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ARTICLE INFO ABSTRACT

Keywords: The resolution of the inverse problem of electrocardiography represents a major interest in
3D heart-torso phenomenological model the diagnosis and catheter-based therapy of cardiac arrhythmia. In this context, the ability
Electrocardiography inverse prob- to simulate several cardiac electrical behaviors was crucial for evaluating and comparing
lem the performance of inversion methods. For this application, existing models are either too
Hyperparameter identification complex or do not produce realistic cardiac patterns. In this work, a low-resolution heart-torso
Sensitivity analysis model generating realistic whole heart cardiac mappings and electrocardiograms in healthy and

pathological cases is designed. This model was built upon a simplified heart-torso geometry and
implements the monodomain formalism by using the finite element method. In addition, a model
reduction step through a sensitivity analysis was proposed where parameters were identified
using an evolutionary optimization approach. Finally, the study illustrates the usefulness of
the proposed model by comparing the performance of different variants of Tikhonov-based
inversion methods for the determination of the regularization parameter in healthy, ischemic
and ventricular tachycardia scenarios. First, results of the sensitivity analysis show that among
58 parameters only 25 are influent. Note also that the level of influence of the parameters
depends on the heart region. Besides, the synthesized electrocardiograms globally present the
same characteristic shape compared to the reference once with a correlation value that reaches
88%. Regarding inverse problem, results highlight that only Robust Generalized Cross Validation
and Discrepancy Principle provide best performance, with a quasi-perfect success rate for both,
and a respective relative error, between the generated electrocardiograms to the reference one,
of 0.75 and 0.62.

1. Introduction

Cardiovascular diseases are the leading cause of mortality worldwide and represent a huge health and economic
burden [1]. Most of these deaths are due to heart failure caused by an abnormal propagation of electrical activity
within the heart, a phenomenon referred to as cardiac arrhythmia. In the treatment of cardiac arrhythmia, catheter
ablation revealed itself as the only curative alternative in contrast to lifelong medication or implantable cardioverter
defibrillator. In this minimally invasive procedure, a mapping catheter is inserted through blood vessels and is moved
inside the heart in order to record local electrical cardiac activity. This allows us to delineate the arrhythmogenic target,
which is then ablated by delivering radio-frequency energy. Although successful ablation eliminates arrhythmia, the
recurrence rate is still high [2], and the several-hours surgical procedures are tedious for both patients and surgeons.

In this connection, ECG Imaging (ECGI) is an emerging non-invasive modality for an appropriate diagnosis and
a better-guided ablation procedure. It consists in computing 3D mappings of cardiac electrical activity based on
anatomical data obtained from magnetic resonance or tomography scans, and ECG recordings on the torso surface.
Although very promising, one major issue with ECGI is that validation using in vivo human data is made difficult.
Indeed, while in vivo studies were conducted in animals [3, 4], simultaneous whole heart electrical mappings are
unavailable for patients in practice. For this reason, cardiac computational models play the essential role of providing
numerical simulations of ground truth electrical data in order to evaluate and compare existing ECGI inversion
algorithms. They also contribute to a better understanding of arrhythmogenesis through simulation.

*Maureen Manche and Karim El Houari contributed equally to this work.
*Corresponding author. E-mail address: amar.kachenoura@univ-rennes.fr
ORCID(s): 0009-0003-8441-5296 (M. MANCHE)
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Within the framework of evaluating reconstruction algorithms using model-based data, a convenient model should
be able to generate sufficiently realistic cardiac patterns that produce meaningful surface ECGs, with sufficiently low
complexity in order to consider various ECGI case scenario simulations. Numerous ECGI studies and cardiac models
can be found in the literature. Many works were devoted to represent cardiac behavior with a high level of detail
including fiber orientation [5], high-resolution meshes [6], novel heart-torso coupling techniques [7] and anatomically
detailed geometries [8]. In [9] authors proposed a simplified heart-torso model geometry in the case of sinus-rhythm.
More recently, the parameters of this model were tuned in [10] to reproduce pathological cases in the context of
a closed loop tool for the simulation and assessment of pacemakers. Another work [11] proposes a novel torso-heart
model of personal electrophysiology, embedded in a real-time cardiac simulator, with precise anatomical and structural
representations of atria and ventricles. Moreover, all these studies are based on the bidomain formalism. In addition,
the models proposed in [5] and [8] only include ventricles, whereas [6, 7, 9, 10, 11] proposed a whole cardiac model.
However, when the goal is to evaluate, compare performance and study parameters influence on ECGI algorithms,
these models are not suited since they are far too complex. Moreover, only few cardiac models are able to synthesize a
complete and meaningful set of 12-Lead ECG signals, which is a key issue for understanding the relationship between
the torso surface ECGs and cardiac electrical dynamics.

The other major issue with ECGI is that recovering electrical potentials in the heart domain from few, attenuated
measurements on the torso surface is an ill-posed inverse problem. Indeed, the solution is not unique and small
perturbations on the measured ECGs entail large changes in the estimated solution. The common approach to tackle this
problem is the so-called Tikhonov regularization. This consists in finding the best fit to data solution in the least squares
sense whereas considering an additional penalty term to constrain the solution space. This introduces a regularization
parameter to be determined that balances between the amount of data fidelity and regularization, and whose value has
a major effect on the solution.

This work addresses both the modeling part related to the forward problem by proposing a novel model dedicated
to conduct ECGI simulations and to evaluate inversion methods. First, the framework for building a simplified, fast and
scalable heart-torso propagation model was presented. The model implements the adapted monodomain formalism,
which is a modification of the bidomain approach with lower complexity [12]. The monodomain model is coupled
with the phenomenological FitzHugh-Nagumo (FHN) model for describing transmembrane currents. This model
includes both atria and ventricles, and the parameters are assigned to different values at each region of the cardiac
conduction system. A first step consists in identifying the most influential parameters through a Morris screening
sensitivity analysis [13]. Then, the set of model parameters was reduced and the most sensitive ones are estimated
through an evolutionary algorithm. The identification process was performed in such a way that the ECG synthesized
by the proposed model was the closest to a reference ECG. Following this framework, the presented model was able
to synthesize meaningful normal and pathological ECGs whereas keeping a reasonable level of numerical complexity.
In a second step, it was shown how the new model can help to evaluate the performance of ECGI methods. More
particularly, a comparative study of classical methods devoted to the choice of the adequate penalty parameter in
Tikhonov regularization was given. As proposed in [14] the U-curve [15], the Composite Residual and Smoothing
Operator (CRESO) [16], the Generalized Cross Validation (GCV) [17] and the Robust Generalized Cross Validation
(RGCYV) [18] methods are considered. These approaches are also compared with the classical L-curve algorithm [19]
and the Discrepancy Principle (DP) [20].

The remainder of this paper is organized as follows. The methodological aspects of the work are addressed in
Section 2 and it is divided into three subsections. The first one presents the considered geometry, the equations
of cardiac electrical propagation and their coupling to torso potentials. The second subsection describes the model
reduction step using Morris sensitivity analysis, the formulation of the parameter identification problem and its
resolution using an evolutionary optimization algorithm. The third subsection presents classical methods for choosing
the regularization parameter for solving the ECG inverse problem using Tikhonov regularization. Section 3 presents
some numerical results in terms of cardiac potentials, propagation patterns and resulting ECG signals, as well as
performance of inversion approaches. Finally, section 4 provides an overall discussion on the work and gives some
perspectives.

2. Materials and methods

This section presents the methodological framework that was followed in order to produce ECGs from the proposed
simplified 3D heart-torso model. First, the designed geometry was described as well as the model equations used to
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simulate cardiac propagation and surface ECG measurements. The set of parameters on which the model depends was
then reduced by a sensitivity analysis. Finally, an optimization process was used to simulate realistic ECGs and cardiac
propagation patterns.

2.1. Heart-torso model
2.1.1. Geometry and meshing

Inspired by [9], a new 3D geometry of heart-torso model (Fig. 1) was designed. It consists of an elliptic-shaped
torso and lungs, and an ellipsoid heart that contains the main cardiac regions of the cardiac conduction system: atria,
Atrio-Ventricular Node (AVN), bundle of His, bundle branches, endocardium/Purkinje Fibers (PF) and ventricles
(midmyocardium and epicardium). Since electrical connection between atria and ventricles is only allowed through
the AVN in the real heart, an empty space was created between the two chambers. Blood chambers and the valve plane
were considered as vacuum when simulating cardiac propagation. An isotropic but regionally heterogeneous structure
representation was integrated, without adding fiber orientation information. Anatomical meshes of the torso, the lungs
and the seven regions of the heart were generated from volumetric segmentations using ANSYS DesignModeler
software [21] after a series of elementary operations. It was then exported to ANSYS Mechanical [22] in which a
meshing step was performed in order to solve numerically the forward problem.

ANSYS
R18.0
(A) (8) (©
Q I Atria
Torso 1 : AVN
I His bundle

[ Bundle branches

[ PF/Endocardium
[ midmyocardium

o | Epicardium

Figure 1: (A) 3D heart-torso geometry of the model, (B) 12-Lead ECGs electrode configuration, (C) Heart mesh and its
seven regions, using ANSYS software

A major improvement in the used geometry in contrast with [9] is that a third layer at the ventricular level was
added to distinguish the epicardium, midmyocardium, and endocardium. In fact, the difference in electrical properties
of ventricular action potentials from the inner and outer layers is a major point to the generation of appropriate ECG
signals, and particularly the T-wave. More precisely, action potentials duration diminishes smoothly as one moves
from the outer layer to the inner layer of the heart. This gives the effect of a repolarization wavefront traveling from
the outside to the inside of the heart, contrarily to depolarization.

2.1.2. Model equations

The bidomain and the monodomain models are widely used to simulate cardiac electrical propagation in current
research and are largely accepted for their physiological relevance. The bidomain theory is based on the assumption
that cardiac tissue can be partitioned into two separate conducting media: the intracellular space, located inside the
cardiac cells, and the extracellular space that connects cells between them. These two spaces are separated by the
cell membranes, through which current flows from one space to another. At the macroscopic scale, a homogenization
process [23, 24] of the bidomain model considers that these two spaces overlap so that each point of the 3D cardiac
space has intracellular and extracellular variables. The bidomain model arises from Maxwell’s equations under quasi-
static conditions. Indeed, considering the size of the human torso and the range of physiological variables in it, the
temporal dynamics of electromagnetic fields can largely be ignored. The full heart-torso bidomain model is made up
of a reaction-diffusion equation ((1) and (2)) coupled with an elliptic equation that involves cardiac and extracardiac
variables. Alternatively, the monodomain model approximates the bidomain based on an equal anisotropy assumption
in the myocardium. This approximation lies in the existence of a constant ratio f between the extracellular conductivity
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o,, and the intracellular conductivity o;, everywhere in the heart volume. This assumption has no physiological
meaning, but is convenient in the sense that computations in the heart and in the torso are decoupled, while providing
close results to that of the bidomain. The equations of the monodomain model in the heart domain are given by:

ﬁ al)m . .
T+ CnVm)=x(Cn =57+ lion (s )+ Fyrim) M

V. (0;,Vv,)+F+1)V-(6,,Vo,,) =0 2)

where the operators V and V- denote the gradient and the divergence operators respectively. The first equation is a
reaction-diffusion equation that translates the spatio-temporal propagation of the transmembrane action potential v,,
in the myocardium, where v,, is by definition the potential difference between the intracellular and the extracellular
medium, c,, is the membrane capacitance, y is the surface to volume ratio representing how much membrane surface
area is present per volume of cardiac tissue. i ;,, is a stimulation current that is only non-zero in the chosen region from
which propagation is initiated and i,,, the ionic currents exchanged between the two media. The elliptic equation (2)
expresses the conservation of charge across the complete cardiac domain and links transmembrane v,,, and extracellular
potentials ¢,,. This system is completed with an ordinary differential equation satisfied by the ionic variable u in order
to describe the evolution of ionic currents i;,,(v,,, )

Z—L;+f(vm,u)=0 (3)

where f is a scalar function that links variables v,, and u. An appropriate choice for defining f and i,,,(v,,, u) is
required in (1) and (3). Since physiological models are too complex to conduct whole heart simulations for the intended
application, phenomenological models are used instead. The oscillatory FitzHugh-Nagumo (FHN) model [25] adds
only one ODE equation of the type (3) to the system. It is continuous, analytically tractable and presents interesting
existence and uniqueness properties [26, 27, 28]. In addition, it presents the nice advantage of a graphical analysis of
its dynamics using a phase plane representation [29]. Moreover, it is capable of precisely fitting physiological action
potentials and has been successfully used in 3D cardiac propagation models [9, 30, 31]. Within the FHN framework,
function f(v,,,u) in (3) and the term i;,,(v,,, u) in (1) are defined as follows:

—b
—ke<M—du—b>, )
1
ap

< Um_b2>< Um_b2>
kcl(Um_bz) ap— 1- + kCZM(Um - b2) (5)

a a

S Wy 1)

iion(vm’ M)

where ay, ay, by, by, ¢y, cy,d, e and k, are non-physiological parameters, but their tuning can result in characteristic
shapes of cardiac action potentials of different tissues [32]. This system of equations is completed by the Laplace
equation in the passive torso, and boundary conditions that express the coupling between heart and torso:

nyy - (0;,Vv,,) = 0 6)
V-(e,Vg) = 0 7
nyr - (o, V¢p,) = 0 (8)
b = bex )

Nop - (Gtvd)l‘) Nz - (Gexvd)ex) (10)

where n;3, is the outward pointing normal to the heart surface, the symbol - denotes the inner product, o, and ¢, are
respectively the extra-cardiac conductivity and the extra-cardiac electrical potential, and n,; is the outward pointing
normal to the torso surface.

The Finite Element Method (FEM) was employed to discretize the system in space and an implicit Euler scheme
for temporal discretization. Equations (1) and (3) result in the following system to be solved at each time step in the
heart domain for the discretized versions of u and v,,:

I TCTQ) 11
. , B
D, v - AtDl(zion(vi,'l'),u(”+l))+lmm)=<At—1+ﬂAgin+chm (D (12)

Page 4 of 24



1 . . .
where u"*+1 and vE,',’Jr ) are vector versions of u and v,, at time n+ 1, whose i component corresponds to the values u

and v,, at node i of the heart mesh. A, is the so-called stiffness matrix, and D, and D, -are the so-called damping
matrices [33]. In order to solve the PDE system (11) and (12) at each time step n + 1, an appropriate initialization
and an initial stimulation needs to be applied to initiate the propagation process. To do so, the stimulation current i ;,,
is applied on a chosen node i,, in the exterior wall of the right atrium as the Sino-Atrial Node (SAN) region of the
designed heart. The complete procedure for solving the PDE system is given in Algorithm 1.

Algorithm 1 Algorithm for computing v,, based on the monodomain formalism

Initialization:
0 0 (0 0 ; , .
"fn) = vm’u( ) =u, lslim = 0’ lstim(lsan) # 0
Assemble matrices Agl_", D ren and D v
Compute the system matrix A = AI%A% +D,
forn=1:Tdo

if nAt > t,;, then
istim(isan) =0
end if

(n)
- —=b
U™ = "y Atke (—”m' 2 _du™ — b1>Vi € My,
i i a, i

(n+1) . (1) i
b= Dﬂmv,,': - AtD){ <lion(vr:: ’u(n+1)) + lstim>

Solve AvE:'H) = b through Cholesky factorization
end for
My, is the set of nodes indexes in the heart.

Now that transmembrane potentials v,, are available, the computation of extracellular potentials within the myocardium
and those of the rest of the volume can be completed. Multiplying % to (2) and adding (7) reflects the charge
conservation in the whole heart-torso domain:

V.(o,Vo,) + %V - (6;,Vv,) + pV - (6;,,V,,) =0 (13)

The discretization process leads to a linear system linking cardiac transmembrane potentials and potentials in the

whole heart-torso domain:
(n)
A- ex - p
(o2 ¢§n) 1 + ﬂ

where (I)ff;) and ¢£") are the discretized versions of the continuous variables ¢,, and ¢, respectively, and where A; is
the stiffness matrix of the whole heart-torso volume. & is an equivalent conductivity that equals fo;, in H and o, in
T.

The solution of the system (14) can be only determined to within an arbitrary additive constant. Indeed, A; is
one-rank deficient and its kernel is given by the space of uniformly valued vectors. A physical explanation is that any
uniform potential distribution over the entire domain satisfies the conservation law since the resulting current equals
zero. To overcome this problem, one solution is to set a potential reference at a chosen node of the volume mesh, which
reduces the system size (originally N X N) to (N — 1) X (N — 1). Finally, the standard 12-Lead ECGs are computed
from the values of ¢,.

A ™
Ay, Um ] (14)

0

2.2. Model reduction & parameter identification

2.2.1. Optimization problem formulation

Model parameter description: Although the FHN model is a controllable oscillatory tool for generating various
action potential shapes in the isolated cell, it is another matter when integrated in a 3D reaction-diffusion model. The
number of parameters is high and their manual tuning is laborious. An automatic procedure to define parameter values
of the whole model, that produce ECGs that are close to a known sinus-rhythm reference ECG, was proposed. The
ECG signal can be decomposed into three waves resulting directly from the cardiac depolarization and repolarization
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wavefronts: the P wave, the QRS complex and the T wave that have known characteristics in the case of normal rhythm.
This can help defining a measure of correctness of the ECGs simulated by our model. Let us denote by p the set of
parameters to identify, namely the FHN model parameters defined in (5) and (4), completed with c,,, the conductivity
of each region, and y:

p= {Gini’ X>Cmj» A1) 2, by €155 €25, djy €, ki}

where i is the index of the considered region. It is noteworthy since the new design model is isotropic and regionally
homogeneous, the conductivity tensor o;,; reduces to a scalar parameter to be identified for each region, namely atria,
AVN, bundle of His, bundle branches, endocardium/PF, midmyocardium and epicardium. Regarding the parameters
a, and y, they are assumed to take the same value for all regions of the heart. In fact, y is the surface to volume ratio.
It is more related to the mesh resolution rather than cardiac regional characteristics. Regarding a,, the justification
comes from the fact that this parameter regulates action potentials amplitude, which is supposed to be roughly the
same (around 30mV) everywhere in the healthy heart. The equal anisotropy parameter § is not identified. Indeed, it
is a scaling factor that is independent from space and thus the considered region, and whose influence is absorbed
in the value of 6;,. Moreover, the epicardium parameters have been forced to take the same values as those of the
endocardium, with the exception of parameter e, which primarily regulates action potential duration. This parameter is
denoted e,,,; for the epicardium. Indeed, it is assumed that the potentials of inner and outer layer of the epicardium to
be of the same shape but with different durations. The resting potential parameter b,; is fixed to —85mV" for all regions.

The proposed cost function: An appropriate cost function needs to be defined in order to solve the underlying
optimization problem. Our approach consists in maximizing a similarity measure between a real ECG denoted ecgrle 7
and the one simulated by our model ecg? (p), constrained by the signal waves durations and relative amplitudes. Then,
a suitable cost function, based on the normalized scalar product between the two signals, was defined. Apart from
providing a similarity measure, this choice also overcomes scaling issues. Equality constraints are imposed based on
features measured on the target ECG. The chosen features are: the durations of the P wave (c;ef ), those of the QRS

complex (c;ef ), those of the T wave (cgef ), those of the PR interval (cff ), the maximum peak amplitude ratios between

the QRS complex and the P wave (cgef ), and that between the QRS complex and the T wave (cgef ). Fig. 2 shows the
reference ECG and the corresponding features.

1-
QRS[)eukt Cre r QRSpaaA'
5 7 Phak
]
"g I})fi(lk
=1
20.5
g
oy
'-8 -Ppeak
N
R
é ref
S G
g ref _ QRS
G = Ot
_05 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450
Time (ms)

Figure 2: Target ECG signal and its features (lead 1)

The optimization problem can then be expressed as follows:

2
| (ecer(p).ece)” ) |
p* = argmin 1- o7 (15)
p llecg(P)2llecg, ™ |15
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s.t.: c(p)=c"/

where (-, -) and || - ||, denote the inner product and the #,-norm respectively. ¢"¢/ = [cief ...cgef ]is the vectorized form
of the features defined above, and c¢(p) those measured on the simulated ECG with parameter set p. The minimization
problem (15) can be re-expressed as the unconstrained minimization of a modified Lagrangian function defined by:

2
(< ecg;(p),ecg™ >) o y
Lpa) = <1— | + Y e =) (16)
[lecg;(P)ll2llecg, " Il i=1

where the so-called Lagrange multipliers a = («;);e;, ) Were empirically fixed at values that ensure the same order
of magnitude between these non-homogenous constraints.

2.2.2. Model reduction
Since the proposed model depends on many non-physiological parameters whose influence may be negligible in the
simulation of cardiac propagation, it is of interest to perform a sensitivity analysis of the presented model with respect
to its input parameters. This way, the parameter set on which the model depends can be reduced in order to only keep
parameters that are the most influential in the parameter identification process. Among sensitivity methods, screening
approaches consider several inputs configuration and evaluate the effects on the outputs when elementary perturbations
are applied on the inputs, for each configuration. Thus, they present the advantage to provide information about how
model parameters influence the outputs and how they interact with each other, with a reasonable computational cost.
One of the simplest and most popular screening approaches is the Morris method [13]. It is a one at the time approach
that is well adapted when the model depends on a high number of parameters. Let us consider the model output L that
depends on the set of parameters p = (py, p,, ..., pp). a regular grid that partitions each parameter variation domain into
L levels, and an elementary displacement 6 in the grid that is the same for all parameters. The first step of the method
is to define random trajectories in the parameter space in which only one parameter at the time is varied. This consists
in sampling a random point p© in the defined grid. From this point, only one parameter pgo), ie{l,.., P}isvaried by
8 to create a new point p(). From p(! this operation is performed for the remaining parameters. This results in P + 1
points such that only one parameter varies between pt~1 and p”. This scheme is then repeated for R — 1 different
starting points so that W trajectories are created. Thus, for different parameter sets p(i’j )i e {0,...,P},je{l,..,¥}),
the computational cost for the Morris method is given by ¥ X (P + 1). The second step consists in evaluating each of
the created parameter sets by the model and computing output variations corresponding to elementary displacements.
The variation of the model output for an elementary displacement in parameter p; (i € {1, ..., P}) in the j*™h trajectory
(G €{1,..,¥})is given by:
40D = E(p(kivj)) _ E(p(ki_l’j)) (17)

where k; and k; — 1 are the indexes for which only p; varied between p*~1/ and p*/. The third step consists in
computing the mean y; and standards deviation o; of elementary effects on all trajectories, for each parameter p;.
These quantities are given by:

¥

LY
_ 1 W)« 5= |1 1 2
ui—@;m | o= @j;(d@-ﬂ—ui) (18)

Finally, a graphical analysis where y; is reported on the x-axis and o; on the y-axis enables to distinguish between
parameters with low influence (close to the origin), parameters with linear influence on the output (close to the x-axis),
parameters with non-linear influence or with strong interaction with others (close to the y-axis). This way, the set p is
reduced to a subset p’ containing only parameters with high influence, which considerably reduces the complexity of
the identification procedure.

2.2.3. Parameter identification

The optimization problem addressed in our context is non-convex, non-linear, non-differentiable and does not have
a unique solution. Indeed, the studied system is weakly observable, meaning that the internal states (cardiac signals)
cannot be inferred directly from only one or only few target ECGs. The purpose here is to find a solution that is satisfying
regarding the constraints that have been imposed in equation (15). An appropriate algorithm for solving this problem
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is one that does not require the existence of the derivative of the cost function with respect to parameters, adapted to
complex problems with potentially multiple local optima, and robust. For these reasons, heuristic-based approaches,
particularly Evolutionary Algorithms (EAs) [34, 35] are more suitable than classical deterministic algorithms. EAs are
guided random search approaches that originate from genetic algorithms [36].

Evolutionary Algorithms (EAs) are inspired by the evolution theory in which the strongest organisms are the ones
that survive in the future generations. It was supposed that the solution of problem (16) could be encoded by a set
of parameters, called genes. Each set p is represented by a vector of genes called chromosome. A generation can be
defined by a population of several chromosomes. Following the principle of the survival of the fittest, the algorithm
starts from an initial population Pop, of N chromosomes p{), J € {1..N}. Then, it evolves from one generation Pop,_,
to the next Pop, through genetic operations referred to as mutations and crossovers. These operations are applied to a
subset of Pop,_;, giving birth to new chromosomes Pop?_ |- Only the N fittest chromosomes in Pop;_l and Pop;_,;
are kept to constitute the next population Pop;. In the original definition of genetic algorithms, genes are discrete
values encoded in one bit. EAs are an extension to this concept in which genes are real valued. This entails defining
an appropriate variation domain with an upper and a lower bound for each parameter. Convergence and robustness
properties of EAs strongly depend on the cost function, the appropriate encoding of individuals, and the choice of
genetic operators (see [37] for further reading). A pseudo-code of the used EA is given in Algorithm 2.

Algorithm 2 EA pseudo-code
Initialization: Provide a population Pop, of N individuals and evaluate their associated cost
i=1
while i < N,,141i0ns 4O
Select the best individuals from Pop;_,
Create new individuals Popl’._1 using crossover and mutation
Evaluate each individual of Popl’._1
Create Pop; by keeping the N best individuals of Popl’A_1 U Pop,_,
i=i+1
end while

2.3. Inverse problem
Here, the epicardial source model is used for solving the inverse problem. Thus, the discretization of the forward
problem using FEM yields the following linear system:

x=Gs"+e (19)

where x € RM*1 is the vector of ECG potentials measured by the M sensors placed on the torso surface, s* € RVX!
is the vector of heart surface potentials where N is the number of nodes on this surface, G € RMXN is the transfer
matrix linking the sources s* and the observations x, and e an additional white Gaussian noise. The inverse problem of
ECG consists in finding s* given x and G. This problem is ill-posed and Tikhonov regularization has been extensively
used to minimize solution instability associated with this. It consists in finding the optimal § such that:

>
I

argmin %||Gs*—x||§+i||Rs*||§ (20)

s

= (GTG+RTR)'G"x (21)

where R € R™N is the regularization operator matrix. R can be the identity matrix I (zero order regularization)
which limits the total magnitude of the solution, the spatial gradient operator V (first order regularization) that limits
the solution steepness, or the spatial Laplacian operator L (second order regularization) that restricts steepness change.
V maps the node space onto the edges space and plays the role of a spatial gradient by computing the amplitude
difference between two nodes belonging to the same edge in the generated mesh. The Laplacian is defined as the
difference between two neighboring edges. The notion of numerical neighborhood between two edges is considered
in the sense that neighboring edges are all the couples of edges sharing one node. The first term of (20) is the data
fidelity term, the second term is a regularization term that tends to constrain the magnitude of the solution or a linear
transform of it, and 4 is the so-called regularization parameter that represents the trade-off between data fitting and the
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amount of regularization. The choice of the regularization parameter value is critical in regularization-based methods.
Several classical methods attempt to provide a balance between the residual norm and the regularization weight. The
most popular approaches are L-curve [19], U-curve [15], CRESO [16], GCV [17], RGCV [18] and DP [20].

For each of these methods, a panel of solutions is computed for a dense grid of A. For each 4, § has to be computed
and thus GT G+ ART R has to be inverted, which is time consuming and is subject to numerical errors. Thus, to analyze
these different methods, the Generalized Singular Value Decomposition (GSVD) of the matrix pair {G,R} [17, 14] is
used and an underdetermined case (M < N < T)is considered, such that:

G=P[0 Z.]z7", R:Q[g 20]2—1
N

where P and Q are orthonormal matrices, and Z is nonsingular. The regularized solution (21) can be written as:

M 2 T

——Zi-(M-N
i=1 ‘L-iz"'}L o ( :

where o; and ¢; are the i’ diagonal elements of - and ¢ respectively, 7; is the i"" generalized singular values o, /¢;,
and p; and z; are the i columns of P and Z respectively. The two terms of the equation (21) can be rewritten as:

M 2
20 RsI2=Y =2 ) (p'xp 22
7(A) = |IRS|3 2<72H> (] x) (22)

i=1 i

M 2
201 G5 —x|2 = A Ty 23
p*(A) G — x|12 Z<72+z> (P! x) (23)

i=1 i

The advantage of the GSVD is that § does not need to be computed for each A for the computation of p? and 7.
Consequently, the computations are simply much faster than when computing matrix inverses.

2.3.1. Optimal criterion

It is the most straightforward method for choosing the regularization parameter. This method consists in minimizing
the Relative Error (RE) between the exact epicardial solution s* and each of the regularized solutions § obtained by
testing values of A in a defined dense grid.
lls* =3l

lls*l2

This method is clearly not feasible in practice since it requires the knowledge of the true solution but is convenient
when the purpose is to evaluate inversion methods performance using simulated data.

RE(}) = (24)

2.3.2. L-curve
The L-curve plots the regularization norm || R5||, against the norm of the corresponding residual ||G'S — x||, in a
log-log scale, both calculated for several regularization parameters A. The optimal regularization parameter, 4, is found
in the corner of the curve:
L(4) = (log p(4),log n(4)) (25)

A corresponds to the maximum curvature function defined as:

_ PR~ B )
AT 20

where p = log(p), fi = log(n), (") and ("’) denote respectively the first and second order derivatives with respect to A.

2.3.3. U-curve
This method plots the sum of the inverses of both the squared norm of the regularized solution, 72, and the squared
norm of the residual, p?, as a function of 1 in a log-log scale:

1 1

UA) = —— + ——
@ pXA) (A

27
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The U-curve is characterized by a decreasing part followed by an increasing part. A is lying the corner between these
two parts, and it corresponds to the maximum curvature point of the U-curve.

2.3.4. Composite REsidual and Smoothing Operator (CRESO)

The CRESO looks at the regularization parameter corresponding to the changes concavity at the first local
maximum of the derivative of the difference between the penalty term and the squared norm of the residual B(4) =
A(A) — p2(A). It is calculated as follows:

B
9BA) _ oy = (A + 2/1 2(/1) (28)
dA
2.3.5. Generalized Cross Validation (GCV)

This method is based on the prediction of the observations arbitrarily excluded in the computation of regularized

solution with the retained observations. So 4 is chosen such that it minimizes the following generalized prediction

error function: 5
A
GCV(3) = %) (29)

<M Z, 12 +,1>2

2.3.6. Robust Generalized Cross Validation (RGCYV)

It has been shown that GCV can be unreliable for small or medium values of M, sometimes giving a low estimate.
Therefore, proposed a new method making GCV more robust, involving a robustness parameter y € [0, 1], and an
approximate measure of the influence of each estimated point 5, u(4). The method consists of minimizing the following
function:

RGCV(A) = [y + (A = u(HIGCV () (30)

#2 i

where p(1) = trace[(GG™)*] = Zl ¥ +/1)2
2.3.7. Discrepancy principle

The discrepancy pr1n01ple is a method that determines a value for ¢(4) when the noise variance is available. It states
that satisfying solutions, 4, are the ones lying in the set { p%(1) < ¢}, where ¢ is computed from the noise variance.

3. Results and Discussion

This section first describes sensitivity analysis results and how they are exploited in order to reduce the set
of model parameters. Then, quantitative and qualitative results in terms of convergence of the EA, 12-Lead ECGs
shapes and characteristic features, action potential shapes and activation time mappings are provided and discussed.
Three scenarios simulated by the obtained model are presented: one sinus-rhythm case, one ischemic case and one
Ventricular Tachycardia (VT) case. Finally, the performance of Tikhonov-based regularization methods to solve the
inverse problem on the presented scenarios are compared. A particular discussion will be focused on the choice of the
regularization parameter.

3.1. Model reduction

To perform a sensitivity analysis of this model, a number of trajectories ¥ = 370 and a number of levels in
each parameter variation grid L = 50 and a value of ¢ that represents two unitary displacements have been chosen
in the uniform grid. In order to assess the robustness of this approach regarding the chosen ECG reference, the
sensitivity analysis has been performed with respect to five different sinus-rhythm ECG references (lead II) obtained
from physionet [38] that have been filtered and resampled.

The obtained sensitivity graphs are presented in Fig. 3 and are categorized by region for better visualization. Note
that both endocardium and epicardium parameters are represented in the same graph entitled "ventricles" because they
have the same values for both regions, except for parameter e,,;. Note that the sensitivity graph of each regions is
obtained by projecting the graphs obtained for five different model outputs (five ECGs) on a same 2D map.

A first global remark is that the instances of a symbol with different colors are located closely to each other on
the graph. This leads to think that model sensitivity with respect to the selected parameters and cost function does not
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depend on the chosen reference ECG. Another global remark is that most of parameters are not close to the ordinate
axis, which means that their optimal value with respect to the cost function cannot be determined independently from
other parameters. Regarding parameter relative behavior, parameter y has the major influence on the model. Indeed, this
parameter has a major influence on the velocity of the electrical wave and thus on the overall shape of the synthetized
ECG. The same reasoning explains why membrane capacitance c,, and conductivity ¢ are of high influence. One can
also notice that the level of influence is different depending on the considered heart region. The reason may be in the
difference of roles of the different regions regarding the cost function: atria activity is linked to P wave amplitude
and duration, purkinje fibers and ventricles intervene in the QRS complex and the T-wave, and other regions operate
mainly on the delay between the P wave and the QRS. Based on this sensitivity analysis, two major conclusions can be
drawn: i) it is an encouraging indicator regarding the validity of the defined cost function (15) and ii) some parameter
influence can be neglected regarding ECGs simulated by this model.

In order to reduce the complexity of the parameter identification problem (see next section), the parameter set p
has restricted to a subset p’ containing only parameters with high influence. To do so, an empirical threshold of 45%
of the maximum mean and standard deviation in the sensitivity graph has been chosen, and retain only the parameters
whose mean and standard deviation exceed this threshold. These parameters correspond to the outside of the light
brown quadrant in Fig. 3.

3.2. Parameter identification

The simulated surface ECGs are obtained following three main steps, which are: define a variation domain for
each parameter in p, identify the best parameter vector p*, and obtain the corresponding cardiac mapping. In the
first step, a variation domain for each parameter in p is defined. Indeed, in order to run an EA, a prerequisite is the
definition of the variation domain for each gene. To do so, a local study for each parameter is conducted. A large range
of values for each parameter was predefined for a given vector set p. Only one parameter was varied in its predefined
range and Algorithm 1 was run until a degenerate solution is found. This is done successively for each parameter. The
upper and lower values for which degenerate solutions are obtained are taken to be the upper and lower bounds of the
corresponding parameter variation domain.

Regarding the second step, Algorithm 2 is now run for 100 generations and 200 chromosomes in order to identify
the best parameter vector p* according to the cost function (16). The mutation probability is set to 0.25 and the selection
rate to 8%. The initial generation was constituted of 38 manually chosen individuals, and the other 162 are randomly
chosen in the space of p. After initialization, parameters with low influence on the basis of Fig. 3 are fixed to values
that are associated with the best cost and remain unchanged in the rest of the identification process. This way, only
the subset p*' is subject to genetic operations in the course of the EA. Algorithm 1 using the optimal parameter set p*
to obtain and visualize the corresponding cardiac mappings, and solving (14) to compute the 12-Lead ECGs. Fig. 4A
shows the boxplot of cost values variability (y-axis) through generations (x-axis). The red bar indicates the median of
cost values at each generation, and the bottom and top edges of the box indicate 15 and 3¢ percentiles respectively.
The whiskers above and below the boxes show the locations of minimum and maximum cost values, and outliers are
plotted in grey ’+’ sign. A rapid decrease in the median cost occurs in the first generations and reaches a minimum
cost of 0.13 in generation 100. The first generation contains randomly selected chromosomes in the variation domain
of p. This population contains parameter sets that are inadequate and produce infinite costs. It is interesting to see that
these cases are rejected starting from generation 2. One can also notice that cost values are very close and don’t evolve
between generations 32 and 44, but a jump occurs around generation 44. This leads to think that the algorithm went
out of a local minimum and that it is capable of exploring better solutions.

The last step consists in running Algorithm 1 using the optimal parameter set p* to obtain and visualize the
corresponding cardiac mappings, and solving (14) to compute the 12-Lead ECGs. In order to assess the model reduction
relevance, Fig. 4B shows the reference ECG (plain blue), the best solution provided by the EA when the sought
parameter set is reduced (p*l plain red) and when it is not (p* dashed yellow). Indeed, the results was completed
by running the EA without reducing the set p*. Clearly, the synthetized ECGs have the same characteristic shape,
which supports the idea that the proposed model reduction is relevant. One can see that duration constraints have been
respected, as well as the general characteristic shape of the P wave, QRS complex and the T wave of the ECG signal.
This is confirmed quantitatively by a correlation value that reaches 88%. Note that adding an additional layer to the
ventricles in the heart geometry enables to produce a T wave with an appropriate duration because of the difference of
repolarization times between the ventricular layers. Without the additional ventricular layer, the repolarization wave
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Figure 4: (A) Cost values evolution through generations. (B) Normalized ECG estimated by the EA (dashed yellow), best
solution (plain orange) and reference ECG (plain blue). (C) Action potentials in the different cardiac regions.

in the ventricles would naturally be of the same speed as that of depolarization, which would give a much sharper,
unrealistic T wave.

3.3. Physiological relevance

In this section, the simulation results in a normal scenario and two pathological scenarios (ischemia and ectopic
VT) are analyzed. Ischemia is a disorder of cardiac function caused by insufficient blood flow to the heart’s muscular
tissues. It can lead to myocardial infarction, i.e. the death of myocardial muscle tissue. Tissue death implies that cells are
no longer able to generate action potentials !. Here, ischemia was simulated by forcing action potentials in a delimited
region of the right ventricle to remain at resting levels. Regarding the VT disorder, it is typically characterized by
irregular contraction of the heart originating in the ventricles, preventing the heart from filling properly. It occurs
when an electrical focus additionally to those in the SAN emits impulses. Two mechanisms can be the origin of VT:
1) abnormal automaticity where cells in the ventricle become self-excitable and act as pacemaker cells; ii) scar related
where most of scar area in the heart is dead and is thus electrically no conducting but some narrow electrical pathways
form one or multiple mini re-entrant circuits spontaneously within the ventricular myocardium. In our case, the ectopic
VT was simulated by forcing a stimulation at the apex, which causes a premature contraction of the ventricles.

Fig. 10 displays the Local Activation Time (LAT) mappings corresponding to the associated action potentials, and
the 12-Lead ECGs. LATs are calculated from action potentials upstrokes. LAT mappings provide valuable functional
and structural information about the initiation and the propagation pattern of cardiac electrical activity. It can be
seen in the case of sinus rhythm (blue) that the general shape of action potentials and their durations globally match
physiological knowledge. Only bundle branches action potentials are quite long compared to their average normal
duration. In fact, since it is a relatively small region in the heart domain, action potentials duration in this region do
not contribute much in the ECG shape. Information about their repolarization phase is difficult to integrate in the cost
function and any variations in the repolarization phase of this region will not influence the simulated ECG shape.
However, the depolarization wave speed is important and is well identified since it regulates the PR interval, which is
a feature that is integrated in the cost function. Although the identification process was performed only in lead I, the
general shapes of the rest of the 12-Lead ECGs agree well with morphological sinus-rhythm ECGs in terms of polarity
and durations: the P wave polarity is positive in all ECGs except in aVR, and its duration is normally less or equal to
110ms. The QRS complex is represented by a positive deflection with a large, upright R in leads I, II, V4 - V6 and a
negative deflection in aVR. Its duration is less or equal to 120 ms. The ST segment is isoelectric, sloping upwards to
the T wave. The T wave polarity is the same as that of the QRS except in V2. In the ischemic scenario (orange), it can

Icharacteristic wave formed by the exchange of ions between the inside and outside of the nerve cell
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be seen that the action potentials are quasi similar to those of sinus rhythm, except for the electrically passive region
that simulates the infarct. On the LAT mapping, the blue part in the atria is the SAN region, whereas the blue part in
the ventricles represents the area without electrical activity. In the ECG, an elevation of the ST segment in leads I, III,
aVL, aVF V1 and V2 is clearly visible. These findings match their clinical usage as a diagnostic criterion of myocardial
infarction. Concerning the ectopic VT scenario, action potentials in the atrial region are electrically inactivated. On
the LAT mapping, the blue part in the ventricles represents premature stimulation at the apex, whereas the blue part in
the atria corresponds to their inactivation during the cycle. On ECGs, the P wave is non-existent with a successive of
QRST waves. Furthermore, the QRS complex is of less amplitude than the first healthy beat and is larger.

12-Lead ECGs and key instants (lead 11)
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Figure 5: Local activation times with action potentials, simulated 12-Lead ECGs and key instants selected from Lead Il
for (A) sinus-rhythm and ischemia scenario, and (B) tachycardia scenario

3.4. Inverse problem simulations

In this section, numerical experiments conducted on data generated by the proposed model using different variants
of Tikhonov-based inverse methods are described. More precisely, seven popular methods to choice the optimal
regularization parameter were evaluated.
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3.4.1. Performance evaluation

Several criteria are used for the evaluation of the performance of the tested methods. The first one is the Relative
Error (RE), which is calculated from the estimated solution §(/10p,) and the exact one s*, in the same way as the optimal
criterion (see (24)). The closer to zero the RE is, the better the performance is. The mean and the standard deviation
of RE are calculated over 50 Monte Carlo (MC) simulations. Then, a success rate is calculated for each method by
computing the number of times each algorithm returns a value between 0 and 1 for the RE. In addition, the behaviour
of the methods through epicardial potential reconstructions mappings for a specific MC run has been illustrate. Then,
the performance of the methods is quantitatively and qualitatively evaluated with the ground truth through all these
criteria.

3.4.2. Data simulations

Simulations are performed on an ellipsoid heart and torso, where a tetrahedral mesh was generated. It must
be noticed that, the level of refinement for the heart and torso meshes was fixed in order to have an adequate
accuracy/complexity trade-off. Indeed, a mesh convergence analysis was performed by varying the number of nodes
in the epicardial volume. In accordance with [8], from a certain threshold where the mesh was no longer considered
coarse, the refinement of the mesh does not affect the generation of the 12-Lead ECGs, but increases the computation
time. For instance, 6 shows the ECG of the Lead I for 4374 nodes (plain blue line) and 19830 nodes (dashed red
line). It can be seen that, the generated ECGs are highly correlated. Thus, in our context, the heart domain mesh
contains 4374 nodes (leading to 17418 elements) and 256-body surface measurements are randomly selected. As
pointed before, three different scenarios has been simulated and a 10 dB additional white noise was considered for
each of them. The variation grid for parameter A takes 500 logarithmically equally spaced points between 10~2* and
10%. The experiments are conducted on all instants of the ECG signals, but the results will focus on different key instants
selected from lead II of the standard 12-Lead ECGs as shown in Fig. 10. Points 1 and 2 represent atrial depolarization
(atrial contraction), points 3, 4, and 5 represent ventricular depolarization (ventricular contraction), while points 6 and
7 represent ventricular repolarization.

4

=10

—heart nodes : 4374
— — heart nodes : 19830

Lead |

0 100 200 300 400 500 600
Times (ms)

Figure 6: Comparison of two levels of refinement on the Lead |

3.4.3. Choice of the regularization operator

The first step in solving the inverse problem was to choose the regularization operator R, i.e. I, V or L. Fig. 7
presents the RE values as a function of 4, at instants 1 and 3 of a sinus thythm for the identity, the gradient and the
laplacian operators. 4, was chosen based on the optimal criterion defined by (24). Results are in general slightly better
when the gradient (R = V) is used. Thus for the rest of the study, R = V.
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Figure 7: RE curves for the three-regularization operators R = I (blue), R =V (orange) and R = L (purple) for instances
1 and 3, for the optimal criterion method

3.4.4. Regularization parameter calculation

The seven methods mentioned above was applied for the choice of the regularization parameter, namely: optimal
criterion, L-curve, U-curve, CRESO, GCV, RGCYV and DP. For example, Fig.8 depicted the curves of these methods as
function of A for time instant 3. It can be seen that the automatic choices of the regularization parameter (1) is recovered
at the desired location, i.e. at the corner of the L-curve, at the first local maximum for CRESO, at the minimum of the
functions for U-curve, GCV and RGCYV, and finally at the intersection of the two curves for the DP. Note that, for the
U-curve method, the optimal ] is different then those of the other methods.
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Figure 8: i estimated using (A) L-curve, (B) U-curve, (C) CRESO, (D) GCV, (E) RGCV and (F) DP for time instant 3

Fig. 9A shows a box plot representing the success rate for the different methods computed over 50 MC runs.
The first remark is that, for the L-curve, U-curve and CRESO methods, the results are poor (the median is lower
than 60 %), i.e. they do not always succeed in determining an appropriate regularization parameter . Among the
other methods, the RGCV and DP algorithms offer quasi-equivalent behaviors with respect to the optimal criterion
and perform better than the other approaches with a quasi-perfect success rate. Regarding GCV, it gives intermediate
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Figure 9: (A) Box plot of success rate for the 7 methods. (B)-(D) Graphical representation of mean of RE and success
rate for optimal criterion, RGCV and DP methods in the case of sinus-rhythm

results with a median success rate greater than 85% and a small disparity. This first experiment clearly shows that the
RGCYV and DP algorithms, as the optimal method, provide less aberrant results than the other techniques in the studied
context. Therefore, for all subsequent experiments, only the RGCV and DP methods will be considered.

Fig. 9B-D show the RE as a function of time (blue), as well as the success rate (red). Notice that the error curve,
whatever the method, is inversely proportional to the ECG amplitude. This is due to the fact the power noise is the
same for all instants. In other words, the SNR varies as a function of the ECG amplitude. Globally, RGCV and DP
behave as the optimal method. More particularly, DP is a bit more efficient than RGCV: the RE of RGCV and DP,
averaged over the 400 time instants, are equal to 0.75 and 0.62, respectively. In Fig. 11 (in Appendix), an example of
epicardial mapping of the reference and the estimated solutions using optimal criterion, RGCV and DP are depicted
for all time instants. The estimated mappings are globally in line with the quantitative results: optimal criterion, RGCV
and DP give quasi-similar performance. Moreover, results obtained at time instant 3, 4, 6 and 7 are very close to the
reference whereas the solutions obtained at instant 1, 2 and 4 do not correspond to the reference. As pointed before, this
is essentially due to the fact that the local SNRs of instants 1 and 2 (atrial contraction), and 5 (at the level of S-wave),
are lower than that of the rest instants.

3.4.5. Investigating pathological cases

This section can be viewed as a proof of concept, where the interest of the proposed method heart-torso to
validate the ECGI methods for different pathological cases is highlighted. To do so, three previous pipelines (Tikhonov
regularization combined with the optimal criterion, RGCV and DP) are applied on two pathological scenarios, namely
ischemia and ectopic VT. As for the first experiment, the global SNR is set to 10 dB and the number of MC runs is fixed
to 50. In both scenarios, the results presented in Fig. 10 are in line to those obtained on the sinus rhythm. Indeed, RE is
inversely proportional to the local SNR. The global RE of RGCV and DP, averaged over all time instants, are equal to: i)
0.75 and 0.65 respectively for the ischemia, and ii) 0.71 and 0.47 respectively for VT. These results are also confirmed
when visualizing an example of estimated epicardial mappings (Fig. 12 and Fig. 13 in Appendix). For instance, the
visual inspection of the estimated mappings at time instant 5 (Fig. 12) shows clearly that the computed inverse solutions
are not able to precisely delineate the ischemic region, whatever the used pipeline. This can be explained by the fact
that the Tikhonov regularization leads to a blurred solution, which is not expected in the ischemic case. As far as the
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Figure 10: RE and success rate for the optimal criterion, RGCV and DP methods in the case of (A) ischemia and (B)
ectopic VT

VT scenario is concerned, it can be seen that the estimated mappings of instants 3 and 6, which have very little energy,
are note satisfactory whatever the used inverse method.

In the ectopic VT scenario, Fig. 10(B) shows that for instant 6, where the SNR is very low, performance is poor
in both RE and success rate whatever the method is used. For the rest of the instances, the averaged RE results are
relatively good, but with worse performance for instant 3 due to its SNR. The mappings (Fig. 13) show that the results
returned by RGCV and DP are also quasi-similar for VT. For the instants 3 and 6, which have very little energy, the
results are poor. Indeed, while no or very little energy is expected at the level of the atria, the reverse reconstruction
shows electrical activity. Fig. 12 and Fig. 13 are appended in Annex for sake of place.

4. Limitations

Even if the obtained results are interesting, the proposed framework has some limitations. Clearly, there are some
downside concerning the shape of the S and T waves. It could be observed that the amplitude of the T wave in the
simulated ECG is much higher compared to the reference. This can be explained by a strong gradient between the
ventricular layers. Indeed, since the action potential duration does not vary smoothly in the ventricular region as
the repolarization front moves from the epicardium to the endocardium, an abrupt potential difference occurs in the
boundary separating the layers, causing a T wave of higher amplitude. Note that adding an additional layer to the
ventricles in the heart geometry therefore enables to produce a T wave with coherent duration. Without the additional
ventricular layer, the repolarization wave in the ventricles would naturally be of the same speed as that of depolarization,
which would give a sharp T wave as one can observe in [9]. In addition, the used of a geometry where both ventricles
have the same size (which is not the case in practice) can also leads to a non-perfect shape of T-wave. As for the S wave,
the influence of the electric axis of the heart is not studied in this work, which can explains its amplitude difference
with the reference. Another limitation of this study is that sensitivity analysis is performed only for a sinus rhythm,
it could be extended to other scenarios to explore model parameters that may be related to pathological cases. This
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could improve the simulation of certain cardiac pathologies. Finally, the parameters identification, proposed for only
one ECG lead and for a fixed resolution mesh, can be improved by exploiting more ECG leads and using several mesh
finesses.

5. Conclusion and perspectives

This paper provides a simplified, fast, controllable and evolving 3D heart torso model, intended to perform
quantitative evaluations of inverse methods on simulated data. The exploitation of the monodomain formalism and
the FHN phenomenological model allow for a fast generation of ECG signals. Region-dependent model parameters,
characterizing the electrical properties of the main anatomical structures of the heart are used in order to well represent
the propagation of cardiac electrical activity. This study details the parameter identification process that has been used
in order to generate ECG signals that best fit a given ECG reference. It is shown that, by proposing an adequate
cost function it is feasible to reproduce the main temporal features and the general aspect of an observed real ECG.
A sensitivity analysis of the monodomain model with respect to its parameters is also given to identify the FHN
parameters having the highest influence on the generated cardiac electrical activity. This identification process succeeds
in giving the same solution when only these highly sensitive parameters are identified, and also suggests that the
results are reproducible for different healthy ECGs. Moreover, it is noteworthy to mention that the use of the FEM
formalism allows us to consider anisotropic structures and the simplified geometry offers the possibility to easily study
the influence of some modeling errors over the ECGI method performance, such as errors due to the considered mesh
resolution. Finally, using this model, it is possible to consider several source formulations when dealing with the inverse
problem. Indeed, it provides volumetric transmembrane potentials as well as epicardial potentials.

The second part of the paper presents a comprehensive study of Tikhonov regularization-based methods for solving
the ECG inverse problem and shows the utility of such a low-resolution 3D model to evaluate the performance of ECGI
methods. More particularly, the influence of the considered methods for choosing an adequate regularization parameter
is studied and the results show that the Tikhonov method with RGCV or DP are more efficient in the studied context.
Note that the RGCV method has already been identified as an efficient method to estimate the penalty parameter [14].
The application of the best inverse pipelines on realistic pathological activation patterns, such as ischemia and VT
underline the interest of the proposed model to analyze the behavior of inverse methods in different situations. For
example, it has been shown that the Tikhonov regularization-based methods do not succeed in the case of lower SNR
values and/or pathological ECG signals. All obtained results demonstrate that the proposed low-resolution 3D heart
torso model is an interesting and promising signal generator in the context of ECG inverse method evaluation.

According to the limitation section, some perspectives of this work can be distinguished between the cardiac
modeling part and the inverse problem part. Regarding the modeling part, the sensitivity analysis could be extended in
order to explore model parameters that can be linked to pathological cases. This can serve to better identify the model
parameters for simulating certain cardiac pathologies. In addition, as mentioned previously, only one ECG lead (lead
II) and one fixed mesh resolution are exploited to identify the optimal parameter set that generate the more realistic
EGC:s. Further improvements will consist in studying the influence of both the number of the reference ECG leads and
the resolution mesh used to maximize similarity measure between a real ECGs and the ones simulated by our model.
This could lead to the generation of a more accurate ST-segment. Regarding the ECG inverse problem, further work
is warranted on investigating the behavior of other approaches for solving the ECG inverse problem.
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Appendix: Mapping figures
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Design of a simplified, fast, controllable and evolving 3D heart torso model
Identification of the most influential hyperparameters using a genetic algorithm
Ability of the model to simulate several cardiac electrical behaviors

A useful tool to evaluate the ECG problem inverse techniques



A reduced complexity ECG imaging model for regularized inversion optimization

Objectives

To propose a simplified, fast and evolutive model capable of simulating various scenarios of
cardiac mappings in order to evaluate and compare the performance of inversion methods.
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Conclusion

The results demonstrate that the proposed low-resolution 3D heart torso model is an
interesting and promising signal generator in the context of ECG inverse method evaluation.
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