
HAL Id: hal-04305792
https://hal.science/hal-04305792

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Adaptive Join Operator with Bind-Bloom
Join for Federated SPARQL Queries

Damla Oguz, Shaoyi Yin, Belgin Ergenç, Abdelkader Hameurlain, Oguz
Dikenelli

To cite this version:
Damla Oguz, Shaoyi Yin, Belgin Ergenç, Abdelkader Hameurlain, Oguz Dikenelli. Extended Adaptive
Join Operator with Bind-Bloom Join for Federated SPARQL Queries. International Journal of Data
Warehousing and Mining (IJDWM), 2017, 13 (3), pp.47-72. �10.4018/IJDWM.2017070103�. �hal-
04305792�

https://hal.science/hal-04305792
https://hal.archives-ouvertes.fr

To link to this article : DOI : 10.4018/IJDWM.2017070103
URL : http://doi.org/10.4018/IJDWM.2017070103

To cite this version : Oguz, Damla and Yin, Shaoyi and Ergenç,
Belgin and Hameurlain, Abdelkader and Dikenelli, Oguz Extended
Adaptive Join Operator with Bind-Bloom Join for Federated SPARQL
Queries. (2017) International Journal of Data Warehousing and
Mining (IJDWM), vol. 13 (n° 3). pp. 47-72. ISSN 1548-3924

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 19041

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

The goal of query optimization in query federation over linked data is to minimize the response time

and the completion time. Communication time has the highest impact on them both. Static query

optimization can end up with inefficient execution plans due to unpredictable data arrival rates and

missing statistics. This study is an extension of adaptive join operator which always begins with

symmetric hash join to minimize the response time, and can change the join method to bind join to

minimize the completion time. The authors extend adaptive join operator with bind-bloom join to

further reduce the communication time and, consequently, to minimize the completion time. They

compare the new operator with symmetric hash join, bind join, bind-bloom join, and adaptive join

operator with respect to the response time and the completion time. Performance evaluation shows

that the extended operator provides optimal response time and further reduces the completion time.

Moreover, it has the adaptation ability to different data arrival rates.

As the increase in the number of data sources on linked data, a distributed data space on the web is

generated. This huge global data space can be automatically queried by using two approaches called

link traversal (Hartig, Bizer, & Freytag, 2009) and query federation (Görlitz & Staab, 2011a). The

first approach is based on discovering potentially relevant data by following the links between them.

In other words, it finds the related data sources during the query execution. The second approach,

query federation, divides the query into subqueries and distributes them to the SPARQL endpoints of

the relevant data sources. The intermediate results from the data sources are aggregated and the final

results are generated. Although both approaches have the advantage of providing up-to-date results,

link traversal cannot guarantee finding all results because the relevant data sources change according

to the starting point. For this reason, we focus on the query federation approach.

The objective of engines in query federation is to minimize both the response time and the

completion time. Response time is the time to generate the first result tuple, whereas completion time

is the time to provide all result tuples. Response time and completion time include communication

time, I/O time and CPU time. Since the communication time dominates other costs, the main objective

of the federated query engines can be stated as to minimize the communication cost. Static query

optimization (Selinger, Astrahan, Chamberlin, Lorie, & Price, 1979) is not adequate for federated

queries, because they are executed over the SPARQL endpoints of the selected distributed data

sources on the web, and the data arrival rates are unexpected. Moreover, most of the statistics about

the data sources are missing or unreliable. These constraints show that adaptive query optimization

(Deshpande, Ives, & Raman, 2007) is a necessity for query federation over linked data.

Adaptive query optimization has been studied in detail in relational databases (Babu & Bizarro,

2005; Deshpande et al., 2007; Morvan & Hameurlain, 2009; Gounaris, Tsamoura, & Manolopoulos,

2013). However, it is a new research area for linked data. There are only two engines which consider

adaptive query optimization for federated queries over SPARQL endpoints: ANAPSID (Acosta, Vidal,

Lampo, Castillo, & Ruckhaus, 2011) and ADERIS (Lynden, Kojima, Matono, & Tanimura, 2010,

2011). The first one proposes a non-blocking join method based on symmetric hash join (Wilschut

& Apers, 1991) and Xjoin (Urhan & Franklin, 2000), while the second one uses a cost model for

dynamically changing the join order. Other than these, AVALANCHE (Basca & Bernstein, 2010,

2014) collects statistical information about relevant data sources and then generates its execution plan

to provide the first k tuples. In addition, there are several studies which concentrate on join ordering

for SPARQL queries by using different techniques such as evolutionary algorithms (Oren, Guéret,

& Schlobach, 2008; Hogenboom, Milea, Frasincar, & Kaymak, 2009) and ant colony (Hogenboom,

Frasincar, & Kaymak, 2013; Kalayci, Kalayci, & Birant, 2015). To the best of our knowledge, adaptive

join operator (Oguz, Yin, Hameurlain, Ergenc, & Dikenelli, 2016) is the first study which aims to

reduce both the response time and the completion time for query federation over SPARQL endpoints.

As mentioned above, the communication cost is the dominant cost in distributed environments.

Bloom filter (Bloom, 1970), which is a space efficient data structure, is widely used in relational

databases (Mackert & Lohman, 1986; Mullin, 1990; Michael, Nejdl, Papapetrou, & Siberski, 2007;

Ives & Taylor, 2008). It is utilized in different linked data tasks such as identity reasoning (Williams,

2008) and data source selection (Hose & Schenkel, 2012). Bloom filter is also employed to reduce

the communication cost in two studies of linked data (Basca & Bernstein, 2014; Groppe, Heinrich,

& Werner, 2015).

In this paper, we present an extended version of our previous work (Oguz et al., 2016) in

which adaptive join operator is proposed. The new contributions of this paper are as follows:

i) We improve our previous proposal with bind-bloom join (Basca & Bernstein, 2014; Groppe

et al., 2015) for both single join queries and multi-join queries by including bind-bloom join

to the candidate join methods. ii) We present a detailed performance evaluation study which

shows the advantage of our new proposal. iii) We extend our related work with new studies

and comparison of adaptive query optimization methods in query federation. Our operator uses

symmetric hash join in the beginning to minimize the response time, and can change the join

method to bind join or bind-bloom join. Bind-bloom join, shortly can be defined as a kind of bind

join enhanced with bloom filter in order to minimize the communication time. It is explained

in detail in the following section. Performance evaluation shows that the extended operator has

both the advantage of optimal response time and the adaptation ability to different data arrival

rates in order to minimize the completion time. Moreover, it provides faster completion time

than our previous operator in all test cases.

The rest of the paper is organized as follows: Section 2 introduces our approach for both single

join queries and multi-join queries. Section 3 presents the results and discussions on performance

evaluation. Section 4 covers the related work and Section 5 concludes the paper.

In our previous work (Oguz et al., 2016), we have proposed an adaptive join operator for federated

queries over linked data endpoints, called AJO. It always begins with symmetric hash join in order

to minimize the response time, and when all the tuples of a relation arrive, it estimates the remaining

times for symmetric hash join and bind join in order to minimize the completion time. It changes

the join method to bind join if it estimates that it is more efficient than symmetric hash join. In this

paper, we propose an extended version of AJO with bind-bloom join in order to further reduce the

communication time. In this section, we first explain the principles of symmetric hash join, bind

join, bloom filter, and bind-bloom join. Second, we present our proposal for single join queries and

multi-join queries.

Symmetric hash join (Wilschut & Apers, 1991) maintains a hash table for each relation. Thus, it is

a non-blocking join method which produces the first result tuple as early as possible. In other words,

it is good at response time. Bind join (Haas, Kossmann, Wimmers, & Yang, 1997), which is the most

popular join method among the federated query engines (Oguz, Ergenc, Yin, Dikenelli, & Hameurlain,

2015), passes the bindings of the intermediate results of the outer relation to the inner relation to

filter the result set. It provides good completion time when the cardinalities of the first relation and

the intermediate results are low. Equation 1 and Equation 2 show the cost functions of these join

methods that are the variations of the formulas in (Quilitz & Leser, 2008). R1 and R2 are relations,

card(R) is the number of tuples in R, c
t
R

 is the transfer cost of R for one result tuple, and R2 is the

relation with the bindings of R1:

cost R(⋈
SHJ t t
R card R c card R c

R R

2 1 2
1 2

)= () ⋅ + () ⋅ (1)

cost R(⋈
BJ t t t
R card R c card R c card R c

R R R

2 1 1 2
1 2 2

)= () ⋅ + () ⋅ + () ⋅' (2)

Bloom filter (Bloom, 1970) is a data structure which represents a set of elements in a bit vector

with a low rate of false positives. The idea is to represent a set S = {e
1
, e

2
, e

3
, . . ., e

n
} of n elements in

a vector v of m bits. Initially all the bits are set to 0. Then, k independent hash functions, h
1
, h

2
, . . ., h

k
,

with range {1, . . ., m} are used. For each element e
i
 ∈ S, the bits at positions h

1
(e

1
), h

2
(e

1
), . . ., h

k
(e

1
)

in v are set to 1. Given a query for e
j
, the bits at positions h

1
(e

j
), h

2
(e

j
), . . ., h

k
(e

j
) are checked. If any

of them is 0, certainly e
j
 is not in the set S. Otherwise, e

j
 is accepted as a member of set S, although

there is a probability that it is not a member (Fan, Cao, Almeida, & Broder, 2000). Independent of

the size of the elements, less than 10 bits per element are required for a 1% false positive probability

(Bonomi, Mitzenmacher, Panigrahy, Singh, & Varghese, 2006).

We propose to use b bits per each element and k hash functions to minimize the false positive rate

(Fan et al., 2000). We propose a custom SPARQL function CheckBloom(?commonAttribute, ?bitVector)

which returns true if the positions corresponding to h
1
(?commonAttribute), h

2
(?commonAttribute), . .

., h
k
(?commonAttribute) are set to 1 in bloom filter ?bitVector. We explain the advantage of using a

bloom filter in bind join by using the federated query example in Listing 1. Initially, the first subquery

is executed on :service1 and then the second subquery is executed on :service2 with the bindings of

the first subquery as shown in Listing 2. The intermediate results from :service1 can be seen from

Table 1. Query size is proportional to the number of intermediate results, and the communication

cost increases as the number of intermediate results increases. In order to decrease this cost, bind

join can be employed by using a bloom filter as shown in Listing 3. BloomFilter is a bit array whose

length in bits is equal to multiplication of the number of distinct common attribute values and b bits.

Since our proposal uses b bits per each intermediate result, the size of the bloom filter in bits is equal

to multiplication of the number of distinct common attribute values and b bits. On the other hand,

bind join can be more efficient than bind-bloom join in some cases according to the number of false

positives and the size of the result set. For this reason, our proposal estimates the remaining times of

bind join and bind-bloom join when the tuples of a relation all arrive.

Listing 1: Federated query example

Listing 2: Bind query

Listing 3: Bind query with bloom filter

Line Student

1 student_1

2 student_2

.

n student_n

Extended adaptive join operator for single join queries is depicted in Algorithm 1. Firstly, we send

count queries to the endpoints of datasets R1 and R2 in order to learn their cardinalities. We always

begin with symmetric hash join in order to minimize the response time. During the execution, when

all the tuples from one dataset arrive and the tuples from the other dataset continue to arrive, we

estimate the remaining times of continuing with symmetric hash join, switching to bind join, and

switching to bind-bloom join. We decide the join method according to these cost estimations. If we

switch to bind join or bind-bloom join, we emit the duplicate results of symmetric hash join with

bind join or bind-bloom join. The cardinality estimation formula and the remaining time estimation

formulas are presented in the following subsections.

Equation 3 shows the cost function of bind join where R
i
 and R

j
 are relations, |R| is the number of

tuples in R, c
t
R

 is the transfer cost of R for each result tuple, and R
j
 is the relation with the bindings

of R
i
. In order to estimate the remaining times of bind join and bind-bloom join, we need the estimated

cardinality of the second relation which is reduced by the bindings of the first relation, namely R
j
:

cost R
i

(⋈
BJ j i t i t j t
R R c R c R c

Ri Rj Rj
)= ⋅ + ⋅ + ⋅ (3)

Algorithm 1. Extended adaptive join operator for single join queries

Equation 4 depicts the cardinality estimation formula where |R
i
 ⋈ R

j_arrived
| is the cardinality of

R
i
 ⋈ R

j_arrived
, |R

j
| is the cardinality of R

j
, |R

j_arrived
| is the cardinality of arrived tuples of R

j
, and ADF

(R
i
, R

j
) is the average duplication factor of R

i
 on each common attribute value of R

i
 and R

j
. The

formula for ADF (R
i
, R

j
) is depicted in Equation 5 where |R

i
| is the cardinality of R

i
 and |R

i_uca
| is the

is the cardinality of unique common attribute values in R
i
. We use Equation 4 in order to calculate

the estimated cardinality of R
j
 when all the tuples of R

i
 arrive. We expect that there is a directional

proportion between the join cardinality and the number of tuples of R
j
:

R

R R R

R

ADF R Rj estimation

i j arrived j

j arrived

i j

_

_

_
'

.

,
=

()

⊳⊲

 (4)

ADF R R

R

R
i j

i

i uca

,

_

()= (5)

As stated earlier, when all the tuples of R
i
 arrive, the algorithm estimates the remaining time if

extended adaptive join operator continues with symmetric hash join, the remaining time if it changes

the join method to bind join, and the remaining time if it changes the join method to bind-bloom join.

We have an idea about the data arrival rate of R
j
 during the execution, so the estimation is possible.

Equation 6 shows the estimated remaining time, ERT
SHJ

, if extended adaptive join operator continues

with symmetric hash join where |R
j
| is the cardinality of R

j
, |R

j_arrived
| is the cardinality of arrived tuples

of R
j
, and t

Rj_arrived
 is the time for R

j_arrived
 tuples to arrive:

ERT
R R t

R
SHJ

j j arrived R

j arrived

j arrived=
−() ⋅

 (6)

Equation 7 shows the estimated remaining time, ERT
BJ

, if the algorithm switches to bind join.

|R
i_uca

| is the is the cardinality of unique common attribute values in R
i
, t

ST
 is the time for sending

one result tuple to the SPARQL endpoint of R
j
 (≈ t

Rj_arrived
 / |R

j_arrived
|), and |R

j_estimation
| is the estimated

cardinality of R
j
 which is reduced by the bindings of R

i
. |R

j_arrived
| is the cardinality of arrived tuples

of R
j
, and t

Rj_arrived
 is the time for R

j_arrived
 tuples to arrive. The estimated remaining time for bind

join includes sending all tuples of R
i_uca

 to the endpoint of R
j
, and the retrieving time of R

j
 from

the endpoint of R
j
:

ERT R t
R t

R
BJ i uca ST

j estimation R

j arrived

j arrived= ⋅()+
⋅

_

_

_

'
_

 (7)

Equation 8 shows the estimated remaining time, ERT
BBJ

, if the algorithm switches to bind-

bloom join where b is the number of bits per each element, |R
i_uca

| is the cardinality of unique

common attribute values in R
i
, dr

j
 is the data arrival rate (in bits/seconds) of the SPARQL endpoint

(≈ s(|R
j_arrived

|) / |R
j_arrived

|, where s(|R
j_arrived

| is the size of R
j_arrived

 tuples in bits), |R
j_estimation

| is the

estimated cardinality of R
j
 reduced by the bindings of R

i
, |fp| is the estimated cardinality of false

positives, |R
j_arrived

| is the cardinality of arrived tuples of R
j
, and t

Rj_arrived
 is the time for R

j_arrived

tuples to arrive. The estimated remaining time for bind-bloom join includes sending unique

common tuples of R
i
 in a bloom filter to the endpoint of R

j
, and the retrieving time of R

j
 from

the endpoint of R
j
:

ERT
b R

dr

R fp t

R
BBJ

i uca

j

j estimation R

j arriv

j arrived=
⋅

+
+() ⋅

_ _

_

'
_

eed

 (8)

In multi-join queries, we begin with multi-way symmetric hash join (Viglas, Naughton, & Burger,

2003) in order to minimize the response time as in single join queries. The algorithm for multi-

join queries is depicted in Algorithm 2. When the tuples from a relation all arrive, called R
i
, the

algorithm estimates the remaining times if the extended join operator switches to bind join or

bind-bloom join for each relation which has a common attribute with R
i
. The algorithm chooses

the relation with the minimum estimated bind join cost and the minimum estimated bind-bloom

cost, called R
j
. It compares the estimated remaining times if it changes the join method to bind

join or bind-bloom join for R
i
 ⋈ R

j
 with the estimated remaining time if the operator continues

with multi-way symmetric hash join for all relations. The above procedure is repeated every time

a relation is completely received.

We use the same formula, Equation 4, for single join queries and multi-join queries to estimate the

cardinality of the second relation reduced by the bindings of the first relation. We need this estimation

in order to calculate the estimated remaining time if extended adaptive join operator switches to bind

join or bind-bloom join.

Equation 9 shows the estimated remaining time if the operator continues with multi-way

symmetric hash join. Completion time is equal to the maximum completion time of the relations

which compose the query:

ERT

R R t

R
MSHJ

k k arrived R

k arrived

k arrived=
−() ⋅

max

| |

_

_

_

∈ ()where k n 1 2, ,.., (9)

Equation 10 shows the estimated remaining time if extended adaptive join operator uses bind join

for R
i
 and R

j
, and uses multi-way symmetric hash join for the other relations which are involved in

the query. The estimated time if the operator uses bind join for R
i
 and R

j
 is depicted in Equation 11.

|R
i_uca

| is the cardinality of unique common attribute values in R
i
, t

ST
 is the time for sending one result

tuple to the SPARQL endpoint of R
j
 (≈_t

Rj_arrived
 / |R

j_arrived
|), |R

j_estimation
| is the estimated cardinality of

R
j
 which is reduced by the bindings of R

i
, |R

j_arrived
| is the cardinality of arrived tuples of R

j
, t

Rj_arrived

is the time for R
j_arrived

 tuples to arrive. ERT
rest

 is the estimated remaining time for the rest of other

relations to arrive and it is calculated by using Equation 12:

ERT ET ERT
BJ R BJ R rest

ij ij
_ _

max ;= () (10)

ET R t
R t

R
BJ R i uca ST

j estimation R

j arrived

ij

j arrived

_ _

_

_

'
_= ⋅()+

⋅
 (11)

ERT
R R t

R
rest

k k arrived R

k arrived

k arrived=
−() ⋅

max

| |

_

_

_

∈ () ≠ ≠where k n and k i k j 1 2, ,.., , (12)

Algorithm 2. Extended adaptive join operator for multi-join queries

Equation 13 shows the estimated remaining time if the extended adaptive join operator switches

to bind-bloom join for R
i
 and R

j
, and uses multi-way symmetric hash join for the other relations which

are involved in the query. The estimated time if the operator uses bind-bloom join for R
i
 and R

j
 is

depicted in Equation 14. b is the number of bits per each element, |R
i_uca

| is the cardinality of R
i
, and

dr
j
 is the data arrival rate (in bits/seconds) of the SPARQL endpoint (≈ s(|R

j_arrived
|) / |R

j_arrived
|, where

s(|R
j_arrived

| is the size of R
j_arrived

 tuples in bits). |R
j_estimation

| is the estimated cardinality of R
j
 reduced

by the bindings of R
i
, |fp| is the estimated cardinality of false positives, |R

j_arrived
| is the cardinality

of arrived tuples of R
j
, and t

Rj_arrived
 is the time for R

j_arrived
 tuples to arrive. We use Equation 4 and

Equation 12 in order to calculate |R
j_estimation

| and ERT
rest

, respectively:

ERT ET ERT
BBJ R BBJ R rest

ij ij
_ _

max ;= () (13)

ET
b R

dr

R fp t

R
BBJ R

i uca

j

j estimation R

j ar

ij

j arrived

_

_ _

_

'
_=

⋅
+

+() ⋅

rrived

 (14)

In this section, first we explain the experimental environment, and then present evaluation on the

performances of symmetric hash join/multi-way symmetric hash join, bind join, bind-bloom join,

adaptive join operator and extended adaptive join operator for single join queries and multi-join

queries. The focus of the evaluation is on their performances with respect to the response time and

the completion time. Speedup1 comparison between our previous proposal, adaptive join operator

(Oguz et al., 2016), and extended adaptive join operator is also presented to be self-contained and to

show the contribution of our new proposal.

Query cost in distributed environments is mainly dominated by the communication cost (Ozsu

& Valduriez, 2011). We conducted our experiments in the network simulator ns-32 to simulate the

real network conditions and consider mainly the communication cost. We assume that the size of

all queries is the same and each result tuple is considered to have the same size as well. Each query

size is accepted as 500 bytes, whereas each result tuple size is employed as 250 bytes. Each count

query size is assumed as 750 bytes and the message size is set to 100 tuples. Each selectivity factor

is 0.5 / max(cardinality of R1, cardinality of R2) (Shekita, Young, & Tan, 1993). We set the low,

medium and high cardinality as 1000 tuples, 5000 tuples and 10000 tuples, respectively. Average

duplication factors on the common attributes of relations are assigned randomly between 1 and 5,

both inclusive. Average duplication factor = 1 means that there are not any duplicates, while average

duplication factor = 5 means that there are 5 duplicates per value in average on the common attributes

of the relations. For this reason, we ran each test 100 times when we assigned the duplication factors

randomly. In some cases, we fixed the average duplication factors in order to understand the impact

of the duplication factors as well. We used 8 bits per each element and 6 hash functions for bloom

join with bloom filter. We conducted the simulations with different data arrival rates as explained in

the following sections, however we always fixed their delays to 10 ms.

In this subsection, we compare extended adaptive join operator (EAJO) with symmetric hash join

(SHJ), bind join (BJ), bind-bloom join (BBJ) and adaptive join operator (AJO) in two cases. We aim

to show the impact of data sizes in the first case, whereas we focus on the effect of different data

arrival rates in the second case. In addition, we compare AJO and EAJO with different m / n values

and k independent hash functions where m refers to the number of bits in the bit vector, and n refers

to the number of elements in the set.

The behaviours of the SHJ, BJ, BBJ, AJO and EAJO were analyzed when the data arrival rates of

both endpoints were fixed to 0.5 Mbps while the data sizes of R1 and R2 were changed. In order to

analyze all conditions, we evaluated the response time and the completion time when the data sizes

of R1 and R2 were low-low (LL); low-medium (LM); low-high (LH); medium-low (ML); medium-

medium (MM); medium-high (MH); high-low (HL); high-medium (HM) and high-high (HH),

respectively. Average duplication factors on the common attributes of relations were given randomly

between 1 and 5, both inclusive.

As Figure 1.a shows, BBJ and BJ have the worst response time in all conditions, whereas SHJ,

AJO and EAJO behave similarly. As the data size of R1 increases, the response times of BJ and BBJ

increase as well, due to waiting for the arrival of all results of R1 and sending the unique common

attributes to the endpoint of R2. BBJ provides a slightly better response time than BJ due to the

usage of bloom filter for sending the common attributes. On the other hand, SHJ, AJO and EAJO

can generate the first result tuple as soon as there is a match between R1 and R2, without waiting for

all tuples of R1 to arrive.

As shown in Figure 1.b, the completion time of BBJ is always shorter than BJ’s due to the bloom

filter usage. For this reason, we consider the completion times of BBJ instead of BJ’s for comparing

with others. When the cardinalities are low-medium, low-high and medium-high, (i.e., |R1| < |R2|),

BBJ’s completion time is the shortest. However, EAJO’s completion time is quite similar to BBJ’s

because it changes the join method to BBJ when it decides that it is more efficient than SHJ or BJ.

EAJO performs the best when the cardinalities of relations are medium-low, high-low and high-

medium (i.e., |R1| > |R2|), respectively. When the cardinalities of R1 and R2 are the same, SHJ, AJO

and EAJO provide the best performance in completion time at the same time. The data arrival rates

and the cardinalities of the relations are the same in these cases. As a result, all the tuples of both

relations arrive at the same time. SHJ is the most efficient join method for these cases. Therefore, both

AJO and EAJO decide to continue with SHJ in such cases. To conclude the comparison of completion

times, we can say that EAJO has the capability to choose the most efficient join method during the

execution. For this reason, it provides or shares the best completion time in six of nine conditions.

Also, it provides similar completion time to the best join method in the remaining three conditions.

Figure 1.c shows the speedup in completion time by EAJO compared to AJO. As shown in the

figure, when the cardinalities of relations are different, EAJO provides speedup between 17.8% and

19.4%. The reason of the difference between the speedup percentages is based on the different average

duplication factors. We can say the speedup of EAJO compared to AJO is 18.2% in average. EAJO

does not provide speedup when the cardinalities of relations are the same, because both AJO and

EAJO decide to continue with SHJ for the reasons explained previously.

In this case, we fixed the data arrival rate of R1 and changed the data arrival rate of R2. We conducted

the simulations for two different cardinality options: i) low cardinality of R1 and high cardinality of

R2; ii) high cardinality of R1 and low cardinality of R2. Average duplication factors on the common

attributes of relations were given randomly between 1 and 5, both inclusive. However, we fixed the

average duplication factors when we calculated the speedup of EAJO compared to AJO in order to

understand the impact of the duplication factors as well.

We conducted the simulations for two different conditions: i) when the data arrival rate of R1 was

fixed to 2 Mbps, and ii) when the data arrival rate of R1 was fixed to 0.5 Mbps. As Figures 2.a and

2.b show, the response times of BJ and BBJ are always longer than SHJ, AJO and EAJO. The gap

between the response times of BJ and BBJ; and the others increases when the data arrival rate of

R2 gets slower. SHJ provides the shortest response time in both conditions. AJO and EAJO provide

almost the same response time due to beginning with SHJ. That is to say, SHJ, AJO and EAJO are

the best in terms of response time at the same time.

As shown in Figure 2.c, the completion time of BBJ is always shorter than BJ due to the bloom

filter usage. For this reason, we use the completion time of BBJ instead of the completion time of

BJ when we compare the completion times of operators. BBJ provides the shortest completion time

for all conditions because the first relation’s cardinality is low and its data arrival rate is relatively

fast. As the data arrival rate of the second relation gets faster, EAJO provides similar completion

time with BBJ. The completion time of EAJO is always faster than SHJ and AJO. Figure 2.d shows

the completion time comparison when the first relation’s data arrival rate is fixed to 0.5 Mbps. BBJ

provides the shortest completion time until the second relation’s data arrival rate is 4.5 Mbps. However,

EAJO has almost the same completion time with BBJ due to its ability to change the join method to

BBJ during the execution. When the second relation’s data arrival rate is faster or equal to 5.5 Mbps,

SHJ provides the shortest completion time. In these cases, AJO and EAJO have the same completion

time due to continuing with SHJ. That is to say, the winner of completion time is changed according

to the data arrival rates. However, EAJO can choose the best join method during the execution.

Table 2 shows the speedup in completion time of EAJO compared to AJO when the data arrival

rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed. The used average duplication

factors are 1, 2 and 5, respectively where 1 means there are not any duplicates. For each data arrival

rate of R2, AJO and EAJO change the join method to BJ and BBJ, respectively. Although EAJO

provides speedup in all cases due to decreasing the data size of unique common attributes by using a

bloom filter, the speedup decreases as the second relation’s data arrival rate increases. The reason of

this decrease in the speedup is because of the effect of the decrease in the size of the sent data as the

network speed increases. Another key point to remember is that the speedup remains quite similar

after a certain point due to the same reason. Table 3 shows the speedup gained by EAJO when the

Data Arrival Rate of R2

in Mbps

Average Duplication Factors

1 2 3

0.5 35.28% 22.53% 11.57%

1.5 25.65% 13.99% 7.07%

2.5 20.39% 10.71% 5.70%

3.5 15.99% 8.47% 4.80%

4.5 12.51% 7.44% 4.47%

5.5 10.55% 6.81% 4.32%

6.5 9.64% 6.37% 4.24%

Data Arrival Rate of R2

in Mbps

Average Duplication Factors

1 2 3

0.5 30.61% 18.62% 9.16%

1.5 17.29% 8.72% 4.20%

2.5 12.41% 6.08% 3.12%

3.5 9.75% 4.91% 2.71%

4.5 - 4.27% 2.51%

first relation’s data arrival rate is fixed to 0.5 Mbps. In this case, EAJO provides speedup until the

second relation’s data arrival rate is equal or faster than 4.5 Mbps, because both AJO and EAJO

decide to continue with SHJ after this data arrival rate. As shown in both Table 2 and Table 3, the

speedup decreases as the duplication factor increases.

We again conducted the simulations for two different conditions: i) when the data arrival rate of

R1 was fixed to 2 Mbps, and ii) when the data arrival rate of R1 was fixed to 0.5 Mbps. The results

observed from Figure 3.a and Figure 3.b are similar to the results in Figure 2.a and Figure 2.b. Since

the cardinality of the first relation is high in this case, response times of BJ and BBJ are dramatically

longer than SHJ and also longer than AJO and EAJO as expected. The response times of SHJ, AJO

and EAJO are nearly the same.

As shown in Figure 3.c, the completion time of EAJO is the best in all conditions. SHJ, BJ and

BBJ wait the arrival of all tuples related to the first relation whose cardinality is high. However, AJO

and EAJO can change the join method and the join order when the second relation’s tuples all arrive.

Compared to AJO, EAJO has the advantage of changing the join method to BBJ. Figure 3.d shows

the completion time comparison when the first relation’s data arrival rate is fixed to 0.5 Mbps. The

results are similar to the previous one. EAJO’s completion time is the shortest once again. The gap

between the others is even higher.

Table 4 and Table 5 show the gained speedup in completion time by EAJO compared to AJO. In all

conditions, both AJO and EAJO change the join order as R2 ⋈ R1. The gained time of EAJO compared

to AJO remains the same, because the unique common attributes are sent to the endpoint of R1 and its

data arrival rate is fixed. However, overall time decreases up to a certain value as the data arrival rate

of R2 increases. For this reason, the speedup increases up to that certain value for both conditions as

the data arrival rate of R2 increases. The speedup also increases as the duplication factor decreases.

As explained in the previous sections, a bloom filter represents a set S = {e
1
, e

2
, e

3
, . . ., e

n
} of n elements

in a vector v of m bits. Initially all the bits are set to 0. Then, k independent hash functions, h
1
, h

2
,

. . ., h
k
, with range {1, 2, . . ., m} are used. In this part, we analyze the impact of m / n by changing

it between 2 and 22. In each m/n value, we used the number of hash functions, k, which minimizes

the false positive rate (Fan et al., 2000). The m/n and k combinations used in our experiments can be

seen from Table 6. We fixed the data arrival rates of both endpoints to 2 Mbps and the cardinalities

of relations to low and high, respectively. First, average duplication factors on the common attribute

of relations were given randomly between 1 and 5, both inclusive. Second, the average duplication

factors were set to 2.

Figure 4.a shows the achieved speedup in completion time by EAJO compared to AJO in different

m/n values when the average duplication factors are random. The results observed from the experiment

appears to suggest that the gained speedup is not affected by the m/n value when it is between 6 and

20, inclusively. The best performance is provided when the m/n is equal to 8.

Figure 4.b shows the gained speedup in completion time by EAJO when the average duplication

factors are set to 2. The results are similar to the results in Figure 4.a. Since the m/n is between 8 and

16, the speedup values are almost the same.

The simulation results demonstrated that SHJ provides the best response time performance in all

conditions due to being a non-blocking join operator which produces the first result tuple as early as

Data Arrival Rate of R2

in Mbps

Average Duplication Factors

1 2 3

0.5 14.47% 7.12% 3.53%

1.5 20.92% 10.89% 5.58%

2.5 22.80% 12.08% 6.26%

3.5 23.24% 12.37% 6.42%

4.5 23.24% 12.37% 6.42%

5.5 23.24% 12.37% 6.42%

Data Arrival Rate of R2

in Mbps

Average Duplication Factors

1 2 3

0.5 30.61% 18.62% 9.16%

1.5 33.51% 21.00% 10.60%

2.5 35.28% 22.53% 11.57%

3.5 37.37% 24.40% 12.81%

4.5 37.37% 24.40% 12.81%

5.5 39.80% 26.69% 14.39%

6.5 39.80% 26.69% 14.39%

possible. Our previous and current proposals, AJO and EAJO respectively, provide almost the same

response time with SHJ due to setting the join method as SHJ in the beginning. The response times

of BJ and BBJ are dramatically longer because of waiting for all tuples of the first relation to arrive.

On the other hand, BJ or BBJ can provide better completion times when the first relation’s cardinality

is low and the second relation’s cardinality is high. However, our previous proposal AJO can change the

join method to BJ, and our new proposal EAJO can change the join method to BJ or BBJ in this condition.

EAJO provides the best completion time when the first relation’s cardinality is high and the

second relation’s cardinality is low. This conclusion is valid in all data arrival combinations that we

have tested.

To conclude, SHJ is the most successful join method in response time. However, the best join

method in completion time can differ according to the relations’ cardinalities and their data arrival rates.

In addition, the results showed that BBJ provides better completion times than BJ in all conditions.

These results seem to suggest that using bloom filters in bind join is a necessity. Our proposal, EAJO,

provides an optimal response time by beginning with SHJ. It also provides an optimal completion

time by changing the join method or join order during the execution. In brief, EAJO gives the best

tradeoff between the response time and the completion time. Another key fact to remember is that

EAJO always provides better completion time than AJO.

m/n k

2 1

4 3

6 4

8 6

10 7

12 8

14 10

16 11

18 12

20 14

22 15

In this subsection, we compare EAJO with multi-way symmetric hash join (MSHJ), BJ, BBJ, and AJO

when there are three relations in the query. A query example that we use in our experiments is shown

below. R1 (service1) and R2 (service2) have a common attribute, ?student, R2 and R3 (service3)

have a common attribute, ?course.

Since our aim in this case is to show the impact of data sizes, we fixed the data arrival rates of all

relations to 0.5 Mbps and the delays to 10 milliseconds. We conducted our experiments when the

data sizes of R1, R2, R3 were low-low-low (LLL); low-medium-high (LMH); low-high-high (LHH);

high-medium-low (HML); high-high-low (HHL); and high-high-high (HHH).

As shown in Figures 5.a, 5.b and 5.c, in all cases, MSHJ, AJO and EAJO provide the best response

time whereas BJ performs the worst response time and BBJ follows it. When the cardinality of R1

is high, the response times of BJ and BBJ become dramatically longer due to waiting for the arrival

of all results of R1. As the duplication factor increases, the response times of BJ and BBJ shorten

due to the decrease in the number of unique common attribute values. In other words, the number of

attribute values to send to the other endpoints is decreased as the average duplication factor increases.

Although the response times of BJ and BBJ decrease as the average duplication factor increases, their

response times are dramatically longer than MSHJ, AJO and EAJO.

Figures 5.d, 5.e and 5.f show the completion times of MSHJ, BJ, BBJ, AJO and EAJO when the

data arrival rates of all relations are fixed. When the cardinalities are HML or HHL, EAJO performs

the best completion time and AJO has the closest completion time to it. The difference between EAJO

and others, except AJO, is dramatically high. When the cardinalities of all relations are the same,

namely LLL or HHH, MSHJ, AJO and EAJO share the best completion time whereas BJ performs the

worst. When the cardinalities are LMH or LHH, BBJ performs the shortest completion time. EAJO’s

completion time is the second best when the average duplication factors are 1. BJ performs slightly

better than EAJO when the average duplication factors are 2 or 5. To conclude, EAJO performs or

shares the best completion time in four of six cases due to having the adaptation ability.

Table 7 shows the speedup in completion time of EAJO compared to AJO when the data

arrival rates of R1, R2 and R3 are fixed. EAJO provides speedup from 6.40% to 31.33 when the

cardinalities of relations are different. Although the speedup is not affected by the cardinalities

of relations, it increases as the average duplication factors decrease. EAJO does not provide

speedup when the cardinalities of relations are the same, because both AJO and EAJO decide

to continue with MSHJ.

In order to show the impact of data arrival rates on MSHJ, BJ, BBJ, AJO and EAJO, we fixed the

data arrival rates of R1 and R3 to 2 Mbps and changed the data arrival rate of R2. We conducted the

simulations for two different cardinality options: i) low cardinality of R1, high cardinality of R2, and

high cardinality of R3 (LHH); ii) high cardinality of R1, high cardinality of R2, and low cardinality

of R3 (HHL). LHH and HHL are chosen because EAJO performs the worst and the best completion

times among their results with other combinations in the previous section. Since we showed the effect

of average duplication factors previously, we fixed the average duplication factors to 2 in these cases.

Figure 6.a shows the response times of MSHJ, BJ, BBJ, AJO and EAJO when the cardinalities of

relations are low, high and high respectively. As shown in the figure, response times of MSHJ, AJO

and EAJO are almost the same whereas BJ’s and BBJ’s response times are highly slower.

Data Sizes ofR1, R2 and

R3

Average Duplication Factors

1 2 3

LMH 31.33% 16.55% 6.40%

LHH 31.33% 16.55% 6.40%

HML 31.33% 16.55% 6.40%

HHL 31.33% 16.55% 6.40%

Figure 6.b indicates that the completion times in ascending order are of BBJ, BJ, EAJO, AJO

and MSHJ. When the first relation’s cardinality is low and its data arrival is relatively fast, BBJ and

BJ provide better completion times. The completion time of MSHJ is the worst one in all cases due

to having the disadvantage of waiting all the tuples of R2 and R3. However, AJO and EAJO change

their join methods to BJ and BBJ, respectively, when the tuples of the first relation all arrive. Thus,

EAJO performs almost the same completion time to BJ, and provides slightly worse completion

time than BBJ. BBJ’s and BJ’s both response times and completion times would increase, if the first

relation’s cardinality were medium or high.

Figure 6.c shows the speedup in completion time of EAJO compared to AJO when the data arrival

rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed with card(R1) << card(R2)

= card(R3). As shown in the figure, the speedup decreases as the second relation’s data arrival rate

increases. The reason of this decrease in the speedup is because of the effect of the decrease in the

size of the sent data as the network speed increases.

The results observed from Figure 7.a are similar to the results in Figure 6.a. BJ and BBJ have the

worst response time again, whereas MSHJ, AJO and EAJO have almost the same response time. Since

the cardinality of the first relation is high in this case, response times of BJ and BBJ are dramatically

longer than others.

As shown in Figure 7.b, EAJO provides the best completion time in all cases. The completion

times in ascending order are of EAJO, AJO, MSHJ, BBJ, and BJ when the second relation’s data

arrival rate is equal or faster than 1.5 Mbps. EAJO and AJO have the advantage of using BJ or BBJ

when the tuples of R3 all arrive whose cardinality is low. EAJO outperforms AJO in all cases due to

the usage of bloom filter for sending the common attributes.

Figure 7.c shows the speedup in completion time of EAJO compared to AJO when the data

arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed with card(R1) =

card(R2) >> card(R3). The speedup is gained due to the usage of bloom filter and hence sending

less data size through the network. The speedup decreases as the second relation’s data arrival rate

increases, because the effect of the decrease in the size of the sent data decreases as the network

speed increases. The results are the same with the results in Figure 6.c. The cardinalities of R1, R2

and R3 are low-high-high and high-high-low in these cases, respectively. The common attributes

exist between R1 - R2; and R2 - R3. In the first case, when the cardinalities are low-high-high, first

the tuples of R1 all arrive, and AJO and EAJO change the join method for R1 and R2 to BJ or BBJ,

respectively. In the second case, when the cardinalities are high-high-low, first the tuples of R3 all

arrive, and AJO and EAJO change the join method for R3 and R2 to BJ or BBJ, respectively. For this

reason, the achieved speedups are the same in both cases.

The simulation results showed that MSHJ, which is a non-blocking join method, provides the best

response time in all conditions. AJO and EAJO provide almost the same response time with MSHJ

due to setting the join method as MSHJ at the beginning. The response times of BJ and BBJ are

dramatically longer because of waiting the arrival of all tuples belonging to the first relation.

The results also demonstrated that BBJ provides the best completion time when the first relation’s

cardinality is low and the other relations’ cardinalities are medium or high. However, EAJO can

change the join method to BBJ in these conditions. On the other hand, EAJO provides the best

completion time when the first relation’s cardinality is high. This conclusion is valid in all data arrival

combinations that we have tested.

In conclusion, MSHJ is the best join method in response time. However, the best join method in

completion time differs according to the relations’ cardinalities and data arrival rates. EAJO provides

an optimal response time by beginning with MSHJ and an optimal completion time by changing the

join method or join order during the execution. We can conclude that EAJO gives the best tradeoff

between the response time and the completion time. We also emphasize that EAJO always provides

better completion time than AJO.

Linked data contains two aspects: i) a way of publishing and connecting structured data on the web,

and ii) the collection of interrelated data sources on the web. There are two main approaches to query

these data sources which are link traversal (Hartig et al., 2009) and query federation (Görlitz & Staab,

2011a). Both approaches have the advantage of providing up-to-date results due to distributed query

processing. However, link traversal has the weakness of not guaranteeing finding all results and has

some performance problems. Because of these reasons, we turn our attention to the second approach.

Query federation is performed via an engine that distributes the query execution over a federation

of SPARQL endpoints and has the following main steps: i) data source selection, ii) query optimization,

and iii) query execution. Data source selection is responsible for selecting the relevant data sources for

each triple pattern which composes the query. Query optimization groups the triple patterns, decides

the join strategy and the join order. The last step is responsible for the execution of the query plan

which is decided by the query optimizer.

The objective of the federated query engines can be stated as to minimize the response time and

the completion time which include communication time, I/O time and CPU time. The communication

time dominates the others in distributed environments. Since the subqueries and intermediate results

are transmitted over the web of data, the communication cost is affected by the amount of intermediate

results. It is substantially affected by the join order and the join method which are decided in the

query optimization phase.

Static query optimization and heuristics are widely used in query federation (Quilitz & Leser,

2008; Görlitz & Staab, 2011b; Schwarte, Haase, Hose, Schenkel, & Schmidt, 2011; Wang, Tiropanis,

& Davis, 2013). However, federated query processing is done on the distributed data sources on the

web which causes unpredictable data arrival rates. In addition, most of the statistics are missing or

unreliable. For these reasons, we think that adaptive query optimization (Deshpande et al., 2007) is a

need in this unpredictable environment. ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al.,

2010, 2011) are the two query federation engines which use adaptive query optimization. ANAPSID

uses a non-blocking join method based on symmetric hash join (Wilschut & Apers, 1991) and Xjoin

(Urhan & Franklin, 2000). ADERIS (Lynden et al., 2010) joins two predicate tables as they become

complete, whereas ADERIS (Lynden et al., 2011) employs a cost model for dynamically changing

the join order. Also, AVALANCHE (Basca & Bernstein, 2010, 2014) considers adaptivity. It collects

statistical information about relevant data sources and then generates its execution plan to provide

the first k tuples. Our previous proposal (Oguz et al., 2016), to the best of our knowledge, is the first

study that considers an adaptive join operator that aims to reduce both the response time and the

completion time when query execution is done over SPARQL endpoints. In this paper, we present

the improved version of it which achieves to further minimize the completion time.

Table 8 shows the comparison of adaptive query optimization in query federation depending on

the following criteria:

• Server (S): Indicates the type of the server for publication and querying of linked data. SPARQL

Endpoints (se) and triple pattern fragment servers (tpfs) are the possible values;

• Join Method (JM): Shows the used join methods in the studies which are categorized as nested

loop join (nlj), index nested loop join (inlj), symmetric hash join (shj), bind join (bj), and bind-

bloom join (bbj);

• Type of Statistics (ToS): States of the collection time of statistics which has the following values:

runtime (rt) and metadata (md);

• Frequency of Feedback (FoF): Shows the level of modification and has two possible values:

inter-operator (inter) and intra-operator (intra);

• Type of Event (ToE): Shows the case triggering the decision and has two values which are data

arrival rates (dar) and any;

• Logical Plan (LP): Displays the query plan modifications at the logical level and are categorized

as reformulation of the remaining plan (rf), operator reordering (op_ro), and no effects (no) for

adaptive query optimization in relational databases by Gounaris et al. (Gounaris, Paton, Fernandes,

& Sakellariou, 2002). Reformulation of the remaining plan includes the operator reordering;

• Physical Plan (PP): Represents the query plan modifications at the physical level and are

categorized as usage of adaptive operators (uao), operator replacement (op_rep), and no effects

(no) for relational databases by Gounaris et al. (Gounaris et al., 2002);

• Type of Modification (ToM): Can be employed as rescheduling (rs), dynamic operator (do),

and rescheduling and replacement (rs & rp).

As shown in Table 8, ADERIS, ANAPSID, AVALANCHE, AJO and EAJO use adaptive query

optimization for the queries over SPARQL endpoints, whereas nLDE employs adaptive query

optimization for queries over triple pattern fragments. The proposals for the SPARQL endpoints prefer

to collect the statistics in runtime due to unreliable or missing statistics. Therefore, up-to-dateness

of statistics is provided. On the other hand, nLDE uses metadata catalogs for the statistics because

triple pattern fragments contain both data, metadata and controls.

The second parameter in Table 8 is the join method. Bind join is used by all the studies, except

nLDE, and nested loop join is employed by ADERIS and nLDE. ANAPSID proposes two join

methods which are agjoin and adjoin. The first one is a non-blocking join method which is based on

symmetric hash join and XJoin. The second one is the extended version of dependent join (Florescu,

Levy, Manolescu, & Suciu, 1999) which sends the request to the second data source when tuples

from the first source are received. Adjoin can be accepted as a bind join because it needs the bindings.

As illustrated in Table 8, ANAPSID, AJO, nLDE and EAJO have the opportunity to produce results

incrementally since they use symmetric hash join. AVALANCHE defines its join method as distributed

join and it employs bloom filter optimised joins to reduce communication cost. The difference between

distributed join and bind join is not explained in their papers. We categorize its join methods as bind

join and bind-bloom join. In brief, AVALANCHE and EAJO can use bind-bloom join which has the

advantage of decrease the completion time.

S JM ToS FoF ToE LP PP ToM

ADERIS

(Lynden et al., 2011)
se inlj/bj rt inter any op_ro uao rs

ANAPSID

(Acosta et al., 2011)
se shj/bj rt intra dar no uao do

AVALANCHE

(Basca & Bernstein, 2014)
se bj/bbj rt inter dar op_ro no rs

nLDE

(Acosta & Vidal, 2015)
tpfs shj/nlj md intra any op_ro no rs

AJO

(Oguz et al., 2016)
se shj/bj rt intra dar rf op_rep rs&rp

EAJO se shj/bj/bbj rt intra dar rf op_rep rs&rp

The third parameter for the comparison is the frequency of feedback. The studies in inter-operator

level collect feedback from different physical operators and react to the execution of them according to

the feedback. On the other hand, feedback is collected during the processing of the physical operator

in the intra-operator level. The limit of collection can vary from a single tuple to a block of tuples

(Gounaris et al., 2002). ADERIS and AVALANCHE have the inter-operator feedback frequency,

whereas ANAPSID, nLDE, AJO and EAJO have the intra-operator one. ANAPSID’s feedback belongs

to using an adaptive operator. The difference between the intra-operator of nLDE and AJO/EAJO is

based on the amount of accumulated data before reacting. Although nLDE checks the feedback for

each tuple, AJO and EAJO do it when all tuples of a relation arrive. The next parameter is the type

of event. ANAPSID, AVALANCHE, AJO and EAJO focus on data arrival rates, whereas ADERIS

and nLDE check their decisions at each step.

AJO and EAJO distinguish from others when we consider the sixth and seventh parameters

in Table 8, namely logical plan and physical plan. Different from others, AJO and EAJO provide

reformulation of the remaining plan at the logical level, and operator replacement at the physical

level by the ability of changing both the join order and the join method.

The last comparison parameter is the type of modification. ANAPSID’s type of modification

belongs to a dynamic operator, whereas the types of modification of ADERIS, AVALANCHE and

nLDE are rescheduling due to changing the join order for the rest of the query. AJO and EAJO, besides

rescheduling, cover replacement which has the meaning of changing the join method.

In this paper, we presented an adaptive join operator for single join queries and multi-join queries

which is an extended version of our previous work (Oguz et al., 2016). We improved our previous

adaptive join operator to further reduce the communication cost. For this reason, we integrated bind-

bloom join to our operator. Our new proposal always begins with symmetric hash join (multi-way

symmetric hash join for multi-join queries) in order to provide optimal response time. It can change

the join method to bind join or bind-bloom join when it decides that the candidate join method is

more efficient than symmetric hash join for the rest of the query.

The results of the performance evaluation showed the efficiency of the proposed join operator.

Compared to symmetric hash join and multi-way symmetric hash join, it provides faster completion

times and almost the same response times. Compared to bind join and bind-bloom join, the extended

operator performs substantially better with respect to the response time and it can also improve the

completion time. Furthermore, the extended operator provides faster completion time than our previous

operator in all conditions, because it uses a bloom filter for sending the common attributes to the other

endpoint. Experimental results also showed that bind-bloom join provides better completion times

than bind join in all conditions. These results allow us to suggest using bloom filters in bind join.

This work is partially supported by The Scientific and Technological Research Council of Turkey

(TUBITAK).

Acosta, M., & Vidal, M.-E. (2015). Networks of linked data eddies: An adaptive Web query processing engine
for RDF data. In The Semantic Web - ISWC 2015: 14th International Semantic Web Conference, Bethlehem,
PA, USA (pp. 111–127). Springer International Publishing.

Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., & Ruckhaus, E. (2011). ANAPSID: An Adaptive Query
Processing Engine for SPARQL Endpoints. In The Semantic Web – ISWC 2011, LNCS (Vol. 7031, pp. 18–34).
Springer Berlin Heidelberg.

Babu, S., & Bizarro, P. (2005). Adaptive Query Processing in the Looking Glass. In CIDR 2005, Second Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA (pp. 238–249).

Basca, C., & Bernstein, A. (2010, November 9). Avalanche: Putting the Spirit of the Web back into Semantic
Web Querying. Proceedings of the ISWC 2010 Posters & Demonstrations Track: Collected Abstracts,
Shanghai, China.

Basca, C., & Bernstein, A. (2014). Querying a messy web of data with Avalanche. Journal of Web Semantics,
26, 1–28. doi:10.1016/j.websem.2014.04.002

Bloom, B. H. (1970). Space/Time Trade-offs in Hash Coding with Allowable Errors. Communications of the
ACM, 13(7), 422–426. doi:10.1145/362686.362692

Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., & Varghese, G. (2006). An Improved Construction for
Counting Bloom Filters. In Algorithms – ESA 2006: 14th Annual European Symposium, Zurich, Switzerland
(pp. 684–695). Berlin, Heidelberg: Springer. doi:10.1007/11841036_61

Deshpande, A., Ives, Z., & Raman, V. (2007). Adaptive Query Processing. Found. Trends Databases, 1(1),
1–140. doi:10.1561/1900000001

Fan, L., Cao, P., Almeida, J., & Broder, A. Z. (2000). Summary Cache: A Scalable Wide-area Web Cache Sharing
Protocol. IEEE/ACM Transactions on Networking, 8(3), 281–293. doi:10.1109/90.851975

Florescu, D., Levy, A., Manolescu, I., & Suciu, D. (1999). Query Optimization in the Presence of Limited Access
Patterns. SIGMOD Record, 28(2), 311–322. doi:10.1145/304181.304210

Görlitz, O., & Staab, S. (2011a). Federated Data Management and Query Optimization for Linked Open
Data. In New Directions in Web Data Management 1 (Vol. 331, pp. 109–137). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-17551-0_5

Görlitz, O., & Staab, S. (2011b, October 23). SPLENDID: SPARQL Endpoint Federation Exploiting VOID
Descriptions. Proceedings of the Second International Workshop on Consuming Linked Data (COLD ‘11),
Bonn, Germany.

Gounaris, A., Paton, N. W., Fernandes, A. A. A., & Sakellariou, R. (2002). Adaptive Query Processing: A
Survey. In Advances in Databases: 19th British National Conference on Databases, BNCOD 19, Sheffield, UK
(pp. 11–25). Berlin, Heidelberg: Springer. doi:10.1007/3-540-45495-0_2

Gounaris, A., Tsamoura, E., & Manolopoulos, Y. (2013). Adaptive Query Processing in Distributed Settings. In
B. Catania & L. C. Jain (Eds.), Advanced Query Processing (Vol. 1, pp. 211–236). Berlin, Heidelberg: Springer.
doi:10.1007/978-3-642-28323-9_9

Groppe, S., Heinrich, D., & Werner, S. (2015). Distributed join approaches for W3C-conform SPARQL endpoints.
Open Journal of Semantic Web, 2(1), 30–52.

Haas, L. M., Kossmann, D., Wimmers, E. L., & Yang, J. (1997). Optimizing Queries Across Diverse Data
Sources. Proceedings of the 23rd International Conference on Very Large Data Bases (pp. 276–285). Morgan
Kaufmann Publishers Inc.

Hartig, O., Bizer, C., & Freytag, J.-C. (2009). Executing SPARQL Queries over the Web of Linked Data. In the
Semantic Web - ISWC 2009, LNCS (Vol. 5823, pp. 293–309). Springer Berlin Heidelberg.

Hogenboom, A., Frasincar, F., & Kaymak, U. (2013). Ant colony optimization for {RDF} chain queries for
decision support. Expert Systems with Applications, 40(5), 1555–1563. doi:10.1016/j.eswa.2012.08.074

Hogenboom, A., Milea, V., Frasincar, F., & Kaymak, U. (2009). RCQ-GA: RDF Chain Query
Optimization Using Genetic Algorithms. In E-Commerce and Web Technologies: 10th International
Conference, EC-Web 2009, Linz, Austria (pp. 181–192). Berlin, Heidelberg: Springer. doi:10.1007/978-
3-642-03964-5_18

Hose, K., & Schenkel, R. (2012). Towards Benefit-based RDF Source Selection for SPARQL Queries. Proceedings
of the 4th International Workshop on Semantic Web Information Management (pp. 2:1–2:8). New York, USA:
ACM. doi:10.1145/2237867.2237869

Ives, Z. G., & Taylor, N. E. (2008). Sideways Information Passing for Push-Style Query Processing.
Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (pp. 774-783). doi:10.1109/
ICDE.2008.4497486

Kalayci, E. G., Kalayci, T. E., & Birant, D. (2015). An ant colony optimisation approach for optimising SPARQL
queries by reordering triple patterns. Information Systems, 50, 51–68. doi:10.1016/j.is.2015.01.013

Lynden, S., Kojima, I., Matono, A., & Tanimura, Y. (2010). Adaptive Integration of Distributed Semantic Web
Data. Proceedings of the 6th International Conference on Databases in Networked Information Systems (pp.
174–193). Springer-Verlag. doi:10.1007/978-3-642-12038-1_12

Lynden, S., Kojima, I., Matono, A., & Tanimura, Y. (2011). ADERIS: An Adaptive Query Processor for Joining
Federated SPARQL Endpoints. Proceedings of the 2011th Confederated International Conference on the Move
to Meaningful Internet Systems (pp. 808–817). Springer-Verlag.

Mackert, L. F., & Lohman, G. M. (1986). R* Optimizer Validation and Performance Evaluation for Local
Queries. SIGMOD Record, 15(2), 84–95. doi:10.1145/16856.16863

Michael, L., Nejdl, W., Papapetrou, O., & Siberski, W. (2007). Improving distributed join efficiency with extended
bloom filter operations. Proceedings of the 21st International Conference on Advanced Information Networking
and Applications (AINA ’07) (p. 187-194). doi:10.1109/AINA.2007.80

Morvan, F., & Hameurlain, A. (2009). Dynamic Query Optimisation: Towards Decentralised Methods. Int. J.
Intell. Inf. Database Syst., 3(4), 461–482. doi:10.1504/IJIIDS.2009.030440

Mullin, J. K. (1990). Optimal semijoins for distributed database systems. IEEE Transactions on Software
Engineering, 16(5), 558–560. doi:10.1109/32.52778

Oguz, D., Ergenc, B., Yin, S., Dikenelli, O., & Hameurlain, A. (2015). Federated query processing on linked data:
A qualitative survey and open challenges. The Knowledge Engineering Review, 30(5), 545–563. doi:10.1017/
S0269888915000107

Oguz, D., Yin, S., Hameurlain, A., Ergenc, B., & Dikenelli, O. (2016). Adaptive Join Operator for Federated
Queries over Linked Data Endpoints. In Advances in Databases and Information Systems: 20th East European
Conference, ADBIS 2016, Prague, Czech Republic (pp. 275–290). Cham: Springer International Publishing.
doi:10.1007/978-3-319-44039-2_19

Oren, E., Guéret, C., & Schlobach, S. (2008). Anytime Query Answering in RDF Through Evolutionary
Algorithms. Proceedings of the 7th International Conference on The Semantic Web (pp. 98–113). Berlin,
Heidelberg: Springer-Verlag. doi:10.1007/978-3-540-88564-1_7

Ozsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems. New York: Springer.

Quilitz, B., & Leser, U. (2008). Querying Distributed RDF Data Sources with SPARQL. Proceedings of the 5th
European Semantic Web Conference on The Semantic Web: Research and Applications (pp. 524–538). Springer-
Verlag. doi:10.1007/978-3-540-68234-9_39

Schwarte, A., Haase, P., Hose, K., Schenkel, R., & Schmidt, M. (2011). FedX: Optimization Techniques for
Federated Query Processing on Linked Data. In the Semantic Web - ISWC 2011 - 10th International Semantic
Web Conference, Bonn, Germany (pp. 601–616).

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., & Price, T. G. (1979). Access Path
Selection in a Relational Database Management System. Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data (pp. 23–34). New York, NY, USA: ACM.
doi:10.1145/582095.582099

Shekita, E. J., Young, H. C., & Tan, K.-L. (1993). Multi-Join Optimization for Symmetric Multiprocessors. Proceedings
of the 19th International Conference on Very Large Data Bases (pp. 479–492). Morgan Kaufmann Publishers Inc.

Urhan, T., & Franklin, M. J. (2000). XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE Data Eng.
Bull., 23(2), 27–33.

Viglas, S. D., Naughton, J. F., & Burger, J. (2003). Maximizing the Output Rate of Multi-way Join Queries over
Streaming Information Sources. Proceedings of the 29th International Conference on Very Large Data Bases
(pp. 285–296). VLDB Endowment. doi:10.1016/B978-012722442-8/50033-1

Wang, X., Tiropanis, T., & Davis, H. C. (2013, May 14). LHD: Optimising Linked Data Query Processing
Using Parallelisation. Proceedings of the WWW2013 Workshop on Linked Data on the Web, Rio de
Janeiro, Brazil.

Williams, G. T. (2008). Supporting identity reasoning in SPARQL using bloom filters. Advancing Reasoning
on the Web: Scalability and Commonsense (ARea 2008).

Wilschut, A. N., & Apers, P. M. G. (1991). Dataflow Query Execution in a Parallel Main- Memory Environment.
Proceedings of the First International Conference on Parallel and Distributed Information Systems (pp. 68–77).
IEEE Computer Society Press. doi:10.1109/PDIS.1991.183069

1 Speedup of x compared to y (%) = (completion time of y - completion time of x) / (completion time of y) * 100
2 https://www.nsnam.org/

