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Motivations 1/2

©

Most of the decarbonisation is yet to happen and many questions are still pending on
technical aspects but also regarding the institutional framework and market
design choices (Newbery 2018, Joskow 2021, Roques 2021).

®

Theoretically, wholesale electricity markets have a twofold objective
1 (short-term) to ensure an optimal dispatch for existing assets
2 (long-term) to provide the adapted investment/divestment signals required for

long-term efficiency

®

In practice, the ability of current market design options to deliver adequate
signals for long-term decisions is largely questioned (Pollitt 2021, Joskow 2021).
The problem is not new (Glachant et al. 2011) but the unprecedented scale, pace
and required coordination of the necessary changes exacerbate this issue.
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Motivations 2/2

�

Traditional modeling approach in prospective analysis resorts to Generation Expansion
Planning (GEP) models based on optimization. They can provide optimal
decarbonization pathways under a variety of constraints. However, GEPs are not
suited for a comprehensive discussion on two crucial aspects: investors’ behavior
and available information (Petitet et al. 2017, Tao et al. 2021).

• Their outcome correspond to perfect competition with fully rational and
informed agents

• No explicit representation of the decision making process.

8

Equilibrium models constitute another option. They allow to relax perfect
assumptions about market functioning and derive general analytical results. However,
they demand specific mathematical properties and leave aside the overlooked
out-of-equilibrium dynamics (Léautier 2018), albeit important in a transition phase.

$
Simulation models complement the toolbox by allowing to explicitly model investors’
behavior evolving in a given market structure.
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Research questions and takeaways

Questions addressed:
1 which assumptions about investor behaviour and available information are needed to

ensure that an EOM induces the target mix trajectory, i.e. that which achieves
decarbonisation objectives at least cost?

2 how robust is an EOM (as measured by deviations between realized vs. optimal mix
trajectories) when different assumptions are considered?

First findings based on an illustrative case inspired by the Californian power system:
1 EOM (completed with a carbon price signal) is able to reproduce the optimal mix

trajectory but required assumptions are demanding and do not fit with reality.
2 When relaxing some of these theoretical assumptions (to switch to more realistic

ones), mix trajectory of the energy-only market can considerably deviate from the
optimal trajectory.
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Articulation between optimization and simulation

Common dataset

Existing fleet
Load

Fixed and variables costs
CO2 emissions target

(current + projected) 

Generation Expansion Planning (GEP)

multi-year carbon-constrained co-optimization of
capacities + dispatch 

Energy-Only Market Simulation 
 

(detailed in the following slides) 

Optimal trajectory

Simulated market  
outcomes

CO2 price
Future optimal decisions 

Figure 1: Modelling framework
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Overview of the simulation model

Market Simulation with System Dynamics also has
a long tradition for long-term policy evaluation
(Ford 1983, Bunn et al. 1996, Petitet et al.
2017,Ousman Abani et al. 2018).

Key elements:

• Endogenous investment and decommissioning
in thermal, variable renewables and storage
technologies

• Particular emphasis on anticipated capacities
(Tao et al. 2021)

Investment and decommissioning decisions are
represented year by year, project by project.
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Step 1: long term assumptions (1/2)
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Step 1: long term assumptions (2/2)
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Step 2: current and projected power market
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Step 3: economic assessment of possible decisions
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Step 4: decision-making
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Iteration until no decision is profitable
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Stylized California case study
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Figure 2: Load assumption → stagnating until
2030, followed by a strong increase

(electrification) up to 2045
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Figure 3: CO2 annual emissions targets → strong
reduction (- 60% throughout the study horizon)

Data sources

All data adapted by authors from CPUC’s RESOLVE (CPUC 2021), NINJA Renewables (Staffell et al. 2021,Staffell
et al. 2016,Pfenninger et al. 2016) and historical data.
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California case study : endogenous generation

Four technologies endogenously represented (investment or decommissioning decisions).

Technology Available decision CAPEX Fixed O&M Fuel Cost Carbon intensity

[USD/kW-Yr] [USD/kW-Yr] [USD/MWh] [tCO2/MWh]

CCGT Decommissioning 126 30 Average: 31 see app. 0.37

Peaker Decommissioning 46 20 Average: 51 see app. 0.61

PV Investment & decommissioning 70 9 0 0

Storage Investment & decommissioning 82 10 0 0

• Units have a discrete size of 200 MW.
• The storage technology is assumed to have a 4 hours duration and a 85% round-trip

efficiency.
• Common WACC: 8 %
• Price cap on the energy market: 15 USD/kWh
• Other (exogenous) generation: existing fleet, nuclear, CHP, biomass, etc.
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Results from the CO2-constrained GEP model
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Figure 4: Optimal capacity trajectories from the GEP model
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Figure 5: CO2 shadow price from the GEP model
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Results organization

Simulation results are organized in four batches:

1 First batch illustrating the functioning of a quasi-perfect Energy-Only Market Design.

2 A second batch pertaining to coordination.

3 A third batch pertaining to anticipation of future entry/exit decisions anticipation.

4 A final batch illustrating issues with the carbon price anticipation.
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Quasi-perfect EOM’s assumptions

Assumptions A1–A4
In order to trigger the optimal investment and decommissioning decisions, the four following
assumptions need to jointly hold:
A1. Perfect information about all exogenous parameters over the whole horizon including gross

demand, distributed generation and costs (fuel, O&M and CAPEX).
A2. Perfect information about the CO2 price over the whole horizon. This price is assumed to

coincide with the shadow price computed with the GEP model.
A3. Perfect information about all concurrent decisions taken in a given year.
A4. When making investment and retirement decisions in a given year, future optimal decisions

need to be known for all subsequent years until the end of the horizon.
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Quasi-perfect EOM simulation (compared with optimization results)
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Figure 8: Total cost and carbon emissions

Trajectories are close, with a little less fossil peak that enables cost recovery.
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Entry/exit coordination and anticipation of future decisions

Decision horizon:
Projects are committed

Prospective horizon: 
Capacity evolution is anticipated

by agents

current state

time

capacity

Figure 9: Decision and prospective horizons

Terminology used:
• coordination issue: no information exchange between market participants in the decision

horizon (decisions are taken simultaneously)
• entry/exit anticipation issue: no anticipation of future decision in the prospective horizon.
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Simulation results with coordination issues
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Simulation results without anticipation of subsequent decisions and myopia
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capacity trajectory
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Conservatism in CO2 price anticipations

Figure 16

Narrative: carbon market prices are too low and volatile to convey credible long-term signals
(Tvinnereim et al. 2018; Perino et al. 2021; Joskow 2021)
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Simulation results with weak carbon price anticipations
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Conclusions

1 EOM (completed with a carbon price signal) is able to reproduce the optimal mix
trajectory but required assumptions are demanding and do not fit with reality.

2 When relaxing some of these theoretical assumptions (to switch to more realistic
ones), mix trajectory of the energy-only market can considerably deviate from the
optimal trajectory.

�
This work highlights the importance of dynamic and out-of-equilibrium aspects that should
not be overlooked in a transition phase.

�
While an EOM looks appealing in theory, its desirable properties suffer from a lack of
robustness with regard to practical investor behaviors.

�

In turn, it is necessary to define a more adapted market design, e.g. in the form of hybrid
markets (Roques and Finon 2017, Joskow 2021) that rely on long-term arrangements
alongside short-term markets as we know them today.
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Further work

Models and methods developed here allow to extend our work in several ways:
• Multiple scenarios & risk preference
• Alternative market designs
• Market design robustness to unexpected trend changes
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The Working Paper is online on the CEEM
website (click here).

Thank you for your attention !
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