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ABSTRACT
This paper presents a new approach for classifying 2D
histopathology patches using few-shot learning. The method
is designed to tackle a significant challenge in histopathology,
which is the limited availability of labeled data. By apply-
ing a sliding window technique to histopathology slides,
we illustrate the practical benefits of transductive learning
(i.e., making joint predictions on patches) to achieve con-
sistent and accurate classification. Our approach involves an
optimization-based strategy that actively penalizes the predic-
tion of a large number of distinct classes within each window.
We conducted experiments on histopathological data to clas-
sify tissue classes in digital slides of liver cancer, specifically
hepatocellular carcinoma. The initial results show the effec-
tiveness of our method and its potential to enhance the pro-
cess of automated cancer diagnosis and treatment, all while
reducing the time and effort required for expert annotation.

Index Terms— histopathology, digital slides, few-shot

1. INTRODUCTION

In clinical settings, histopathology images are a critical pri-
mary source of information for pathologists to perform can-
cer diagnostics and choose treatment strategies. With the
widespread adoption of digital pathology, it has become
a standard practice to digitize histology slides into high-
resolution images called Whole Slide Images (WSIs). WSIs
have initiated a new era offering considerable opportunities
for using AI assistance systems [1, 2]. In particular, super-
vised deep learning methods based on conventional neural
networks (CNNs) have made great strides in cancer research
[3, 4]. However, the success of classical supervised learning
approaches depends on the availability of extensive annotated
training data. Unlike natural images, which can be anno-
tated via crowd-sourcing, histopathology necessitates expert
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pathologists’ accurate annotations of gigapixel-sized images.
Due to the time-consuming nature of the labeling process,
histopathology datasets tend to be limited in size, which poses
significant challenges for training machine learning models
[5]. Moreover, WSIs can exhibit variability due to staining
techniques, tissue preparation, and image quality [6], affect-
ing supervised model performance. Furthermore, supervised
learning models can encounter difficulties when confronted
with imbalanced data, a common scenario in histopathology.
Non-uniform class distribution may produce biased results
and compromise the model performance [7].

Few-shot learning methods address the limitations found
in traditional supervised learning techniques, providing effi-
cient models capable of generalizing from a small set of la-
beled examples. These methods not only prove to be scalable,
but also significantly reduce costs and time consumption.

Transductive few-shot learning [8, 9], a particularly ap-
pealing category within this field, has a distinct advantage.
Unlike supervised classification methods, which often treat
each data sample independently, transductive methods make
predictions on a set of samples collectively. This is especially
useful when dealing with localized regions in medical imag-
ing. It allows us to leverage homogeneity and spatial coher-
ence across multiple patches in such a region to enhance the
classification accuracy and reliability.

In this work, we introduce a novel transductive few-shot
learning approach for histopathological image classification.
To our knowledge, it is the first of this kind in the field [10].
Our main contributions are summarized below.

• We apply a sliding window technique to WSIs, establish-
ing a practical scenario where the advantages of transduc-
tive few-shot learning are clearly demonstrated.

• Inspired by previous work [8], we develop an optimization-
based method for few-shot classification of histopatholog-
ical patches.

• We validate our approach by tests on the most frequent
liver cancer (i.e., hepatocellular carcinoma, HCC), show-



casing its effectiveness and confirming its high potential
for practical application.
The paper is organized as follows. Section 2 describes the

medical context. In Section 3 we detail the few-shot method-
ology and the proposed algorithm. Finally, Section 4 is dedi-
cated to the experimental results and Section 5 to the conclu-
sion.

2. MEDICAL MULTICLASS PROBLEM

We used HCC WSIs stained with HES (Hemaloxylin-Eosin-
Saffron) and digitized at 40× magnification. More precisely,
we aim to classify local tissues into the following five classes:
1. Non-Tumor Liver (NT): Liver sections that are not af-

fected by HCC but may be affected by cirrhosis.
2. Hemorragic tissue (RE): a non-tumoral pattern character-

ized by blood cell suffusion.
3. Tumor tissue with macro-trabecular architecture (AM):

An aggressive pejorative tumor type characterized by
trabeculae of more than ten cells thick.

4. Tumor tissue with Vessels Encapsulating Tumor Clusters
architecture (VE): An aggressive pejorative tumor type
characterized by tumor cells arranged in small clusters and
surrounded by endothelial cells.

5. Conventional trabecular architecture (AN): A non-pejorative
tumoral pattern commonly found in HCC patients.

The distinction between tumor and non-tumor areas and the
evaluation of pejorative tumor areas provide insightful infor-
mation to medical doctors.

In this paper, 28 patients from a previously formed co-
hort of 108 patients with HCC were selected from usable HES
slides from Kremlin-Bicêtre Hospital, France, and manually
annotated by two skilled pathologists in the five above cat-
egories. Annotated WSIs were then tiled into 1728 × 1728
patches. Data distribution per class is displayed in Table 1.

Class NT RE AM VE AN
Percentage 26% 14% 8% 12% 40%

Table 1. Data distribution per class.

3. PROPOSED METHOD

3.1. Problem formulation

Few-shot methods typically involve a two-step process [11]:
first, a neural network, pre-trained on a comprehensive and
generic dataset, extracts features from the images of interest.
Then, a specifically designed classifier is applied to these ex-
tracted features to perform the classification task.

We start by introducing the notation for the few-shot clas-
sification challenge at hand. The pre-trained network encoder,
denoted by Φ, is crucial for feature extraction. Typically, it

has been trained on a dataset Dbase encompassing a broad
spectrum of images, potentially inclusive of various WSIs
from a multitude of organs and medical facilities. Still, it may
not precisely encapsulate the exact categories of our specific
classification tasks.

The few-shot dataset consists of N images spanning
across K distinct classes. In our context of few-shot clas-
sification for histopathological images, K equals 5. Within
the dataset, a subset, referred to as the support set with
index set S ⊆ {1, . . . , N}, encompasses the feature sam-
ples (xn)n∈S and their respective one-hot-encoded labels
(yn)n∈S.1 The support set is constituted by s-shots (labeled
examples) for each class. In contrast, the query set with in-
dices in Q = {1, . . . , N} \ S, comprises a batch of unlabeled
samples (xn)n∈Q.

The goal is to accurately predict the labels for the samples
of the query set under the supervision of the support set. To
achieve this, the representations (zn = Φ(xn))1≤n≤N gen-
erated by the feature extractor are fed into our few-shot clas-
sifier.

3.2. Transductive methodology

One of the primary advantages of few-shot learning method-
ologies, when contrasted with traditional supervised learn-
ing techniques, lies in their ability to collectively infer from
an entire batch of |Q| > 1 query instances simultaneously
rather than evaluating each instance independently. In the lex-
icon of few-shot learning, this methodology is referred to as
transductive learning [12, 13]. Transductive few-shot meth-
ods are designed to make joint predictions for the entire batch
of query samples within each specific few-shot task. This ap-
proach takes full advantage of the statistical properties inher-
ent to the query set of a task, employing shared information
across instances to enhance generalization and accuracy. Em-
pirical studies have demonstrated that batch-based inference
on unlabeled instances, as opposed to individual sample eval-
uation, results in substantial improvements in prediction ac-
curacy [14].

In the field of microscopy analysis, where spatial pattern
recognition is crucial, transductive few-shot approaches ex-
hibit significant potential. Commonly, in a single WSI, it is
observed that architectures belonging to the same class tend
to cluster spatially, forming homogeneous regions. To lever-
age this spatial coherence, our strategy involves selecting a
window of dimensions S × S on the microscope slide, as
depicted in Figure 1. Each window comprises overlapping
mini-patches, each of dimensions s×s, constituting the query
set for our few-shot task. The underlying assumption here is
that each window encapsulates a few (typically, one or two)
distinct classes, allowing each mini-patch to serve as an ad-
ditional (unlabeled) instance of these classes. By sliding the

1For every n ∈ S and k ∈ {1, . . . ,K}, yn,k = 1 if xn is an instance of
class k, and yn,k = 0 otherwise.



Fig. 1. Scanning of the slide with a sliding window.

window across the entire WSI, we facilitate comprehensive
predictions across its entirety.

3.3. Minimization problem

Our method estimates the optimal class assignments of each
small patch within the window while limiting the number of
predicted classes, thereby acknowledging the spatial coher-
ence in such samples.

By refining the method presented in [8], we approach
the few-shot classification challenge through a minimization
problem, seeking optimal solutions for the one-hot-encoded
assignments U = (un)1≤n≤|Q| ∈ (∆K)|Q| and the class
centroids W = (wk)1≤k≤K ∈ (Rd)K , where ∆K represents
the unit simplex set in RK . The problem is mathematically
formulated as

minimize
U ,W

f(U ,W ) + g(U) + λh(U), (1)

subject to (∀n ∈ Q) un ∈ ∆K ,

(∀n ∈ S) un = yn,

with λ is a positive regularization parameter. Here, f repre-
sents the data-fidelity term, reflecting the assumption that the
data follows a multivariate Gaussian distribution and integrat-
ing supervision from the support set. Formally, we define

f(U ,W ) =
1

2

K∑
k=1

N∑
n=1

un,k(wk − zn)>Ŝk(wk − zn)

− 1

2

K∑
k=1

N∑
n=1

un,k ln det(Ŝk) (2)

where, for every k ∈ {1, . . . ,K}, Ŝk is a symmetric positive
matrix corresponding to a sparse approximation of inverse of
the empirical covariance matrix of class k, computed from the
support set with a Graphical Lasso approach [15]. In addition,
g represents an entropic barrier on the assignments, facilitat-
ing closed-form updates in the forthcoming algorithm. It is
expressed as

g(U) =

K∑
k=1

∑
n∈Q

un,k lnun,k. (3)

Finally, the penalty function h is central to our approach: it
acts as a partition complexity term, encouraging a minimal
number of classes to be predicted within the window:

h(U) = −
K∑
k=1

πk ln(πk), (4)

where, for every k ∈ {1, . . . ,K}, πk = 1
|Q|
∑
n∈Q un,k de-

notes the proportion of samples of class k in the query set.

3.4. Algorithm

To address the minimization problem outlined in Equa-
tion (1), we propose an algorithm that alternates minimization
steps with respect to the variables U and W . Our iterative
approach, detailed in Algorithm 1, shares similarities with
the technique presented in [8], the primary distinction be-
ing the introduction of inverse covariance matrices. Given
these similarities, we direct the reader to [8] for more details
on our methodology and the convergence guarantees of the
algorithm.

Algorithm 1: PADDLE-Cov

Initialize W (0) as the means computed on the
support set and for all k ∈ {1, . . . ,K},
π
(0)
k =

1

|Q|
∑
n∈Q

u
(0)
n,k.

for ` = 1, 2, . . . , do

u(`)
n = softmax

((
− 1

2
(wk−zn)>Ŝk(wk−zn)

+ 1
2 ln det(Ŝk) + λ

|Q| ln π
(`)
k

)
k

)
, ∀n ∈ Q,

w
(`+1)
k =

∑N
n=1 u

(`+1)
n,k zn∑N

n=1 u
(`+1)
n,k

, ∀k ∈ {1, . . . ,K},

π
(`+1)
k =

1

|Q|
∑
n∈Q

u
(`+1)
n,k , ∀k ∈ {1, . . . ,K}.

4. EXPERIMENTS

4.1. Experimental setting

In our experimental setup, we leverage the pre-trained model
from [16], trained on diverse histopathological images. We
structure our few-shot tasks using a sliding window of dimen-
sions 5184 × 5184, containing mini-patches of size 1728 ×
1728 downsampled to a resolution of 512 × 512. This re-
sults in query sets of 25 samples each. The support set com-
prises the annotated patches of the 28 train patients, and we
set the penalty parameter λ to 1250 using validation slides.
Preprocessing includes Reinhard color normalization to miti-
gate staining variability [17].



Accuracy (%) F1-score (%)
SimpleShot [18] 48.9 46.4
Baseline [11] 74.4 72.0
α-TIM [9] 56.0 56.9
PADDLE [8] 51.0 48.9
PADDLE-Cov (λ = 0) 77.3 73.8
PADDLE-Cov 79.3 75.5

Table 2. Evaluation of our approach against other few-shot
methods for histopathological patch classification regarding
accuracy and F1-score.

4.2. Results

4.2.1. Validation on annotated test data

Our initial evaluation focuses on the entire collection of la-
beled patches, which we refer to as windows, from the test set
slides from 13 patients. Notably, each window is exclusively
composed of mini-patches associated with a single class. In
this context, we benchmark our approach against two induc-
tive few-shot methodologies, SimpleShot [18] and Baseline
[11], which conduct inference on each mini-patch indepen-
dently, as well as the state-of-the-art transductive method α-
TIM [9]. In addition we provide an ablation of the terms in
our classifying objective (1), evaluating the original PADDLE
method (with identity covariances) and the PADDLE-Cov for
λ = 0. The outcomes of this comparative analysis are given
in Table 2. Our method surpasses the other approaches, high-
lighting the benefits of using an appropriate Gaussian metric
and of transductive inference.

4.2.2. Inference on a Whole Slide Image (WSI)

In our second evaluation, we aim to compare the predic-
tions made by our 5-class few-shot classifier trained on 28
patients with those of a 3-class fully supervised model on
WSIs. The 3-class fully supervised model is a CNN based on
ResNet34, which was trained using 800K patches, based on
the 87 patients cohort, to classify tissues as non-tumor (NT),
non-pejorative tumor (AN), or pejorative tumor (VE+AM).
Creating a 5-class supervised model was hardly achievable,
as two classes are notably under-represented. Figures 2 and
3 display the predictions of both models on a WSI where
the colored squares represent the annotations (ground truth)
made by the pathologists.

Both models reliably identify non-tumoral (green squares)
and pejorative regions (orange/brown squares), while the
conventional trabecular architecture (yellow squares) is bet-
ter detected by the few-shot model on the WSI in Figure 2.
Moreover, training the few-shot model on 5 classes enables
detailed detection of the architectures, which the 3-class
model can not achieve. In particular, our model accurately
distinguishes the VE architecture within the pejorative re-
gions, providing 100% certainty in differentiating VE from

Fig. 2. (left) Predictions made by the 3-class fully super-
vised model. (right) Predictions made by the few-shot 5-class
model.

Fig. 3. (left) Predictions made by the 3-class fully super-
vised model. (right) Predictions made by the few-shot 5-class
model.

AM in both WSIs. Additionally, it detected hemorrhagic
regions (RE, purple squares), which were logically misclas-
sified by the fully supervised model in Figure 2. Lastly,
the 5-class model exhibits remarkable proficiency in defin-
ing homogeneous regions across the entire WSIs, unlike the
3-class model, which analyzes individual patches indepen-
dently. The 5-class model contextual understanding allows
for consideration of interdependencies between neighboring
patches, leading to a more cohesive interpretation of the data.

5. CONCLUSION

To wrap up, we have introduced an innovative transductive
few-shot learning method tailored to classify histopathologi-
cal images. This approach effectively overcomes significant
obstacles, notably data scarcity and class imbalance. Our
study emphasizes the adaptability and promise of our method
in the domain of biomedical imaging. Its success not only
emphasizes the feasibility of our approach in tackling practi-
cal challenges but also paves the way for its wider application
in various medical imaging scenarios.
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