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The goal of query optimization in query federation over linked data is to minimize the response time 

and the completion time. Communication time has the highest impact on them both. Static query 

optimization can end up with inefficient execution plans due to unpredictable data arrival rates and 

missing statistics. This study is an extension of adaptive join operator which always begins with 

symmetric hash join to minimize the response time, and can change the join method to bind join to 

minimize the completion time. The authors extend adaptive join operator with bind-bloom join to 

further reduce the communication time and, consequently, to minimize the completion time. They 

compare the new operator with symmetric hash join, bind join, bind-bloom join, and adaptive join 

operator with respect to the response time and the completion time. Performance evaluation shows 

that the extended operator provides optimal response time and further reduces the completion time. 

Moreover, it has the adaptation ability to different data arrival rates.

As the increase in the number of data sources on linked data, a distributed data space on the web is 

generated. This huge global data space can be automatically queried by using two approaches called 

link traversal (Hartig, Bizer, & Freytag, 2009) and query federation (Görlitz & Staab, 2011a). The 

first approach is based on discovering potentially relevant data by following the links between them. 

In other words, it finds the related data sources during the query execution. The second approach, 

query federation, divides the query into subqueries and distributes them to the SPARQL endpoints of 

the relevant data sources. The intermediate results from the data sources are aggregated and the final 



results are generated. Although both approaches have the advantage of providing up-to-date results, 

link traversal cannot guarantee finding all results because the relevant data sources change according 

to the starting point. For this reason, we focus on the query federation approach.

The objective of engines in query federation is to minimize both the response time and the 

completion time. Response time is the time to generate the first result tuple, whereas completion time 

is the time to provide all result tuples. Response time and completion time include communication 

time, I/O time and CPU time. Since the communication time dominates other costs, the main objective 

of the federated query engines can be stated as to minimize the communication cost. Static query 

optimization (Selinger, Astrahan, Chamberlin, Lorie, & Price, 1979) is not adequate for federated 

queries, because they are executed over the SPARQL endpoints of the selected distributed data 

sources on the web, and the data arrival rates are unexpected. Moreover, most of the statistics about 

the data sources are missing or unreliable. These constraints show that adaptive query optimization 

(Deshpande, Ives, & Raman, 2007) is a necessity for query federation over linked data.

Adaptive query optimization has been studied in detail in relational databases (Babu & Bizarro, 

2005; Deshpande et al., 2007; Morvan & Hameurlain, 2009; Gounaris, Tsamoura, & Manolopoulos, 

2013). However, it is a new research area for linked data. There are only two engines which consider 

adaptive query optimization for federated queries over SPARQL endpoints: ANAPSID (Acosta, Vidal, 

Lampo, Castillo, & Ruckhaus, 2011) and ADERIS (Lynden, Kojima, Matono, & Tanimura, 2010, 

2011). The first one proposes a non-blocking join method based on symmetric hash join (Wilschut 

& Apers, 1991) and Xjoin (Urhan & Franklin, 2000), while the second one uses a cost model for 

dynamically changing the join order. Other than these, AVALANCHE (Basca & Bernstein, 2010, 

2014) collects statistical information about relevant data sources and then generates its execution plan 

to provide the first k tuples. In addition, there are several studies which concentrate on join ordering 

for SPARQL queries by using different techniques such as evolutionary algorithms (Oren, Guéret, 

& Schlobach, 2008; Hogenboom, Milea, Frasincar, & Kaymak, 2009) and ant colony (Hogenboom, 

Frasincar, & Kaymak, 2013; Kalayci, Kalayci, & Birant, 2015). To the best of our knowledge, adaptive 

join operator (Oguz, Yin, Hameurlain, Ergenc, & Dikenelli, 2016) is the first study which aims to 

reduce both the response time and the completion time for query federation over SPARQL endpoints.

As mentioned above, the communication cost is the dominant cost in distributed environments. 

Bloom filter (Bloom, 1970), which is a space efficient data structure, is widely used in relational 

databases (Mackert & Lohman, 1986; Mullin, 1990; Michael, Nejdl, Papapetrou, & Siberski, 2007; 

Ives & Taylor, 2008). It is utilized in different linked data tasks such as identity reasoning (Williams, 

2008) and data source selection (Hose & Schenkel, 2012). Bloom filter is also employed to reduce 

the communication cost in two studies of linked data (Basca & Bernstein, 2014; Groppe, Heinrich, 

& Werner, 2015).

In this paper, we present an extended version of our previous work (Oguz et al., 2016) in 

which adaptive join operator is proposed. The new contributions of this paper are as follows: 

i) We improve our previous proposal with bind-bloom join (Basca & Bernstein, 2014; Groppe 

et al., 2015) for both single join queries and multi-join queries by including bind-bloom join 

to the candidate join methods. ii) We present a detailed performance evaluation study which 

shows the advantage of our new proposal. iii) We extend our related work with new studies 

and comparison of adaptive query optimization methods in query federation. Our operator uses 

symmetric hash join in the beginning to minimize the response time, and can change the join 

method to bind join or bind-bloom join. Bind-bloom join, shortly can be defined as a kind of bind 

join enhanced with bloom filter in order to minimize the communication time. It is explained 

in detail in the following section. Performance evaluation shows that the extended operator has 

both the advantage of optimal response time and the adaptation ability to different data arrival 

rates in order to minimize the completion time. Moreover, it provides faster completion time 

than our previous operator in all test cases.



The rest of the paper is organized as follows: Section 2 introduces our approach for both single 

join queries and multi-join queries. Section 3 presents the results and discussions on performance 

evaluation. Section 4 covers the related work and Section 5 concludes the paper.

In our previous work (Oguz et al., 2016), we have proposed an adaptive join operator for federated 

queries over linked data endpoints, called AJO. It always begins with symmetric hash join in order 

to minimize the response time, and when all the tuples of a relation arrive, it estimates the remaining 

times for symmetric hash join and bind join in order to minimize the completion time. It changes 

the join method to bind join if it estimates that it is more efficient than symmetric hash join. In this 

paper, we propose an extended version of AJO with bind-bloom join in order to further reduce the 

communication time. In this section, we first explain the principles of symmetric hash join, bind 

join, bloom filter, and bind-bloom join. Second, we present our proposal for single join queries and 

multi-join queries.

Symmetric hash join (Wilschut & Apers, 1991) maintains a hash table for each relation. Thus, it is 

a non-blocking join method which produces the first result tuple as early as possible. In other words, 

it is good at response time. Bind join (Haas, Kossmann, Wimmers, & Yang, 1997), which is the most 

popular join method among the federated query engines (Oguz, Ergenc, Yin, Dikenelli, & Hameurlain, 

2015), passes the bindings of the intermediate results of the outer relation to the inner relation to 

filter the result set. It provides good completion time when the cardinalities of the first relation and 

the intermediate results are low. Equation 1 and Equation 2 show the cost functions of these join 

methods that are the variations of the formulas in (Quilitz & Leser, 2008). R1 and R2 are relations, 

card(R) is the number of tuples in R, c
t
R

 is the transfer cost of R for one result tuple, and R2  is the 

relation with the bindings of R1:
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Bloom filter (Bloom, 1970) is a data structure which represents a set of elements in a bit vector 

with a low rate of false positives. The idea is to represent a set S = {e
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) are checked. If any 

of them is 0, certainly e
j
 is not in the set S. Otherwise, e

j
 is accepted as a member of set S, although 

there is a probability that it is not a member (Fan, Cao, Almeida, & Broder, 2000). Independent of 

the size of the elements, less than 10 bits per element are required for a 1% false positive probability 

(Bonomi, Mitzenmacher, Panigrahy, Singh, & Varghese, 2006).

We propose to use b bits per each element and k hash functions to minimize the false positive rate 

(Fan et al., 2000). We propose a custom SPARQL function CheckBloom(?commonAttribute, ?bitVector) 

which returns true if the positions corresponding to h
1
(?commonAttribute), h

2
(?commonAttribute), . . 

., h
k
(?commonAttribute) are set to 1 in bloom filter ?bitVector. We explain the advantage of using a 

bloom filter in bind join by using the federated query example in Listing 1. Initially, the first subquery 

is executed on :service1 and then the second subquery is executed on :service2 with the bindings of 

the first subquery as shown in Listing 2. The intermediate results from :service1 can be seen from 



Table 1. Query size is proportional to the number of intermediate results, and the communication 

cost increases as the number of intermediate results increases. In order to decrease this cost, bind 

join can be employed by using a bloom filter as shown in Listing 3. BloomFilter is a bit array whose 

length in bits is equal to multiplication of the number of distinct common attribute values and b bits. 

Since our proposal uses b bits per each intermediate result, the size of the bloom filter in bits is equal 

to multiplication of the number of distinct common attribute values and b bits. On the other hand, 

bind join can be more efficient than bind-bloom join in some cases according to the number of false 

positives and the size of the result set. For this reason, our proposal estimates the remaining times of 

bind join and bind-bloom join when the tuples of a relation all arrive.

Listing 1: Federated query example

Listing 2: Bind query

Listing 3: Bind query with bloom filter

Line Student

1 student_1

2 student_2

. . . . . .

n student_n



Extended adaptive join operator for single join queries is depicted in Algorithm 1. Firstly, we send 

count queries to the endpoints of datasets R1 and R2 in order to learn their cardinalities. We always 

begin with symmetric hash join in order to minimize the response time. During the execution, when 

all the tuples from one dataset arrive and the tuples from the other dataset continue to arrive, we 

estimate the remaining times of continuing with symmetric hash join, switching to bind join, and 

switching to bind-bloom join. We decide the join method according to these cost estimations. If we 

switch to bind join or bind-bloom join, we emit the duplicate results of symmetric hash join with 

bind join or bind-bloom join. The cardinality estimation formula and the remaining time estimation 

formulas are presented in the following subsections.

Equation 3 shows the cost function of bind join where R
i
 and R

j
 are relations, |R| is the number of 

tuples in R, c
t
R

 is the transfer cost of R for each result tuple, and R
j
 is the relation with the bindings 

of R
i
. In order to estimate the remaining times of bind join and bind-bloom join, we need the estimated 

cardinality of the second relation which is reduced by the bindings of the first relation, namely R
j
:
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Algorithm 1. Extended adaptive join operator for single join queries

Equation 4 depicts the cardinality estimation formula where |R
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is the cardinality of unique common attribute values in R
i
. We use Equation 4 in order to calculate 

the estimated cardinality of R
j
 when all the tuples of R

i
 arrive. We expect that there is a directional 

proportion between the join cardinality and the number of tuples of R
j
:
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As stated earlier, when all the tuples of R
i
 arrive, the algorithm estimates the remaining time if 

extended adaptive join operator continues with symmetric hash join, the remaining time if it changes 

the join method to bind join, and the remaining time if it changes the join method to bind-bloom join. 

We have an idea about the data arrival rate of R
j
 during the execution, so the estimation is possible. 

Equation 6 shows the estimated remaining time, ERT
SHJ

, if extended adaptive join operator continues 

with symmetric hash join where |R
j
| is the cardinality of R

j
, |R

j_arrived
| is the cardinality of arrived tuples 

of R
j
, and t

Rj_arrived
 is the time for R

j_arrived
 tuples to arrive:
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Equation 7 shows the estimated remaining time, ERT
BJ

, if the algorithm switches to bind join. 

|R
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i
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j
, and the retrieving time of R

j
 from 

the endpoint of R
j
:
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Equation 8 shows the estimated remaining time, ERT
BBJ

, if the algorithm switches to bind-

bloom join where b is the number of bits per each element, |R
i_uca

| is the cardinality of unique 

common attribute values in R
i
, dr

j
 is the data arrival rate (in bits/seconds) of the SPARQL endpoint 

(≈ s(|R
j_arrived

|) / |R
j_arrived

|, where s(|R
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| is the size of R
j_arrived

 tuples in bits), |R
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| is the 

estimated cardinality of R
j
 reduced by the bindings of R

i
, |fp| is the estimated cardinality of false 

positives, |R
j_arrived

| is the cardinality of arrived tuples of R
j
, and t
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 is the time for R

j_arrived
 

tuples to arrive. The estimated remaining time for bind-bloom join includes sending unique 

common tuples of R
i
 in a bloom filter to the endpoint of R

j
, and the retrieving time of R

j
 from 

the endpoint of R
j
:
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In multi-join queries, we begin with multi-way symmetric hash join (Viglas, Naughton, & Burger, 

2003) in order to minimize the response time as in single join queries. The algorithm for multi-

join queries is depicted in Algorithm 2. When the tuples from a relation all arrive, called R
i
, the 

algorithm estimates the remaining times if the extended join operator switches to bind join or 

bind-bloom join for each relation which has a common attribute with R
i
. The algorithm chooses 

the relation with the minimum estimated bind join cost and the minimum estimated bind-bloom 

cost, called R
j
. It compares the estimated remaining times if it changes the join method to bind 

join or bind-bloom join for R
i
 ⋈ R

j
 with the estimated remaining time if the operator continues 

with multi-way symmetric hash join for all relations. The above procedure is repeated every time 

a relation is completely received.

We use the same formula, Equation 4, for single join queries and multi-join queries to estimate the 

cardinality of the second relation reduced by the bindings of the first relation. We need this estimation 

in order to calculate the estimated remaining time if extended adaptive join operator switches to bind 

join or bind-bloom join.

Equation 9 shows the estimated remaining time if the operator continues with multi-way 

symmetric hash join. Completion time is equal to the maximum completion time of the relations 

which compose the query:
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Equation 10 shows the estimated remaining time if extended adaptive join operator uses bind join 

for R
i
 and R

j
, and uses multi-way symmetric hash join for the other relations which are involved in 

the query. The estimated time if the operator uses bind join for R
i
 and R

j
 is depicted in Equation 11. 
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 tuples to arrive. ERT
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 is the estimated remaining time for the rest of other 

relations to arrive and it is calculated by using Equation 12:
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Algorithm 2. Extended adaptive join operator for multi-join queries

Equation 13 shows the estimated remaining time if the extended adaptive join operator switches 

to bind-bloom join for R
i
 and R

j
, and uses multi-way symmetric hash join for the other relations which 

are involved in the query. The estimated time if the operator uses bind-bloom join for R
i
 and R

j
 is 

depicted in Equation 14. b is the number of bits per each element, |R
i_uca

| is the cardinality of R
i
, and 

dr
j
 is the data arrival rate (in bits/seconds) of the SPARQL endpoint (≈ s(|R

j_arrived
|) / |R

j_arrived
|, where 
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j
 reduced 

by the bindings of R
i
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j
, and t
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 is the time for R

j_arrived
 tuples to arrive. We use Equation 4 and 

Equation 12 in order to calculate |R
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| and ERT
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, respectively:
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In this section, first we explain the experimental environment, and then present evaluation on the 

performances of symmetric hash join/multi-way symmetric hash join, bind join, bind-bloom join, 

adaptive join operator and extended adaptive join operator for single join queries and multi-join 

queries. The focus of the evaluation is on their performances with respect to the response time and 

the completion time. Speedup1 comparison between our previous proposal, adaptive join operator 

(Oguz et al., 2016), and extended adaptive join operator is also presented to be self-contained and to 

show the contribution of our new proposal.

Query cost in distributed environments is mainly dominated by the communication cost (Ozsu 

& Valduriez, 2011). We conducted our experiments in the network simulator ns-32 to simulate the 

real network conditions and consider mainly the communication cost. We assume that the size of 

all queries is the same and each result tuple is considered to have the same size as well. Each query 

size is accepted as 500 bytes, whereas each result tuple size is employed as 250 bytes. Each count 

query size is assumed as 750 bytes and the message size is set to 100 tuples. Each selectivity factor 

is 0.5 / max(cardinality of R1, cardinality of R2) (Shekita, Young, & Tan, 1993). We set the low, 

medium and high cardinality as 1000 tuples, 5000 tuples and 10000 tuples, respectively. Average 

duplication factors on the common attributes of relations are assigned randomly between 1 and 5, 

both inclusive. Average duplication factor = 1 means that there are not any duplicates, while average 

duplication factor = 5 means that there are 5 duplicates per value in average on the common attributes 

of the relations. For this reason, we ran each test 100 times when we assigned the duplication factors 

randomly. In some cases, we fixed the average duplication factors in order to understand the impact 

of the duplication factors as well. We used 8 bits per each element and 6 hash functions for bloom 

join with bloom filter. We conducted the simulations with different data arrival rates as explained in 

the following sections, however we always fixed their delays to 10 ms.

In this subsection, we compare extended adaptive join operator (EAJO) with symmetric hash join 

(SHJ), bind join (BJ), bind-bloom join (BBJ) and adaptive join operator (AJO) in two cases. We aim 

to show the impact of data sizes in the first case, whereas we focus on the effect of different data 

arrival rates in the second case. In addition, we compare AJO and EAJO with different m / n values 

and k independent hash functions where m refers to the number of bits in the bit vector, and n refers 

to the number of elements in the set.

The behaviours of the SHJ, BJ, BBJ, AJO and EAJO were analyzed when the data arrival rates of 

both endpoints were fixed to 0.5 Mbps while the data sizes of R1 and R2 were changed. In order to 



analyze all conditions, we evaluated the response time and the completion time when the data sizes 

of R1 and R2 were low-low (LL); low-medium (LM); low-high (LH); medium-low (ML); medium-

medium (MM); medium-high (MH); high-low (HL); high-medium (HM) and high-high (HH), 

respectively. Average duplication factors on the common attributes of relations were given randomly 

between 1 and 5, both inclusive.

As Figure 1.a shows, BBJ and BJ have the worst response time in all conditions, whereas SHJ, 

AJO and EAJO behave similarly. As the data size of R1 increases, the response times of BJ and BBJ 

increase as well, due to waiting for the arrival of all results of R1 and sending the unique common 

attributes to the endpoint of R2. BBJ provides a slightly better response time than BJ due to the 

usage of bloom filter for sending the common attributes. On the other hand, SHJ, AJO and EAJO 

can generate the first result tuple as soon as there is a match between R1 and R2, without waiting for 

all tuples of R1 to arrive.

As shown in Figure 1.b, the completion time of BBJ is always shorter than BJ’s due to the bloom 

filter usage. For this reason, we consider the completion times of BBJ instead of BJ’s for comparing 

with others. When the cardinalities are low-medium, low-high and medium-high, (i.e., |R1| < |R2|), 

BBJ’s completion time is the shortest. However, EAJO’s completion time is quite similar to BBJ’s 

because it changes the join method to BBJ when it decides that it is more efficient than SHJ or BJ. 

EAJO performs the best when the cardinalities of relations are medium-low, high-low and high-

medium (i.e., |R1| > |R2|), respectively. When the cardinalities of R1 and R2 are the same, SHJ, AJO 

and EAJO provide the best performance in completion time at the same time. The data arrival rates 

and the cardinalities of the relations are the same in these cases. As a result, all the tuples of both 

relations arrive at the same time. SHJ is the most efficient join method for these cases. Therefore, both 

AJO and EAJO decide to continue with SHJ in such cases. To conclude the comparison of completion 

times, we can say that EAJO has the capability to choose the most efficient join method during the 

execution. For this reason, it provides or shares the best completion time in six of nine conditions. 

Also, it provides similar completion time to the best join method in the remaining three conditions.

Figure 1.c shows the speedup in completion time by EAJO compared to AJO. As shown in the 

figure, when the cardinalities of relations are different, EAJO provides speedup between 17.8% and 

19.4%. The reason of the difference between the speedup percentages is based on the different average 

duplication factors. We can say the speedup of EAJO compared to AJO is 18.2% in average. EAJO 

does not provide speedup when the cardinalities of relations are the same, because both AJO and 

EAJO decide to continue with SHJ for the reasons explained previously.

In this case, we fixed the data arrival rate of R1 and changed the data arrival rate of R2. We conducted 

the simulations for two different cardinality options: i) low cardinality of R1 and high cardinality of 

R2; ii) high cardinality of R1 and low cardinality of R2. Average duplication factors on the common 

attributes of relations were given randomly between 1 and 5, both inclusive. However, we fixed the 

average duplication factors when we calculated the speedup of EAJO compared to AJO in order to 

understand the impact of the duplication factors as well.

We conducted the simulations for two different conditions: i) when the data arrival rate of R1 was 

fixed to 2 Mbps, and ii) when the data arrival rate of R1 was fixed to 0.5 Mbps. As Figures 2.a and 

2.b show, the response times of BJ and BBJ are always longer than SHJ, AJO and EAJO. The gap 

between the response times of BJ and BBJ; and the others increases when the data arrival rate of 

R2 gets slower. SHJ provides the shortest response time in both conditions. AJO and EAJO provide 

almost the same response time due to beginning with SHJ. That is to say, SHJ, AJO and EAJO are 

the best in terms of response time at the same time.





As shown in Figure 2.c, the completion time of BBJ is always shorter than BJ due to the bloom 

filter usage. For this reason, we use the completion time of BBJ instead of the completion time of 

BJ when we compare the completion times of operators. BBJ provides the shortest completion time 

for all conditions because the first relation’s cardinality is low and its data arrival rate is relatively 

fast. As the data arrival rate of the second relation gets faster, EAJO provides similar completion 

time with BBJ. The completion time of EAJO is always faster than SHJ and AJO. Figure 2.d shows 

the completion time comparison when the first relation’s data arrival rate is fixed to 0.5 Mbps. BBJ 

provides the shortest completion time until the second relation’s data arrival rate is 4.5 Mbps. However, 

EAJO has almost the same completion time with BBJ due to its ability to change the join method to 

BBJ during the execution. When the second relation’s data arrival rate is faster or equal to 5.5 Mbps, 

SHJ provides the shortest completion time. In these cases, AJO and EAJO have the same completion 

time due to continuing with SHJ. That is to say, the winner of completion time is changed according 

to the data arrival rates. However, EAJO can choose the best join method during the execution.

Table 2 shows the speedup in completion time of EAJO compared to AJO when the data arrival 

rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed. The used average duplication 

factors are 1, 2 and 5, respectively where 1 means there are not any duplicates. For each data arrival 

rate of R2, AJO and EAJO change the join method to BJ and BBJ, respectively. Although EAJO 

provides speedup in all cases due to decreasing the data size of unique common attributes by using a 

bloom filter, the speedup decreases as the second relation’s data arrival rate increases. The reason of 

this decrease in the speedup is because of the effect of the decrease in the size of the sent data as the 

network speed increases. Another key point to remember is that the speedup remains quite similar 

after a certain point due to the same reason. Table 3 shows the speedup gained by EAJO when the 

Data Arrival Rate of R2 

in Mbps

Average Duplication Factors

1 2 3

0.5 35.28% 22.53% 11.57%

1.5 25.65% 13.99% 7.07%

2.5 20.39% 10.71% 5.70%

3.5 15.99% 8.47% 4.80%

4.5 12.51% 7.44% 4.47%

5.5 10.55% 6.81% 4.32%

6.5 9.64% 6.37% 4.24%

Data Arrival Rate of R2 

in Mbps

Average Duplication Factors

1 2 3

0.5 30.61% 18.62% 9.16%

1.5 17.29% 8.72% 4.20%

2.5 12.41% 6.08% 3.12%

3.5 9.75% 4.91% 2.71%

4.5 - 4.27% 2.51%



first relation’s data arrival rate is fixed to 0.5 Mbps. In this case, EAJO provides speedup until the 

second relation’s data arrival rate is equal or faster than 4.5 Mbps, because both AJO and EAJO 

decide to continue with SHJ after this data arrival rate. As shown in both Table 2 and Table 3, the 

speedup decreases as the duplication factor increases.

We again conducted the simulations for two different conditions: i) when the data arrival rate of 

R1 was fixed to 2 Mbps, and ii) when the data arrival rate of R1 was fixed to 0.5 Mbps. The results 

observed from Figure 3.a and Figure 3.b are similar to the results in Figure 2.a and Figure 2.b. Since 

the cardinality of the first relation is high in this case, response times of BJ and BBJ are dramatically 

longer than SHJ and also longer than AJO and EAJO as expected. The response times of SHJ, AJO 

and EAJO are nearly the same.

As shown in Figure 3.c, the completion time of EAJO is the best in all conditions. SHJ, BJ and 

BBJ wait the arrival of all tuples related to the first relation whose cardinality is high. However, AJO 

and EAJO can change the join method and the join order when the second relation’s tuples all arrive. 

Compared to AJO, EAJO has the advantage of changing the join method to BBJ. Figure 3.d shows 

the completion time comparison when the first relation’s data arrival rate is fixed to 0.5 Mbps. The 

results are similar to the previous one. EAJO’s completion time is the shortest once again. The gap 

between the others is even higher.

Table 4 and Table 5 show the gained speedup in completion time by EAJO compared to AJO. In all 

conditions, both AJO and EAJO change the join order as R2 ⋈ R1. The gained time of EAJO compared 

to AJO remains the same, because the unique common attributes are sent to the endpoint of R1 and its 

data arrival rate is fixed. However, overall time decreases up to a certain value as the data arrival rate 

of R2 increases. For this reason, the speedup increases up to that certain value for both conditions as 

the data arrival rate of R2 increases. The speedup also increases as the duplication factor decreases.



As explained in the previous sections, a bloom filter represents a set S = {e
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in a vector v of m bits. Initially all the bits are set to 0. Then, k independent hash functions, h
1
, h

2
, 

. . ., h
k
, with range {1, 2, . . ., m} are used. In this part, we analyze the impact of m / n by changing 

it between 2 and 22. In each m/n value, we used the number of hash functions, k, which minimizes 

the false positive rate (Fan et al., 2000). The m/n and k combinations used in our experiments can be 

seen from Table 6. We fixed the data arrival rates of both endpoints to 2 Mbps and the cardinalities 

of relations to low and high, respectively. First, average duplication factors on the common attribute 

of relations were given randomly between 1 and 5, both inclusive. Second, the average duplication 

factors were set to 2.

Figure 4.a shows the achieved speedup in completion time by EAJO compared to AJO in different 

m/n values when the average duplication factors are random. The results observed from the experiment 

appears to suggest that the gained speedup is not affected by the m/n value when it is between 6 and 

20, inclusively. The best performance is provided when the m/n is equal to 8.

Figure 4.b shows the gained speedup in completion time by EAJO when the average duplication 

factors are set to 2. The results are similar to the results in Figure 4.a. Since the m/n is between 8 and 

16, the speedup values are almost the same.

The simulation results demonstrated that SHJ provides the best response time performance in all 

conditions due to being a non-blocking join operator which produces the first result tuple as early as 

Data Arrival Rate of R2 

in Mbps

Average Duplication Factors

1 2 3

0.5 14.47% 7.12% 3.53%

1.5 20.92% 10.89% 5.58%

2.5 22.80% 12.08% 6.26%

3.5 23.24% 12.37% 6.42%

4.5 23.24% 12.37% 6.42%

5.5 23.24% 12.37% 6.42%

Data Arrival Rate of R2 

in Mbps

Average Duplication Factors

1 2 3

0.5 30.61% 18.62% 9.16%

1.5 33.51% 21.00% 10.60%

2.5 35.28% 22.53% 11.57%

3.5 37.37% 24.40% 12.81%

4.5 37.37% 24.40% 12.81%

5.5 39.80% 26.69% 14.39%

6.5 39.80% 26.69% 14.39%



possible. Our previous and current proposals, AJO and EAJO respectively, provide almost the same 

response time with SHJ due to setting the join method as SHJ in the beginning. The response times 

of BJ and BBJ are dramatically longer because of waiting for all tuples of the first relation to arrive.

On the other hand, BJ or BBJ can provide better completion times when the first relation’s cardinality 

is low and the second relation’s cardinality is high. However, our previous proposal AJO can change the 

join method to BJ, and our new proposal EAJO can change the join method to BJ or BBJ in this condition.

EAJO provides the best completion time when the first relation’s cardinality is high and the 

second relation’s cardinality is low. This conclusion is valid in all data arrival combinations that we 

have tested.

To conclude, SHJ is the most successful join method in response time. However, the best join 

method in completion time can differ according to the relations’ cardinalities and their data arrival rates. 

In addition, the results showed that BBJ provides better completion times than BJ in all conditions. 

These results seem to suggest that using bloom filters in bind join is a necessity. Our proposal, EAJO, 

provides an optimal response time by beginning with SHJ. It also provides an optimal completion 

time by changing the join method or join order during the execution. In brief, EAJO gives the best 

tradeoff between the response time and the completion time. Another key fact to remember is that 

EAJO always provides better completion time than AJO.

m/n k

2 1

4 3

6 4

8 6

10 7

12 8

14 10

16 11

18 12

20 14

22 15



In this subsection, we compare EAJO with multi-way symmetric hash join (MSHJ), BJ, BBJ, and AJO 

when there are three relations in the query. A query example that we use in our experiments is shown 

below. R1 (service1) and R2 (service2) have a common attribute, ?student, R2 and R3 (service3) 

have a common attribute, ?course.

Since our aim in this case is to show the impact of data sizes, we fixed the data arrival rates of all 

relations to 0.5 Mbps and the delays to 10 milliseconds. We conducted our experiments when the 

data sizes of R1, R2, R3 were low-low-low (LLL); low-medium-high (LMH); low-high-high (LHH); 

high-medium-low (HML); high-high-low (HHL); and high-high-high (HHH).

As shown in Figures 5.a, 5.b and 5.c, in all cases, MSHJ, AJO and EAJO provide the best response 

time whereas BJ performs the worst response time and BBJ follows it. When the cardinality of R1 

is high, the response times of BJ and BBJ become dramatically longer due to waiting for the arrival 

of all results of R1. As the duplication factor increases, the response times of BJ and BBJ shorten 

due to the decrease in the number of unique common attribute values. In other words, the number of 

attribute values to send to the other endpoints is decreased as the average duplication factor increases. 

Although the response times of BJ and BBJ decrease as the average duplication factor increases, their 

response times are dramatically longer than MSHJ, AJO and EAJO.

Figures 5.d, 5.e and 5.f show the completion times of MSHJ, BJ, BBJ, AJO and EAJO when the 

data arrival rates of all relations are fixed. When the cardinalities are HML or HHL, EAJO performs 

the best completion time and AJO has the closest completion time to it. The difference between EAJO 

and others, except AJO, is dramatically high. When the cardinalities of all relations are the same, 

namely LLL or HHH, MSHJ, AJO and EAJO share the best completion time whereas BJ performs the 

worst. When the cardinalities are LMH or LHH, BBJ performs the shortest completion time. EAJO’s 

completion time is the second best when the average duplication factors are 1. BJ performs slightly 

better than EAJO when the average duplication factors are 2 or 5. To conclude, EAJO performs or 

shares the best completion time in four of six cases due to having the adaptation ability.

Table 7 shows the speedup in completion time of EAJO compared to AJO when the data 

arrival rates of R1, R2 and R3 are fixed. EAJO provides speedup from 6.40% to 31.33 when the 

cardinalities of relations are different. Although the speedup is not affected by the cardinalities 

of relations, it increases as the average duplication factors decrease. EAJO does not provide 

speedup when the cardinalities of relations are the same, because both AJO and EAJO decide 

to continue with MSHJ.

In order to show the impact of data arrival rates on MSHJ, BJ, BBJ, AJO and EAJO, we fixed the 

data arrival rates of R1 and R3 to 2 Mbps and changed the data arrival rate of R2. We conducted the 

simulations for two different cardinality options: i) low cardinality of R1, high cardinality of R2, and 

high cardinality of R3 (LHH); ii) high cardinality of R1, high cardinality of R2, and low cardinality 

of R3 (HHL). LHH and HHL are chosen because EAJO performs the worst and the best completion 

times among their results with other combinations in the previous section. Since we showed the effect 

of average duplication factors previously, we fixed the average duplication factors to 2 in these cases.



Figure 6.a shows the response times of MSHJ, BJ, BBJ, AJO and EAJO when the cardinalities of 

relations are low, high and high respectively. As shown in the figure, response times of MSHJ, AJO 

and EAJO are almost the same whereas BJ’s and BBJ’s response times are highly slower.

Data Sizes ofR1, R2 and 

R3

Average Duplication Factors

1 2 3

LMH 31.33% 16.55% 6.40%

LHH 31.33% 16.55% 6.40%

HML 31.33% 16.55% 6.40%

HHL 31.33% 16.55% 6.40%



Figure 6.b indicates that the completion times in ascending order are of BBJ, BJ, EAJO, AJO 

and MSHJ. When the first relation’s cardinality is low and its data arrival is relatively fast, BBJ and 

BJ provide better completion times. The completion time of MSHJ is the worst one in all cases due 

to having the disadvantage of waiting all the tuples of R2 and R3. However, AJO and EAJO change 

their join methods to BJ and BBJ, respectively, when the tuples of the first relation all arrive. Thus, 

EAJO performs almost the same completion time to BJ, and provides slightly worse completion 

time than BBJ. BBJ’s and BJ’s both response times and completion times would increase, if the first 

relation’s cardinality were medium or high.

Figure 6.c shows the speedup in completion time of EAJO compared to AJO when the data arrival 

rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed with card(R1) << card(R2) 

= card(R3). As shown in the figure, the speedup decreases as the second relation’s data arrival rate 

increases. The reason of this decrease in the speedup is because of the effect of the decrease in the 

size of the sent data as the network speed increases.

The results observed from Figure 7.a are similar to the results in Figure 6.a. BJ and BBJ have the 

worst response time again, whereas MSHJ, AJO and EAJO have almost the same response time. Since 

the cardinality of the first relation is high in this case, response times of BJ and BBJ are dramatically 

longer than others.

As shown in Figure 7.b, EAJO provides the best completion time in all cases. The completion 

times in ascending order are of EAJO, AJO, MSHJ, BBJ, and BJ when the second relation’s data 

arrival rate is equal or faster than 1.5 Mbps. EAJO and AJO have the advantage of using BJ or BBJ 

when the tuples of R3 all arrive whose cardinality is low. EAJO outperforms AJO in all cases due to 

the usage of bloom filter for sending the common attributes.



Figure 7.c shows the speedup in completion time of EAJO compared to AJO when the data 

arrival rate of R1 is fixed to 2 Mbps and the data arrival rate of R2 is changed with card(R1) = 

card(R2) >> card(R3). The speedup is gained due to the usage of bloom filter and hence sending 

less data size through the network. The speedup decreases as the second relation’s data arrival rate 

increases, because the effect of the decrease in the size of the sent data decreases as the network 

speed increases. The results are the same with the results in Figure 6.c. The cardinalities of R1, R2 

and R3 are low-high-high and high-high-low in these cases, respectively. The common attributes 

exist between R1 - R2; and R2 - R3. In the first case, when the cardinalities are low-high-high, first 

the tuples of R1 all arrive, and AJO and EAJO change the join method for R1 and R2 to BJ or BBJ, 

respectively. In the second case, when the cardinalities are high-high-low, first the tuples of R3 all 

arrive, and AJO and EAJO change the join method for R3 and R2 to BJ or BBJ, respectively. For this 

reason, the achieved speedups are the same in both cases.

The simulation results showed that MSHJ, which is a non-blocking join method, provides the best 

response time in all conditions. AJO and EAJO provide almost the same response time with MSHJ 

due to setting the join method as MSHJ at the beginning. The response times of BJ and BBJ are 

dramatically longer because of waiting the arrival of all tuples belonging to the first relation.

The results also demonstrated that BBJ provides the best completion time when the first relation’s 

cardinality is low and the other relations’ cardinalities are medium or high. However, EAJO can 

change the join method to BBJ in these conditions. On the other hand, EAJO provides the best 

completion time when the first relation’s cardinality is high. This conclusion is valid in all data arrival 

combinations that we have tested.

In conclusion, MSHJ is the best join method in response time. However, the best join method in 

completion time differs according to the relations’ cardinalities and data arrival rates. EAJO provides 



an optimal response time by beginning with MSHJ and an optimal completion time by changing the 

join method or join order during the execution. We can conclude that EAJO gives the best tradeoff 

between the response time and the completion time. We also emphasize that EAJO always provides 

better completion time than AJO.

Linked data contains two aspects: i) a way of publishing and connecting structured data on the web, 

and ii) the collection of interrelated data sources on the web. There are two main approaches to query 

these data sources which are link traversal (Hartig et al., 2009) and query federation (Görlitz & Staab, 

2011a). Both approaches have the advantage of providing up-to-date results due to distributed query 

processing. However, link traversal has the weakness of not guaranteeing finding all results and has 

some performance problems. Because of these reasons, we turn our attention to the second approach.

Query federation is performed via an engine that distributes the query execution over a federation 

of SPARQL endpoints and has the following main steps: i) data source selection, ii) query optimization, 

and iii) query execution. Data source selection is responsible for selecting the relevant data sources for 

each triple pattern which composes the query. Query optimization groups the triple patterns, decides 

the join strategy and the join order. The last step is responsible for the execution of the query plan 

which is decided by the query optimizer.

The objective of the federated query engines can be stated as to minimize the response time and 

the completion time which include communication time, I/O time and CPU time. The communication 

time dominates the others in distributed environments. Since the subqueries and intermediate results 

are transmitted over the web of data, the communication cost is affected by the amount of intermediate 

results. It is substantially affected by the join order and the join method which are decided in the 

query optimization phase.

Static query optimization and heuristics are widely used in query federation (Quilitz & Leser, 

2008; Görlitz & Staab, 2011b; Schwarte, Haase, Hose, Schenkel, & Schmidt, 2011; Wang, Tiropanis, 

& Davis, 2013). However, federated query processing is done on the distributed data sources on the 

web which causes unpredictable data arrival rates. In addition, most of the statistics are missing or 

unreliable. For these reasons, we think that adaptive query optimization (Deshpande et al., 2007) is a 

need in this unpredictable environment. ANAPSID (Acosta et al., 2011) and ADERIS (Lynden et al., 

2010, 2011) are the two query federation engines which use adaptive query optimization. ANAPSID 

uses a non-blocking join method based on symmetric hash join (Wilschut & Apers, 1991) and Xjoin 

(Urhan & Franklin, 2000). ADERIS (Lynden et al., 2010) joins two predicate tables as they become 

complete, whereas ADERIS (Lynden et al., 2011) employs a cost model for dynamically changing 

the join order. Also, AVALANCHE (Basca & Bernstein, 2010, 2014) considers adaptivity. It collects 

statistical information about relevant data sources and then generates its execution plan to provide 

the first k tuples. Our previous proposal (Oguz et al., 2016), to the best of our knowledge, is the first 

study that considers an adaptive join operator that aims to reduce both the response time and the 

completion time when query execution is done over SPARQL endpoints. In this paper, we present 

the improved version of it which achieves to further minimize the completion time.

Table 8 shows the comparison of adaptive query optimization in query federation depending on 

the following criteria:

• Server (S): Indicates the type of the server for publication and querying of linked data. SPARQL 

Endpoints (se) and triple pattern fragment servers (tpfs) are the possible values;

• Join Method (JM): Shows the used join methods in the studies which are categorized as nested 

loop join (nlj), index nested loop join (inlj), symmetric hash join (shj), bind join (bj), and bind-

bloom join (bbj);



• Type of Statistics (ToS): States of the collection time of statistics which has the following values: 

runtime (rt) and metadata (md);

• Frequency of Feedback (FoF): Shows the level of modification and has two possible values: 

inter-operator (inter) and intra-operator (intra);

• Type of Event (ToE): Shows the case triggering the decision and has two values which are data 

arrival rates (dar) and any;

• Logical Plan (LP): Displays the query plan modifications at the logical level and are categorized 

as reformulation of the remaining plan (rf), operator reordering (op_ro), and no effects (no) for 

adaptive query optimization in relational databases by Gounaris et al. (Gounaris, Paton, Fernandes, 

& Sakellariou, 2002). Reformulation of the remaining plan includes the operator reordering;

• Physical Plan (PP): Represents the query plan modifications at the physical level and are 

categorized as usage of adaptive operators (uao), operator replacement (op_rep), and no effects 

(no) for relational databases by Gounaris et al. (Gounaris et al., 2002);

• Type of Modification (ToM): Can be employed as rescheduling (rs), dynamic operator (do), 

and rescheduling and replacement (rs & rp).

As shown in Table 8, ADERIS, ANAPSID, AVALANCHE, AJO and EAJO use adaptive query 

optimization for the queries over SPARQL endpoints, whereas nLDE employs adaptive query 

optimization for queries over triple pattern fragments. The proposals for the SPARQL endpoints prefer 

to collect the statistics in runtime due to unreliable or missing statistics. Therefore, up-to-dateness 

of statistics is provided. On the other hand, nLDE uses metadata catalogs for the statistics because 

triple pattern fragments contain both data, metadata and controls.

The second parameter in Table 8 is the join method. Bind join is used by all the studies, except 

nLDE, and nested loop join is employed by ADERIS and nLDE. ANAPSID proposes two join 

methods which are agjoin and adjoin. The first one is a non-blocking join method which is based on 

symmetric hash join and XJoin. The second one is the extended version of dependent join (Florescu, 

Levy, Manolescu, & Suciu, 1999) which sends the request to the second data source when tuples 

from the first source are received. Adjoin can be accepted as a bind join because it needs the bindings. 

As illustrated in Table 8, ANAPSID, AJO, nLDE and EAJO have the opportunity to produce results 

incrementally since they use symmetric hash join. AVALANCHE defines its join method as distributed 

join and it employs bloom filter optimised joins to reduce communication cost. The difference between 

distributed join and bind join is not explained in their papers. We categorize its join methods as bind 

join and bind-bloom join. In brief, AVALANCHE and EAJO can use bind-bloom join which has the 

advantage of decrease the completion time.

S JM ToS FoF ToE LP PP ToM

ADERIS 

(Lynden et al., 2011)
se inlj/bj rt inter any op_ro uao rs

ANAPSID 

(Acosta et al., 2011)
se shj/bj rt intra dar no uao do

AVALANCHE 

(Basca & Bernstein, 2014)
se bj/bbj rt inter dar op_ro no rs

nLDE 

(Acosta & Vidal, 2015)
tpfs shj/nlj md intra any op_ro no rs

AJO 

(Oguz et al., 2016)
se shj/bj rt intra dar rf op_rep rs&rp

EAJO se shj/bj/bbj rt intra dar rf op_rep rs&rp



The third parameter for the comparison is the frequency of feedback. The studies in inter-operator 

level collect feedback from different physical operators and react to the execution of them according to 

the feedback. On the other hand, feedback is collected during the processing of the physical operator 

in the intra-operator level. The limit of collection can vary from a single tuple to a block of tuples 

(Gounaris et al., 2002). ADERIS and AVALANCHE have the inter-operator feedback frequency, 

whereas ANAPSID, nLDE, AJO and EAJO have the intra-operator one. ANAPSID’s feedback belongs 

to using an adaptive operator. The difference between the intra-operator of nLDE and AJO/EAJO is 

based on the amount of accumulated data before reacting. Although nLDE checks the feedback for 

each tuple, AJO and EAJO do it when all tuples of a relation arrive. The next parameter is the type 

of event. ANAPSID, AVALANCHE, AJO and EAJO focus on data arrival rates, whereas ADERIS 

and nLDE check their decisions at each step.

AJO and EAJO distinguish from others when we consider the sixth and seventh parameters 

in Table 8, namely logical plan and physical plan. Different from others, AJO and EAJO provide 

reformulation of the remaining plan at the logical level, and operator replacement at the physical 

level by the ability of changing both the join order and the join method.

The last comparison parameter is the type of modification. ANAPSID’s type of modification 

belongs to a dynamic operator, whereas the types of modification of ADERIS, AVALANCHE and 

nLDE are rescheduling due to changing the join order for the rest of the query. AJO and EAJO, besides 

rescheduling, cover replacement which has the meaning of changing the join method.

In this paper, we presented an adaptive join operator for single join queries and multi-join queries 

which is an extended version of our previous work (Oguz et al., 2016). We improved our previous 

adaptive join operator to further reduce the communication cost. For this reason, we integrated bind-

bloom join to our operator. Our new proposal always begins with symmetric hash join (multi-way 

symmetric hash join for multi-join queries) in order to provide optimal response time. It can change 

the join method to bind join or bind-bloom join when it decides that the candidate join method is 

more efficient than symmetric hash join for the rest of the query.

The results of the performance evaluation showed the efficiency of the proposed join operator. 

Compared to symmetric hash join and multi-way symmetric hash join, it provides faster completion 

times and almost the same response times. Compared to bind join and bind-bloom join, the extended 

operator performs substantially better with respect to the response time and it can also improve the 

completion time. Furthermore, the extended operator provides faster completion time than our previous 

operator in all conditions, because it uses a bloom filter for sending the common attributes to the other 

endpoint. Experimental results also showed that bind-bloom join provides better completion times 

than bind join in all conditions. These results allow us to suggest using bloom filters in bind join.

This work is partially supported by The Scientific and Technological Research Council of Turkey 

(TUBITAK).
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