
HAL Id: hal-04305800
https://hal.science/hal-04305800v1

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A novel method for temporal graph classification based
on transitive reduction

Carolina Stephanie Jerônimo de Almeida, Zenilton Kleber Gonçalves Do
Patrocínio Jr, Simon Malinowski, Silvio Jamil F. Guimarães, Guillaume

Gravier

To cite this version:
Carolina Stephanie Jerônimo de Almeida, Zenilton Kleber Gonçalves Do Patrocínio Jr, Simon
Malinowski, Silvio Jamil F. Guimarães, Guillaume Gravier. A novel method for temporal
graph classification based on transitive reduction. DSAA 2023 - 10th IEEE International Con-
ference on Data Science and Advanced Analytics, Oct 2023, Thessalonique, Greece. pp.1-10,
�10.1109/DSAA60987.2023.10302525�. �hal-04305800�

https://hal.science/hal-04305800v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A novel method for temporal graph classification
based on transitive reduction

Carolina Jerônimo∗†, Zenilton K. G. Patrocı́nio Jr.∗, Simon Malinowski†,
Silvio Jamil F. Guimarães∗ and Guillaume Gravier†

∗ImScience – PUC Minas – Belo Horizonte, Brazil
Email: carolinajeronimo@gmail.com, sjamil@pucminas.br, zenilton@pucminas.br

†IRISA – Université de Rennes, CNRS, Inria – Rennes, France
Email: simon.malinowski@irisa.fr, guig@irisa.fr

Abstract—Domains such as bio-informatics, social network
analysis, and computer vision, describe relations between entities
and cannot be interpreted as vectors or fixed grids, instead, they
are naturally represented by graphs. Often this kind of data
evolves over time in a dynamic world, respecting a temporal
order being known as temporal graphs. The latter became a
challenge since subgraph patterns are very difficult to find and
the distance between those patterns may change irregularly over
time. While state-of-the-art methods are primarily designed for
static graphs and may not capture temporal information, recent
works have proposed mapping temporal graphs to static graphs
to allow for the use of conventional static kernels and graph
neural approaches. In this study, we compare the transitive
reduction impact on these mappings in terms of accuracy
and computational efficiency across different classification tasks.
Furthermore, we introduce a novel mapping method using a tran-
sitive reduction approach that outperforms existing techniques
in terms of classification accuracy. Our experimental results
demonstrate the effectiveness of the proposed mapping method in
improving the accuracy of supervised classification for temporal
graphs while maintaining reasonable computational efficiency.

Index Terms—Temporal Graph, learning on dynamic graphs,
temporal graph classification.

I. INTRODUCTION

Graphs are used to represent linked data in various domains
such as social network [1], [2], disease analysis [3], [4],
[5], bioinformatics [6] and computer vision [7]. Modeling
problems in terms of graphs allows for a deep understanding
of the relationship between all elements. In social networks,
for example, we can estimate how much a part of the network
influences another [8]. In graph theory, a vertex is reachable
from another if there exists, at least, a path between these
two vertices. The existence of two or more different paths
between two vertices, called the transitive relation, may be
seen as redundant (or ambiguous) making it more difficult to
understand the graph behavior. The result of the Transitive
Reduction (TR) of a directed graph is a subgraph that has the
same reachability relation as the original graph but with the

The authors thanks Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico – CNPq – (PQ 306573/2022-9 and Universal 407242/2021-0),
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – CAPES
– (Grant COFECUB 88887.191730/2018-00) and Fundação de Amparo à
Pesquisa do Estado de Minas Gerais – FAPEMIG – (Grants PPM-00006-18).

a

b

c

d e

(a)

a

b

c

d e

(b)

Fig. 1: Example of a transitive reduction in which the paths
between all vertices are preserved. If there exists a path
between two vertices in (a), then as can be seen in (b), there
is one only path between them in the simplified graph.

minimum number of edges, preserving all paths between nodes
in the original graph but removing unnecessary edges that can
be inferred from the remaining edges [9]. An example of TR
is shown in Figure 1, in which the edge a–d was removed
because there is a path from a to d passing through c or b. TR
is useful in many applications, such as database optimization,
model checking, and software verification [10], [11], [12].

Many real-world graphs are not Directed acyclic graphs
(DAGs), for which TR is well-defined. Besides, most of those
graphs have cycles, such as social networks and transportation
networks, and TR may not be applicable or helpful in these
cases. This motivates our decision to use TR for temporal
graphs. When working with temporal graphs, since one cannot
come back in time, it is possible to avoid cycles and be able
to use the TR algorithm. And, as it will be shown, avoiding
redundancy can improve the accuracy of classification tasks.

The idea of temporal graphs (also known as dynamic,
evolving, or time-varying graphs), was first introduced in
1997 [13] discussing applications of temporal graphs and
highlighting the great importance of a systematic treatment
of the subject. The study in [14] provided tools and algo-
rithms needed for controlling a system with dynamic graphs,
the authors also studied on invariance and the reachability
properties of these structures, proposing formalism leading to
appropriate methods for dynamic graph problems. In an effort
to integrate different notations found in the fields of delay-
tolerant networks, the authors in [15] introduced the definition
of Time-Varying Graphs. Later, a lot of works studied how
algorithms for statics graphs can be applied with dynamics

ones, such as shortest path [16], traveling salesman [17], and
minimum spanning trees [18]. It is interesting to note that
temporal graphs are present in numerous domains, such as
communication networks [19], [20], [21], biological systems
in cell and microbiology, neural networks [22], [23], and eco-
nomics [24], [25]. In the literature, a lot of works have focused
on how to apply learning tasks to such temporal graphs.
Classification of the outbreak of fake news disseminated on
social networks, the proliferation of disease, prediction of re-
routing traffic, and video classification are examples of such
learning tasks that can be applied to temporal graphs. Hence,
while there are existing techniques for classifying temporal
graphs, it is necessary to note that many of these methods
are computationally expensive. This work addresses this issue
by reducing this complexity while maintaining reasonable
accuracy.

Therefore, the major goal of our work is to analyze the
impact of the TR algorithm on temporal graphs for a classi-
fication task on real-world data sets, providing a performance
comparison of different techniques in terms of accuracy and
computational efficiency across different classification tasks.
Furthermore, we introduce a novel method for mapping tempo-
ral graphs to static ones based on TR that outperforms existing
techniques in terms of classification tasks. Experimental results
demonstrate the effectiveness of the proposed approach in im-
proving the accuracy of supervised classification for temporal
graphs while maintaining reasonable computational efficiency.
To the best of our knowledge, this work is the pioneer in the
merging directed line graph and TR for classifying temporal
graphs and our main contributions are the following: (i) a
comprehensive analysis of how the removal of transitive edges
affects the classification performance of temporal graphs; (ii)
introduction of a novel mapping method of temporal graphs
to static ones that outperforms existing techniques in terms
of classification accuracy and running time; and (iii) a com-
prehensive evaluation using graph kernels on real-world data
sets.

This work is organized as follows. In Section II, some
related works are described. Section III presents the main
concepts related to graph theory that are necessary for under-
standing the proposed method for classifying temporal graphs,
which is described in Section IV. A quite extensive evaluation
is given in Section V. And finally, some conclusions are drawn
in Section VI.

II. RELATED WORK

In [26], the authors focus on the problem of evaluating the
relation between events in a given text, which is important
for information extraction. They argue that finding a common
comparison referent at the text level is not straightforward
and propose a shift from event-based measures to measures
on a minimal underlying temporal graph, which is the TR of
the graph of relations between event boundaries. They support
their proposal by investigating its properties on synthetic
data and a well-known temporal corpus. The authors aim to
accomplish two things: to find a graph that is easy to compute

and to eliminate the bias introduced by measures that do not
consider the combinatorial aspect of agreement on transitive
closure graphs. In [10], the authors proposed a method for
analyzing directed acyclic graphs that take into account causal-
ity and highlight causal structure. The method is illustrated
using citation networks from academic papers, patents, and
US Supreme Court verdicts. The proposed approach is based
on TR to remove unnecessary edges from a directed acyclic
graph, which reveals the fundamental causal structure of the
network. The authors have demonstrated how TR can identify
differences in citation practices among different areas and can
correct for the effect of a document’s age on its citation count.
Finally, the authors used TR to analyze null models of citation
networks to illustrate the lack of causal structure in these
models. Moreover, from the proposed method, it was possible
to see that TR helped to reveal the causal skeleton of the
network, after which standard network analysis tools may be
used to analyze the network.

In [27], the authors have proposed a method for repre-
senting and analyzing temporal event data using weighted
temporal event graphs, which are directed acyclic graphs
where nodes represent events, and edges represent temporal
orderings between the events. The weights of the edges capture
the temporal distances between the events. To construct the
graphs, the authors first constructed a directed graph of all
possible temporal orderings between events. This graph can
contain many transitive edges, which are edges that are implied
by other edges in the graph and they used TR to simplify
the graph and remove these transitive edges being easier to
analyze and interpret. They also demonstrated the effectiveness
of the weighted temporal event graphs approach on real-world
datasets from social media and finance.

In [28], the authors have addressed the challenge of de novo
genome assembly (computational biology), which involves
decoding the sequence of an unknown genome from short
sequences. They introduced new distributed-memory parallel
algorithms for overlap detection and layout simplification steps
of genome assembly. The algorithms are based on linear-
algebra operations over semirings using 2D distributed sparse
matrices, which reduces the need for different data structures
in different steps of genome assembly. The proposed approach
includes a novel distributed memory algorithm for the TR of
the overlap graph, which simplifies the graph and makes it
easier to resolve inconsistencies and create contigs.

Most related works have specific applications and datasets
in mind, such as information extraction from text, citation
networks, and social media/finance data. In contrast, this work
aims to provide a more generalized approach applicable to
a wider range of classification tasks on real-world datasets.
This includes the exploration of mapping temporal graphs to
static graphs and assessing the impact of transitive reduction,
which surpasses existing techniques in terms of classification
accuracy.

III. FUNDAMENTAL CONCEPTS

Several definitions to model formally discrete temporal
graphs are proposed in the literature. In [29], timed evolving
graphs are defined as a system G′ composed by a graph
G = (V,E), an ordered sequence of its subgraphs Sg =
(G1, G2, · · · , Gt), then G′ = (G,Sg). The edge weights
represent the traversal time. This notation is useful when
one wants to predict the topology dynamics at different time
intervals since the paths are restricted to never move into edges
that existed only in past subgraphs. Similar to the previous
definition, the authors in [30] defined a temporal graph by a
sequence of time windows of snapshots of the network at that
time interval. This work uses the definition proposed in [21]
considering temporal graphs with edges existing at specific
integral points in it and node labels. This definition allows
us to model the problem, transforming it into static graphs to
apply transitive reduction.

State-of-the-art techniques for temporal graph classification
make use of graph kernels to compare different graphs. When
graphs are represented as sets of features, such as node or edge
attributes, important structural information about the graphs is
lost, such as the presence of cycles, paths, or other higher-
level patterns. Graph kernels, on the other hand, capture this
structural information by computing a similarity score between
pairs of graphs based on the graph structure, without requiring
explicit feature representations. However, classical graph ker-
nels can only be applied to static graphs. For temporal graph
classification, temporal graphs are first mapped into static
graphs before applying the kernels for classification. There are
some mapping methods shown in [31], [32], and [16]. One of
the best methods, in terms of temporal graph classification, to
map temporal graphs into static graphs is called Direct Line
Graph [33].

The fundamental concepts about temporal graphs, graph
kernels, transitive reduction, and directed line graph are given
in this section.

A. Temporal Graph

Let G = (V,E) be an undirected (static) graph in which
V is a finite set of vertices and E a finite set of undirected
edges defined by E ⊆ {{u, v} ⊆ V | u ̸= v}. A labeled,
undirected (static) graph (G, l) is a pair of an undirected graph
and a labeling function l : V ∪ E 7→ Σ that assigns a label
to each vertex or edge of G, in which Σ is a finite alphabet.
In a directed graph the set of edges E is defined by E ⊆
{(u, v) ∈ V × V | u ̸= v}. A (static) walk in a graph G
is an alternating sequence of vertices and edges connecting
consecutive vertices, but for simplification of the notation, we
omit the edges. The length of a walk (v1, v2, · · · , vk+1) is k.

Now, let G = (V,E) be a temporal graph in which V is a
finite set of vertices and E is a finite set of undirected temporal
edges e = ({u, v}, t) with u and v in V , u ̸= v and the
availability time (or time stamp) t ∈ N. A labeled, undirected,
temporal graph G = (V,E, l′) consists of a temporal graph
G = (V,E) and a labeling function l′ : V ∪ T 7→ Σ that
assigns a label to each vertex at each time step t ∈ T =

1, . . . , tmax + 1 with tmax being the largest timestamp of any
e ∈ E.

For a temporal graph the number of edges is not polynomi-
ally bounded by the number of vertices. A temporal walk of
length k is an alternating sequence of vertices and temporal
edges (v1, e1 = (v1, v2, t1), v2, · · · , ek = (vk, vk+1, tk), vk+1)
such that ti < ti+1 for 1 ≤ i < k. Moreover, for a temporal
walk, the waiting time at vertex vi with 1 < i ≤ k is
ti − (ti−1 + 1). The set of temporal walks (of length k)
in a temporal graph G is denoted by Wtmp(G) (W k

tmp(G)).
Finally, we define the function L that maps a temporal
walk w to the label sequence L(w) = (l(v1, t1), l(v2, t1 +
1), l(v2, t2), l(v3, t2 + 1), · · · , l(vk, tk), l(vk+1, tk + 1)).

B. Transitive Reduction

Let G = (V,E) be a directed graph with vertex set V and
edge set E. A (directed) path from vertex u to vertex v in a
graph G is a walk from u to v without repetition of vertices.
The TR of G is another directed graph G′ = (V,E′) such
that:

• G′ has the same vertex set V as G.
• For every pair of distinct vertices u, v ∈ V , if there is

a directed path from u to v in G, then there is also a
directed path from u to v in G′.

• G′ has the minimum number of edges among all graphs
satisfying the first two conditions.

To define E′, we first define the relation R on V as follows:
for u, v ∈ V , uRv if and only if there is a directed path from
u to v in G. Then, the transitive closure of R is the smallest
transitive relation R′ on V such that R ⊆ R′. We can define
the edge set E′ = {(u, v) ∈ E : u¬R′v}. In other words,
E′ contains only the edges in E that are not necessary for
maintaining the reachability relation in G. The resulting graph
G′ = (V,E′) is the transitive reduction of G [9]. The transitive
reduction is well-defined only for DAGs.

The complexity of the transitive reduction algorithm de-
pends on the size and structure of the input graph. Generally,
the algorithm has a worst-case time complexity of O(n3), in
which n is the number of vertices in the graph. However,
several optimizations and heuristics can be applied to im-
prove the performance of the transitive reduction algorithm
in practice. For example, the algorithm can be modified to use
a breadth-first search instead of a depth-first search, which
reduces the worst-case time complexity to O(n2 log n) for
sparse graphs. In addition, the algorithm can be parallelized
to take advantage of multi-core processors, or specialized
hardware such as GPUs, to further improve performance. A
comparison (considering time and space complexity) of several
algorithms on TR computation is presented in [12].

C. Graph Kernels

A graph kernel is a function k : G × G 7→ R that maps
pairs of graphs to a real number representing the dissimilarity
between two graphs. Graph kernels need to have some proper-
ties: (i) symmetry – k(G1, G2) = k(G2, G1) for all graphs G1

and G2; (ii) positive semi-definiteness – k(G1, G2) ≥ 0 for all

pairs of graphs G1 and G2, and k(G1, G2) = 0 if and only if
G1 = G2; and (iii) compositional – for any function f : V 7→
R, the kernel kf (G1, G2) =

∑
u,v∈V f(u)f(v)kG(u, v) is also

a valid kernel, where kG(u, v) is the kernel value between
nodes u and v in the graphs G1 and G2. We briefly summarize
two well-known kernels for static graphs.

The Graphlet kernel computes the similarity between two
graphs counting the occurrences of graphlets of different sizes.
A k-graphlet is a connected subgraph H of G with k vertices,
denoted by H ∈ Gk. More formally, let G be a graph with
vertex set V (G) and edge set E(G), and let Gk be the set
of all k-graphlets of G. The graphlet degree vector of G is a
vector of counts of each k-graphlet in G, denoted by gk(G) =
(g1(G), g2(G), ..., g|Gk|(G)). The graphlet kernel between two
graphs G and H is then defined as the inner product of their
graphlet degree vectors:

K(G,H) =
∑
k

Φ(k)gk(G) · gk(H) (1)

in which Φ(k) is a weighting function that assigns different
weights to graphlets of different sizes, and · denotes the inner
product between two vectors, see [34] for more.

The Weisfeiler-Lehman subtree kernel is a kernel function
that computes the similarity between two graphs based on
their shared subtrees. The Weisfeiler-Lehman subtree kernel
proceeds iteratively, refining a labeling function for the vertices
of each graph using information about the local neighborhood
of each vertex [35]. At each iteration t, the labeling function
ht : V 7→ Nk maps each vertex v ∈ V to a vector of k integer
labels that encode the frequency of certain local subtrees in
the neighborhood of v.

kWL(G1, G2) =

∞∑
t=0

αt
∑
v∈V

h
(1)
t (v) · h(2)

t (v) (2)

in which h
(1)
t (v) and h

(2)
t (v) are the label vectors for vertex v

in graphs G1 and G2 at iteration t, respectively. The parameter
α is a damping factor that controls the weight given to
iterations at different depths in the subtree hierarchy.

D. Directed Line Graph

A line graph of a static graph G is a graph whose vertices
are the edges of G that are connected if they share a vertex
in G. The authors in [21] used DL to encode the temporal
information in a study of the dissemination process. Each
temporal edge is represented by two vertices and a temporal
walk can be performed, since a walk in the DL graph is related
to the temporal walks in the original temporal graph having the
same label sequence, being able to model waiting times and
keeping the temporal information. Following [21], Directed
line graph expansion (DL) can be defined as follows: given
a temporal graph (G, l), the directed line graph expansion
DL(G, l) = (G′, l′) in which G′ = (V ′, E′) is the directed
graph, where every temporal edge ({u, v}, t) is represented
by two vertices nt−→uv and nt−→vu and there is an edge from nt−→uv
to ns−→xy if v = x and t < s. For each vertex nt−→uv , the label

a

b c

3

7

2

(a)

ba ab

bc

cb

ca ac

0

1

0

(b)

Fig. 2: Example of directed line transformation. The walk
(n2

ca, n
3
ab, n

7
bc) of length 2 in (b) corresponds to the temporal

walk (c,(c, a, 2), a,(a, b, 3), b,(b, c, 7), c) of length 2 in the
temporal graph (a) [21].

l′
(
nt−→uv

)
= (l(u, t), l(v, t + 1)) is set. Figure 2 shows an

example of the directed line transformation. The edge value
is related to waiting time: if the previous node edges are
consecutive (e.g., edges 2 and 3 in Figure 2a), then there is no
waiting time between edges, represented by value 1, otherwise,
0 is used.

IV. TRANSITIVE REDUCTION ON TEMPORAL GRAPHS

For decreasing the size of graphs and keeping just one
path between vertices, if there exists, we can apply transitive
reduction. Here, we will study the impact of TR on temporal
graphs. For that, temporal graphs are mapped to static graphs
so that conventional static kernels, for example, graphlet or
Weisfeiler-Lehman subtree kernel can be applied.

In [33], the authors have proposed different methods for
mapping temporal graphs into static ones. The DL approach
outperformed other methods capable of fully encoding the
temporal information. As in the DL transformation the edges
are vertices, and the number of vertices is |E|. The maximal
number of edges is reached when each vertex of the original
temporal graph for every incoming edge can be combined
with all outgoing edges [33], then the number of edges in
the DL is O(|E|2) leading to a quadratic blowup with regard
to the number of temporal edges. Proposition 1 shows that the
conversion of a temporal graph to DL leads to a DAG, then
we are able to apply the TR algorithm to deal with the size
of edges.

Proposition 1 (Directed line graph): Let (G, l) be a tempo-
ral graph. The resulting DL(G, l) is a Directed acyclic graph
(DAG).
Proof: Suppose there exists a directed cycle in DL(G, l). Let
nt−→uv be a vertex on the cycle with the earliest timestamp t.
Let ns−→xy be the last vertex of the cycle that connects nt−→uv .
Since there is a path from ns−→xy to nt−→uv , we know that y = u

and s > t. However, nt−→uv represents a temporal edge (u, v, t),
and ns−→xy represents a temporal edge (x, y, s). Therefore, u =

y = x and t > s. But this contradicts the fact that nt−→uv has
the earliest timestamp on the cycle. Therefore, there are no
directed cycles in DL(G, l), and DL(G, l) is a DAG. ■

Temporal
graph

Temporal
graph

Directed
Line graph

Generate
graph kernels

Generate
graph kernels

Classification
task

Classification
task

Transitive
reduction

Directed Line
+ transitive
reduction

Fig. 3: Overview of the different temporal graph classification
pipelines followed in this work.

To the best of our knowledge, this work proposes a novel
methodology for temporal graph classification that makes
use of directed line graph and TR. Figure 3 schematically
represents the different pipelines used in this work to perform
the classification task, yiedling three possibilities. The first
one, called baseline [33], is represented by the gray blocks
in Figure 3, in which temporal graphs are mapped to static
graphs using the DL transformation. Then, the normalized
Gram Matrix is computed using two graph kernels (Graphlet
and Weisfeiler-Lehman subtree kernel) for the learning task.
The second one, called TR-based method, is represented by
gray and red blocks in Figure 3, we propose to apply TR
after the DL transformation in order to reduce the size of
these graphs. The impact of TR on classification accuracy
and running time compared to baseline is analyzed in the
experimental results. Finally, we propose also a method, called
DLTR-based method (illustrated by yellow blocks), which is
an extension of the TR-based method that combines the DL
and TR methods. We detail below how this extension is
realized.

There are different ways to remove transitive edges, but
the TR algorithm used in the TR-based method removes
all transitive edges, which is more complex, performing a
depth-first search or breadth-first search on the graph, and
computationally expensive for large graphs. Additionally, the
algorithm requires the use of data structures such as stacks
or queues to keep track of the visited nodes and the order
in which they were visited. The concept in the DLTR-based
method is to remove a certain amount of transitive edges using
the simplest implementation of the TR algorithm. The basic
idea of the TR algorithm is that for each set of three nodes
(x, y, z) ∈ V ′ if there is a path xy, yz we can remove xz if it
exists. However, as shown in Proposition 2, it is impossible to
have transitive edges with only three nodes, it is only possible
with at least four nodes, as in Figure 4b. Having more than
three loops can be time-consuming and does not guarantee the
removal of transitive edges.

Proposition 2: Let DL(G, l) a directed line expansion of
a temporal graph (G, l). If there exists a transitive edge in
DL(G), this transitive edge involves at least four consecutive
nodes in DL(G, l).

a b c d

1

2

3

4

5

(a)

ab ba ac ca ad

(b)

ba ca ad

(c)

Fig. 4: Example of temporal graph (a), DL conversion in (b)
and DL conversion with temporal graph smoothing (c). The
dotted lines represent transitive edges that can be removed.

Proof: Let v1 = nt−→uv , v2 = ns−→vx and v3 = np−→xv with t < s < p

be 3 connected vertices, v1, v2, v3 ∈ V ′ and u, v, x ∈ V .
To create a transitive edge we need to connect v1 with v3.
However, this leads to a contradiction, as v1 corresponds to
a temporal edge (u, v, t) and v3 corresponds to a temporal
edge (x, v, p) and they are not consecutive in (G, l) since the
temporal edge v3 starts with vertex x not v. To be able to
construct a transitive edge in DL(G, l) we need to create a
temporal edge starting with v and ending with u with a time
higher than p. With this, we create a vertex v4 = nn−→vu, n > p
connected to v3 and now we are able to create a transitive
edge from v1 to v4. ■

To deal with this, we have used graph simplification (that
we denote temporal graph smoothing), adapted from graph
smoothing. Graph smoothing, also known as smoothing away
or smoothing out, is the process of replacing edges incident
at a vertex of degree 2 by a single new edge and removing
the vertex. When running the DL algorithm, each temporal
edge is transformed into a node. Before creating the node, for
each edge nt−→uv we check if there exists a np−→vu with p > t.
This means that, instead of creating two consecutive nodes, we
create just one that corresponds to the last temporal edge np−→vu.
The label of a node in the directed line graph is a combination
of the labels of its corresponding edges in the temporal graph
as shown in section III-D. Maintaining the same idea, the node
label that corresponds to the first temporal edge is combined
with the one of the last node. For example, in Figure 4c the
nodes ab and ac were not created since for ab, ba exists and
for ac, ca exists.

The neighbors’ edges from the first temporal edge are
propagated to the last one to keep the structure. The result
is a compact graph (see Figure 4c), and the TR algorithm
can be applied to remove the transitive edges (dotted line in
Figure 4c) in a much faster way. In the next section, we will
study the impact of these two novel methods (TR- and DLTR-
based methods) on both classification accuracy and efficiency.

V. EXPERIMENTS

In this Section, we describe the experiments and the ob-
tained results taking into account real-world datasets.

A. Datasets

In order to provide a comparative analysis between the
different strategies described before, we have used six differ-
ent databases provided by TUDataset [36]. This benchmark
provides temporal graph classification datasets derived from
Tumblr, Dblp, Facebook as well as contacts between students
at MIT, in a Highschool, and visitors at the Infectious ex-
hibition, for dissemination process study. For each dataset, a
dissemination process simulation was done, in which nodes are
infected at different time instants, providing two classification
tasks for each dataset. The first task involves discriminating
between temporal graphs with vertex labels resulting from a
dissemination process and those without. To accomplish this,
the authors ran a Susceptible-infected (SI) simulation with
fixed parameters on half of the dataset and used it as the
first class. The second class was made up of the remaining
graphs. For each graph in the second class, the authors counted
the number of infected vertices, reset the labels, and then
randomly infected a number of vertices at a random time. The
second task involves discriminating between temporal graphs
that differ in the dissemination process itself. For this task,
the authors ran the SI simulation with different parameters for
each of the two subsets. For both subsets, I = 0.5 (initial
infection rate), but for the first subset, the authors set p = 0.2
(infection probability), and for the second subset, p = 0.8.
The simulation runs repeatedly until at least |V | × I vertices
are infected or no more infections are possible, for example,
if a graph has 100 vertices and the initial infection rate is
set to 0.5, then initially 50 vertices are infected. In order to
stop the SI simulation, at least 50 × 0.5 = 25 vertices (i.e.,
50% of the total number of vertices) need to be infected. The
simulation continues until either this condition is met or no
more infections are possible.

B. Graph Kernels

As a baseline we use the 3-node Graphlet (GL) and the
Weisfeiler-Lehman subtree (WL) kernels on static graphs
obtained by interpreting the timestamps as discrete edge labels,
and assigning to each vertex the concatenated sequence of its
labels. The source code is provided by [36].

C. Experimental Setup

The normalized Gram matrix was calculated for each ker-
nel and then we used the C-SVM implementation of LIB-
SVM [37] to determine the classification accuracies. We per-
formed 10-fold cross-validation to select the C parameter from
the range of 10−3, 10−2, ..., 102, 103 on the training folds. We
repeated the 10-fold cross-validation ten times with different
random folds to obtain the average accuracies and standard
deviations. The number of iterations for the Weisfeiler-Lehman
subtree kernel (from 0 to 5) was selected through 10-fold
cross-validation. A NetworkX implementation of a transitive
reduction will be used in the TR-based method [38].

D. Evaluation and Discussion

Table I shows that TR algorithm improved the classifica-
tion accuracy. This improvement is more significant when
the dataset has a bigger quantity of edges (Highschool and
MIT). Reducing the graph size can help to eliminate noise
and irrelevant information from the data, making it easier
for the SVM to identify the patterns and features that are
truly relevant to the classification task. This can lead to a
more accurate classification because the SVM is working with
a more focused and relevant set of features. Additionally,
reducing the graph size can also reduce the risk of overfitting,
which occurs when a model becomes too complex and starts to
fit the noise in the data instead of the underlying patterns [39].
Overfitting occurs when a model fits too closely to the training
data and fails to generalize to new data. In the case of graph
kernels, the size and complexity of the graph can affect the
performance of the kernel function, and a smaller graph can
improve the kernel’s ability to generalize to new data by
reducing the number of possible patterns or subgraphs that

TABLE I: Classification accuracy in percent and standard deviation for the first classification task. DL, is only the directed
line approach, DL + TR, is the transitive reduction algorithm applied after the directed line transformation and DLTR, is the
TR algorithm applied at the same time of DL.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

Baseline
DL-GL 93.83±0.8 97.05±0.8 89.37±1.0 96.39±0.4 92.31±0.3 OOM
DL-WL 97.44±0.4 98.60±0.3 93.59±1.0 98.42±0.3 95.89±0.2 OOM

DL + TR-based
DL-GL 96.94±0.9 95.80±1.1 92.33±0.8 96.91±0.2 93.74±0.2 OOM
DL-WL 97.45±0.9 98.10±0.5 93.88±0.6 98.90±0.1 96.07±0.2 OOM

DLTR-based
DL-GL 95.77±0.6 96.30±0.6 93.26±0.5 97.23±0.3 94.32±0.2 84.04±2.7

DL-WL 98.11±0.7 97.80±0.4 93.50±0.8 98.60±0.2 95.06±0.4 87.85±1.8

TABLE II: Classification accuracy in percent and standard deviation for the second classification task.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

Baseline
DL-GL 91.05±1.9 88.10±1.9 78.56±1.5 79.68±0.7 75.86±0.4 OOM
DL-WL 87.16±1.0 80.25±1.6 75.20±2.1 77.18±0.9 80.35±0.7 OOM

DL + TR-based
DL-GL 94.61±1.0 83.85±1.8 80.15±1.1 80.09±0.7 74.35±0.3 OOM
DL-WL 90.61±1.5 81.00±1.2 77.85±0.8 79.77±0.8 82.16±0.7 OOM

DLTR-based
DL-GL 88.22±0.8 82.45±1.6 79.91±1.4 78.33±0.6 72.81±0.5 60.61±2.7

DL-WL 89.11±1.1 79.90±2.4 79.04±0.9 77.27±0.4 77.20±0.6 59.91±4.2

can be learned from the training data. MIT is a large dataset
with more than 62 million edges. When we tried to run the
Baseline and TR-based method we got OOM (Out of memory),
being able to run just the DLTR-based method.

For the second classification task, Table II shows that
reducing the size of the graph also improves accuracy, but
when we do the temporal smoothing process, the graphs lose
some relevant information about the graph structure for classi-
fication. However, the accuracy of the DLTR-based method is
very similar to the baseline when the overall quantity of edges
is not high, leading to consider a slight loss of accuracy. In
general, the second classification task poses a greater challenge
for the temporal approaches that reach lower accuracy than the
first classification task. Especially, the MIT data set seems to
be hard. In Figure 5 we can see that TR improved accuracy
compared to the baseline and when compared to the DLTR-
based (see the third plot), the accuracy is quite similar, gaining
in running time.

As we can see in Table III, the size of the graphs decreases
when the transitive reduction algorithm is applied, which was
expected. The reduction in size is most significant in the
DLTR-based method, in which both the line graph conversion
and transitive reduction are applied simultaneously. In the TR-

based method, the reduction in edge count varies depending on
the dataset, but it is significant in the case of the Tumblr and
Highschool dataset, where the number of edges decreased from
412,892 to 205,357 and from 2,079,062 to 360,895. This is a
reduction of almost 50% and 83% in edge count, respectively.
The reduction in the number of vertices is zero, as transitive
reduction does not affect the number of vertices in a graph.
Compared to the TR-based method, the DLTR-based method
resulted in a further reduction in the number of edges and
vertices for all datasets. The reduction in the number of edges
is most significant in the case of the Highschool dataset, where
the number of edges decreased from 360,895 to 252,081,
which is a further reduction of about 30%. The reduction
in the number of vertices is also significant for all datasets,
with reductions ranging from about 3% to almost 70% for
the MIT dataset. Overall, with the DLTR-based method, we
can significantly reduce their size while still maintaining their
essential properties for classification tasks. The reduction in
size can be more or less significant depending on the dataset,
but it is generally more significant for larger graphs.

Table IV shows that the time spent to perform transitive
reduction separately is significantly longer than the time
necessary to convert the temporal graph to a directed line

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (baseline)

A
cc

ur
ac

y
(T

R
-b

as
ed

)

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (TR-based)

A
cc

ur
ac

y
(D

LT
R

-b
as

ed
)

70 75 80 85 90 95 100
70

75

80

85

90

95

100

Accuracy (baseline)

A
cc

ur
ac

y
(D

LT
R

-b
as

ed
)

Fig. 5: Scatter plots to show the accuracy relationship between two different methods. The dots are accuracy in different
datasets and using different graph kernels for classification.

TABLE III: Graph size in terms of the overall quantity of Vertices and Edges.

Datasets

Size Highschool Infectious Tumblr Dblp Facebook MIT

Baseline
Sum |E| 2,079,062 918,513 412,892 1,097,872 851,165 62,923,589
Sum |V | 98,066 91,944 74,520 241,674 267,673 142,508

DL + TR-based
Sum |E| 360,895 380,920 205,357 777,212 516,631 -
Sum |V | 98,066 91,944 74,520 241,674 267,673 142,508

DLTR-based
Sum |E| 252,081 436,015 165,119 839,755 531,431 170,080
Sum |V | 69,197 71,157 63,971 196,154 234,983 74,801

graph in both baseline and DLTR-based. This is particularly
evident in the Facebook dataset, in which transitive reduction
takes over 9000 milliseconds while baseline and DLTR-based
take only 90 and 248 milliseconds, respectively. However, it
is important to note that the TR-based method takes longer
than the baseline and DLTR-based method in all datasets. This
is likely due to the additional step of performing transitive
reduction on the already converted directed line graph. Overall,
we can see that the DLTR-based method is the most efficient in
terms of both accuracy and time, as it combines the conversion
and transitive reduction steps, resulting in faster processing
time and improved accuracy.

In Table V, the time required for the classification step of
the three methods is presented. One can see that the DL-
GL kernel is faster than the DL-WL kernel for all datasets
and all methods. This happens because the Weisfeiler-Lehman
kernel involves the computation of the neighborhood of nodes
and updating labels iteratively, while the graphlet kernel only
counts the number of isomorphic graphlet subgraphs, which
could also contribute to the speed difference. Regarding the
running times, the DLTR-based method is generally slower
than the other two methods, which is also expected as it
involves an additional step of transitive reduction and temporal
graph smoothing. However, the difference in running times
between the TR-based method and the DLTR-based method
is not significant in most cases, except for the MIT dataset
in which the DLTR-based method is much faster than TR-
based. Overall, we can conclude that the DLTR-based method
offers improved accuracy at the cost of longer running times
compared to other methods, but the difference in running times
is not significant in most cases.

Fig. 6: Temporal Graph Classification time of Highschool data
set (ms).

Based on Figure 6, it is evident that the overall time for
temporal graph classification varies among different methods
utilizing two different kernels. The mapping time for DL and
DLTR appears negligible in comparison to the time consumed
by classification and transitive reduction processes. Due to the
minimal contribution of mapping time, the colors representing
DL and DLTR are nearly imperceptible. Notably, the DLTR-
based method outperforms the others in terms of speed, as
indicated by the significantly lower classification time.

VI. CONCLUSION

This work presented a novel method for improving the
classification accuracy of temporal graphs by combining line
graph transformation and transitive reduction techniques. Ex-
perimental results demonstrate that reducing the size of the
graph by removing redundant edges and nodes can lead to

TABLE IV: Mapping time in milliseconds for the baseline, the TR-based method plus TR and DLTR-based method running
time.

Datasets

Highschool Infectious Tumblr Dblp Facebook MIT

DL + (TR) 126 + (31510) 68 + (15398) 28 + (2380) 115 + (4737) 90 + (9134) 4939 + (OOM)

DLTR 147 183 62 298 248 522

TABLE V: Time for classification performance of the three methods, in seconds.

Datasets

Kernel Highschool Infectious Tumblr Dblp Facebook MIT

DL
DL-GL 33.07 9.08 4.67 12.44 16.36 –
DL-WL 13.57 9.22 11.41 32.84 56.06 –

DL + TR
DL-GL 2.59 3.07 2.74 9.89 13.57 –
DL-WL 7.68 7.39 10.48 32.53 54.25 –

DLTR
DL-GL 2.29 4.16 2.80 10.56 12.77 1.60
DL-WL 6.39 7.01 10.04 30.98 55.38 5.38

improved classification accuracy, especially for larger graphs,
since real-world graph datasets can be incredibly large and
complex, containing millions or even billions of nodes and
edges like transportation networks, financial transaction net-
works, and communication networks. The proposed method
achieved similar or better accuracy compared to the state-
of-the-art methods while also being computationally more
efficient. Moreover, the proposed method provides a significant
reduction in the size of the graph, making it more manageable
for further analysis and visualization. Finally, this work con-
tributes to the development of graph-based machine learning
methods for temporal graph data and can be applied to a wide
range of temporal graph data sets, such as social networks
and communication networks, to improve their classification
performance. Thus, this work’s findings have the potential to
benefit a wide range of applications, from predicting disease
outbreaks to detecting online fraud.

Future research opportunities in this area include practical
implementation and application of different transitive reduc-
tion techniques to determine their real-world performance.
Additionally, exploring the effectiveness of the method on
graphs with multiple edge types or different structures and
investigating its potential for classification tasks in temporal
graph databases, such as video classification, where each
video can be modeled as a temporal graph, can be valuable.
In conclusion, the method proposed is a promising avenue
for future research on temporal graph classification and has
the potential to be further optimized and improved in future
studies.

REFERENCES

[1] A. Amara, M. A. Hadj Taieb, and M. Ben Aouicha, “Multilingual topic
modeling for tracking covid-19 trends based on facebook data analysis,”
Applied Intelligence, vol. 51, no. 5, pp. 3052–3073, 2021.

[2] N. Akhtar and M. V. Ahamad, “Graph tools for social network analy-
sis,” in Research Anthology on Digital Transformation, Organizational
Change, and the Impact of Remote Work. IGI Global, 2021, pp. 485–
500.

[3] A. Karaivanov, “A social network model of covid-19,” Plos one, vol. 15,
no. 10, p. e0240878, 2020.

[4] Y. Zhu, J. Ma, C. Yuan, and X. Zhu, “Interpretable learning based
dynamic graph convolutional networks for alzheimer’s disease analysis,”
Information Fusion, vol. 77, pp. 53–61, 2022.

[5] J. Wang, A. Ma, Y. Chang, J. Gong, Y. Jiang, R. Qi, C. Wang, H. Fu,
Q. Ma, and D. Xu, “scgnn is a novel graph neural network framework
for single-cell rna-seq analyses,” Nature communications, vol. 12, no. 1,
pp. 1–11, 2021.

[6] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks
and their current applications in bioinformatics,” Frontiers in genetics,
vol. 12, 2021.

[7] P. Pradhyumna, G. Shreya et al., “Graph neural network (gnn) in
image and video understanding using deep learning for computer vision
applications,” in 2021 Second International Conference on Electronics
and Sustainable Communication Systems (ICESC). IEEE, 2021, pp.
1183–1189.

[8] S. Yang, “Networks: An introduction by mej newman: Oxford, uk:
Oxford university press. 720 pp., $85.00.” 2013.

[9] A. V. Aho, M. R. Garey, and J. D. Ullman, “The transitive reduction
of a directed graph,” SIAM Journal on Computing, vol. 1, no. 2, pp.
131–137, 1972.

[10] J. R. Clough, J. Gollings, T. V. Loach, and T. S. Evans, “Transitive
reduction of citation networks,” Journal of Complex Networks, vol. 3,
no. 2, pp. 189–203, 2015.

[11] V. Dubois and C. Bothorel, “Transitive reduction for social network
analysis and visualization,” in The 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI’05). IEEE, 2005, pp. 128–131.

[12] X. Tang, J. Zhou, Y. Qiu, X. Liu, Y. Shi, and J. Zhao, “One edge
at a time: A novel approach towards efficient transitive reduction
computation on dags,” IEEE Access, vol. 8, pp. 38 010–38 022, 2020.

[13] F. Harary and G. Gupta, “Dynamic graph models,” Mathematical and
Computer Modelling, vol. 25, no. 7, pp. 79–87, 1997.

[14] M. Mesbahi, “On a dynamic extension of the theory of graphs,” in
Proceedings of the 2002 American Control Conference (IEEE Cat. No.
CH37301), vol. 2. IEEE, 2002, pp. 1234–1239.

[15] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” International Journal of Par-
allel, Emergent and Distributed Systems, vol. 27, no. 5, pp. 387–408,
2012.

[16] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in
temporal graphs,” Proceedings of the VLDB Endowment, vol. 7, no. 9,
pp. 721–732, 2014.

[17] O. Michail and P. G. Spirakis, “Traveling salesman problems in temporal
graphs,” Theoretical Computer Science, vol. 634, pp. 1–23, 2016.

[18] S. Huang, A. W.-C. Fu, and R. Liu, “Minimum spanning trees in tem-
poral graphs,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 2015, pp. 419–430.

[19] B. Tadić, “Dynamics of directed graphs: the world-wide web,” Physica
A: Statistical Mechanics and its Applications, vol. 293, no. 1-2, pp.
273–284, 2001.

[20] S. Ozcan, M. Astekin, N. K. Shashidhar, and B. Zhou, “Centrality and
scalability analysis on distributed graph of large-scale e-mail dataset for
digital forensics,” in 2020 IEEE International Conference on Big Data
(Big Data). IEEE, 2020, pp. 2318–2327.

[21] L. Oettershagen, N. M. Kriege, C. Morris, and P. Mutzel, “Classifying
dissemination processes in temporal graphs,” Big Data, vol. 8, no. 5,
pp. 363–378, 2020.

[22] X. Meng, W. Li, X. Peng, Y. Li, and M. Li, “Protein interaction
networks: centrality, modularity, dynamics, and applications,” Frontiers
of Computer Science, vol. 15, pp. 1–17, 2021.

[23] L. Paulevé, J. Kolčák, T. Chatain, and S. Haar, “Reconciling qualitative,
abstract, and scalable modeling of biological networks,” Nature commu-
nications, vol. 11, no. 1, p. 4256, 2020.

[24] J. Barunik, M. Ellington et al., “Dynamic networks in large financial
and economic systems,” arXiv preprint arXiv:2007.07842, 2020.

[25] N. Nonejad, “An overview of dynamic model averaging techniques in
time-series econometrics,” Journal of Economic Surveys, vol. 35, no. 2,
pp. 566–614, 2021.

[26] X. Tannier and P. Muller, “Evaluating temporal graphs built from texts
via transitive reduction,” Journal of Artificial Intelligence Research,
vol. 40, pp. 375–413, 2011.

[27] J. Saramäki, M. Kivelä, and M. Karsai, “Weighted temporal event
graphs,” Temporal Network Theory, pp. 107–128, 2019.

[28] G. Guidi, O. Selvitopi, M. Ellis, L. Oliker, K. Yelick, and A. Buluç,
“Parallel string graph construction and transitive reduction for de novo
genome assembly,” in 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2021, pp. 517–526.

[29] B. B. Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks,” International Journal of
Foundations of Computer Science, vol. 14, no. 02, pp. 267–285, 2003.

[30] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Temporal distance

metrics for social network analysis,” in Proceedings of the 2nd ACM
workshop on Online social networks, 2009, pp. 31–36.

[31] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and
its Applications, vol. 388, no. 6, pp. 1007–1023, 2009.

[32] O. Michail, “An introduction to temporal graphs: An algorithmic per-
spective,” Internet Mathematics, vol. 12, no. 4, pp. 239–280, 2016.

[33] L. Oettershagen, “Temporal graph algorithms,” Ph.D. dissertation, Uni-
versitäts-und Landesbibliothek Bonn, 2022.

[34] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borg-
wardt, “Efficient graphlet kernels for large graph comparison,” in Arti-
ficial intelligence and statistics. PMLR, 2009, pp. 488–495.

[35] T. H. Schulz, T. Horváth, P. Welke, and S. Wrobel, “A generalized
weisfeiler-lehman graph kernel,” Machine Learning, vol. 111, no. 7,
pp. 2601–2629, 2022.

[36] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neu-
mann, “Tudataset: A collection of benchmark datasets for learning with
graphs,” arXiv preprint arXiv:2007.08663, 2020.

[37] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, pp. 1–27, 2011.

[38] A. A. Hagberg, D. Schult, and P. Swart, “Networkx,”
https://networkx.github.io/, 2008–, accessed: May 8, 2023.

[39] P. Procházka, M. Mareš, and M. Dědič, “Scalable graph size reduction
for efficient gnn application,” 2022.

