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Abstract

Stellar oscillations can be of topological origin. We reveal this deep and so far hidden property of stars by
establishing a novel parallel between stars and topological insulators. We construct an Hermitian problem to derive
the expression of the stellar acoustic–buoyant frequency S of nonradial adiabatic pulsations. A topological analysis
then connects the changes of sign of the acoustic–buoyant frequency to the existence of Lamb-like waves within
the star. These topological modes cross the frequency gap and behave as gravity modes at low harmonic degree ℓ
and as pressure modes at high ℓ. S is found to change sign at least once in the bulk of most stellar objects, making
topological modes ubiquitous across the Hertzsprung–Russell diagram. Some topological modes are also expected
to be trapped in regions where the internal structure varies strongly locally.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Astrophysical fluid dynamics (101)

1. Introduction

Stars are opaque. Fortunately, deformations of the stellar
surface depend on their interiors (Cowling 1941; Ledoux &
Walraven 1958; Unno et al. 1979; Gough 1993; Christensen-
Dalsgaard et al. 1996; Aerts et al. 2010) and as such, aster-
oseismology is the Rosetta Stone for inferring details of stellar
structures (Christensen-Dalsgaard et al. 1996; Aerts et al.
2010). Stellar spectra consist principally of low-frequency
gravity (g-) modes and high-frequency pressure (p-) modes,
defining two bands separated by a finite interval of frequencies,
also referred as a gap. The stellar spectrum may also be enri-
ched by additional branches, such as surface wave modes
confined in the outer regions. In recent years, a novel type of
waves propagating in stratified compressible fluids has been
discovered. This so-called Lamb-like wave fills the gap
between the p and the g band. Although this mode bears
similarities with the Lamb wave (Lamb 1911; Iga 2001), it is
confined around peculiar values specific of the stratification
profile, and not at the boundaries. The key point is that these
waves have been postulated using arguments from topology
(Perrot et al. 2019). Modes in the original spatially homo-
geneous system can be predicted from the analysis of the
topological invariant of a simpler dual wave problem with

constant coefficients. Similar topological approaches were
developed in condensed matter since the eighties and flourished
across all field of physics, including fluid dynamics and plasma
over the last few years (Hasan & Kane 2010; Delplace et al.
2017; Shankar et al. 2022; Parker 2021).
The Lamb wave has been detected in the atmosphere, but

the Lamb-like wave is hardly expected to propagate on Earth,
neither in the atmosphere nor in oceans. Stars were specu-
lated to provide favorable conditions for it to propagate
(Perrot et al. 2019). However, this study lacked the treatment
of self-gravity, spherical geometry, and variations of sound
speed, three critical processes as we shall show. We therefore
adapt tools that have been originally developed by the
topological insulator community to study the seminal case
of adiabatic perturbations of a nonrotating, nonmagnetic,
stably stratified stellar fluid neglecting gravity perturbations
(Cowling’s approximation Cowling 1941). The physical
quantities are first rescaled to express the evolution of linear
perturbations under the form of a Schrödinger-like wave
equation

( )¶ = Y Yi , 1t

where

and the perturbation vector contains rescaled velocities, den-
sity, and pressure

( ˜ ˜ ˜ ˜ ˜ ) ( )= QY u v w p, , , , . 2
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See Appendix A for details.
As such, the 5× 5 wave operator  of the problem is

explicitly Hermitian.  depends on the sound speed cs, the
Brunt–Väisälä frequency N, and a characteristic frequency
further referred to as the acoustic–buoyant frequency S that
emerges explicitly:

( )º - - +S
c

g
N

g

c

dc

dr

c

r2

1

2
. 3s 2

2

s
2

s s
⎜ ⎟
⎛
⎝

⎞
⎠

All three parameters vary with radius r. Usually, these
equations are combined into a single differential equation of
high order. Instead, preserving the vectorial structure of the
problem is better suited for a topological analysis.

2. Acoustic–Buoyant Frequency S

The acoustic–buoyant frequency S is a coupling parameter
for momentum exchange between buoyant and acoustic oscil-
lations, and was called stratification parameter in Perrot et al.
(2019). This role of mode coupling is shown in details below.
Two extra terms appear compared to the plane-parallel case
(Perrot et al. 2019): cs/r, which accounts for sphericity effects

at small radii, and
dc

dr
1

2
s , which becomes important when the

internal structure of the object varies strongly. S combines the
four physical processes responsible for mirror-symmetry
breaking in the radial direction: gravity, density stratification,
curvature, and radial variations of sound speed. The profile S(r)
varies between stellar objects; however, the sound speed is
expected to go to 0 at the surface as a positive power law of the
density (Chandrasekhar 1939; Horedt 1987). S is then −∞ at
the surface. At small radii, the curvature term guarantees S to
reach +∞ . S(r) being continuous, it must change sign in the
bulk of the star at least once. We confirm this analytically on a
stellar polytrope in Appendix B and numerically on models of
typical stellar objects computed with the MESA code (Paxton
et al. 2011; Figure 1).

The physical nature of the acoustic–buoyant frequency S is
disclosed by considering the equivalent of Equation (1) in the
2D plane-parallel (y, z) geometry. After performing a Fourier
transform in time and space in the invariant direction y and
performing the rescaling ( ) ( )Q Qu w p c u w p, , , , , ,s

1 2 , one
obtains

( )¶ =u ic k p, 4t ys

( )¶ Q = Nw, 5t

( )¶ = - Q - ¶ +w N c p Sp, 6t zs

( )¶ = - ¶ -p ic k u c w Sw. 7t y zs s

Combining the equations gives

( ) ( ) ( )¶ + = -¶ ¶ -N w c p Sp , 8tt t z
2

s

( ) ( ) ( )¶ + = -¶ ¶ +c k p c w Sw , 9tt y t zs
2 2

s

a system where acoustic and buoyant vibrations are explicitly
coupled (no Boussinesq or anelastic approximation is
assumed). The first term of the right-hand side of Equation (8)
consists of local pressure forces that competes with buoyancy.
The first term of the right-hand side of Equation (9) comes
from fluid compression in the direction z and is generic from

2D purely acoustic waves. In the long wavelength limit in the
stratification direction z, these two terms become negligible
and

( ) ( )¶ + = ¶N w S p, 10tt t
2

( ) ( )¶ + = - ¶c k p S w, 11tt y ts
2 2

showing that S is the frequency of periodic exchanges of
momentum between acoustic and buoyant vibrations. Non-
Boussinesq contributions allow local densities to be affected by
acoustic compression, providing an effect that competes with
buoyancy when S is large. Conversely, pressure increases not
only through compression, but also through advection in a
differential background. These two effects on coupling between
g-modes and p-modes were identified by Lighthill (1978).
Multiplying Equation (10) by ∂tp and Equation (11) by ∂tw
shows that the power transmitted by one mode to the other
occurs without losses, as expected from the adiabatic assump-
tion. Such a coupling has been widely studied in polariton
physics, and shown to result in gap opening (Lagoudakis 2013).
The condition S= 0 is therefore associated to local mode
decoupling (see Figure 2).

3. Topological Properties of the Problem

Eigenvalues of are constrained by topology when varying
the physical parameters. These constraints can be efficiently
studied by associating a simple matrix to  that retains the
topological constraints. The correspondence is established via a
Wigner transform, which allows us to define rigorously a wave
that is locally plane without any hypothesis of scale separation

Figure 1. Profiles of S for four different typical stellar objects. N is plotted for
comparison. Solid orange line indicates the region where the topological mode
is trapped, as measured by the trapping length  defined by Equation (25).
Stellar interiors are computed with MESA. The high-mass star is an M =
100 Me main-sequence star. The white dwarf mass is 0.6 Me, during its
cooling phase. The Jupiter model has a solid core of 10 Earth masses. S cancels
always at least once, whether in the radiative or convective region. Light gray
area indicates the convective zone.
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(Appendix C). Here, topological properties of  can be char-
acterized through the eigenvalue problem of the matrix

( )º
- -

- + + +
M

N NS iNc k

NS iNc k L S c k
, 12r

r ℓ r

2
s

s
2 2

s
2 2⎜ ⎟

⎛

⎝

⎞

⎠
( )w =X XM , 13

where the Lamb frequency is ( )º +L c ℓ ℓ r1ℓ s . M is Her-
mitian and parameterized by a radial wavenumber kr and
parameters Lℓ, cs, N, and S that are constant.

As expected, the two eigenvalues of M correspond to the
square of the frequencies of the local pressure and gravity
modes. Interestingly, these two bands intersect when kr= 0,
Lℓ=N, S= 0 for any value of cs and N, i.e., the two fre-
quencies degenerate into a single one (see Appendix C). Such a
degeneracy point behaves like a topological monopole in
parameter space (kr, Lℓ, S), which is characterized by an integer
called the Chern number (Chern 1946). A nonzero Chern
number translates the topological obstruction to smoothly
define the phase of the eigenvectors—which describe the local
polarization relations of M—all around the degeneracy point in
parameter space. In that case, the eigenvectors can only be
defined smoothly over patches in parameter space, corresp-
onding to different gauge choices. The U(1) gauge transfor-
mation that connects the different patches is a phase whose
winding is the Chern number. In our case, we find the Chern
numbers associated to the gravity and the pressure bands to be

= + 1g and = - 1p , respectively (see Appendix D for
computations). These topological considerations can be back-
connected to the original problem: any change of sign of the
acoustic–buoyant frequency S(r) is associated with the exis-
tence of a branch that transits from the g band toward the p
band as ℓ increases. Mathematically, this correspondence is
ensured by index theorems (Chern 1946; Atiyah & Singer
1963; Nakahara 1990; Esposito 1997; Faure 2019; Perrot et al.
2019; Delplace 2022). The transiting branch flows from the
upper band to the lower band or vice versa, depending on the
sign of ¢S at the change of sign of S. In stars, ¢ <S 0 and the
mode transits from the g to the p band: this mode is the Lamb-
like wave (Perrot et al. 2019). Figure 3 confirms the deep
relation between a change of sign of S(r) and the existence of a
mode transiting from the g band at small ℓ to the p band at large
ℓ. The physical validity of this mode is carefully verified in
Appendix E.

By analogy with similar modes encountered in a variety of
other physical systems (Hasan & Kane 2010; Delplace et al. 2017;

Shankar et al. 2022; Parker 2021), one may expect for the global
stellar mode to have no node, and to transit between the bands at a
value of ℓ such that Lℓ∼N. One may also expect for the eigen-
functions to be located around the radius r0 where S(r0)= 0.
These properties of the topological mode can be verified on a
simple analytically solvable model presented in the next section.

4. Topological Mode in Analytical Model

We present a simple analytical model featuring a cancella-
tion in S, and show that the analytical solution of the wave
equation includes the topological mode. Consider a fluid where
all quantities but S are constant in space:

( ) ( ) ( )a= - -S r r r , 140

( ) ( )=N r N , 150

( ) ( )=c r c , 16s s,0

( ) ( ) ( )= =
+

L r L c
ℓ ℓ

r

1
. 17ℓ ℓ

2
,0
2

s,0
0
2

This parameterization mimics a situation where variations of
S would be infinitely more abrupt than the other quantities. In
this minimal model, S varies linearly and cancels in r0. This
model may thus be thought of as the compressible-stratified
analog to the equatorial shallow water model solved by Mat-
suno (Matsuno 1966). Perform the transform ( )Qu v w p, , , , 

( )Qc u v w p, , , ,s
1 2 in Equation (1), then apply a time-
Fourier transform, and project onto spherical harmonics. The
variables combine into a single ordinary differential equation
(ODE) on p

( ) ( ) ( )- -
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19r
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2 ,0

2 2
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2 2

and use the symbol ¢ for derivatives with respect to r for
background quantities. Equation (18) holds for any S(r), and
can be seen as a Schrödinger equation describing a particle of
energy kr,0

2 in the potential = + ¢V S c S c2
s,0
2

s,0. For the
model of Equation (14), this reduces to

( ) ( )
a

- - + =
d

dx
x

c
k p

1

4

1

2
1 0, 20r

2

2
2 s,0

,0
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⎛
⎝

⎞
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⎤
⎦⎥

using the dimensionless quantity ( )º -ax r r2
c 0

s,0
. The

solution is a parabolic cylinder function U (Abramowitz &
Stegun 1972)

( )
a

= - +p U
c

k x
1

2
1 , . 21r

s,0
,0
2⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

Regularity at infinity imposes the first argument to be negative
half integer, leading to the quantization

( )
a

=
c

k n2 , 22r
s,0

,0
2

for any Î n .

Figure 2. Local dispersion relation of the problem, as modeled by
Equations (8)–(9). The p-mode and the g-mode (solid lines) result from the
coupling of acoustic and buoyant oscillations (dashed lines for kz = 0). Both S
and kz pull the bands away. For any mode, including kz = 0, a gap exists as
soon as S ≠ 0.
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Solutions reduce then to Hermite functions ( )= -p H xe x
n

22
,

where Hn denotes the nth Hermite polynomial. Figure 4 shows
the spectrum associated to this problem. The values of ω can be
inverted in Equation (22). For n� 1, each value of kr,0 gives
two eigenfrequencies, the nth g-mode and the nth p-mode. The
expected topological mode corresponds to n= 0. One of the
two eigenfrequencies associated with this solution is unphysi-
cal, since the eigenfunctions diverges quickly at infinity. The
other verifies

( )w = L , 23ℓ,0

which transits between the bands as ℓ increases, as shown on
Figure 4. This property is associated to the fact that

( ) a¢ = - <S r 00 at the cancellation point.
The topological mode has the profile

( ) ( ) ( )a
= - -p r p

c
r rexp , 240

s,0
0

2
⎜ ⎟
⎛
⎝

⎞
⎠

an expression that provides a definition of the length over
which the mode has significant amplitude

( )
a

º =
=


c

c
dS

dr
, 25

S

s,0
s,0

0

which we call the trapping length. Denoting ( ) ºR x
/- + +x n 1 21

4
2 the second term of Equation (20) that cor-

responds to a solution for a given n, we find the JWKB
approximation of the solution to be valid when the condition
∣ ∣-R 1dR

dx
3 2  is satisfied (Daghigh & Green 2012). Figure 4

shows this quantity for the first modes. The topological mode
n= 0 breaks strongly this validity condition. As expected,
JWKB techniques cannot capture the topological mode.

This analytical solution confirms that the topological mode is
the mode with the zero node of the system, and that this mode
is not accessible with scale separation methods.

5. Discussion

Interestingly, the topological mode and the surface-gravity
mode have both the zero node and similar dispersion relations.
Numerical experiments show that when they coexist, they
hybridize to form a unique n= 0 mode. A comprehensive
study including various boundary conditions is performed
in Appendix F. We interpret this hybridized mode as the
f-mode of asteroseismology (Gough 1993; Rozelot & Neiner
2011), revealing its previously unexpected hybrid nature.
Finally, strong local gradients of thermodynamical quan-

tities may give rise to peaks of acoustic–buoyant frequency
where S changes sign twice over a short scale, as in the white
dwarf model showed on Figure 1. This results in two modes
of topological origin that may be used to probe fine details of
the structure of the stellar object. The white dwarf is the
canonical object for application of this study, as it is fully
radiative. Its profile of S cancels three times, two of them
resulting from a phase transition close to the surface. For this
model, we predict three topological modes, one for each
cancellation: one crossing the gap, with a long trapping length
, as the slope of S where it changes sign is low at the first
cancellation; two more modes with zero nodes are predicted
close to the peak of S just underneath the surface, with much
smaller trapping lengths , as the slope of S is high when S
changes sign. They potentially overlap each other, such that
they would hybridize. This hybridization could serve as a
measure of the peak in S, meaning the modes could serve as
probes for the associated phase transition. This hybridization
is illustrated on Figure 5.
The current study focuses on stably stratified stars, for

which index theorems on Hermitian systems apply. However,
the effect of a convective zone on the Lamb-like wave
remains to be investigated. Such a region, where N2 vanishes,
is indeed sustained by the convective circulation of the
background. Figure 1 shows that in the Sun, S cancels in the
radiative zone, close to the convective zone. The trapping
length of the topological mode indicates interactions with the

Figure 3. A mode develops between the gravity band and the pressure band (bottom) when the acoustic–buoyant frequency S (top) of Equation (3) changes sign. From
left to right: toy profile that cancels in the bulk, decaying positive profile of S, polytrope with polytropic index n = 3 and a MESA solar-like profile. Physical values of
the harmonic degree ℓ are integer, and plotted with large points, from 0 to 20. Noninteger values are plotted with small points for readability. Surface-gravity waves are
filtered out by appropriate boundary conditions. The mode transiting between bands is highlighted in black. These values are computed by solving Equation (1)
numerically using Dedalus (Burns et al. 2020).
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convective zone, although convection is out of the scope of
this study. In high-mass stars, S cancels within the convective
core where the topological mode is not guaranteed by this
study, as no background flow is considered in the wave
equation Equation (1). The same conclusion applies to Jupi-
ter, which is fully convective and has interesting multiple
cancellations of S.

Lamb-like waves are neither Lamb waves, surface-gravity
waves, nor mixed modes (Dziembowski et al. 2001; Dupret
et al. 2009; Deheuvels & Michel 2010). Mixed modes are
linear combinations of g-modes and p-modes standing in dif-
ferent cavities in the star, due to spatial variations of N and Lℓ
and can have a high number of nodes. The Lamb-like wave
emanates as a mode n= 0 of a single cavity hosting both
g-modes and p-modes.

We expect generic properties of stellar pulsations related
to topology such as ray tracing to be encoded in S(r) (Perez
et al. 2021). Other discrete symmetries can be broken in
the presence of rotation (Perez et al. 2021b) and magnetic
fields (Cally 2006; Parker et al. 2020), and one should expect
the emergence of new classes of topological waves when
these additional ingredients are taken into account, potentially
at the stellar tachocline where strong shear develops. The
resilience of these topological modes on unstable stratification
when N2< 0, or with the inclusion of dissipative effects, is a
highly promising avenue of research in the currently flour-
ishing field of non-Hermitian topological waves (Gong et al.
2018; Yao & Wang 2018; Bergholtz et al. 2021; Delplace
et al. 2021).

6. Conclusion

In this study, we revisit the old field of stellar pulsations
under the bright new prism of topology. By doing a novel
parallel between stars and topological insulators, we establish
for the first time the existence of a wave of topological origin in
stars. We derive the expression of a novel key physical para-
meter, the acoustic–buoyant frequency. We demonstrate in a
comprehensive analysis that topological modes are associated
to zeros of this frequency, and show the ubiquitous existence of
at least one topological mode across the entire spectrum of
stellar object in the universe. More importantly, we show that
local phase transitions, which are key for understanding the

evolution of stars within the cosmological context, may give
rise to pairs of robust topological modes. The hunt of these
modes may therefore become a critical target for future cutting-
edge instruments such as the PLATO mission.
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Appendix A
Wave Equation as Schrödinger-like

We study the evolution of a perturbation in the velocity,
pressure, and density of a stable equilibrium of a star.
( )¢ ¢ ¢w u v, , is the perturbation’s velocity in spherical coordi-
nates, and r¢ and ¢p are the perturbations in density and pres-
sure. The system of equations is obtained by linearizing the
equations of mass and momentum conservation assuming
adiabatic evolution. As a first step, the hermiticity of the linear
system is made explicit by the mean of the following

Figure 4. Left: spectrum of the minimal model parameterized by
Equation (14). The topological mode is the n = 0 mode, and transits between
the bands. Right: measure of the error a JWKB approximation of the solutions
would make. The error on the n = 0 mode is not small.

Figure 5. Peaks of S through positive values imply the existence of two
topological modes in the spectrum. The sharper the peak, the more the modes
hybridize, and their branches avoid crossing in the spectrum.
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transformation
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where Q̃ is the potential density of the fluid. The evolution of
the perturbation is then

( )¶ = Y Yi , A2t

where  is the differential operator

the perturbation vector is

( ˜ ˜ ˜ ˜ ˜ ) ( )= QY u v w p, , , , . A3

and ¢ ºc
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s . This rescaled system of equations reveals that

three functions govern the perturbations: cs(r), N(r), and the
acoustic–buoyant frequency
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Appendix B
Polytropic Stars

We derive the expressions for the parameters cs(r), N(r), and
S(r) for polytropic stars that verify the equation of state P= kρ1
+1/ n. Static equilibrium satisfies the continuity and Poisson
equations, and is given by a seminal solution in terms of the
Lane–Emden equation

( )+ =
x

d

dx
x

df

dx
f

1
0, B1n

2
2⎛

⎝
⎞
⎠

( ) ( )=f 0 1, B2

( ) ( )¢ =f 0 0, B3

where ρ(r)= ρcf
n(x= r/a), and ( )= +

p r
a n 1 P2

4
c

c
2 . We adopt

length and time units such that a= 1 and r r= =k P 1c
n

c c
1

and assume the fluid to be a monoatomic perfect gas (Γ1=
5/3). We then obtain

( )=c f
5

3
, B4s

2

( ) ( )a= +
¢

S f
r

n
f

f

5

3

1
, B51 2

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )= + -
¢

N n n
f

f

2

3
1

3

2
, B62

2
⎛
⎝

⎞
⎠

where α(n)= (n+ 7/3)/10. Since f (r=R)= 0 and ( )¢ = <f r R
0, a polytropic star verifies S(r=R)=−∞ .

Appendix C
Local Properties of : Wigner Transform

Symbolic calculus gives a way to associate to differential
operators acting on functions other functions called symbols

acting on a phase space. The symbol [ ˆ]fSymb of an operator f̂
(e.g., a differential operator) is obtained by a Wigner transform,
defined as

[ ˆ ] ( ) ( )ˆòº = + - -f f x k dyK x
y

x
y

eSymb ,
2

,
2

, C1f
iky⎛

⎝
⎞
⎠

where ˆK f is the integral kernel of the operator

f̂ : ( ˆ )( ) ( ) ( )ˆòY º Y
p

f x dyK x y y,f
1

2
.

The inverse correspondence is the Weyl quantification of the
symbol

ˆ [ ( )]

( )
( ) ( )[ ( ˆ) ( ˆ)]òp

x h

=

º x h- + -

f f x k

dxdk d d f x k e

Op ,
1

2
, , C2i x x k k

2

such that [ [ ( )]] ( )=f x k f x kSymb Op , , . Equation (C2) often
gives a convenient way to relate an operator to a given func-
tional form of its symbol. For example, the Wigner symbol of
the differential operator ∂x is Symb[ ]¶ = -ikx x, a similar
expression as the Fourier transform in this case. Weyl quanti-
fication involves commutators [ ]¶ = - ¹x, 1 0x , which pro-
vide a rigorous framework for making a correspondence of
differential operators with varying coefficients to a phase space
and they provide this without assumptions on the wavelengths
of its eigenfunctions contrary to JWKB approaches (Faure
2019; Onuki 2020; Venaille & Delplace 2021), hence the fol-
lowing relation:

[ ( ) ]
( )

( )

( )

[ ( ˆ) ( ˆ)]òòòòp
x hº x h- + -f x k dxdk d d f x k eOp

1

2
C3

i x x k k
2

( )
( ) ( )( ) ˆ ˆòòòòp

x h= x h h x h+ + - -dxdk d d f x k e e e
1

2
, C4i x i k i x i k

2
2

( )

( )
( ( ) · )

( )

q

q
q

q

- ¶

- ¶

- - ¶ -
¢

- ¶ - ¶ - - ¶ -
¢

q

f

q f

i

c

r
c

r

N S c
c

N
c

r

c

r
S c

c

0 0 0 0

0 0 0 0
sin

0 0 0
2

0 0 0 0

sin
sin

sin 2
0 0

,
r

r

s

s

s
s

s s
s

s

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
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( )
( ) ( )ˆ ˆòòòòp

x h
h

= - x h x h+ - -dxdk d d f x ke e e
1

2 2
, C5i x i k i x i k

2

( ) ( ˆ) ( ˆ) ( )òò d d= - -dxdk f x k x x k k C6

( ) ( ˆ) ( ˆ) ( )òò d d+ ¢ - ¢ -dxdk
i

f x k x x k k
2

, C7

( ˆ) ˆ ( ˆ) ( )= - ¢f x k
i

f x
2

. C8

Microlocal analysis connects topological properties of the
eigenvectors of the Wigner symbol to spectral properties of the
operator . The correspondence relies on index theorems
(Atiyah & Singer 1963), and provides a powerful tool to
identify spectral properties of an operator from a much simpler
scalar dual problem. In particular, this procedure allows ana-
lysis at long wavelengths that are filtered out by JWKB
approximation.

The operator  depends on parameters that vary with radius
r. Key manipulation concerns the term

( )

- - ¢ - ¶

= - -
¢
- ¶ -

¢

c

g
N

g

c
c c

c

g
N

g

c

c
c

c

Symb
2

Symb
2 2 2

C9

r

r

s 2
2

s
2 s s

s 2
2

s
2

s
s

s

⎜ ⎟

⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

( )

= - -
¢

- ¶ +
¢c

g
N

g

c

c
c

c
Symb

2 2
Symb

2

C10

r
s 2

2

s
2

s
s

s
⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

( )= - -
¢
-

c

g
N

g

c

c
ic k

2 2
C11r

s 2
2

s
2

s
s⎜ ⎟

⎛
⎝

⎞
⎠

( )= -S ic k , C12rs

applying identity Equation (C8) with f= cs. The Wigner
symbol of  in the radial direction is then

The object H is a function with respect to r, and an operator
over the angles (θ, f). Performing a Fourier transform with
respect to time, one obtains

w- Y = YH ,

which gives

w Y = YH .2 2

The operator H2 is block diagonal

¯ ( )=H
A

M

0

0
, C142 3,2

2,3
⎜ ⎟
⎛
⎝

⎞
⎠

where 02,3 and 03,2 denote null matrices of dimensions 2× 3
and 3× 2, respectively. The eigenvalues ω2 of H2 consist
generically of the union of both the eigenvalues of A and M̄ .
Here, the eigenvalues of A and M̄ are the same. Indeed, a
nonzero eigenvector ( ˜ ˜ ˜ ˜ ˜ )Y = Qu v w p, , , , cannot have
˜ ˜Q = =p 0 or ˜ ˜ ˜= = =u v w 0, as a perturbation cannot be
made of only velocity with no pressure/density or pressure/
density with no velocity. Hence, no eigenvector of H2 can be of
the form (u, v, w, 0, 0) or of the form (0, 0, 0, Θ, p),
implying that A and M̄ cannot have different eigenvalues. The
eigenvalues of H2 are therefore the eigenvalues of M̄ , which is
the 2× 2 matrix

¯ ( )º
- -

- + - + +
M

N NS iNc k

NS iNc k
c

r
S c k

, C15
r

r r

2
s

s
s
2

2
2

s
2 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

where ( ( ) · )
( ) ( )

qº ¶ ¶ + ¶
q q q q ff sin1

sin

1

sin 2 . After projecting

onto spherical harmonics Yℓ
m, one obtains the matrix M

( )º
- -

- + + +
M

N NS iNc k

NS iNc k L S c k
, C16r

r ℓ r

2
s

s
2 2

s
2 2⎜ ⎟

⎛

⎝

⎞

⎠

where Lℓ is the Lamb frequency as presented in the main text.
The matrix M is Hermitian and as such is diagonalizable. Its

two eigenvalues are degenerate and both take the value N2 when

( )= º p
k
L
S

N
0

0
. C17

r

ℓ 0

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

This degenerescence is identical to the one found in Perrot et al.
(2019). Another degenerescence of the eigenvalues occurs at

Lℓ=−N, which we will ignore as it corresponds to negative
values of Lℓ.

Appendix D
Chern Numbers

The first Chern number ( ) n of the nth band is the topological
charge associated to the flux of the Berry curvature ( )F n over a
close surface Σ of the parameter space of the matrix M

( )

( )
( ( ) · )

( )

( )
q

q
q

q

º

- ¶

- ¶

- +

- ¶ - ¶ - +

q

f

q f

H i

c

r
c

r
N S ic k

N
c

r

c

r
S ic k

0 0 0 0

0 0 0 0
sin

0 0 0
0 0 0 0

sin
sin

sin
0 0

. C13
r

r

s

s

s

s s
s

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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(Chern 1946). Its expression is

· ( )( ) ( )òp
S=

S
 F d

1

2
, D1n n

where we denote n= 1 for the g band and n= 2 for the p band.
The relevant parameter space for our study is {kr, Lℓ, S}, such
that the Berry curvature is a vector with three components
denoted ( )( ) ( ) ( )F F F, ,k L

n
L S
n

S k
n

, , ,r ℓ ℓ r
. A degeneracy point for the

eigenvalues of the symbol matrix M is topologically nontrivial
if the Chern numbers ( ) n take nonzero values at this point.
This topological property is reflected in the spectrum of the
original operator problem  by ( ) n modes that transit from
one band to another.

To calculate the value of the Chern numbers of M at the
degeneracy point p0, we start from the definition

( ) ( )= ¶ Y ¶ Y - ¶ Y ¶ Y¢ ¢ ¢F i , D2p p p j p j p j p j, * *

where the summation on j is implied, and ( )Y = Y =j j 1,2 is the
normalized eigenvector of M corresponding to the p-mode, and
p and ¢p are directions in parameter space {kr, Lℓ, S} (we ignore
cs and N as they are not involved in the degeneracy p0). We
decompose M on the Pauli matrices as

· ( )s=
+ + +

+ gM
c k L N S

I
2

, D3r ℓs
2 2 2 2 2

2

where σ is the 3-vector of Pauli matrices, and

( ) ( )=

-
-

- - -
g p

c k N
NS

N c k L S

2

, D4

r

r ℓ

s

2
s
2 2 2 2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

with p= (kr, Lℓ, S). Following classical computations found in
Bernevig (2013), one shows that for the p band

( ) · ( ) ( )
p p

= - ¶ ´ ¶¢ ¢
g
g

g gF
1

2
1

1

4
, D5p p p p,

2
3 

which gives a simple expression for the Chern number

( ( )∣ ) ( )= -  gsign det . D6p p
p

0

Finally, one has

( )= -
-

-
-


c N

N
N

sign
0 0

0 0
0 0

D7p
s

( ) ( )=- c Nsign D8s
3

( )=-1. D9

Since the sum of the Chern numbers over the different bands is
zero, one obtains directly = + 1g . The theorem of spectral
flow ensures that the number of modes in each band varies by
∣ ∣ ∣ ∣= =  1g p when S changes sign (Faure 2019). More
precisely, when S(r) changes sign from negative to positive
values, the p band of the operator loses one mode to the g
band. When S(r) changes sign from positive to negative values,
the topological mode transits from the g toward the p band
(Perrot et al. 2019).
For clarity, detailed expressions of the Berry curvature F(n)

are provided below for both bands, together with representa-
tions of the vectors fields in the parameter space (Figure 6).
One has

Figure 6. Vector field of the Berry curvature in parameter space {kr, Lℓ, S}. Left: F
(1), associated to the g band (source). Right: F(2), associated to the p band (sink).

The red dot is the degenerated point at (0, N, 0).
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Poles of the curvature are found to be at the two points
k= S= Lℓ±N= 0, as shown on Figure 6.

Appendix E
Regularity at the Center

Let us verify that the change of variables Equation (A1) used
does not include diverging modes in the spectrum. In the
vicinity of the center, one has

( )c c , E1s s,0

( )N 0, E2

( )~ -S c r , E3s
1

( )~ -k L c , E4r ℓ,0
2 2

s,0
2

( ) ( )~ + -L c ℓ ℓ r1 , E5ℓ
2

s
2 2

such that Equation (18) becomes

( ) ( )-
+

=
d

dr

ℓ ℓ

r
p

1
0. E6

2

2 2
⎜ ⎟
⎛
⎝

⎞
⎠

This equation has two solutions, only one of which is regular,
which is

( )µp r . E7ℓ

We inverse the transform Equation (A1) to obtain the behavior
of physical quantities of the perturbation, which are

( )¢ µ -p r , E8ℓ 1

( )¢ ¢ ¢ µ -w v u r, , . E9ℓ 2

As a consequence the radial flux as well as the kinetic energy
remains finite at the center:

( ) ( )p ~ ¢ µF r r w r0 4 , E10ℓ2

( )( )ò òp rº µ -VE r dr r4 , E11
R R

ℓ
kin

0

2 2

0

2 1

which is finite for ℓ> 1. The radial pulsations case ℓ= 0 is left
aside, as the topological has zero frequency in this case. The
behavior at the other boundary r= R is dependent on the given
model.

Appendix F
Lamb-like and F-mode

The f-mode is defined by Cowling as the stellar mode with
the zero node in the radial direction (Cowling 1941). Since
the topological mode as well as the surface-gravity wave
has the zero node, we led numerical experiments to study their
coexistence. The Lamb-like wave is present in the spectrum

Figure 7. Spectrum of the waves in a stratified medium with 2D plane-parallel geometry. The buoyancy frequency N is set as a constant. S is set according to the
profile displayed on the right panel of the figure. The Lamb-like wave develops around the cancellation point of S (pink interval). The surface-gravity wave is trapped
at the top surface (green interval). The two waves do not overlap significantly: the system has two modes with zero nodes.
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when S changes sign somewhere in the bulk. The surface-
gravity wave is present in the spectrum when peculiar bound-
ary conditions are enforced at the surface, namely Poisson’s
boundary conditions

( )¶ =p
g

c
w. F1t

s

We lead numerical experiments in plane-parallel geometry,
with the z-direction being stratified, and the x-direction being
invariant by translation. We note z2 the top of the medium, and
z1 the bottom. The average localization of a normalized mode
Ψ= (v, w, Θ, p) is the average position of its energy

¯ ·òº Y YYz dz z ,
z

z

1

2

*

since the sum of kinetic and potential energy of the mode
is Ψ · Ψ*.

In Figure 7, we show that if the Lamb-like is trapped suffi-
ciently far away from the top surface, it does not hybrid with the
surface-gravity wave. In Figure 8, we show that if they overlap,
they hybrid into a single zero-node mode. We also show the
eigenfunctions of the density of the perturbation of a few modes.
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