ\Ω, and let Λ = ∂Ω∩∂∞AdSd+1 be its limit set. We denote

by Conv(Λ) ⊂ AdSd+1 ∪ ∂∞AdSd+1 the convex hull of Λ, and C(N) = Γ\(Conv(Λ) \ Λ) ⊂ N the
convex core of N . Its boundary ∂N has two connected components, and we consider the future
component ∂+C(N). It is a Cauchy hypersurface in N [6, Lemma 4.9], and moreover a spacelike
hypersurface thanks to [6, Lemma 3.16] and Lemma 3.11. It is past-convex by definition. Let
x ∈ ∂+C(N), and consider a lift x̃ ∈ ∂Conv(Λ). This lift does not belong to Λ, so it cannot be
an extreme point of the convex set Conv(Λ), it therefore lies in the relative interior of a geodesic

segment of AdSd+1 contained in Conv(Λ). This geodesic segment is spacelike because ∂+C(N) is
a spacelike hypersurface. It must lie in ∂Conv(Λ) because the interior of Conv(Λ) is convex.

Now for the uniqueness, let S ⊂ N be a ruled past convex Cauchy hypersurface, and S̃ ⊂ Ω its lift.

We then have ∂S̃ ⊂ ∂∞AdSd+1 = Λ thanks to [12, Corollary 3.8]. Let C ⊂ AdSd+1 ∪ ∂∞AdSd+1

be the closed convex hull of S̃. It is compact and convex, so by the Krein–Milman Theorem it is

the convex hull of its set of extreme points E ⊂ S̃ ∪Λ ⊂ AdSd+1 ∪ ∂AdSd+1. Since S is ruled, we

have S̃ ∩ E = ∅, so S̃ ⊂ C = Conv(Λ). Since S is past-convex, we find that S = ∂+C(N). □

Definition 3.36. A spacelike AdS structure (Ui, ϕi)i∈I on a manifold M is convex ruled if for all
i ∈ I, ϕi(Ui) is contained in a past-convex ruled hypersurface.

Lemma 3.37. Let M be a closed manifold of dimension d. There is a one-to-one correspondence
between convex ruled spacelike AdS structures on M and quasifuchsian AdS spacetimes homeo-
morphic to M × R.

Proof. It follows from Lemma 3.35, Theorem 3.33, and characterization (iii) in Theorem 3.29. □

3.8. Convex ruled hyperbolic embedding structures and hyperbolic ends. In this section
we outline the analog in hyperbolic manifolds of the notion of spacelike AdS structures developed
in Sections 3.6 and 3.7.

Definition 3.38. Let H be an oriented Lipschitz manifold. A map ϕ : H → Hd+1 is called
a Lipschitz embedding if (x, y) 7→ dHd+1(ϕ(x), ϕ(y)) is a Lipschitz distance on H. It is called a
Lipschitz immersion if every point in H has a neighbourhood U such that the restriction of ϕ to
U is a Lipschitz embedding.

A Lipschitz immersion ϕ : H → Hd+1 is called ruled if for every point x ∈ H there is an injective
continuous curve γ : (−ε, ε) → H such that γ(0) = x and ϕ ◦ γ is a geodesic segment in Hd+1.

A Lipschitz embedding ϕ : H → Hd+1 is called convex if there is an open convex set V ⊂ Hd+1

such that ϕ(H) is an open subset of ∂V and the orientations induced on ∂V from V and H
coincide. A Lipschitz immersion ϕ : H → Hd+1 is called locally convex if every point in H has a
neighbourhood U such that the restriction of ϕ to U is a convex Lipschitz embedding.
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We can use convex ruled Lipschitz embeddings to define convex ruled hyperbolic embedding
structures, the Riemannian counterpart of convex ruled spacelike AdS structures.

Definition 3.39. Let M be a d-dimensional oriented manifold. A hyperbolic embedding atlas on
M is the data of an atlas (Ui, ϕi)i∈I where (Ui)i∈I is an open cover of M and ϕi : Ui → Hd+1 is
a Lipschitz embedding, such that for all i, j ∈ I and all x ∈ Ui ∩ Uj , there exists an orientation
preserving isometry g of Hd+1 such that

ϕj = g ◦ ϕi
in a neighbourhood of x.

A hyperbolic embedding structure is a maximal hyperbolic embedding atlas. It is called convex
ruled if the local charts ϕi are locally convex and ruled.

Two hyperbolic embedding structures (Ui, ϕi)i∈I and (Vj , ψj)j∈J on M are isomorphic if for
every (i, j) ∈ I × J and every x ∈ Ui ∩ Vj , there exists an orientation preserving isometry g of
Hd+1 such that

ψj = g ◦ ϕi
in a neighbourhood of x.

The method used for Corollary 3.32 also provides a developing map and a holonomy represen-
tation for convex ruled hyperbolic embedding structures.

Lemma 3.40. Let (Ui, ϕi) be a hyperbolic embedding atlas on M . Then there exists a represen-

tation ρ : π1(M) → SO◦(d + 1, 1) and a ρ-equivariant Lipschitz immersion ρ : M̃ → Hd+1 such

that, for all x ∈ M̃ and all Ui containing π(x), there exists g ∈ SO◦(d+ 1, 1) such that

ϕi ◦ π = g ◦ ϕ

in a neighbourhood of x. (Here π : M̃ →M denotes the universal covering map.)
Moreover, if another pair (ρ′, ϕ′) satisfies the same properties, then there is a unique g ∈

SO◦(d+ 1, 1) such that ρ′ = gρg−1 and ϕ′ = g ◦ ϕ.

Just as in the AdS case, the converse also holds: a pair (ρ, ϕ) where ρ : π1(M̃) → SO◦(d+1, 1) is

a representation and ϕ : M̃ → Hd+1 is a ρ-equivariant Lipschitz immersion determines a hyperbolic
embedding structure on M . Finally, the map ϕ is convex ruled if and only if the corresponding
hyperbolic embedding structure is convex ruled.

The hyperbolic manifolds associated to convex ruled hyperbolic embedding structures, hyper-
bolic ends, require a precise definition. In simple terms, a hyperbolic end is a hyperbolic manifold
with compact concave boundary, which is maximal in the sense of inclusion for this condition. In
order to give a precise definition, we need to define what we mean by a hyperbolic manifold with
concave boundary.

Definition 3.41. Let ϕ : H → Hd+1 be a convex Lipschitz embedding, and V ⊂ Hd+1 a convex
open set such that ϕ(H) is an open subset of ∂V . We define the set N (ϕ) of normal vectors to ϕ
to be the set of pairs (x, v) where x ∈ H and v ∈ Tϕ(x)Hd is a unit vector pointing outside of V

such that v⊥ is a support hyperplane of V .
The concave development of a convex Lipschitz embedding ϕ : H → Hd+1 is the set

W(ϕ) =
{
expϕ(x)(tv)

∣∣∣ (x, v) ∈ N (ϕ), t ≥ 0
}
.

Definition 3.42. A concave hyperbolic atlas on a topological space X is the data of an atlas
(Ui, ϕ)i∈I where (Ui)i∈I is an open cover of X and the maps ϕi : Ui → Hd+1 have the following
properties:

(1) Each ϕi is a homeomorphism from Ui to ϕi(Ui),
(2) For each i ∈ I there is a convex Lipschitz embedding ψi : Hi → Hd+1 such that ϕi(Ui) =

W(ψi),
(3) For every pair i, j ∈ I there is an element gij ∈ SO◦(d + 1, 1) such that ϕj = gij ◦ ϕi on

Ui ∩ Uj .
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ϕ(H)

∂∞W(ϕ)

W(ϕ)

Figure 2. The concave development

A concave hyperbolic manifold is the data of a connected Hausdorff second countable topological
space X and a maximal concave hyperbolic atlas on X.

Note that a concave hyperbolic manifold is always a topological manifold with boundary, the
interior being a smooth hyperbolic manifold.

Definition 3.43. A hyperbolic end of dimension d+1 is a concave hyperbolic manifold with non
empty compact boundary, and which is maximal (in the sense of inclusion) under this condition.

Examples of hyperbolic ends arise naturally as the components of the complement of the convex
core in a convex cocompact hyperbolic manifold. Let us focus on the quasifuchsian case.

Definition 3.44. A quasifuchsian hyperbolic manifold of dimension d+1 is a complete hyperbolic
manifold N homeomorphic toM×R, withM a closed manifold of dimension d, and which contains
a non-empty compact subset K ⊂ N with the following convexity property: for any x, y ∈ K, any
geodesic of N joining x and y is contained in K.
The smallest such compact setK is called the convex core of N , denoted by C(N). A quasifuchsian
hyperbolic manifold is called Fuchsian if its convex core is a totally geodesic hypersurface.

If N is a quasifuchsian hyperbolic manifold, then N \ C(N) has two connected components,
and the closure of each component is a hyperbolic end. When d = 1, a hyperbolic end is just
a funnel (the quotient by a hyperbolic isometry of a half hyperbolic plane bounded by the axis
of this isometry). When d ≥ 2, a hyperbolic end cannot always be obtained as an end of a
quasifuchsian hyperbolic manifold. Indeed, a hyperbolic end with boundary homeomorphic to M
induces a holonomy representation ρ : π1(M) → SO◦(d+ 1, 1), which is faithful and discrete for a
quasifuchsian manifold, but may fail to be either for a hyperbolic end.

A hyperbolic end E actually comes with two boundaries. The first one, called the pleated
boundary of E and denoted by ∂0E, is the one already mentioned after Definition 3.42, obtained
when E is seen as a manifold with boundary. We will discuss its geometry further in the next
section.

The other boundary is the ideal boundary ∂∞E. It is homeomorphic toM and locally modelled
on ∂∞Hd+1 = Sd with the action of SO◦(d+1, 1) by Möbius transformations. In other words, ∂∞E
is equipped with a conformally flat structure. Moreover, this correspondence between hyperbolic
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ends homeomorphic toM × [0,+∞) and conformally flat structures onM is a bijection, according
to the following:

Theorem 3.45 (Kulkarni–Pinkall [31]). Let M be an oriented closed manifold of dimension d
whose fundamental group is not virtually abelian.1 Then every conformally flat structure on M is
the ideal boundary of a unique hyperbolic end with interior homeomorphic to M × (0,+∞).

When d = 2, the group SO◦(3, 1) is isomorphic to PSL(2,C), and a theorem of Gallo–Kapovich–
Marden [18] states that any non elementary representation of the fundamental group of a closed
surface into SL(2,C) descends to the holonomy representation of a conformally flat structure, thus
providing an abundance of non quasifuchsian hyperbolic ends.

The bridge between convex ruled hyperbolic embedding structures and hyperbolic ends is the
pleated boundary. The following lemma can be inferred from [31, Theorems 5.9 and 8.6] (see also
[38]), but we can also give a direct proof without going through conformally flat structures.

Lemma 3.46. If E is a hyperbolic end, then the pleated boundary ∂0E carries a convex ruled
hyperbolic embedding structure.

Proof. Following Definition 3.42, we see that the restriction of charts of a concave hyperbolic atlas
to ∂0E are convex Lipschitz embeddings. The fact that ∂0E is ruled comes from the maximality
of an end: if ∂0E were strictly concave, we could “push” it to obtain a larger concave hyperbolic
manifold (see Figure 3). More precisely, consider a point x ∈ ∂0E at which the property fails,
and a concave hyperbolic atlas for which x is in a unique chart (Ui, ϕi). Then consider a support
hyperplane H ⊂ Hd+1 to Vi at ϕi(x) (following the notations of Definition 3.42). The failure of
the ruling at x means that one can push H slightly to a hyperplane H ′ that cuts the image of ϕ in
an arbitrarily small neighborhood of ϕi(x). In particular, we can assume that this neighborhood
is not contained in any other chart. Replacing Vi with its intersection with the half-space bounded
by H ′ that does not contain ϕi(x) and keeping the other charts, we get a concave hyperbolic atlas
on a larger manifold, thus contradicting the maximality of E. □

ϕi(x)

Vi

V ′
i

H

H ′

Figure 3. Proof of Lemma 3.46.

We now wish to see how any convex ruled hyperbolic embedding structure can be obtained as
the pleated boundary of a hyperbolic end.

Lemma 3.47. Any convex ruled hyperbolic embedding structure can be obtained as the pleated
boundary of a hyperbolic end, unique up to isometry.

This could be obtained by [31, Theorem 10.6], but we provide here a direct construction without
going through conformally flat structures, inspired by [38, Section 4].

1This topological condition ensures that conformally flat structures on M are hyperbolic as defined in [31], and

is satisfied by closed hyperbolic manifolds as well as Gromov–Thurston manifolds.
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Proof of Lemma 3.47. Let (Ui, ϕi)i∈I be a convex ruled hyperbolic embedding atlas on a compact
manifold M . We obtain a concave hyperbolic manifold with pleated boundary isometric to M by
considering:

E =
⊔
i∈I

W(ϕi)/ ∼

where we identify W(ϕi|Ui∩Uj ) with W(ϕj |Ui∩Uj ) through the element γij ∈ SO◦(d + 1, 1) such
that ϕi|Ui∩Uj = γij ◦ ϕj |Ui∩Uj .

Consider a concave hyperbolic manifold with compact pleated boundary E′ ⊃ E, and let
(x, x′) ∈ ∂0E × ∂0E

′ be maximising the distance. In a chart, we find that ∂0E
′ must be (locally

around x′) included in the r-neighbourhood of a geodesic where r = d(x, x′) (because ∂0E is
ruled). But for r > 0, the r-neighbourhood of a geodesic in Hd+1 is strictly convex, thus r = 0,
i.e. E′ = E and E is maximal.

Now consider another hyperbolic end E′ inducing the same convex ruled hyperbolic embedding
structure on the pleated boundary ∂0E

′ ≈ M . If (Vj , ψj)j∈J is a concave hyperbolic atlas on E′,
then whenever Vj ∩∂0E′ ̸= ∅, ψj(Vj) contains a neighbourhood of ψj(Vj ∩∂0E′) in W(ψj |Vj∩∂0E′).
So E′ contains a neighbourhood of ∂0E in E. By maximality of E′, we find that E ⊂ E′, and by
maximality of E we must have E = E′, hence the uniqueness.

□

Note that we can also obtain the flat conformal structure from this construction. If ϕ : H →
Hd+1 is a convex Lipschitz embedding, we can consider the ideal boundary ∂∞W(ϕ) of its concave
development:

∂∞W(ϕ) = W(ϕ) ∩ ∂∞Hd+1 =

{
lim

t→+∞
expϕ(x)(tv)

∣∣∣∣ (x, v) ∈ N (ϕ)

}
⊂ ∂∞Hd+1 = Sd.

One gets a conformally flat manifold by setting:

∂∞E =
⊔
∂∞W(ϕi)/ ∼

where we identify ∂∞W(ϕi|Ui∩Uj
) with ∂∞W(ϕj |Ui∩Uj

) through the element γij ∈ SO◦(d + 1, 1)
such that ϕi|Ui∩Uj

= γij ◦ ϕj |Ui∩Uj
.

As a consequence of Lemma 3.46 and Lemma 3.47, we get the following hyperbolic version of
Lemma 3.37:

Lemma 3.48. Let M be a closed manifold. There is a one-to-one correspondence between convex
ruled hyperbolic embedding structures on M up to equivalence and hyperbolic ends E with pleated
boundary ∂0E ≈M up to isometry.

4. Spherical and de Sitter polygons

This section is devoted to the study of polygons in the sphere S2 and spacelike polygons in the
de Sitter space dS2. We construct a moduli space of such polygons, which is a smooth manifold,
and describe various subsets of this moduli space, namely equilateral polygons, and equilateral
polygons with a central symmetry.

As we will see in the next sections, spherical and de Sitter polygons parametrize bendings of
Gromov–Thurston manifolds in the hyperbolic and anti-de Sitter space respectively. Once this is
established, the results of the present section will readily prove the main theorems of the paper.

4.1. Spherical polygons and their deformations. Let us start with the more familiar setting
of spherical polygons. We will use the following definition:

Definition 4.1. A spherical k-gon, k ≥ 3, is a tuple (vi)i∈Z/kZ of pairwise distinct points in S2
such that

(1) 0 < d(vi, vi+1) < π for all i ∈ Z/kZ,
(2) (vi, vi+1) ∩ [vj , vj+1] = ∅ for i ̸= j.
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Remark 4.2. Condition 1 guarantees that two consecutive vertices vi, vi+1 are never antipodal, so
that they are joined by a unique geodesic segment. Condition 2 and the fact that the vertices are
pairwise distinct guarantee that our polygons do not have “crossings”, so that the union of all
edges

⋃
i∈Z/kZ[vi, vi+1] is an embedded topological circle.

Remark 4.3. Our polygons are labelled, meaning that a polygon is considered different from another
one with the same vertices permuted. In particular, the polygon (v1, . . . , vk) is different from
(vk, . . . , v1), so our polygons are also oriented.

The set Uk of spherical k-gons is clearly an open subset of (S2)k and thus inherits a structure of
2k-dimensional manifold. The group SO(3) acts smoothly on Uk(S) and this action is free (since
the stabilizer of a given polygon fixes two non-antipodal points on the sphere). The quotient space

Pk(S)
def
= SO(3)\Uk

is thus a manifold of dimension 2k − 3 which we call the moduli space of (labelled) k-gons.
Given p = (v1, . . . , vk) a spherical polygon in S2, let us introduce the following auxiliary vectors:

• u+i is the unit vector in TviS
2 = v⊥i directing the edge [vi, vi+1],

• u−i is the unit vector in TviS
2 = v⊥i directing the edge [vi, vi−1],

• wi = vi × u+i is the unit vector completing (vi, u
+
i ) into an oriented orthonormal basis.

(These vectors depend on p in the same way the vertices vi do, but we omit to write this dependence
in order to lighten notations.)

Finally, we define li(p) to be the length of the edge [vi, vi+1] and θi(p) to be the oriented angle
at vi between u

+
i and −u−i , i.e. θi(p) ∈ (−π, π) is such that

−u−i = cos(θi(p))u
+
i + sin(θi(p))wi .

With this convention, θi = 0 if and only if vi−1, vi and vi+1 are aligned.
The functions li : Uk → (0, π) and θi : Uk → (−π, π) are clearly smooth and SO(3)-invariant.

They thus factor to smooth functions on Pk(S).

Theorem 4.4. The map

Φ : Pk(S) → (0, π)k × (−π, π)k

p 7→ (l1(p), . . . , lk(p), θ1(p), . . . , θk(p))

is an embedding, and the image of dΦ at a point p is the set of tuples (l̇1, . . . , l̇k, θ̇1, . . . , θ̇k) such
that

(1)
k∑

i=1

θ̇ivi − l̇iwi = 0 .

Proof of Theorem 4.4. It is well-known that a polygon is characterized up to isometry by its
lengths and angles, so that Φ is a homeomorphism onto its image. While the fact that Φ is an
immersion is also quite intuitive, let us prove it with a little more care.

Fix p ∈ Uk(S) and ṗ = (v̇1, . . . v̇k) a tangent vector at p. Assume that dli(ṗ) = dθi(ṗ) = 0. We
need to prove the existence of a ∈ so(3) such that v̇i = avi for all i.

For each i, note that (vi, vi+1, wi) is a basis of R3 for each i. Denoting by ẇi the first order
variation of wi, we have

⟨ẇi, wi⟩ = 0

⟨ẇi, vi⟩ = −⟨wi, v̇i⟩
⟨ẇi, vi+1⟩ = −⟨wi, v̇i+1⟩

since wi is a unit vector orthogonal to vi and vi+1. Define ai ∈ End(R3) by

aivi = v̇i

aivi+1 = v̇i+1

aiwi = ẇi .
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The identity

⟨aiv, w⟩ = −⟨v, aiw⟩
is satisfied on the basis (vi, vi+1, wi), hence ai ∈ so(3).

Let us now prove that ai = ai−1. By construction, aivi = v̇i = ai−1vi. Moreover, we have

wi−1 = cos(θi)wi − sin(θi)u
+
i .

Since θ̇i = 0, we deduce that

ai−1wi−1 = ẇi−1

= cos(θi)ẇi − sin(θi)u̇
+
i

= cos(θi)aiwi − sin(θi)aiu
+
i

= aiwi−1 .

The endomorphism ai − ai−1 is in so(3) and has a kernel of dimension at least 2, hence ai = ai−1.
By an immediate induction, we conclude that all the ai are equal to the same a ∈ so(3), which

then satisfies v̇i = avi for all i. This proves that the map Φ is an embedding.

Let us now characterize the image of dΦ. Note that, since the vi and wi span R3, the space of
tuples (l̇1, . . . , l̇k, θ̇1, . . . , θ̇k) satisfying Equation (1) has dimension k−3. By equality of dimension,
it is thus enough to verify that the equation is satisfied on the image of dΦ, and by linearity it
suffices to prove it for first order deformations where only one vertex, say v2, is moving.

Fix a polygon p = (v1, . . . , vk) and assume first that no three consecutive vertices are aligned.
Then (u−i , u

+
i ) form a basis of TviS

2 for each i, and it is enough to verify that the relation (1) is
satisfied for a first order variation of p when only one of the vi moves in the direction u−i or u+i .
Let us thus prove that (1) holds when v̇2 = u+2 and v̇i = 0 for i ̸= 2 (this is enough by symmetry
of the problem).

We can compute first order variations of θi and li and get

(1) θ̇1 = sin(θ2)
sin(l1)

,

(2) θ̇2 = − sin(θ2)cotan(l1),

(3) l̇1 = cos(θ2),

(4) l̇2 = −1,

(5) l̇i = θ̇i = 0 for i /∈ {1, 2}.
Writing coordinates in the orthonormal basis (v2,−u−2 , w1), we have:

v1 = (cos(l1),− sin(l1), 0) ,

v2 = (1, 0, 0) ,

w1 = (0, 0, 1) ,

w2 = (0, sin(θ2), cos(θ2)) .

And we conclude that

k∑
i=1

θ̇ivi − l̇iwi = θ̇1v1 + θ̇2v2 − l̇1w1 − l̇2w2 =

sin(θ2)
sin(l1)

· (cos(l1), − sin(l1), 0) +

(− sin(θ2)cotan(l1)) · (1, 0, 0) +
− cos(θ2) · (0, 0, 1) +

1 · (0, sin(θ2), cos(θ2))

which is equal to 0.
We deduce that Equation (1) holds on the image of dΦ at every p with no three consecutive

vertices aligned, and conclude that it holds on all Pk(S
2) by density. □
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4.2. Spacelike polygons in dS2 and their deformations. We know duplicate the above con-
struction for spacelike polygons in dS2. The results and their proof are formally the same, and we
will only stress out the additional technicalities.

The two-dimensional de Sitter space dS2 is the space of unit spacelike vectors in the 2 + 1
dimensional Minkowski space R2,1. More precisely, we equip R3 with the bilinear symmetric form

⟨x, y⟩ = x0y0 + x1y1 − x2y2 .

and consider the Lorentzian submanifold

dS2 = {x ∈ R2,1 | ⟨x, x⟩ = 1} .

A timelike vector in R2,1 is future pointing if its third coordinate is positive. This defines an
orientation of time in dS2. One can then define an orientation of space 1 in the following way: 1) DM - isn’t

it more of an
orientation of
each spacelike
geodesic?

given v ∈ dS2 and u ∈ TvdS
2 spacelike, let w be the unit future pointing vector orthogonal to v

and u. We say that u is positive if (v, u, w) is a direct basis of R2,1. The group of isometries of dS2

preserving the orientation of time and space is SO◦(2, 1), acting linearly on dS2 ⊂ R2,1. Geodesics
in dS2 are intersections of dS2 with linear planes in R2,1.

Definition 4.5. A spacelike de Sitter k-gon is a tuple (vi)i∈Z/kZ of pairwise distinct points in dS2

such that

(1) vi and vi+1 are joined by a spacelike segment of length in (0, π) for all i ∈ Z/kZ,
(2) the vector directing the segment [vi, vi+1] at vi is positive for all i,
(3) (vi, vi+1) ∩ [vj , vj+1] = ∅ for i ̸= j.

Remark 4.6. Condition (1) guarantees that two consecutive vertices vi, vi+1 are never antipodal,
so that they are joined by a unique geodesic segment. Condition (3) ensures that our polygons do
not have “crossings”, so that the union of all edges

⋃
i∈Z/kZ[vi, vi+1] is an embedded topological

circle. Finally, by Condition (2), this circle is “positively oriented”. In particular, its homology
class is the positive generator of H1(dS

2) = Z.

As in the Euclidean case, the set Uk(dS) of spacelike de Sitter k-gons is an open subset of (dS2)k

on which the group SO◦(2, 1) acts smoothly and freely. Since SO◦(2, 1) is not compact anymore,
one also needs to remark that this action is proper, which is easy because any element of SO◦(2, 1)
is entirely characterized by the image of 2 independent vectors spanning a non-isotropic plane,
such as two consecutive vertices of a spacelike polygon. We thus get that the quotient space

Pk(dS)
def
= SO◦(2, 1)\Uk

is a manifold of dimension 2k − 3 which we call the moduli space of (labelled) spacelike de Sitter
k-gons.

Given p = (v1, . . . , vk) a spacelike polygon in dS2, we introduce again the auxiliary vectors:

• u+i the unit vector in TvidS
2 = v⊥i directing the edge [vi, vi+1],

• u−i the unit vector in TvidS
2 = v⊥i directing the edge [vi, vi−1],

• wi = vi × u+i the unit vector completing (vi, u
+
i ) into an oriented orthonormal basis.

Note that we have ⟨wi, wi⟩ = −1 since we are in the Minkowski space.
Finally, we define li(p) to be the length of the edge [vi, vi+1] and θi(p) to be a “Lorentzian

angle” at vi between u
+
i and −u−i , i.e. θi(p) ∈ R is such that

−u−i = cosh(θi(p))u
+
i + sinh(θi(p))wi .

Again, li : Uk(dS) → (0, π) and θi : Uk(dS) → R factor to smooth functions on Pk(dS).

Theorem 4.7. The map

Φ : Pk(dS) → (0, π)k × Rk

p 7→ (l1(p), . . . , lk(p), θ1(p), . . . , θk(p))
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Figure 4. A spacelike polygon in dS2.

is an embedding, and the image of dΦ at a point p is the set of tuples (l̇1, . . . , l̇k, θ̇1, . . . , θ̇k) such
that

(2)

k∑
i=1

θ̇ivi + l̇iwi = 0 .

Proof of Theorem 4.7. The proof is almost exactly the same as in the spherical case.
First, a polygon is characterized up to isometry by its lengths and angles, so that Φ is a

homeomorphism onto its image.
To prove that Φ is an immersion, we construct ai ∈ so(2, 1) such that aivi = v̇i and aivi+1 =

v̇i+1, and we prove that all the ai are equal by showing that aiwi−1 = ai−1wi−1.
To characterize the image of dΦ, we reduce with the same arguments as in the spherical case

to proving that Equation (2) is satisfied at a polygon p where no three consecutive vertices are
aligned and along a first order variation where v̇2 = u+2 and v̇i = 0 for i ̸= 2.

We obtain similar formulae for the first order variation of the lengths and angles, namely

(1) θ̇1 = sinh(θ2)
sin(l1)

,

(2) θ̇2 = − sinh(θ2)cotan(l1),

(3) l̇1 = cosh(θ2),

(4) l̇2 = −1,

(5) l̇i = θ̇i = 0 for i /∈ {1, 2}.



GROMOV-THURSTON MANIFOLDS 27

In the orthonormal frame (v2, u
−
2 , w1), we have:

v1 = (cos(l1),− sin(l1), 0) ,

v2 = (1, 0, 0) ,

w1 = (0, 0, 1) ,

w2 = (0,− sinh(θ2), cosh(θ2)) .

And we compute again that

k∑
i=1

θ̇ivi + l̇iwi = θ̇1v1 + θ̇2v2 + l̇1w1 + l̇2w2 = 0 .

Note the single sign change in the second coordinate of w2, which induces the sign change in
Equation (2) compared to Equation (1). □

4.3. Convex polygons.

Definition 4.8. A spherical or de Sitter polygon p will be called convex if

θi(p) ≥ 0

for all i.

By definition, the union of the edges of a spherical polygon forms an oriented Jordan curve,
which separates the sphere into two topological discs. With our (perhaps non-standard) conven-
tion, a polygon is convex if and only if the disc to its right is convex.

Similarly, a de Sitter polygon separates dS2 into two cylindrical domains, and the polygon is
convex if and only if the domain in its past is convex.

4.4. Equilateral polygons.

Definition 4.9. A spherical or spacelike de Sitter k-gon p is called equilateral if

l1(p) = . . . = lk(p) .

Let Peq
k (S) ⊂ Pk(S) denote the set of (equivalence classes of) equilateral spherical k-gons and

P l
k(S) ⊂ Peq

k (S) the subset of equilateral k-gons pwith li(p) = l for all i.

Proposition 4.10. The space Peq
k (S) is a submanifold of Pk(S) of dimension k − 2.

For all l < 2π
k , the subpace P l

k(S) is a submanifold of Pk(S) of dimension k − 3.

Proof. Define

L : Pk(S) → Rk

p → (l1(p), . . . lk(p))

and
D : Pk(S) → Rk−1

p → (l2(p)− l1(p), . . . , lk(p)− lk−1(p)) ,

so that P l
k(S) = L−1(l, . . . , l) and Peq

k (S) = D−1(0, . . . , 0).

Let p be an equilateral polygon of length l. By Theorem 4.4, (l̇1, . . . , l̇k) belongs to the image

of dL if and only if there exist (θ̇i)1≤i≤k such that

k∑
i=1

θ̇ivi =

k∑
i=1

l̇iwi .

This is the case as long as the vi span R3. Otherwise, all the vi are aligned along an equator,
hence kl = 2π. We conclude that L is a submersion along P l

k(S) for l <
2π
k and the second part

of the theorem follows.
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We also deduce that D is a submersion at p unless p is contained in an equator. Assume now
that p is contained in an equator. Then all the wi are equal to a fixed unit vector w orthogonal

to this equator. Fix (δi)1≤i≤k−1 ∈ Rk−1 and set θ̇i = 0 and l̇i =
∑i−1

j=1 δj − s, where

s =
1

k

k∑
i=1

i−1∑
j=1

δj .

Then we have

l̇i+1 − l̇i = δi

and
k∑

i=1

θ̇ivi −
k∑

i=1

l̇iwi = −
k∑

i=1

l̇iw = 0 .

Hence (δ1, . . . , δk−1) belongs to the image of dD. We conclude that D is a submersion along Peq
k (S)

and the first part of the theorem follows. □

Similarly, denoting by Peq
k (dS) ⊂ Pk(dS) the set of (equivalence classes of) equilateral spacelike

de Sitter k-gons and P l
k(dS) ⊂ Peq

k (dS) the subset of equilateral k-gons of length l, we have

Proposition 4.11. The space Peq
k (dS) is a submanifold of Pk(dS) of dimension k − 2.

For all l > 2π
k , the subpace P l

k(dS) is a submanifold of Pk(dS) of dimension k − 3.

The proof is identical to that of Proposition 4.10.

The following proposition guarantees in particular the existence of convex equilateral polygons
with any lengths in the appropriated range.

Proposition 4.12. There exists a smooth 1-parameter family of spherical k-gons (pl)l∈(0, 2πk ] such

that pl is convex equilateral of length l and θi(p) = θ(l) for some homeomorphism

θ :

(
0,

2π

k

]
→
((

1− 2

k

)
π, π

]
.

There exists a smooth 1-parameter family of spacelike de Sitter k-gons (pl)l∈R≥0
such that pl is

convex equilateral of length l and θi(p) = θ(l) for some homeomorphism

θ : R≥0 → R≥0 .

Proof. In the spherical case, fix an orthogonal basis and set pα = (vj(α))1≤j≤k where

vj(α) =

(
cos(α) cos

(
2πj

k

)
, cos(α) sin

(
2πj

k

)
, sin(α)

)
.

In the de Sitter case, fix an orthogonal basis and set pα = (vj(α))1≤j≤k where

vj(α) =

(
cosh(α) cos

(
2πj

k

)
, cosh(α) sin

(
2πj

k

)
, sinh(α)

)
.

The polygon pα is symmetric under rotation of angle 2π
k , hence it is equilateral with lengths

l(α) and all angles equal to θ(α). A straightforward computation shows that the maps

α 7→ l(pα) and α 7→ θ(α)

are both homeomorphisms between the appropriate intervals. □
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4.5. Equilateral polygons with a central symmetry. Consider the involution σ of U2k(S)
(respectively, of U2k(dS)) given by

σ(v1, . . . , v2k) = (vk+1, . . . , v2k, v1, . . . , vk) .

The involution commutes with the action of SO(3) (resp. SO◦(2, 1)) and thus factors to an
involution of P2k(S) (resp. P2k(dS)) that we still denote by σ. Since two polygons with the same
lengths and angles are congruent, the following properties are equivalent:

• the class of p ∈ P2k(S) (resp. P2k(dS)) is fixed by σ,
• there exists a unit vector w (resp. a unit negative vector w) such that

σp = swp ,

where sw is the central symmetry with axis w,
• li(p) = li+k(p) and θi(p) = θi+k(p) for all i ∈ Z/2kZ.

Note that σ preserves the space of equilateral polygons. We denote by Psym
2k (S) (resp. Psym

2k (dS))
the moduli space of equilateral 2k-gons with a central symmetry.

Proposition 4.13. The set Psym
2k (S) (resp. Psym

2k (dS)) is a submanifold of Peq
2k(S) (resp. P

eq
2k(dS))

of dimension k.

Proof. We do the proof in the spherical setting, but the proof in the de Sitter setting is identical.
Since σ is a smooth diffeomorphism of Peq

2k(S) of finite order, it is linearizable at every fixed
point and its fixed locus is a submanifold of local dimension

dimker(dσ − Id) .

Let p = (v1, . . . , v2k) be an equilateral polygon with a central symmetry and w such that

vi+k = sw(vi) .

Then σ fixes the isomorphism class of p and the action of dpσ on TpP
eq
2k(S) sends a first order

variation of the length and angles (θ̇1, . . . , θ̇2k, l̇) to

(θ̇k+1, . . . θ̇2k, θ̇1, . . . , θ̇k, l̇) .

By Theorem 4.4, the kernel of dpσ + Id is identified with the set of tuples

(θ̇1, . . . , θ̇k,−θ̇1, . . . ,−θ̇k, 0)
satisfying the relation

(3)

k∑
i=1

θ̇i(vi − swvi) = 0 .

Note that the vectors vi− swvi are all orthogonal to w. Moreover, they span w⊥, for otherwise all
the vi would be contained in a great circle passing through w, which is absurd because sw reverses
the orientation of this circle while σ preserves the orientation.

Hence the set of (θ̇i)1≤i≤k satisfying (3) has dimension k − 2. Since TpP
eq
2k(S) has dimension

2k − 2, we deduce that
dimker(dσ − Id) = dimPsym

2k (S) = k .

□

Recall that there is (up to isometry) a unique equilateral spherical (resp. spacelike de Sitter)
2k-gon with vanishing angles. This polygon is contained in a (spacelike) geodesic, and its edges
divide this geodesic in segments of length π

k . In particular, it has a central symmetry. We denote
this polygon by p0.

Proposition 4.14. There exists a neighbourhood V of p0 in Psym
2k (dS) (resp. Psym

2k (S)) such that
the map

Θ : V → Rk

p → (θ1(p), . . . θk(p))

is a diffeomorphism onto an open neighbourhood of (0, . . . , 0).
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Proof. The proposition states that Θ is a local diffeomorphism at p0. The proof is identical in
the spherical and de Sitter case. By Proposition 4.13, the space Psym

2k (dS) (resp. Psym
2k (S)) has

dimension k, so it suffices to prove that dΘ is injective at p0.
Set p0 = (v1, . . . v2k). Since all the vi belong to the same geodesic, they are orthogonal to the

same unit vector w, hence all the auxiliary vectors wi are equal to w.
By Theorem 4.4, the kernel of dpΘ identifies with the set of infinitesimal variations of angles

and length of the form

(0, . . . , 0, l̇)

satisfying the equation

(4) l̇

(
2k∑
i=1

wi

)
= 0 .

Since all the wi are equal to w, (4) implies l̇ = 0. We conclude that dpΘ is injective, hence Θ is
local diffeomorphism in a neighborhood of p0. □

Remark 4.15. The proof shows more generally that the map Θ is immersive at every polygon p

for which
∑k

i=1 wi ̸= 0. One can show that it is the case when p is a convex spherical polygon and
when p is any spacelike de Sitter polygon.

5. Geometrization of Gromov–Thurston manifolds

Thanks to the results of Section 3, in order to prove Theorem 1.1, it is enough to construct a
convex ruled spacelike AdS structure on a given Gromov–Thurston manifold Ma. The spacelike
structure we construct will be totally geodesic away from the hypersurfaces Hi where the spacelike
embedding is “folded”. Along the codimension 2 locus S, several dihedra with a total angle greater
than 2π are patched together. A similar construction will be made to prove Theorem 1.12, with
the only difference that the cone angle is less than 2π along the codimension 2 stratum.

5.1. Hipped hypersurfaces in AdSd+1 and polygons in dS2. In order to obtain a local isom-
etry from a Gromov–Thurston cone-manifold Ma with a ≥ 1 into AdSd+1, we need to understand
the polyhedral hypersurfaces in AdSd+1 that carry the same geometry. We will see that such
hypersurfaces can be parametrized by spacelike polygons in dS2.

Definition 5.1. A hipped hypersurface in AdSd+1 is a Lipschitz spacelike hypersurface H ⊂
AdSd+1 that is a finite union H =

⋃k
i=1Xi of subsets with the following properties:

(1) Each Xi is a convex subset of a totally geodesic copy of Hd,
(2) The relative boundary of Xi is the union of two half-spaces Yi and Yi+1 of totally geodesic

copies of Hd−1,
(3) Xi ∩Xi+1 = Yi+1 for all i ∈ {1, . . . , k} (setting Xk+1 = X1 and Yk+1 = Y1),

(4) There is a totally geodesic copy Z ⊂ AdSd+1 of Hd−2, called the stem of H, such that
Yi ∩ Yi+1 = Z for all i ∈ {1, . . . , k}.

Let us give precise definitions of angles between totally geodesic subspaces of AdSd+1. First,
consider two totally geodesic copies X1, X2 ⊂ AdSd+1 of Hd intersecting along a totally geodesic
copy Y of Hd−1. Consider an isometry g ∈ SO◦(d, 2) such that g(X1) = X2 and g is the identity
on Y . Now Y corresponds to a vector subspace Y ⊂ Rd,2 of signature (d− 1, 1), so Y ⊥ ⊂ Rd,2 is
a plane of signature (1, 1). It follows that the restriction of g to Y ⊥ is conjugate to an element of

SO◦(1, 1) ⊂ SO◦(d, 2), hence of the form

(
cosh t sinh t
sinh t cosh t

)
. The angle between X1 and X2 is the

real number t (it could also be seen as the angle between the normal vectors to X1 and X2 at any
point of Y , which is the angle between timelike vectors).

Now consider Y1, Y2 ⊂ AdSd+1 half-spaces of totally geodesic copies of Hd−1 with common
relative boundary Z ≈ Hd−2, consider an isometry g ∈ SO◦(d, 2) such that g(Y1) = Y2 and g is
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Figure 5. A hipped hypersurface in AdS3.

the identity on Z. The angle between Y1 and Y2 is the unique θ ∈ R/2πZ such that g is conjugate
in SO◦(d, 2) to the matrix 1d

cos θ − sin θ
sin θ cos θ

 .

Definition 5.2. Let H =
⋃k

i=1Xi ⊂ AdSd+1 be a hipped hypersurface. The dihedral angles are
the angles between Xi and Xi+1, and the wedge angles are the angles between Yi and Yi+1.

Using the exponential map of AdSd+1 at a point of the stem, the coordinates we obtain on a
hipped hypersurface show that it carries a cone hyperbolic metric whose singular locus is the stem
(and is totally geodesic) and whose angle is the sum of the wedge angles.

Lemma 5.3. A hipped hypersurface in AdSd+1 is past-convex if and only if the dihedral angles
are non negative.

Proof. If the angle between Xi and Xi+1 is negative, consider a point x in the relative interior of
their common intersection Yi+1. One can always find a spacelike geodesic in the future of x that
intersects both Xi and Xi+1 transversally, so its intersection with the past of H is disconnected.
Now assume that all the angles are non negative. In this case H is in the past of each spacelike
hyperplane containing X1, . . . , Xk, so it is past-convex. □

Lemma 5.4. Let α1, . . . , αk ∈ (0, π) and θ1, . . . , θk ∈ R. The set of hipped hypersurfaces H =⋃r
i=1Xi ⊂ AdSd+1 with wedge angles α1, . . . , αk and dihedral angles θ1, . . . , θk considered up

to isometry is in one-to-one correspondence with spacelike polygons p ⊂ dS2 with side lengths
α1, . . . , αk and angles θ1, . . . , θk up to isometry. Through this correspondence, convex polygons are
associated to past-convex hypersurfaces.

Proof. Start with a hipped hypersurface H =
⋃r

i=1Xi ⊂ AdSd+1, let Z ≈ Hd−2 be its stem and
consider the link L of Z. Fix z ∈ Z, so that L identifies with the set of unit spacelike vectors
tangent to AdSd+1 at z and orthogonal to Z. Notice that since TzAdSd+1 = TzZ ⊕ (TzZ)

⊥, there
is a natural identification between L and dS2 (seen as the set of unit spacelike vectors in (TzZ)

⊥).
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Intersecting H with L yields a spacelike polygon p ⊂ dS2. Its vertices v1, . . . , vk are defined by
vi ∈ TzYi ∩ (TzZ)

⊥ and expz(vi) ∈ Yi. The edges [vi, vi+1] correspond to TzXi ∩ (TzZ)
⊥.

Starting with such a polygon p ⊂ dS2 with vertices v1, . . . , vr, we consider any point z ∈ AdSd+1

and any totally geodesic copy Z ⊂ AdSd+1 of Hd−2 containing z. By identifying dS2 with unit
spacelike vectors in (TzZ)

⊥, we can define:

Yi = {expz(u+ tvi) |u ∈ TzZ , t ≥ 0}
Xi = {expz(u+ tw) |u ∈ TzZ , w ∈ [vi, vi+1] , t ≥ 0}

Then H =
⋃k

i=1Xi ⊂ AdSd+1 is a hipped hypersurface, and these two constructions are inverse
to each other.

In this correspondence, the length of [vi, vi+1] is given by the angle between Yi and Yi+1, i.e. αi.
The angle at vi equals the angle between Xi and Xi+1, namely θi. Following Lemma 5.3, we see
that the hipped hypersurface H is past-convex if and only if the spacelike polygon p is convex.

□

5.2. Geometrization of Gromov–Thurston cone-manifolds for a > 1. We now consider
a Gromov–Thurston manifold Ma with a = k

n > 1. Recall that Ma is obtained by gluing k

“wedges” V1, . . . , V2k of M along S, each making an angle 2π/n at S. These wedges are bounded
by hypersurfaces H1, . . . ,H2k with boundary S.

We wish to construct a spacelike AdS structure on Ma. Since Ma \S is a hyperbolic manifold,

the only real work consists in constructing a Lipschitz spacelike immersion of Ma into AdSd+1

in a neighbourhood of S. The idea is to construct “folded” spacelike immersions using hipped
hypersurfaces in AdSd+1.

Definition 5.5. A spacelike AdS structure on Ma is folded if the image under the developing
map of any connected component in the universal cover of Ma of the complement of the union
of the lifts of H1, . . . ,H2k is included in a totally geodesic copy of Hd, and the induced metric on
Ma \ S is the original hyperbolic metric.

The outcome of this discussion is therefore the following lemma.

Lemma 5.6. Let Ma be a Gromov–Thurston manifold of dimension d with a = k
n > 1. There is

a one-to-one correspondence between folded spacelike AdS structures on Ma (up to equivalence)

and hipped hypersurfaces in AdSd+1 with 2k wedges and wedge angles π
n (up to isometry). This

correspondence associates a convex spacelike AdS structure to a convex hipped hypersurface.

Proof. Let dev : M̃a → AdSd+1 be the developing map of a folded spacelike AdS structure on

Ma, let U be a (sufficiently small) neighbourhood of a lift to M̃a of a point of the stem S. Then,
by definition of a folded structure, dev(U) is an open subset of a hipped hypersurface with 2k
wedges, with wedge angles π

n .

Conversely, consider a convex hipped hypersurface Σ =
⋃2k

i=1Xi ⊂ AdSd+1 with wedge angles π
n .

Denote by Vi the connected component ofMa\
⋃2k

i=1Hi which is bounded by Hi and Hi+1. Define
an atlas of spacelike charts on Ma in the following way:

• If x ∈ Ma\
⋃2k

i=1Hi, choose a small ball Ux around x that does not intersect any of the

Hi and define a chart ϕx : Ux → AdSd+1 mapping Ux isometrically onto a spacelike
hyperplane in AdSd+1.

• If x ∈ Hi\S, choose a small ball Ux around x that does not intersect S, and define a

continuous chart ϕx : Ux → AdSd+1 mapping isometrically Ux ∩ Vi−1 into Xi−1, Ux ∩ Vi
into Xi and Ux ∩Hi into Yi.

• If x ∈ S, choose a small ball Ux around x, and define a continuous chart ϕx : Ux → AdSd+1

x mapping isometrically Ux ∩ Vi into Xi and Ux ∩ Vi into Yi for all i.
One easily verifies that the properties of the charts ϕx characterize them up to an isometry
of AdSd+1. Hence they form the atlas of a folded spacelike AdS structure. Moreover, the
neighbourhood of any point in the stem x is mapped to a neighbourhood of the stem of the
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hipped hypersurface Σ, showing that this construction is a converse to the previous one.

Finally, through this correspondence, it is clear that a past convex hipped hypersurface is
associated to a locally convex spacelike structure, hence a convex spacelike structure by Proposi-
tion3.21. □

We can now combine everything to prove the main theorems of the paper.

Proof of Theorems 1.1 and 1.2. Let Ma be a Gromov–Thurston manifold of dimension d with
a = k

n > 1.

By Proposition 4.12, there exists a convex spacelike polygon p in dS2 with 2k sides of length π
n .

By Lemma 5.4, p defines a convex hipped hypersurface Σp in AdSd+1. By Lemma 5.6, Σp defines
a convex folded spacelike AdS structure (devp, ρp) on M

a. Finally, by Theorem 3.33, this folded
hyperbolic structure defines an embedding of Ma as a Cauchy hypersurface in a GHMC AdS
manifold Nρp

. This already proves Theorem 1.1.

We obtain a map p → Nρp
from P

π
n

2k(dS) to the deformation space of GHMC AdS d + 1-

manifolds. Moreover, for each p ∈ P
π
n

2k(dS), the manifold Nρp contains a past-convex folded
spacelike hypersurface isometric to Ma. In dimension d + 1 ≥ 4, folded spacelike hypersurfaces
are ruled, hence (devp, ρp) is a convex ruled spacelike AdS structure. By Lemma 3.35, the image
of devp is the future boundary of the convex core of Nρp

and by Lemma 3.37, the map p 7→ Nρp
is

injective. Finally, by Proposition 4.11, the space P
π
n

2k(dS) is a manifold of dimension k− 3. Hence

the family of GHMC AdS manifolds
(
Nρp

, p ∈ P
π
n

2k(dS)
)
proves Theorem 1.2.

□

Remark 5.7. Though we did not mention anything about the regularity of the map p 7→ Nρp
,

it is quite clear that this map should be continuous for an appropriate topolopogy on the space
of GHMC AdS manifolds homeomorphic to Ma × R. We will discuss further these regularity
questions in Section 6.5.

5.3. Hipped hypersurfaces in Hd+1 and polygons in S2. We now move on to establish a
Riemannian version of Lemma 5.4.

Definition 5.8. A hipped hypersurface is an oriented topological hypersurface H ⊂ Hd+1 which

is a finite union H =
⋃k

i=1Xi of subsets with the following properties:

(1) Each Xi is a convex subset of a totally geodesic copy of Hd,
(2) The relative boundary of Xi is the union of two half-spaces Yi and Yi+1 of totally geodesic

copies of Hd−1,
(3) Xi ∩Xi+1 = Yi+1 for all i ∈ {1, . . . , k} (setting Xk+1 = X1 and Yk+1 = Y1),
(4) There is a totally geodesic copy Z ≈ Hd−2 of Hd+1, called the stem, such that Yi∩Yi+1 = Z

for all i ∈ {1, . . . , k}.
The dihedral angles of H are the angles between Xi and Xi+1, and the wedge angles are the angles
between Yi and Yi+1. A hipped hypersurface is convex if all its dihedral angles are non-negative
(or, equivalently, if the component of Hd+1 \ H inducing the orientation of H with the outward
pointing normal is convex).

Lemma 5.9. Let α1, . . . , αk ∈ (0, π) and θ1, . . . , θk ∈ (−π, π). The set of hipped hypersurfaces
H ⊂ Hd+1 with wedge angles α1, . . . , αk and dihedral angles θ1, . . . , θk considered up to isometry
is in one-to-one correspondence with spherical polygons p ⊂ S2 with side lengths α1, . . . , αk and
angles θ1, . . . , θk up to isometry. Through this correspondence, convex polygons are associated to
convex hipped hypersurfaces.

Proof. The first part of the proof is almost identical to that of Lemma 5.4. Start with a hipped

hypersurface H =
⋃k

i=1Xi ⊂ Hd+1, let Z ≈ Hd−2 be its stem and consider the link L of Z. Fix
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Figure 6. A hipped hypersurface in H3.

z ∈ Z, so that L identifies with the set of unit vectors tangent to Hd+1 at z and orthogonal to Z,
and thus identify L with S2 as the unit vectors in (TzZ)

⊥.
The intersection of H with L is a polygon p ⊂ S2. Its vertices v1, . . . , vk are defined by

vi ∈ TzYi ∩ (TzZ)
⊥ and expz(vi) ∈ Yi. The edges [vi, vi+1] correspond to TzXi ∩ (TzZ)

⊥.
Starting with such a polygon p ⊂ S2 with vertices v1, . . . , vk, we consider any point z ∈ Hd+1

and any totally geodesic copy Z ⊂ Hd+1 of Hd−2 containing z. Identify S2 with unit spacelike
vectors in (TzZ)

⊥, and consider the hipped hypersurface H =
⋃r

i=1Xi ⊂ Hd+1 where:

Xi = {expz(u+ tw) |u ∈ TzZ , w ∈ [vi, vi+1] , t ≥ 0} .

Once again, these two constructions are inverse to each other.
In this correspondence, the length of the edge [vi, vi+1] is given by the angle between Yi and Yi+1,

i.e. αi. The angle at vi is equal the angle between Xi and Xi+1, namely θi.
Both convexities are equivalent to the non-negativity of θ1, . . . , θk, and are therefore concomi-

tant. □

5.4. Geometrization of Gromov–Thurston cone-manifolds for a < 1. We now consider a
Gromov–Thurston manifold Ma with a = k

n < 1. We wish to construct a convex ruled hyperbolic
embedding structure on Ma. Since Ma \ S is a hyperbolic manifold, we only need to construct
such a structure on a neighbourhood of S, and we will do so by using a hipped hypersurface.

Definition 5.10. A hyperbolic embedding structure on Ma is folded if the image under the
developing map of any connected component in the universal cover of Ma of the complement of
the union of the lifts of H1, . . . ,H2k is included in a totally geodesic copy of Hd, and the induced
metric on Ma \ S is the original hyperbolic metric.

The outcome of this discussion is therefore the following lemma.

Lemma 5.11. Let Ma be a Gromov–Thurston manifold of dimension d with a = k
n < 1. There is

a one-to-one correspondence between folded hyperbolic embedding structures on Ma (up to equiva-
lence) and hipped hypersurfaces in Hd+1 with 2k wedges and wedge angles π

n (up to isometry). This
correspondence associates a convex hyperbolic embedding structure to a convex hipped hypersurface.

Proof. The proof is almost identical to that of Lemma 5.6: the developing map of a folded hy-

perbolic embedding structure on Ma sends a lift to M̃a of the stem S isometrically into a hipped
hypersurface with 2k wedges, with wedge angles π

n .

Conversely, given a hipped hypersurfaceH =
⋃2k

i=1Xi consisting of 2k wedges with wedge angles
π
n , one constructs a folded hyperbolic embedding structure on Ma mapping locally isometrically

Vi into Xi, Hi into Yi and S into
⋂2k

i=1 Yi.
The two constructions are inverse to each other. □

Proof of Theorems 1.12 and 1.13. The proof again follows closely that of Theorems 1.1 and 1.2:
Since every convex folded spacelike embedding in dimension d + 1 ≥ 4 is ruled, Lemma 5.11

defines a map

p 7→ (devp, ρp)
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from P
π
n

2k(S) to the set of convex ruled spacelike embeddings which are isometric to Ma. By
Theorem 3.48, every such spacelike embedding is the boundary of a unique hyperbolic end Nρp

.

By Lemma 4.12, P
π
n

2k(S) is non-empty, proving Theorem 1.12. By Lemma 4.10, P
π
n

2k(S) is a manifold

of dimension k − 3, and the family of hyperbolic ends
(
Nρp , p ∈ P

π
n

2k(S)
)
answers Theorem 1.13.

□

6. Fuchsian deformations in dimension 3+1

Gromov–Thurston 3-manifolds are irreducible, atoroidal and Haken. It thus follows from
Thurston or Perelman’s hyperbolization theorems that they also carry a smooth hyperbolic struc-
ture. Here we will give a simpler proof of this fact, showing moreover that the quasifuchsian AdS
manifolds constructed in the previous sections are, in dimension 3 + 1, deformations of Fuchsian
manifolds. Barbot’s conjecture thus remains open in dimension 3 + 1.

We also prove the same result for deformations to Fuchsian manifolds of the hyperbolic ends
defined above (corresponding to Gromov–Thurston cone-manifolds of cone angle smaller than 2π,
still in dimension 3+ 1). Both proofs are based on Hodgson–Kerckhoff’s deformation theorem for
conical hyperbolic 3-manifolds.

6.1. The Hodgson–Kerckhoff deformation theorem. We recall first the Hodgson–Kerckhoff
theorem, see [25], for 3-dimensional hyperbolic cone-manifolds, which will be a useful tool for us
in understanding deformations of quasifuchsian AdS spacetimes (or hyperbolic ends) in dimension
3 + 1.

Theorem 6.1 (Hodgson–Kerckhoff, [25]). Let M be a 3-dimensional hyperbolic manifold with
cone singularities along a link γ = γ1 ⊔ · · · ⊔ γn, with angle θi ∈ (0, 2π) along γi, 1 ≤ i ≤ n.
Then small deformations of M among hyperbolic cone-manifolds with constant singular locus are
parameterized by the variations of the cone angles θ1, · · · , θn.

Note that this deformation result was extended to 3-dimensional hyperbolic cone-manifolds
with singularities along a graph, still with angles less than 2π, by Mazzeo and Moncouquiol [33],
see also [41].

The Hodgson–Kerckhoff deformation theorem leads quite naturally to a deformation result
for the “building blocks” of Gromov–Thurston 3-manifolds. This will in turn be used below to
construct deformations of globally hyperbolic AdS spacetimes, or of hyperbolic ends, in dimension
3+1. We will actually need a more precise rigidity result which states that one can prescribe the
cone angles as long as we remain in the range (0, π).

Theorem 6.2. Let M be a 3-dimensional hyperbolic manifold with cone singularities along a link
γ = γ1 ⊔ · · · ⊔ γn, with angle θi ∈ (0, π) along γi, 1 ≤ i ≤ n. For every θ′1, · · · , θ′n ∈ (0, π), there
is a unique one-parameter family (gt)t∈[0,1] of hyperbolic structures on M with cone singularities
along the γi of angle (1− t)θi + tθ′i.

We refer the reader to [11] or [10, Section 6.2] for a proof. Briefly, one can consider the subset
of values of t which can be achieved. Theorem 6.1 shows that it is open in [0, 1], while a separate,
compactness argument (using the condition that the angles are in (0, π)) shows that it is closed.

6.2. Deformations towards the Fuchsian locus. We now apply the previous results to the
cyclic quotients of hyperbolic manifolds containing totally geodesic planes. We follow the notations
of Section 2, and consider a hyperbolic 3-manifold M with a diedral group of symmetries Dn of
order 2n. We then denote by M the quotient of M by the cyclic subgroup Rn of Dn. Then M is a
hyperbolic cone-manifold, with cone angle 2π/n along the projection of S (which is still denoted
by S). We also fix an integer k ≥ 2, and let a = k/n. Theorem 6.2 readily gives the following:

Corollary 6.3. Under those hypothesis, for ϵ > 0 sufficiently small, there exists a one-parameter
family of hyperbolic metrics (ḡα) on M with a cone singularity along S of cone angle 2α, for α
ranging in the interval (0, π2 + ϵ). Moreover, this family is unique up to isotopy.
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We can then lift this deformation to a deformation of the manifold Ma, which is a cover of M
of degree k ramified over S.

Corollary 6.4. Still with the notations of above, for ϵ > 0 sufficiently small, there exists a one-

parameter family of hyperbolic metrics (gα) on M
k
n with cone singularity along S such that the

hypersurfaces Hi are geodesic, and such that Hi and Hi+1 meet with an angle α, for α ranging in
the interval (πk − ϵ, πn ] when k > n and [πn ,

π
k + ϵ) when k < n.

Proof. Note that, for k, n ≥ 2 the range of α in Corollary 6.4 is contained in the range of α of
Corollary 6.3. Thus, for α in the appropriate range, we can consider the deformation (ḡα) of
Corollary 6.3. Let σ denote the reflection of M induced by any reflection in Dn. Then (σ∗gα) is
another such deformation which coincides with (ḡα) for α = π

n . By the uniqueness of Theorem 6.1,

up to isotoping ḡα, we can thus assume that σ∗ḡα = ḡα for all α.2 Since σ is the reflection along
H1 ∪H2, we deduce that H1 and H2 are totally geodesic for ḡα and meet along S with an angle

α. Then the pull-back gα of ḡα to M
k
n satisfies the required conditions. □

Note that the metric gπ
n
is the original cone metric of the Gromov–Thurston manifoldM

k
n while

the metric gπ
k
is a smooth hyperbolic metric. This proves in particular that Gromov–Thurston

3-manifolds are hyperbolic.

6.3. Deformation to Fuchsian manifolds. We can now conclude the proof of Theorems 1.18
and 1.19 by showing how, in dimension 3+1, the folded convex AdS (resp. hyperbolic) structures

that we considered in Section 5 on a manifold M
k
n with k > n (resp. k < n) can be deformed to

the structure associated to a Fuchsian AdS 4-manifold (resp. a Fuchsian hyperbolic end).

Proof of Theorem 1.18. Assume k > n. Let I denote the interval (πk − ϵ, πn ]. For every α ∈ I

there is a metric gα on M
k
n for which the hypersurfaces Hi are totally geodesic and form angles

α along S. Repeating the proof of Theorem 1.2, we can associate to every spacelike polygon

p ∈ Pα
2k(dS) a folded spacelike AdS structure on (M

k
n , gα), which defines a GHMC AdS manifold

Np by Theorem 3.33. We thus get a map from

PI
2k(dS)

def
=
⊔
α∈I

Pα
2k(dS)

to the deformation space of quasifuchsian AdS 4-manifolds homeomorphic to M
k
n × R.

When the polygon p is convex, the image of the folded spacelike embedding of (M
k
n , gα) in Np

is the future boundary of its convex core, and we deduce that the map p 7→ Np is injective in
restriction to convex polygons, as in the proof of Theorem 1.2.

Now, by Proposition 4.11, the set PI
2k(dS) is a manifold of dimension 2k − 2, which contains

the codimension 1 submanifold P
π
n

2k(dS). By Proposition 4.12, there is a continuous path (pα)α∈I

in PI
2k(dS) such that pα is convex with side length α. For α = π

k , the polygon pα is a spacelike

geodesic in dS2 divided in 2k segments of length π
k , the corresponding folded spacelike embedding

is totally geodesic, and the GHMC AdS 4-manifold Npπ
k
is thus Fuchsian.

Hence the family
(
Np, p ∈ PI

2k(dS)
)
satisfies the required properties, proving Theorem 1.18.

□

Proof of Theorem 1.19. The proof proceeds in the same way as the proof of Theorem 1.18, except
that we now associate hyperbolic ends Np to equilateral spherical polygons

p ∈ PI
2k(S)

def
=
⊔
α∈I

Pα
2k(S) ,

for α ranging in the interval

I =
[π
n
,
π

k
+ ϵ
)
.

2This point is not actually immediate since the uniqueness of the metric is only up to isotopy, but one can keep

track of the involution σ in Hodgson–Kerckhoff’s proof to verify that, starting with a σ-invariant metric, it does

produce a σ-invariant deformation of the metric.
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□

6.4. Integration of bending deformations. Restricting the map p 7→ Np to polygons with a
central symmetry, one proves Theorems 1.21 and 1.20:

Proof of Theorem 1.20. The geodesic polygon p0 with side length π
k and angles 0 belongs to the

interior of PI
2k(dS), which thus contains an open neighbourhood O of p0 in Psym

2k (dS). By Propo-
sition 4.14, the map

Θ : O → Rk

p 7→ (θi(p))1≤i≤k

is, up to restricting O, a diffeomorphism onto an open neighbourhood U of 0 in Rk.
For θ = (θ1, . . . , θk), define

Nθ = NΘ−1(θ1,...,θk) .

Then, by construction, Nθ is a GHMC AdS 4-manifold containing a Cauchy hypersurface home-
omorphic to Ma which is piecewise totally geodesic, folded along the Hi, and such that, for all
1 ≤ i ≤ k, the folding angle at Hi and Hi+k is θi. The family Nθ thus satisfies the required
properties.

□

Proof of Theorem 1.21. The proof is identical to the proof of Theorem 1.20. □

Let us now recall how the families of hyperbolic ends constructed in Theorem 1.21 relate to the
“bending deformations” constructed by Johnson and Millson.

Let M be a hyperbolic manifold of dimension d containing a smooth totally geodesic connected
separating hypersurface H. In [27], Johnson and Millson construct a 1-parameter deformation of
the Fuchsian representation ρ0 : π1(M) → SO◦(d, 1) into SO◦(d+ 1, 1):

Let M1 and M2 denote the two components of M\H. By Van Kampen’s theorem, one can
write the fundamental group of M as an amalgamated product

π1(M) = π1(M1) ∗π1(H) π1(M2) .

Now, up to conjugation, ρ0(π1(H)) is contained in SO(d−1, 1) and is thus centralized by a rotation
subgroup isomorphic to SO(2). There is thus a unique representation

ρH,t : π1(M) → SO◦(d+ 1, 1)

such that

ρH,t|π1(M1)
= ρ0|π1(M1)

and

ρH,t|π1(M2)
= rtρ0|π1(M2)r−t ,

with rt the rotation of angle t commuting with SO◦(d − 1, 1). This deformation has a geometric
interpretation: the representation ρH,t is the holonomy of the folded hyperbolic embedding struc-
ture on M which is isometric and totally geodesic on M1 and M2 and is folded along H with an
angle t.

The same construction can be used to deform ρ0 into SO◦(d, 2). This time, the subgroup
centralizing ρ0(π1(H)) is SO(1, 1) and the deformations are holonomies of folded spacelike
embedding structures on M .

Let us now return to the setting of Theorem 1.20. The Gromov–Thurston 3-manifold Ma

equipped with the smooth metric gπ
k
admits k separating totally geodesic hypersurfaces Ĥi

def
= Hi∪

Hi+k, 1 ≤ i ≤ k. For each of these one gets a Johnson–Millson deformation ρĤi,t
which is nothing

but the holonomy of the quasifuchsian AdS manifold Ntθi where θij = δi,j . Theorem 1.20 thus gives
an example where Johnson–Millson’s bending deformations along k intersecting hypersurfaces fit
into a k-parameter deformation family.
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6.5. Regularity of the map p 7→ Np. Until now, we have been very vague about the question
of the regularity of our “families of GHMC AdS manifolds”, i.e. about the regularity of the map
p 7→ Np. Here we give a little bit more precisions on that.

Fix a Gromov–Thurston manifold of dimension d. Let us say that a quasifuchsian AdS manifold
of dimension d + 1 is marked by Ma if it is equipped with an isomorphism π : π1(M

a) → π1(N)
induced by a spacelike embedding of Ma in N . Via the holonomy representation, the set of
quasifuchsian AdS d + 1 manifolds marked by Ma identifies with the open domain of convex-
cocompact representations in Hom(π1(M

a),SO◦(d, 2))/SO◦(d, 2).
3 This gives a natural topology

to the space of quasifuchsian AdS d+1 manifolds marked by Ma, and even an analytic structure.
Now, in the proof of Theorem 1.2, Theorem 1.18 and Theorem 1.20, one associates to every

spacelike de Sitter polygon p in some family P (which is proven to be an analytic manifold in
Section 4) a certain spacelike AdS structure on Ma. Looking closely at the construction (see the
proof of Lemma 5.6), one can verify that it can be defined by local charts that depend smoothly
on the polygon p. Looking back at the proof of Corollary 3.32, one deduces that this family of
spacelike AdS structures is given by a family of pairs (devp, ρp) where devp is a developing map and
ρp a holonomy representation depending smoothly on p. The representation ρp is the holonomy
of the corresponding marked quasifuchsian AdS manifold Np. In this sense we can say that the
map p 7→ Np is smooth.

Let p be a point in P. Denote by Adρp the composition of ρp : π1(M
a) → SO◦(d, 2) with the

adjoint representation of SO◦(d, 2). The cohomology group

H1(π1(M
a),Adρp

)

is the tangent space to the character stack Hom(π1(M
a),SO◦(d, 2))/SO◦(d, 2) at ρp. In particular,

the derivative of the map p 7→ ρp defines a linear map from TpP to H1(π1(M
a),Adρp

).

Let us now specify the discussion of the previous paragraph to the situation of Theorem1.20.
We take as P a neighbourhood of p0 in the set of equilateral polynomials with a central symmetry,
which is diffeomorphic to a small neighbourhood U of 0 in Rk. We thus obtain a smooth map

R : U → Hom(π1(M
a),SO◦(3, 2))/SO◦(3, 2)

θ 7→ ρθ
def
= ρpθ

.

Its derivative at 0 is a linear map

d0R : Rk → H1(π1(M
a),Adρ0

) ,

where ρ0 is the Fuchsian representation of π1(M
a).

Noting as above θi ∈ Rk the vector such that θij = δi,j , we have in particular that d0R(θ
i) is the

derivative of Johnson–Millson’s bending deformation along Ĥi. The image of d0R is the subspace
of H1(π1(M

a),Adρ0) spanned by these infinitesimal bending deformations.
In general, the character stack Hom(π1(M

a),SO◦(d, 2))/SO◦(d, 2) needs not be smooth at ρ0,
and not every vector in H1(π1(M

a),Adρ0
) need to be the derivative of an actual deformation of

ρ0 in SO◦(d, 2). At one extreme, one could imagine that Hom(π1(M
a),SO◦(d, 2))/SO◦(d, 2) is a

union of k curves intersecting at ρ0, corresponding to the k bending deformations.
However, Theorem 1.20 shows that it is not the case in dimension 3 + 1. The existence of the

map Φ shows that any linear combination of the infinitesimal bending deformations along the
hypersurfaces Ĥi can be integrated into an actual deformation.

7. Initial singularities

7.1. Dualities. Before proving Theorems 1.22 and 1.23, we recall a basic notion of duality (or

polarity) in AdSd+1, or between Hd+1 and dSd+1. A good description of the duality for hyperbolic
polyhedra can be found in [26], and an extension to other constant curvature pseudo-Riemannian
spaces can be found e.g. in [37].

3While the quotient Hom(π1(Ma),SO◦(d, 2))/SO◦(d, 2) might not be Hausdorff, one can prove that the subset

of convex cocompact representations is Hausdorff.
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The duality between Hd+1 and dSd+1. Recall that the hyperbolic d+ 1-dimensional space can be
defined as a quadric in the Minkowski space of dimension d + 2, denoted here as Rd+1,1. This
Minkowski space is Rd+2 equipped with the bilinear symmetric form:

⟨x, y⟩d+1,1 =

d+1∑
i=1

xiyi − xd+2yd+2 .

The hyperbolic space can then be defined as

Hd+1 = {x ∈ Rd+1,1 | ⟨x, x⟩d+1,1 = −1 , xd+2 > 0} ,

equipped with the induced metric. In the same space, we can consider the de Sitter space, defined
as

dSd+1 = {x ∈ Rd+1,1 | ⟨x, x⟩d+1,1 = 1} ,
again with the induced metric. It is a geodesically complete Lorentzian space of constant curva-
ture 1, simply connected if d ≥ 2.

Let x ∈ Hd+1, and let x⊥ be the hyperplane in Rd+1,1 orthogonal to x. Since x is timelike,
its orthogonal x⊥ is spacelike, and its intersection with dSd+1 is a totally geodesic, spacelike
hyperplane, which we denote by x∗. Conversely, any spacelike hyperplane H in dSd+1 is the
intersection of dSd+1 with a hyperplane H̄ of Rd+1,1 containing 0. This hyperplane H̄ is orthogonal
to a unique unit, future-oriented timelike vector, which we denote H∗. This construction provides
a one-to-one correspondence between points in Hd+1 and (un-oriented) spacelike totally geodesic

hyperplanes in dSd+1.
Similarly, given y ∈ dSd+1, the intersection y⊥∩Hd+1 is an oriented totally geodesic hyperplane

in Hd+1, which we denote by y∗. And conversely, if H ⊂ Hd+1 is any oriented totally geodesic
hyperplane, then it is the intersection with Hd+1 of an oriented hyperplane in Rd+1,1 containing
0. The oriented unit normal to this hyperplane is a point in dSd+1, which we denote by H∗.

This duality relation has several important consequences.

• Two oriented hyperplanes H,H ′ ⊂ Hd+1 intersect if and only if the dual points H∗, H ′∗

are connected by a spacelike geodesic segment. The angle between H and H ′ is then the
length of the segment connecting H∗ to H ′∗.

• The intersection angle between two hyperplanes H,H ′ ⊂ dSd+1 is equal to the distance
between the dual points H∗, H ′∗ ⊂ Hd+1.

• For all x ∈ Hd+1, (x∗)∗ = x, and similarly for y ∈ dSd+1.

This duality relation extends to convex polyhedra (see [26]) and to smooth, strictly convex surfaces
(see e.g. [37]).

The duality between points and hyperplanes in AdSd+1. The d+1-dimensional anti-de Sitter space
AdSd+1 can be defined as a “pseudo-sphere” in the flat space Rd,2 of signature (d, 2). Specifically,
Rd,2 can be defined as Rd+2 equipped with the bilinear symmetric form

⟨x, y⟩d,2 =

d∑
i=1

xiyi − xd+1yd+1 − xd+2yd+2 ,

and

AdSd+1 = {x ∈ Rd,2 | ⟨x, x⟩d,2 = −1} .
It is a geodesically complete Lorentzian space of constant curvature −1.

Let x ∈ AdSd+1. Its orthogonal x⊥ is an oriented hyperplane in Rd,2 of signature (d, 1), which

therefore intersects AdSd+1 along a spacelike totally geodesic oriented hyperplane, denoted by x∗.
As above, the same construction works, conversely, to associate to any totally geodesic spacelike
oriented hyperplane a dual point.

There is an “intrinsic” definition of this duality: the hyperplane x∗ dual to a point x is the
totally geodesic plane composed of points at time distance π/2 from x in the future.

This duality has the same properties as the duality between Hd+1 and dSd+1.
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7.2. Initial singularities of de Sitter spacetimes. GHMC de Sitter spacetimes can be defined
in the same way as GHMC anti-de Sitter spacetimes (see section 3.5). We briefly describe the
duality between GHMC de Sitter spacetimes and hyperbolic ends (additional details and proofs
can be found in [31, 36]), and then outline how this duality leads to the proof of Theorem 1.23.

Let us give more details about the correspondence established in [31] between flat conformal
structures on a manifold M with non virtually Abelian fundamental group and hyperbolic ends
with pleated boundary homeomorphic to M that was mentioned in Section 3.8. Consider first a
hyperbolic end E with pleated boundary homeomorphic to M . Then the ideal boundary ∂∞E
of E is diffeomorphic to M and equipped with a flat conformal structure c. It is proved in [31]
that (in dimension d ≥ 3) E is uniquely determined by c. More specifically, the pleated boundary
∂0E of E is equipped with a stratification in ideal polyhedra of varying dimensions between 1 and
d, while (M, c) also has a natural stratification, with each point contained in the interior of the
“convex hull” of the boundary of a unique maximal round ball. There is a natural map from ∂∞E
to ∂0E, preserving the stratification, in the sense that each strata of the stratification of ∂∞E
is sent homeomorphically to a strata of ∂0E (but many strata of ∂∞E can be sent to the same
strata of ∂0E). In fact, round balls in ∂∞Hd+1 are in one-to-one correspondence with oriented
hyperplanes in Hd+1, and the strata of (M, c) are in one-to-one correspondence with the support
hyperplanes of ∂0E.

A similar construction is provided by Scannell [36, Section 4] for GHMC de Sitter spacetimes.
Namely, if N is such a spacetime, diffeomorphic toM×R, whereM is again a closed d-dimensional
manifold, then its future asymptotic boundary is equipped with a flat conformal structure c,
and this flat conformal structure again uniquely determines the GHMC structure on N . If the
fundamental group of M is not virtually Abelian, GHMC de Sitter structures on N are therefore
in one-to-one correspondence with hyperbolic ends diffeomorphic to M × R.

The stratification of (M, c) is directly related to the initial singularity of N , which we denote

by ∂0N . Round disks in ∂∞Hd+1 are in one-to-one correspondence with points in dSd+1, and each
stratum of (M, c) determines a unique point in the initial singularity of N . The points that are
obtained in this way are exactly those where the boundary of M admits a spacelike supporting
hyperplane, see [36, Section 4].

Summing up the relations, each hyperbolic end structure on M ×R is determined uniquely by
a flat conformal structure on M , which in turns determines a unique GHMC de Sitter spacetime.
Hyperbolic ends are therefore in one-to-one correspondence with GHMC de Sitter spactimes.
Moreover, each support hyperplane of ∂0E corresponds to a point of ∂0N where it admits a
spacelike support plane, and conversely.

This correspondence is somewhat easier to visualize when the developing dev of the conformal
structure is injective. Then

E = (Hd+1 \ CH(∂∞Hd+1 \ dev(M̃)))/ρ(π1M) ,

where ρ : π1M → SO(d + 1, 1) is the holonomy representation of (M, c), while Ñ is a domain of
dependence, that is, the intersection of the half-spaces containing Sd and bounded by a hyperplane

tangent to Sd at a point of Λρ, the limit set of ρ. The initial singularity of Ñ is then the set of

points dual to the support hyperplanes of CH(∂∞Hd+1 \ dev(M̃)).
Suppose now that E is a hyperbolic end such that ∂0E is folded, that is, it is the union of 2k

d-dimensional totally geodesic polyhedra meeting pairwise along a (d − 1)-dimensional face and
which all share a (d−2)-dimensional face S. Let N be the dual convex GHMC de Sitter spacetime.
The initial singularity of N is then particularly simple:

• each d-dimensional polyhedron in ∂0E corresponds to a vertex of ∂0N ,
• each (d− 1)-dimensional intersection hypersurface in ∂0E corresponds to an edge of ∂0N ,
• the “spine” S corresponds to a 2-dimensional face of ∂0N .

Theorem 1.23 follows from Theorem 1.12, and of the construction used in its proof, through this
correspondence.
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7.3. Initial singularities of AdS spacetimes. A similar description applies in the anti-de Sitter
setting. It is somewhat simpler because, in the AdS case, any quasifuchsian AdS spacetime is the
quotient of a domain of dependence by the image of a representation into SO◦(d, 2), as proved by
Mess [34].

A quasifuchsian AdS spacetime N contains a smallest non-empty closed convex subset, its
convex core C(N). The past of the future boundary ∂+C(N) of the convex core is the union of
the timelike geodesic segments of length π/2 orthogonal to support planes of C(N) along ∂+C(N)
towards the past. Similarly the future of the past boundary ∂−C(N) is the union of timelike
segments of length π/2 orthogonal to support planes of C(N) along ∂−C(N) towards the future.

Moreover, the universal cover Ñ of N is isometric to a convex domain in AdSd+1 which is
a domain of dependence, that is, the set of points x in AdSd+1 such that all timelike geodesics

through x intersect the lift of any Cauchy hypersurface in N . In this picture, C̃(N) is the convex

hull of the asymptotic boundary of the lift to AdSd+1 of any Cauchy surface.
As a consequence, ∂+C(N) is dual to the initial singularity of N , while ∂−C(N) is dual to the

final singularity of N . As in the de Sitter case, the description is simpler when ∂+C(N) is folded,
since in this case the intial singularity of N is a 2-dimensional complex with vertices correspond-
ing to the maximal dimension faces of ∂+C(N), edges corresponding to the hypersurfaces along
which the maximal dimension faces meet, and one totally geodesic 2-dimensional face dual to the
codimension 2 “spine”.

Theorem 1.22 follows from Theorem 1.1, and of the construction used in its proof, through this
correspondence.

8. Compact Clifford–Klein forms

In this section we explain why quasifuchsian AdS manifolds of dimension 2d+1 provide compact
quotients of the pseudo-Riemannian symmetric space O(2d, 2)/U(d, 1). We prove that these com-
pact quotients admit a smooth fibration over a manifold of dimension 2d, with fibers isomorphic
to the compact subspace O(2d)/U(d).

8.1. From GHC manifolds to compact quotients. Benoist [8] and Kobayashi [30] indepen-
dently gave a necessary and sufficient criterion for a discrete subgroup Γ of a semisimple Lie group
G to act properly discontinuously on a reductive homogeneous space G/H, in terms of the Cartan
projections of Γ and H. This criterion bares a strong resemblance with the Anosov property of the
group Γ as reformulated by Guéritaud–Guichard–Kassel–Wienhard [23] and Kapovich–Leeb–Porti
[29]. As an application, the first group of authors remarked the following:

Theorem 8.1. Let Γ\Ω be an AdS quasifuchsian spacetime of dimension 2d + 1. Then the
group Γ acts properly discontinuously and cocompactly on the pseudo-Riemannian symmetric space
O(2d, 2)/U(d, 1).

Outline of the proof. The group Γ is a projective Anosov subgroup of O(2d, 2) (see [6]). In this
situation, it implies that Γ satisfies the Benoist–Kobayashi criterion and thus acts properly discon-
tinuously on O(2d, 2)/U(d, 1). The cocompactness comes from a cohomological dimension argu-
ment: the space O(2d, 2)/U(d, 1) has dimension d(d+1) and deformation retracts on the compact
symmetric space O(2d)/U(d), of dimension d(d− 1). By a classical application of the Leray–Serre
spectral sequence, it follows that a group acting properly discontinuously on O(2d, 2)/U(d, 1) has
virtual cohomological dimension at most 2d, with equality if and only if its action is cocompact. On
the other hand, Γ acts properly discontinuously and cocompactly on a complete spacelike hyper-
surface in AdS2d+1, which is diffeomorphic to a disc of dimension 2d. Hence Γ has cohomological
dimension 2d and thus acts cocompactly on O(2d, 2)/U(d, 1). □

Theorem 8.1 provides a motivation to better understand the relationship between the AdS
quasifuchsian manifold Γ\Ω and the corresponding compact quotient Γ\O(2d, 2)/U(d, 1). In the
following subsections, we explain that Γ\O(2d, 2)/U(d, 1) can be seen as a fiber bundle with
“geometric fibers” over a strongly convex Cauchy hypersurface of Γ\Ω.
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8.2. Geodesic Killing fields. We first start by understanding the relationship between AdS2d+1

and the space O(2d, 2)/U(d, 1).4 For this, let us recall the definition and basic properties of a
geodesic Killing field.

Let (M, g) be a smooth connected pseudo-Riemannian manifold and denote by ∇ its Levi–
Civita connection. Recall that a vector field X on M is a Killing field if its flow preserves the
metric g. Killing fields are characterized by the following property:

Proposition 8.2. (see for instance [35, Proposition 9.25]) A vector field X on (M, g) of class C1

is a Killing field if and only if the tensor ∇X ∈ End(TM) is antisymmetric with respect to g, i.e.

g(Y,∇ZX) = −g(X,∇ZY )

for all vector fields Y and Z.

A vector field X on (M, g) is geodesic if the orbits of its flow are geodesics. Equivalently, X is
geodesic if it satisfies

∇XX = 0 .

For Killing fields, we have the following characterization:

Proposition 8.3. Let X be a Killing field on (M, g). Then X is geodesic if an only if g(X,X) is
constant on M .

Proof. For any vector field Y , we have

dY g(X,X) = 2g(X,∇YX) since ∇ preserves g

= −2g(Y,∇XX) since X is Killing.

Thus g(X,X) is constant if and only if ∇XX = 0. □

Let us now turn to the case where (M, g) is the anti-de Sitter space of dimension 2d + 1. In
that case, there is a natural isomorphism

u 7→ Xu

between the Lie algebra so(2d, 2) of O(2d, 2) and the Lie algebra of Killing fields on AdS2d+1. In
concrete terms, we see so(2d, 2) as a Lie subalgebra of the space of square matrices of size 2d+ 2.

Every u ∈ so(2d, 2) defines a linear vector field X̂u on R2d,2, defined by:

X̂u(x) = u · x .

This vector field is tangent to the quadric

{q(x) def
= x21 + . . .+ x22d − x22d+1 − x22d+2 = −1} def

= AdS2d+1

and thus restricts to a vector field Xu on AdS2d+1

We say that a Killing field X on AdS2d+1 is timelike unitary if it satisfies g(X,X) = −1 (it is
then necessarily geodesic by Proposition 8.3). The main purpose of this subsection is the following
description of timelike unitary Killing fields.

Lemma 8.4. Let u be a vector in the Lie algebra of so(2d, 2). Then the corresponding Killing
field Xu is timelike unitary if and only if u2 = −Id. The space of timelike unitary Killing fields is
therefore equivariantly isomorphic to the homogeneous space O(2d, 2)/U(d, 1).

4Note that, since SO◦(2d, 2) has finite index in O(2d, 2), acting properly discontinuously and cocompactly on

O(2d, 2)/U(d, 1) and on SO◦(2d, 2)/U(d, 1) are equivalent.
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Proof. Let ∇̂ denote the standard flat connection on R2d,2, that is, the Levi–Civita connection of
the flat pseudo-Riemannian metric q. For any u, v ∈ so(2d, 2), we have

∇̂X̂uX̂
v(x) =

d

dt

∣∣∣∣
t=0

X̂v(x+ tu · x)

=
d

dt

∣∣∣∣
t=0

v · x+ tvu · x

= vu · x
= X̂vu(x) .

Now, since AdS2d+1 is a submanifold equipped with the restricted metric, its Levi–Civita
connexion ∇ is the orthogonal projection of ∇̂ to TAdS2d+1. Since TxAdS2d+1 = x⊥, we get

that∇XuXu(x) = 0 if and only if ∇̂X̂uX̂u(x) = X̂u2

(x) = u2 · x is colinear to x.
Since u is linear, u2 ·x is colinear to x for every x if and only if u2 ∈ RId, and we conclude that

the Killing field Xu is a geodesic if and only if

u2 = λId

for some λ ∈ R.
If u2 = λId, then at every point x ∈ AdS2d+1 we have

gAdS(X
u(x), Xu(x)) = ⟨u · x, u · x⟩2d,2

= −⟨u2 · x, x⟩2d,2
= −λ⟨x, x⟩2d,2
= λ .

Hence Xu is timelike and unitary if and only if λ = −1, i.e. u2 = −Id.

Each such u defines a complex structure on R2d,2 compatible with the metric q. There is thus
a unique pseudo-Hermitian form hu on (R2d,2, u) such that ℜ(hu) = q. This Hermitian form has
complex signature (d, 1), and the subgroup of O(2d, 2) commuting with u is the the group U(d, 1).

Finally, given u, v ∈ so(2d, 2) with u2 = v2 = −Id, the pseudo-Hermitian spaces (R2d+2, u,hu)
and (R2d+2, v,hv) are isomorphic (since they have the same dimension and signature). Hence
there exists g ∈ GL(2d+2,R) such that gug−1 = v and g∗hv = hu. In particular, g∗q = q, hence
g ∈ O(2d, 2).

In conclusion, O(2d, 2) acts transitively on the space of timelike unitary Killing fields, and the
centralizer of such a Killing field is isomorphic to U(d, 1). The space of timelike unitary Killing
fields is thus isomorphic to the homogeneous space O(2d, 2)/U(d, 1). □

Remark 8.5. Elaborating on the above proof, one could give a complete classification of geodesic
Killing fields on AdSd+1:

• Lightlike Killing fields are given by elements u ∈ so(d, 2) satisfying u2 = 0 and exist for
all d ≥ 1,

• Timelike geodesic Killing fields are given by elements u ∈ so(d, 2) satisfying u2 = λId,
λ < 0 and only exist for even d,

• Spacelike geodesic Killing fields are given by elements u ∈ so(d, 2) satisfying u2 = λId,
λ > 0 and only exist for d = 2.

8.3. Killing fields orthogonal to a strongly convex hypersurface. Let H be a complete
spacelike hypersurface in AdS2d+1 and N its future-pointing unit normal. Let g denote both the
metric of AdS2d+1 and its restriction to H. Recall that the second fundamental form of H is given
by

II(·, ·) = g(∇·N, ·) .
Recall from Definition 3.23 that H is uniformly strongly (past) convex if there exists a constant

c > 0 such that II + cg is negative definite.
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Lemma 8.6. Let H be a uniformly strongly convex complete spacelike hypersurface in AdS2d+1

and X a unitary timelike geodesic Killing field. Then X is orthogonal to H at exactly one point.

Proof. Up to multiplying X by −1, we can assume that X is future pointing, so that g(X,N) ≤ −1
with equality exactly where X is orthogonal to H.

Let us decompose X along H as

X = X̄ + fN

where X̄ is tangent to H and f = −g(X,N) ≥ 1. Since X is unitary, we have

g(X̄, X̄) = f2 − 1 .

Our goal is to prove that f : H → [1,+∞) achieves the value 1 at a unique point. It will follow
from the following three facts:

(a) the function f is proper,
(b) if x is a critical point of f , then f(x) = 1,
(c) the points where f = 1 are isolated.

We will then conclude by looking at the gradient flow of f .

• Proof of (a): Fix a point x0 ∈ H, let x be a point at distance T from x0 (for the restricted
metric g) and let γ : [0, T ] → H be a unit speed geodesic from x0 to x. The equation of
geodesics on H can be written as:

∇γ̇ γ̇ = II(γ̇, γ̇)N ,

where ∇ is the ambient Levi–Civita connection of AdS2d+1.
Consider the function

h : [0, T ] → R
t 7→ gγ(t)(γ̇, X) = gγ(t)(γ̇, X̄) .

By the Cauchy–Schwarz inequality on TH, we have

(5) h(t)2 ≤ gγ(t)(X̄, X̄) = f2(γ(t))− 1 ,

which we can also write

(6) f(γ(t)) ≥
√
h(t)2 + 1 ,

Deriving h gives

h′(t) = g(∇γ̇ γ̇, X) + g(γ̇,∇γ̇X)

= g(∇γ̇ γ̇, X) since X is a Killing field

= II(γ̇, γ̇)g(N,X)

= −f(γ(t))II(γ̇, γ̇)
≥ cf(γ(t)) by uniform strict convexity of H
≥ c

√
h(t)2 + 1 .

We deduce that h(t) is greater or equal to the solution of the ordinary differential
equation

y′ = c
√
y2 + 1

whit initial condition y(0) = h(0), i.e.

h(t) ≥ sinh
(
ct+ sinh−1(h(0)

)
.

Using (6) and (5), we conclude that

f(x) = f(γ(T )) ≥ cosh(cT − c′) ,

where

c′ = sinh−1(
√
f(γ(0))2 − 1) .

This shows that f is proper.
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• Proof of (b): let us compute the derivative of f = −g(X,N) along X̄. We have

df(X̄) = −g(∇X̄X,N)− g(X,∇X̄N) .

On one side, we have

g(∇X̄X,N) = g(∇XX,N)− fg(∇NX,N) = 0

since X is Killing and geodesic.
On the other side, we have

g(X,∇X̄N) = g(X̄,∇X̄N) = II(X̄, X̄)

since dX̄g(N,N) = 0.

df(X̄) = −II(X̄, X̄) ≥ cg(X̄, X̄) .

At a critical point of f , we thus have X̄ = 0, i.e. X is orthogonal to H and f = 1.

• Proof of (c): Let ∇̄ denote the Levi–Civita connection of the induced metric on H. We
have ∇̄X̄ = π(∇X̄) where π denotes the orthogonal projection to TH. For every vector
Y tangent to H, we have

gx(∇̄Y X̄, Y ) = gx(∇Y X̄, Y )

= gx(∇YX,Y )− fg(∇YN,Y )− df(Y )g(N,Y ) .

The first and third term vanish since X is a Killing field and Y is tangent to H. We
conclude that

g(∇̄Y X̄, Y ) = −fII(Y, Y ) ≥ cg(Y, Y ) .

Hence g(∇̄·X̄, ·) is symmetric and positive definite, which implies that ∇̄X̄ ∈ End(TH)
is invertible at every point. In particular, the zeros of X̄, which are exactly the points
where where f = 1, are isolated.

• Conclusion of the proof: Consider the gradient flow of f , i.e. the flow of the vector
field −Gradgf . Since f is proper, every trajectory of the flow converges to a critical point
of f . Since each critical point is a minimum and is isolated, its basin of attraction is
non-empty and open. Since H is connected and decomposes as the disjoint union of these
basins of attraction, there is exactly one such critical point, at which f = 1. This is the
unique point where X is orthogonal to H.

□

8.4. Fiber bundle over convex Cauchy hypersurfaces. Let now Γ\Ω be an AdS-
quasifuchsian manifold of dimension 2d + 1. Let H be a smooth strongly convex Cauchy hy-
persurface in Ω. Then H is the quotient of a Γ-invariant uniformy strongly convex hypersurface

H̃ in AdS2d+1.
Recall that the homogeneous space O(2d, 2)/U(d, 1) identifies with the space Kill−1(AdS2d+1)

of timelike unitary Killing fields in AdS2d+1. To shorten notations, we will write

• G = O(2d, 2),
• H = U(d, 1),
• K = O(2d)×O(2),
• L = H ∩K = U(d)×U(1).

Define

M̃ = {(x,X) ∈ H̃ ×Kill−1(AdS2d+1) | X orthogonal to H̃ at x} ,

And let p1 and p2 denote respectively the projections from M̃ to H̃ and Kill−1(AdS2d+1). The
projections p1 and p2 are clearly both Γ-equivariant.

Proposition 8.7. Let x be a point in H̃. Then p2(p
−1
1 (x)) = gK/L for some g ∈ G.
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Proof. Since G acts transitively on pairs (x,H) consisting of a point x ∈ AdS2d+1 and a spacelike

hyperplane H ∈ TxAdS2d+1, it is enough to prove that the space of timelike unitary Killing fields
orthogonal at x0 = (0, . . . , 0, 1) to the hyperplane H0 = {(x1, . . . , xd, 0, 0)} identifies with K/L
inside G/H.

LetXu be a timelike unitary Killing field orthogonal toH0 at x0, given by a matrix u ∈ so(2d, 2)
satisfying u2 = −Id and u(x0) ∈ H⊥

0 . Then u preserves H⊥
0 and H0. It is thus conjugated by an

element of K to the image of the standard complex structure on R2d,2, centralized by H. Thus
Xu lies in the K-orbit of the basepoint of G/H. The converse is similar. □

We can now conclude the proof of the following theorem.

Theorem 8.8. Let Γ\Ω be an AdS quasifuchsian manifold of dimension 2d + 1 and let H be a
smooth strongly convex Cauchy hypersurface in Γ\Ω. Then there exists a Γ-equivariant fibration

from G/H to H̃, the fibers of which are translates of K/L.
In particular, Γ acts freely, properly discontinuously and cocompactly on G/H and the quotient

manifold Γ\G/H is a smooth fiber bundle over H with fibers diffeomorphic to K/L.

Proof. By Lemma 8.6, every timelike unitary geodesic Killing field is orthogonal to H̃ at a single

point. It follows that p2 : M̃ → G/H is a Γ-equivariant homeomorphism. Set

p
def
= p1 ◦ p−1

2 : G/H → H̃ .

Then p is Γ-equivariant.

Let C be a closed ball in H̃. Choose continuously, for every x ∈ C, an element gx ∈ G such

that g · x0 = x and g ·H0 = TxH̃ (with the notations of Proposition 8.7). By Proposition 8.7, we
have that

p−1(C) =
⊔
x∈C

gxK/L .

This shows that p is a topological fibration whose fibers are translates of the compact subspace
K/L. In particular, p is proper.

Now, since Γ acts freely, properly discontinuously and cocompactly on H̃, we deduce that Γ
acts freely, properly discontinuously, and cocompactly on G/H. The equivariant fibration p then
factors to a fibration Γ\G/H → H with fibers homeomorphic to K/L. □

Remark 8.9. Though we didn’t discuss the regularity of p1 and p2, a little extra care would easily

show that p1 ◦ p−1
2 is a smooth submersion as soon as H̃ is smooth.

Remark 8.10. In particular we gave a proof that Γ acts properly discontinuously on G/H which
is independent of that of Guéritaud–Guichard–Kassel–Wienhard, based on the intrinsic geometry
of AdS quasifuchsian manifolds.
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