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A B S T R A C T
The resolution of the inverse problem of electrocardiography represents a major inter
the diagnosis and catheter-based therapy of cardiac arrhythmia. In this context, the a
to simulate several cardiac electrical behaviors was crucial for evaluating and comp
the performance of inversion methods. For this application, existing models are eith
complex or do not produce realistic cardiac patterns. In this work, a low-resolution heart
model generating realistic whole heart cardiac mappings and electrocardiograms in health
pathological cases is designed. This model was built upon a simplified heart-torso geometr
implements the monodomain formalism by using the finite element method. In addition, a
reduction step through a sensitivity analysis was proposed where parameters were iden
using an evolutionary optimization approach. Finally, the study illustrates the usefuln
the proposed model by comparing the performance of different variants of Tikhonov-
inversion methods for the determination of the regularization parameter in healthy, isc
and ventricular tachycardia scenarios. First, results of the sensitivity analysis show that a
58 parameters only 25 are influent. Note also that the level of influence of the param
depends on the heart region. Besides, the synthesized electrocardiograms globally prese
same characteristic shape compared to the reference once with a correlation value that re
88%. Regarding inverse problem, results highlight that only Robust Generalized Cross Vali
and Discrepancy Principle provide best performance, with a quasi-perfect success rate for
and a respective relative error, between the generated electrocardiograms to the referenc
of 0.75 and 0.62.

troduction
ardiovascular diseases are the leading cause of mortality worldwide and represent a huge health and econ
n [1]. Most of these deaths are due to heart failure caused by an abnormal propagation of electrical act
n the heart, a phenomenon referred to as cardiac arrhythmia. In the treatment of cardiac arrhythmia, cat
on revealed itself as the only curative alternative in contrast to lifelong medication or implantable cardiov
rillator. In this minimally invasive procedure, a mapping catheter is inserted through blood vessels and is m

the heart in order to record local electrical cardiac activity. This allows us to delineate the arrhythmogenic ta
is then ablated by delivering radio-frequency energy. Although successful ablation eliminates arrhythmia

rence rate is still high [2], and the several-hours surgical procedures are tedious for both patients and surgeo
this connection, ECG Imaging (ECGI) is an emerging non-invasive modality for an appropriate diagnosis

ter-guided ablation procedure. It consists in computing 3D mappings of cardiac electrical activity base
mical data obtained from magnetic resonance or tomography scans, and ECG recordings on the torso sur
ugh very promising, one major issue with ECGI is that validation using in vivo human data is made diffi
d, while in vivo studies were conducted in animals [3, 4], simultaneous whole heart electrical mapping
ilable for patients in practice. For this reason, cardiac computational models play the essential role of provi
rical simulations of ground truth electrical data in order to evaluate and compare existing ECGI inve
ithms. They also contribute to a better understanding of arrhythmogenesis through simulation.

aureen Manche and Karim El Houari contributed equally to this work.
orresponding author. E-mail address: amar.kachenoura@univ-rennes.fr
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ithin the framework of evaluating reconstruction algorithms using model-based data, a convenient model sh
le to generate sufficiently realistic cardiac patterns that produce meaningful surface ECGs, with sufficiently
lexity in order to consider various ECGI case scenario simulations. Numerous ECGI studies and cardiac mo
e found in the literature. Many works were devoted to represent cardiac behavior with a high level of d
ing fiber orientation [5], high-resolution meshes [6], novel heart-torso coupling techniques [7] and anatomi

ed geometries [8]. In [9] authors proposed a simplified heart-torso model geometry in the case of sinus-rhy
recently, the parameters of this model were tuned in [10] to reproduce pathological cases in the conte
ed loop tool for the simulation and assessment of pacemakers. Another work [11] proposes a novel torso-h
l of personal electrophysiology, embedded in a real-time cardiac simulator, with precise anatomical and struc
sentations of atria and ventricles. Moreover, all these studies are based on the bidomain formalism. In addi
odels proposed in [5] and [8] only include ventricles, whereas [6, 7, 9, 10, 11] proposed a whole cardiac m
ver, when the goal is to evaluate, compare performance and study parameters influence on ECGI algorit
models are not suited since they are far too complex. Moreover, only few cardiac models are able to synthes
lete and meaningful set of 12-Lead ECG signals, which is a key issue for understanding the relationship betw
rso surface ECGs and cardiac electrical dynamics.
he other major issue with ECGI is that recovering electrical potentials in the heart domain from few, attenu
urements on the torso surface is an ill-posed inverse problem. Indeed, the solution is not unique and s
rbations on the measured ECGs entail large changes in the estimated solution. The common approach to tackle
em is the so-called Tikhonov regularization. This consists in finding the best fit to data solution in the least squ
whereas considering an additional penalty term to constrain the solution space. This introduces a regulariz
eter to be determined that balances between the amount of data fidelity and regularization, and whose value

or effect on the solution.
his work addresses both the modeling part related to the forward problem by proposing a novel model dedic
duct ECGI simulations and to evaluate inversion methods. First, the framework for building a simplified, fas
le heart-torso propagation model was presented. The model implements the adapted monodomain forma
is a modification of the bidomain approach with lower complexity [12]. The monodomain model is cou

the phenomenological FitzHugh-Nagumo (FHN) model for describing transmembrane currents. This m
es both atria and ventricles, and the parameters are assigned to different values at each region of the ca
ction system. A first step consists in identifying the most influential parameters through a Morris scree
ivity analysis [13]. Then, the set of model parameters was reduced and the most sensitive ones are estim
gh an evolutionary algorithm. The identification process was performed in such a way that the ECG synthes
e proposed model was the closest to a reference ECG. Following this framework, the presented model was
thesize meaningful normal and pathological ECGs whereas keeping a reasonable level of numerical comple
econd step, it was shown how the new model can help to evaluate the performance of ECGI methods. M
ularly, a comparative study of classical methods devoted to the choice of the adequate penalty paramet
nov regularization was given. As proposed in [14] the U-curve [15], the Composite Residual and Smoot
tor (CRESO) [16], the Generalized Cross Validation (GCV) [17] and the Robust Generalized Cross Valid
V) [18] methods are considered. These approaches are also compared with the classical L-curve algorithm
e Discrepancy Principle (DP) [20].

he remainder of this paper is organized as follows. The methodological aspects of the work are addresse
n 2 and it is divided into three subsections. The first one presents the considered geometry, the equa

rdiac electrical propagation and their coupling to torso potentials. The second subsection describes the m
tion step using Morris sensitivity analysis, the formulation of the parameter identification problem an
tion using an evolutionary optimization algorithm. The third subsection presents classical methods for choo
gularization parameter for solving the ECG inverse problem using Tikhonov regularization. Section 3 pre
numerical results in terms of cardiac potentials, propagation patterns and resulting ECG signals, as we

rmance of inversion approaches. Finally, section 4 provides an overall discussion on the work and gives s
ectives.

aterials and methods
his section presents the methodological framework that was followed in order to produce ECGs from the prop
ified 3D heart-torso model. First, the designed geometry was described as well as the model equations use
Page 2 of 24
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ate cardiac propagation and surface ECG measurements. The set of parameters on which the model depends
educed by a sensitivity analysis. Finally, an optimization process was used to simulate realistic ECGs and ca
gation patterns.
Heart-torso model
. Geometry and meshing
spired by [9], a new 3D geometry of heart-torso model (Fig. 1) was designed. It consists of an elliptic-sh
and lungs, and an ellipsoid heart that contains the main cardiac regions of the cardiac conduction system: a
-Ventricular Node (AVN), bundle of His, bundle branches, endocardium/Purkinje Fibers (PF) and ventr

yocardium and epicardium). Since electrical connection between atria and ventricles is only allowed thr
VN in the real heart, an empty space was created between the two chambers. Blood chambers and the valve p
considered as vacuum when simulating cardiac propagation. An isotropic but regionally heterogeneous stru
sentation was integrated, without adding fiber orientation information. Anatomical meshes of the torso, the l
he seven regions of the heart were generated from volumetric segmentations using ANSYS DesignMo
are [21] after a series of elementary operations. It was then exported to ANSYS Mechanical [22] in wh
ing step was performed in order to solve numerically the forward problem.

e 1: (A) 3D heart-torso geometry of the model, (B) 12-Lead ECGs electrode configuration, (C) Heart mesh an
regions, using ANSYS software

major improvement in the used geometry in contrast with [9] is that a third layer at the ventricular level
to distinguish the epicardium, midmyocardium, and endocardium. In fact, the difference in electrical prope

ntricular action potentials from the inner and outer layers is a major point to the generation of appropriate
ls, and particularly the T-wave. More precisely, action potentials duration diminishes smoothly as one m
the outer layer to the inner layer of the heart. This gives the effect of a repolarization wavefront traveling
tside to the inside of the heart, contrarily to depolarization.

. Model equations
he bidomain and the monodomain models are widely used to simulate cardiac electrical propagation in cu
rch and are largely accepted for their physiological relevance. The bidomain theory is based on the assump
ardiac tissue can be partitioned into two separate conducting media: the intracellular space, located insid
c cells, and the extracellular space that connects cells between them. These two spaces are separated by
embranes, through which current flows from one space to another. At the macroscopic scale, a homogeniz

ss [23, 24] of the bidomain model considers that these two spaces overlap so that each point of the 3D ca
has intracellular and extracellular variables. The bidomain model arises from Maxwell’s equations under q
conditions. Indeed, considering the size of the human torso and the range of physiological variables in it
ral dynamics of electromagnetic fields can largely be ignored. The full heart-torso bidomain model is mad

eaction-diffusion equation ((1) and (2)) coupled with an elliptic equation that involves cardiac and extraca
les. Alternatively, the monodomain model approximates the bidomain based on an equal anisotropy assump
myocardium. This approximation lies in the existence of a constant ratio 𝛽 between the extracellular conduct
Page 3 of 24
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nd the intracellular conductivity 𝝈𝑖𝑛 everywhere in the heart volume. This assumption has no physiolo
ing, but is convenient in the sense that computations in the heart and in the torso are decoupled, while provi
results to that of the bidomain. The equations of the monodomain model in the heart domain are given by:

𝛽
1 + 𝛽

∇⋅ (𝝈𝑖𝑛∇𝑣𝑚)=𝜒(𝑐𝑚
𝜕𝑣𝑚
𝜕𝑡

+ 𝑖𝑖𝑜𝑛(𝑣𝑚, 𝑢) + 𝑖𝑠𝑡𝑖𝑚)

∇ ⋅ (𝝈𝑖𝑛∇𝑣𝑚) + (𝛽 + 1)∇ ⋅ (𝝈𝑖𝑛∇𝜙𝑒𝑥) = 0

the operators ∇ and ∇⋅ denote the gradient and the divergence operators respectively. The first equation
on-diffusion equation that translates the spatio-temporal propagation of the transmembrane action potentia
myocardium, where 𝑣𝑚 is by definition the potential difference between the intracellular and the extracel
m, 𝑐𝑚 is the membrane capacitance, 𝜒 is the surface to volume ratio representing how much membrane su

s present per volume of cardiac tissue. 𝑖𝑠𝑡𝑖𝑚 is a stimulation current that is only non-zero in the chosen region
propagation is initiated and 𝑖𝑖𝑜𝑛 the ionic currents exchanged between the two media. The elliptic equatio

sses the conservation of charge across the complete cardiac domain and links transmembrane 𝑣𝑚 and extracel
tials 𝜙𝑒𝑥. This system is completed with an ordinary differential equation satisfied by the ionic variable 𝑢 in o
cribe the evolution of ionic currents 𝑖𝑖𝑜𝑛(𝑣𝑚, 𝑢):

𝜕𝑢
𝜕𝑡

+ 𝑓 (𝑣𝑚, 𝑢) = 0

𝑓 is a scalar function that links variables 𝑣𝑚 and 𝑢. An appropriate choice for defining 𝑓 and 𝑖𝑖𝑜𝑛(𝑣𝑚,red in (1) and (3). Since physiological models are too complex to conduct whole heart simulations for the inte
ation, phenomenological models are used instead. The oscillatory FitzHugh-Nagumo (FHN) model [25]

one ODE equation of the type (3) to the system. It is continuous, analytically tractable and presents intere
nce and uniqueness properties [26, 27, 28]. In addition, it presents the nice advantage of a graphical analys
namics using a phase plane representation [29]. Moreover, it is capable of precisely fitting physiological a
tials and has been successfully used in 3D cardiac propagation models [9, 30, 31]. Within the FHN framew
ion 𝑓 (𝑣𝑚, 𝑢) in (3) and the term 𝑖𝑖𝑜𝑛(𝑣𝑚, 𝑢) in (1) are defined as follows:

𝑓 (𝑣𝑚, 𝑢) = −𝑘𝑒
(
𝑣𝑚 − 𝑏2

𝑎2
− 𝑑𝑢 − 𝑏1

)
,

𝑖𝑖𝑜𝑛(𝑣𝑚, 𝑢) = 𝑘𝑐1(𝑣𝑚−𝑏2)
(
𝑎1−

𝑣𝑚−𝑏2
𝑎2

)(
1−

𝑣𝑚−𝑏2
𝑎2

)
+ 𝑘𝑐2𝑢(𝑣𝑚 − 𝑏2)

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑, 𝑒 and 𝑘, are non-physiological parameters, but their tuning can result in character
s of cardiac action potentials of different tissues [32]. This system of equations is completed by the Lap
ion in the passive torso, and boundary conditions that express the coupling between heart and torso:

𝒏𝜕 ⋅ (𝝈𝑖𝑛∇𝑣𝑚) = 0
∇ ⋅ (𝝈𝑡∇𝜙𝑡) = 0

𝒏𝜕 ⋅ (𝝈𝑡∇𝜙𝑡) = 0
𝜙𝑡 = 𝜙𝑒𝑥

𝒏𝜕 ⋅ (𝝈𝑡∇𝜙𝑡) = 𝒏𝜕 ⋅ (𝝈𝑒𝑥∇𝜙𝑒𝑥)

𝒏𝝏 is the outward pointing normal to the heart surface, the symbol ⋅ denotes the inner product, 𝝈𝑡 and 𝝓
ctively the extra-cardiac conductivity and the extra-cardiac electrical potential, and 𝒏𝜕 is the outward poin
al to the torso surface.
he Finite Element Method (FEM) was employed to discretize the system in space and an implicit Euler sch
mporal discretization. Equations (1) and (3) result in the following system to be solved at each time step in
domain for the discretized versions of 𝑢 and 𝑣𝑚:

𝒖(𝑛+1) = 𝒖(𝑛) − 𝒇 (𝒗(𝑛)𝑚 , 𝒖(𝑛))

𝑫𝜒𝑐𝑚𝒗
(𝑛)
𝑚 − Δ𝑡𝑫𝜒 (𝑖𝑖𝑜𝑛(𝒗

(𝑛)
𝒎 , 𝒖(𝑛+1)) + 𝒊𝑠𝑡𝑖𝑚) =

(
Δ𝑡 𝛽

1 + 𝛽
𝑨𝜎𝑖𝑛 +𝑫𝜒𝑐𝑚

)
𝒗(𝑛+1)𝑚
Page 4 of 24
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𝒖(𝑛+1) and 𝒗(𝑛+1)𝑚 are vector versions of 𝑢 and 𝑣𝑚 at time 𝑛+1, whose 𝑖𝑡ℎ component corresponds to the valu
𝑚 at node 𝑖 of the heart mesh. 𝑨𝜎𝑖𝑛 is the so-called stiffness matrix, and 𝑫𝜒 and 𝑫𝜒𝑐𝑚 are the so-called dam
ces [33]. In order to solve the PDE system (11) and (12) at each time step 𝑛 + 1, an appropriate initializ
n initial stimulation needs to be applied to initiate the propagation process. To do so, the stimulation current
lied on a chosen node 𝑖𝑠𝑎𝑛 in the exterior wall of the right atrium as the Sino-Atrial Node (SAN) region o

ned heart. The complete procedure for solving the PDE system is given in Algorithm 1.
ithm 1 Algorithm for computing 𝑣𝑚 based on the monodomain formalism

tialization:
𝒗(0)𝑚 = 𝒗0𝑚, 𝒖

(0) = 𝒖0, 𝒊𝑠𝑡𝑖𝑚 = 𝟎, 𝒊𝑠𝑡𝑖𝑚(𝑖𝑠𝑎𝑛) ≠ 0

semble matrices 𝑨𝜎𝑖𝑛 , 𝑫𝜒𝑐𝑚 and 𝑫𝜒

mpute the system matrix 𝑨 = Δ𝑡 𝛽
1+𝛽𝑨𝜎𝑖𝑛 +𝑫𝜒𝑐𝑚

𝑛 = 1 ∶ 𝑇 do
f 𝑛Δ𝑡 > 𝑡𝑠𝑡𝑖𝑚 then
𝑖𝑠𝑡𝑖𝑚(𝑖𝑠𝑎𝑛) = 0

nd if
(𝑛+1)
𝑖 = 𝑢(𝑛)𝑖 +Δ𝑡𝑘𝑒

(
𝑣𝑚

(𝑛)
𝑖 −𝑏2
𝑎2

−𝑑𝑢(𝑛)𝑖 − 𝑏1

)
∀𝑖 ∈ 

= 𝑫𝜒𝑐𝑚𝒗
(𝑛+1)
𝑚 − Δ𝑡𝑫𝜒

(
𝑖𝑖𝑜𝑛(𝒗

(𝑛)
𝒎 , 𝒖(𝑛+1)) + 𝒊𝑠𝑡𝑖𝑚

)

olve 𝑨𝒗(𝑛+1)𝑚 = 𝒃 through Cholesky factorization
for

 is the set of nodes indexes in the heart.

that transmembrane potentials 𝒗𝒎 are available, the computation of extracellular potentials within the myocard
hose of the rest of the volume can be completed. Multiplying 𝛽

1+𝛽 to (2) and adding (7) reflects the ch
rvation in the whole heart-torso domain:

∇ ⋅ (𝝈𝑡∇𝜙𝑡) +
𝛽

1 + 𝛽
∇ ⋅ (𝝈𝑖𝑛∇𝑣𝑚) + 𝛽∇ ⋅ (𝝈𝑖𝑛∇𝜙𝑒𝑥) = 0

he discretization process leads to a linear system linking cardiac transmembrane potentials and potentials i
heart-torso domain:

𝑨𝜎̄

[
𝝓(𝑛)
𝑒𝑥

𝝓(𝑛)
𝑡

]
= 𝛽

1 + 𝛽

[
−𝑨𝝈𝒊𝒏𝒗

(𝑛)
𝑚

𝟎

]

𝝓(𝑛)
𝑒𝑥 and 𝝓(𝑛)

𝑡 are the discretized versions of the continuous variables 𝜙𝑒𝑥 and 𝜙𝑡 respectively, and where 𝑨
iffness matrix of the whole heart-torso volume. 𝝈̄ is an equivalent conductivity that equals 𝛽𝝈𝑖𝑛 in  and
he solution of the system (14) can be only determined to within an arbitrary additive constant. Indeed, 𝑨
ank deficient and its kernel is given by the space of uniformly valued vectors. A physical explanation is tha
rm potential distribution over the entire domain satisfies the conservation law since the resulting current eq
To overcome this problem, one solution is to set a potential reference at a chosen node of the volume mesh, w
es the system size (originally 𝑁 ×𝑁) to (𝑁 − 1) × (𝑁 − 1). Finally, the standard 12-Lead ECGs are comp
the values of 𝝓𝑡.
Model reduction & parameter identification
. Optimization problem formulation
el parameter description: Although the FHN model is a controllable oscillatory tool for generating var

potential shapes in the isolated cell, it is another matter when integrated in a 3D reaction-diffusion model.
er of parameters is high and their manual tuning is laborious. An automatic procedure to define parameter va
whole model, that produce ECGs that are close to a known sinus-rhythm reference ECG, was proposed.

signal can be decomposed into three waves resulting directly from the cardiac depolarization and repolariz

Page 5 of 24
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fronts: the P wave, the QRS complex and the T wave that have known characteristics in the case of normal rhy
can help defining a measure of correctness of the ECGs simulated by our model. Let us denote by 𝒑 the s
eters to identify, namely the FHN model parameters defined in (5) and (4), completed with 𝑐𝑚, the conduct
h region, and 𝜒 :

𝒑 =
{
𝝈𝑖𝑛𝑖, 𝜒, 𝑐𝑚𝑖, 𝑎1𝑖, 𝑎2, 𝑏1𝑖, 𝑐1𝑖, 𝑐2𝑖, 𝑑𝑖, 𝑒𝑖, 𝑘𝑖

}

𝑖 is the index of the considered region. It is noteworthy since the new design model is isotropic and regio
geneous, the conductivity tensor 𝝈𝑖𝑛𝑖 reduces to a scalar parameter to be identified for each region, namely a
, bundle of His, bundle branches, endocardium/PF, midmyocardium and epicardium. Regarding the param
d 𝜒 , they are assumed to take the same value for all regions of the heart. In fact, 𝜒 is the surface to volume r

ore related to the mesh resolution rather than cardiac regional characteristics. Regarding 𝑎2, the justific
s from the fact that this parameter regulates action potentials amplitude, which is supposed to be roughly
(around 30mV) everywhere in the healthy heart. The equal anisotropy parameter 𝛽 is not identified. Indee
caling factor that is independent from space and thus the considered region, and whose influence is abso

value of 𝝈𝑖𝑛. Moreover, the epicardium parameters have been forced to take the same values as those o
ardium, with the exception of parameter 𝑒, which primarily regulates action potential duration. This parame
ed 𝑒𝑒𝑝𝑖 for the epicardium. Indeed, it is assumed that the potentials of inner and outer layer of the epicardiu
the same shape but with different durations. The resting potential parameter 𝑏2𝑖 is fixed to −85𝑚𝑉 for all reg
proposed cost function: An appropriate cost function needs to be defined in order to solve the underl
ization problem. Our approach consists in maximizing a similarity measure between a real ECG denoted 𝑒𝑐
e one simulated by our model 𝑒𝑐𝑔𝐼 (𝒑), constrained by the signal waves durations and relative amplitudes. T
able cost function, based on the normalized scalar product between the two signals, was defined. Apart
ding a similarity measure, this choice also overcomes scaling issues. Equality constraints are imposed base
es measured on the target ECG. The chosen features are: the durations of the P wave (𝑐𝑟𝑒𝑓1 ), those of the
lex (𝑐𝑟𝑒𝑓2 ), those of the T wave (𝑐𝑟𝑒𝑓3 ), those of the PR interval (𝑐𝑟𝑒𝑓4 ), the maximum peak amplitude ratios betw
RS complex and the P wave (𝑐𝑟𝑒𝑓5 ), and that between the QRS complex and the T wave (𝑐𝑟𝑒𝑓6 ). Fig. 2 show
nce ECG and the corresponding features.

Figure 2: Target ECG signal and its features (lead I)

he optimization problem can then be expressed as follows:

𝒑∗ = argmin
𝒑

⎛⎜⎜⎜⎝
1 −

|
⟨
𝑒𝑐𝑔𝐼 (𝒑), 𝑒𝑐𝑔

𝑟𝑒𝑓
𝐼

⟩
|

||𝑒𝑐𝑔𝐼 (𝒑)||2||𝑒𝑐𝑔𝑟𝑒𝑓𝐼 ||2

⎞⎟⎟⎟⎠

2

Page 6 of 24



Journal Pre-proof

where form
of the ation
probl y:

(16)

where rder
of ma
2.2.2

S n the
simul pect
to its keep
param ning
appro tions
are ap how
mode cost.
One o oach
that i that
depen into
𝐿 lev thod
is to d sists
in sam d by
𝛿 to c + 1
point erent
starti Ψ}),
the co h of
the cr ents.
The v tory
(𝑗 ∈

(17)
where ts in
comp r 𝑝𝑖.These

(18)

Final een
param xis),
param 𝒑 is
reduc ty of
the id
2.2.3

T have
a uni nals)
canno ying
regar blem
Jo
ur

na
l P

re
-p

ro
of

s.t.: 𝒄(𝒑) = 𝒄𝑟𝑒𝑓

⟨⋅, ⋅⟩ and ‖ ⋅‖2 denote the inner product and the 𝓁2-norm respectively. 𝒄𝑟𝑒𝑓 = [𝑐𝑟𝑒𝑓1 ...𝑐𝑟𝑒𝑓6 ] is the vectorized
features defined above, and 𝒄(𝒑) those measured on the simulated ECG with parameter set 𝒑. The minimiz

em (15) can be re-expressed as the unconstrained minimization of a modified Lagrangian function defined b

(𝒑, 𝛼) =

(
1 −

(< 𝑒𝑐𝑔𝐼 (𝒑), 𝑒𝑐𝑔
𝑟𝑒𝑓
𝐼 >)

||𝑒𝑐𝑔𝐼 (𝒑)||2||𝑒𝑐𝑔𝑟𝑒𝑓𝐼 ||2

)2

+
6∑
𝑖=1

𝛼𝑖(𝑐𝑖(𝒑) − 𝑐𝑟𝑒𝑓𝑖 )2

the so-called Lagrange multipliers 𝛼 = (𝛼𝑖)𝑖∈{1,...,6} were empirically fixed at values that ensure the same o
gnitude between these non-homogenous constraints.
. Model reduction
ince the proposed model depends on many non-physiological parameters whose influence may be negligible i
ation of cardiac propagation, it is of interest to perform a sensitivity analysis of the presented model with res
input parameters. This way, the parameter set on which the model depends can be reduced in order to only
eters that are the most influential in the parameter identification process. Among sensitivity methods, scree
aches consider several inputs configuration and evaluate the effects on the outputs when elementary perturba
plied on the inputs, for each configuration. Thus, they present the advantage to provide information about
l parameters influence the outputs and how they interact with each other, with a reasonable computational
f the simplest and most popular screening approaches is the Morris method [13]. It is a one at the time appr

s well adapted when the model depends on a high number of parameters. Let us consider the model output 
ds on the set of parameters 𝒑 = (𝑝1, 𝑝2, ..., 𝑝𝑃 ), a regular grid that partitions each parameter variation domain

els, and an elementary displacement 𝛿 in the grid that is the same for all parameters. The first step of the me
efine random trajectories in the parameter space in which only one parameter at the time is varied. This con
pling a random point 𝒑(0) in the defined grid. From this point, only one parameter 𝑝(0)𝑖 , 𝑖 ∈ {1, ..., 𝑃 } is varie

reate a new point 𝒑(1). From 𝒑(1) this operation is performed for the remaining parameters. This results in 𝑃
s such that only one parameter varies between 𝒑(𝑖−1) and 𝒑(𝑖). This scheme is then repeated for 𝑅 − 1 diff
ng points so that Ψ trajectories are created. Thus, for different parameter sets 𝒑(𝑖,𝑗)(𝑖 ∈ {0, ..., 𝑃 }, 𝑗 ∈ {1, ...,
mputational cost for the Morris method is given by Ψ × (𝑃 + 1). The second step consists in evaluating eac
eated parameter sets by the model and computing output variations corresponding to elementary displacem
ariation of the model output for an elementary displacement in parameter 𝑝𝑖 (𝑖 ∈ {1, ..., 𝑃 }) in the 𝑗𝑡ℎ trajec
{1, ...,Ψ}) is given by:

𝑑(𝑖,𝑗) = (𝒑(𝑘𝑖,𝑗)) − (𝒑(𝑘𝑖−1,𝑗))
𝑘𝑖 and 𝑘𝑖 − 1 are the indexes for which only 𝑝𝑖 varied between 𝒑𝑘𝑖−1,𝑗 and 𝒑𝑘𝑖,𝑗 . The third step consis

uting the mean 𝜇𝑖 and standards deviation 𝜎𝑖 of elementary effects on all trajectories, for each paramete
quantities are given by:

𝜇𝑖 =
1
Ψ

Ψ∑
𝑗=1

∣ 𝑑(𝑖,𝑗) ∣ ; 𝜎𝑖 =

√√√√√ 1
Ψ

Ψ∑
𝑗=1

(𝑑(𝑖,𝑗) − 𝜇𝑖)2

ly, a graphical analysis where 𝜇𝑖 is reported on the x-axis and 𝜎𝑖 on the y-axis enables to distinguish betw
eters with low influence (close to the origin), parameters with linear influence on the output (close to the x-a
eters with non-linear influence or with strong interaction with others (close to the y-axis). This way, the set

ed to a subset 𝒑′ containing only parameters with high influence, which considerably reduces the complexi
entification procedure.
. Parameter identification
he optimization problem addressed in our context is non-convex, non-linear, non-differentiable and does not
que solution. Indeed, the studied system is weakly observable, meaning that the internal states (cardiac sig
t be inferred directly from only one or only few target ECGs. The purpose here is to find a solution that is satisf

ding the constraints that have been imposed in equation (15). An appropriate algorithm for solving this pro
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that does not require the existence of the derivative of the cost function with respect to parameters, adapt
lex problems with potentially multiple local optima, and robust. For these reasons, heuristic-based approac
ularly Evolutionary Algorithms (EAs) [34, 35] are more suitable than classical deterministic algorithms. EA
d random search approaches that originate from genetic algorithms [36].
volutionary Algorithms (EAs) are inspired by the evolution theory in which the strongest organisms are the
urvive in the future generations. It was supposed that the solution of problem (16) could be encoded by
rameters, called genes. Each set 𝒑 is represented by a vector of genes called chromosome. A generation ca
ed by a population of several chromosomes. Following the principle of the survival of the fittest, the algor
from an initial population𝑷𝒐𝒑0 of𝑁 chromosomes 𝒑𝑗0, 𝑗 ∈ {1..𝑁}. Then, it evolves from one generation𝑷𝒐
next 𝑷𝒐𝒑𝑖 through genetic operations referred to as mutations and crossovers. These operations are applied

t of 𝑷𝒐𝒑𝑖−1, giving birth to new chromosomes 𝑷𝒐𝒑′𝑖−1. Only the 𝑁 fittest chromosomes in 𝑷𝒐𝒑′𝑖−1 and 𝑷𝒐
ept to constitute the next population 𝑷𝒐𝒑𝑖. In the original definition of genetic algorithms, genes are dis
s encoded in one bit. EAs are an extension to this concept in which genes are real valued. This entails defi
propriate variation domain with an upper and a lower bound for each parameter. Convergence and robus
rties of EAs strongly depend on the cost function, the appropriate encoding of individuals, and the choic
ic operators (see [37] for further reading). A pseudo-code of the used EA is given in Algorithm 2.
ithm 2 EA pseudo-code

tialization: Provide a population 𝑷𝒐𝒑0 of 𝑁 individuals and evaluate their associated cost
1

ile 𝑖 < 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
elect the best individuals from 𝑷𝒐𝒑𝑖−1reate new individuals 𝑷𝒐𝒑′𝑖−1 using crossover and mutation
valuate each individual of 𝑷𝒐𝒑′𝑖−1reate 𝑷𝒐𝒑𝑖 by keeping the 𝑁 best individuals of 𝑷𝒐𝒑′𝑖−1 ∪ 𝑷𝒐𝒑𝑖−1
= 𝑖 + 1
while

Inverse problem
ere, the epicardial source model is used for solving the inverse problem. Thus, the discretization of the for
em using FEM yields the following linear system:

𝒙 = 𝑮𝒔∗ + 𝒆

𝒙 ∈ ℝ𝑀×1 is the vector of ECG potentials measured by the 𝑀 sensors placed on the torso surface, 𝒔∗ ∈ ℝ
vector of heart surface potentials where 𝑁 is the number of nodes on this surface, 𝑮 ∈ ℝ𝑀×𝑁 is the tra

x linking the sources 𝒔∗ and the observations 𝒙, and 𝒆 an additional white Gaussian noise. The inverse proble
consists in finding 𝒔∗ given 𝒙 and 𝑮. This problem is ill-posed and Tikhonov regularization has been extens
to minimize solution instability associated with this. It consists in finding the optimal 𝑠̂ such that:

𝑠̂ = argmin
𝒔∗

1
2
||𝑮𝒔∗ − 𝒙||22 + 𝜆||𝑹𝒔∗||22

= (𝑮𝑇𝑮 + 𝜆𝑹𝑇𝑹)−1𝑮𝑇𝒙

𝑹 ∈ ℝ𝑇×𝑁 is the regularization operator matrix. 𝑹 can be the identity matrix 𝑰 (zero order regulariza
limits the total magnitude of the solution, the spatial gradient operator 𝑽 (first order regularization) that li

lution steepness, or the spatial Laplacian operator 𝑳 (second order regularization) that restricts steepness cha
ps the node space onto the edges space and plays the role of a spatial gradient by computing the ampl

ence between two nodes belonging to the same edge in the generated mesh. The Laplacian is defined a
ence between two neighboring edges. The notion of numerical neighborhood between two edges is consid
sense that neighboring edges are all the couples of edges sharing one node. The first term of (20) is the

ty term, the second term is a regularization term that tends to constrain the magnitude of the solution or a l
orm of it, and 𝜆 is the so-called regularization parameter that represents the trade-off between data fitting an
Page 8 of 24
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nt of regularization. The choice of the regularization parameter value is critical in regularization-based meth
al classical methods attempt to provide a balance between the residual norm and the regularization weight.
popular approaches are L-curve [19], U-curve [15], CRESO [16], GCV [17], RGCV [18] and DP [20].
or each of these methods, a panel of solutions is computed for a dense grid of 𝜆. For each 𝜆, 𝑠̂ has to be comp
us 𝑮𝑇𝑮+𝜆𝑹𝑇𝑹 has to be inverted, which is time consuming and is subject to numerical errors. Thus, to ana
different methods, the Generalized Singular Value Decomposition (GSVD) of the matrix pair {𝑮,𝑹} [17, 1
and an underdetermined case (𝑀 ≤ 𝑁 ≤ 𝑇 ) is considered, such that:

𝑮 = 𝑷
[
𝟎 𝚺𝐶

]
𝒁−1, 𝑹 = 𝑸

[
𝑰 𝟎
𝟎 𝚺𝑆

]
𝑍−1

𝑷 and 𝑸 are orthonormal matrices, and 𝒁 is nonsingular. The regularized solution (21) can be written as:

𝒔̂ =
𝑀∑
𝑖=1

𝜏2𝑖
𝜏2𝑖 + 𝜆

𝒑𝑇𝑖 𝒙
𝜎𝑖

𝒛𝑖−(𝑀−𝑁)

𝜎𝑖 and 𝜖𝑖 are the 𝑖𝑡ℎ diagonal elements of 𝚺𝐶 and 𝚺𝑆 respectively, 𝜏𝑖 is the 𝑖𝑡ℎ generalized singular values 𝜎
𝑖 and 𝒛𝑖 are the 𝑖𝑡ℎ columns of 𝑷 and 𝒁 respectively. The two terms of the equation (21) can be rewritten a

𝜼2(𝜆) = ‖𝑹𝒔̂‖22 =
𝑀∑
𝑖=1

(
𝜏𝑖

𝜏2𝑖 + 𝜆

)2

(𝒑𝑇𝑖 𝒙)
2

𝝆2(𝜆) = ‖𝑮𝒔̂ − 𝒙‖22 =
𝑀∑
𝑖=1

(
𝜆

𝜏2𝑖 + 𝜆

)2

(𝒑𝑇𝑖 𝒙)
2

he advantage of the GSVD is that 𝑠̂ does not need to be computed for each 𝜆 for the computation of 𝝆2 an
equently, the computations are simply much faster than when computing matrix inverses.
. Optimal criterion
is the most straightforward method for choosing the regularization parameter. This method consists in minim
elative Error (RE) between the exact epicardial solution 𝒔∗ and each of the regularized solutions 𝑠̂ obtaine
g values of 𝜆 in a defined dense grid.

𝑅𝐸(𝜆) =
‖𝒔∗ − 𝑠̂‖2
‖𝒔∗‖2

method is clearly not feasible in practice since it requires the knowledge of the true solution but is conve
the purpose is to evaluate inversion methods performance using simulated data.

. L-curve
he L-curve plots the regularization norm ‖𝑹𝑠̂‖2 against the norm of the corresponding residual ‖𝑮𝑠̂ − 𝑥‖2g scale, both calculated for several regularization parameters 𝜆. The optimal regularization parameter, 𝜆̂, is f
corner of the curve:

𝐿(𝜆) = (log𝝆(𝜆), log 𝜼(𝜆))
responds to the maximum curvature function defined as:

𝑐(𝜆) = 2 𝝆̂
′(𝜆)𝜼̂′′(𝜆) − 𝝆̂′′(𝜆)𝜼̂′(𝜆)
(𝝆̂′(𝜆)2 + 𝜼̂′(𝜆)2)3∕2

𝝆̂ = log(𝝆), 𝜼̂ = log(𝜼), (′) and (′′) denote respectively the first and second order derivatives with respect t
. U-curve
his method plots the sum of the inverses of both the squared norm of the regularized solution, 𝜼2, and the squ
of the residual, 𝝆2, as a function of 𝜆 in a log-log scale:

𝑈 (𝜆) = 1
𝝆2(𝜆)

+ 1
𝜼2(𝜆)
Page 9 of 24
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-curve is characterized by a decreasing part followed by an increasing part. 𝜆̂ is lying the corner between t
arts, and it corresponds to the maximum curvature point of the U-curve.
. Composite REsidual and Smoothing Operator (CRESO)
he CRESO looks at the regularization parameter corresponding to the changes concavity at the first

um of the derivative of the difference between the penalty term and the squared norm of the residual 𝐵(
) − 𝝆2(𝜆). It is calculated as follows:

𝜕𝐵(𝜆)
𝜕𝜆

= 𝐶(𝜆) = 𝜼2(𝜆) + 2𝜆 𝑑
𝑑𝜆

𝜼2(𝜆)

. Generalized Cross Validation (GCV)
his method is based on the prediction of the observations arbitrarily excluded in the computation of regular
on with the retained observations. So 𝜆̂ is chosen such that it minimizes the following generalized predi
function:

𝐺𝐶𝑉 (𝜆) = 𝝆2(𝜆)
(
𝑀 −

∑𝑀
𝑖=1

𝜏2𝑖
𝜏2𝑖 +𝜆

)2

. Robust Generalized Cross Validation (RGCV)
has been shown that GCV can be unreliable for small or medium values of 𝑀 , sometimes giving a low estim
fore, proposed a new method making GCV more robust, involving a robustness parameter 𝛾 ∈ [0, 1], an
ximate measure of the influence of each estimated point 𝑠̂, 𝜇(𝜆). The method consists of minimizing the follo
ion:

𝑅𝐺𝐶𝑉 (𝜆) = [𝛾 + (1 − 𝛾)𝜇(𝜆)]𝐺𝐶𝑉 (𝜆)

𝜇(𝜆) = 𝑡𝑟𝑎𝑐𝑒[(𝑮𝑮#)2] =
∑𝑀

𝑖=1
𝜏4𝑖

(𝜏2𝑖 +𝜆)2
.

. Discrepancy principle
he discrepancy principle is a method that determines a value for 𝜇(𝜆) when the noise variance is available. It s
atisfying solutions, 𝜆̂, are the ones lying in the set {𝝆2(𝜆̂) ⩽ 𝑐}, where 𝑐 is computed from the noise varianc

esults and Discussion
his section first describes sensitivity analysis results and how they are exploited in order to reduce th
del parameters. Then, quantitative and qualitative results in terms of convergence of the EA, 12-Lead E
s and characteristic features, action potential shapes and activation time mappings are provided and discu
scenarios simulated by the obtained model are presented: one sinus-rhythm case, one ischemic case and

icular Tachycardia (VT) case. Finally, the performance of Tikhonov-based regularization methods to solv
e problem on the presented scenarios are compared. A particular discussion will be focused on the choice o

arization parameter.
Model reduction
o perform a sensitivity analysis of this model, a number of trajectories Ψ = 370 and a number of leve
parameter variation grid 𝐿 = 50 and a value of 𝛿 that represents two unitary displacements have been ch

uniform grid. In order to assess the robustness of this approach regarding the chosen ECG reference
ivity analysis has been performed with respect to five different sinus-rhythm ECG references (lead II) obta
physionet [38] that have been filtered and resampled.
he obtained sensitivity graphs are presented in Fig. 3 and are categorized by region for better visualization.
oth endocardium and epicardium parameters are represented in the same graph entitled "ventricles" because
the same values for both regions, except for parameter 𝑒𝑒𝑝𝑖. Note that the sensitivity graph of each regio
ned by projecting the graphs obtained for five different model outputs (five ECGs) on a same 2D map.

first global remark is that the instances of a symbol with different colors are located closely to each othe
aph. This leads to think that model sensitivity with respect to the selected parameters and cost function doe
Page 10 of 24
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d on the chosen reference ECG. Another global remark is that most of parameters are not close to the ord
which means that their optimal value with respect to the cost function cannot be determined independently
parameters. Regarding parameter relative behavior, parameter𝜒 has the major influence on the model. Indeed
eter has a major influence on the velocity of the electrical wave and thus on the overall shape of the synthe
The same reasoning explains why membrane capacitance 𝑐𝑚 and conductivity 𝝈 are of high influence. One
otice that the level of influence is different depending on the considered heart region. The reason may be i
ence of roles of the different regions regarding the cost function: atria activity is linked to P wave ampl
uration, purkinje fibers and ventricles intervene in the QRS complex and the T-wave, and other regions op
y on the delay between the P wave and the QRS. Based on this sensitivity analysis, two major conclusions ca
: i) it is an encouraging indicator regarding the validity of the defined cost function (15) and ii) some param
nce can be neglected regarding ECGs simulated by this model.
order to reduce the complexity of the parameter identification problem (see next section), the parameter

stricted to a subset 𝒑′ containing only parameters with high influence. To do so, an empirical threshold of
maximum mean and standard deviation in the sensitivity graph has been chosen, and retain only the param

e mean and standard deviation exceed this threshold. These parameters correspond to the outside of the
n quadrant in Fig. 3.
Parameter identification
he simulated surface ECGs are obtained following three main steps, which are: define a variation domai
parameter in 𝒑, identify the best parameter vector 𝒑∗, and obtain the corresponding cardiac mapping. In
tep, a variation domain for each parameter in 𝒑 is defined. Indeed, in order to run an EA, a prerequisite i
ition of the variation domain for each gene. To do so, a local study for each parameter is conducted. A large r
lues for each parameter was predefined for a given vector set 𝒑. Only one parameter was varied in its predefi
and Algorithm 1 was run until a degenerate solution is found. This is done successively for each parameter.
and lower values for which degenerate solutions are obtained are taken to be the upper and lower bounds o

sponding parameter variation domain.
egarding the second step, Algorithm 2 is now run for 100 generations and 200 chromosomes in order to ide
st parameter vector 𝒑∗ according to the cost function (16). The mutation probability is set to 0.25 and the sele

o 8%. The initial generation was constituted of 38 manually chosen individuals, and the other 162 are rando
n in the space of 𝒑. After initialization, parameters with low influence on the basis of Fig. 3 are fixed to va
re associated with the best cost and remain unchanged in the rest of the identification process. This way,
bset 𝒑∗′ is subject to genetic operations in the course of the EA. Algorithm 1 using the optimal parameter s

tain and visualize the corresponding cardiac mappings, and solving (14) to compute the 12-Lead ECGs. Fig
s the boxplot of cost values variability (y-axis) through generations (x-axis). The red bar indicates the media
alues at each generation, and the bottom and top edges of the box indicate 1𝑠𝑡 and 3𝑑 percentiles respecti
hiskers above and below the boxes show the locations of minimum and maximum cost values, and outlier

d in grey ’+’ sign. A rapid decrease in the median cost occurs in the first generations and reaches a minim
f 0.13 in generation 100. The first generation contains randomly selected chromosomes in the variation do
This population contains parameter sets that are inadequate and produce infinite costs. It is interesting to see
cases are rejected starting from generation 2. One can also notice that cost values are very close and don’t ev
en generations 32 and 44, but a jump occurs around generation 44. This leads to think that the algorithm

f a local minimum and that it is capable of exploring better solutions.
he last step consists in running Algorithm 1 using the optimal parameter set 𝒑∗ to obtain and visualize
sponding cardiac mappings, and solving (14) to compute the 12-Lead ECGs. In order to assess the model redu
nce, Fig. 4B shows the reference ECG (plain blue), the best solution provided by the EA when the so
eter set is reduced (𝒑∗′ plain red) and when it is not (𝒑∗ dashed yellow). Indeed, the results was comp

nning the EA without reducing the set 𝒑∗. Clearly, the synthetized ECGs have the same characteristic sh
supports the idea that the proposed model reduction is relevant. One can see that duration constraints have

cted, as well as the general characteristic shape of the P wave, QRS complex and the T wave of the ECG si
is confirmed quantitatively by a correlation value that reaches 88%. Note that adding an additional layer to
icles in the heart geometry enables to produce a T wave with an appropriate duration because of the differen
arization times between the ventricular layers. Without the additional ventricular layer, the repolarization w
Page 11 of 24
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e 3: Sensitivity graph obtained for five different model outputs (each color corresponds to a different ECG refere
l regions
Page 12 of 24



Journal Pre-proof

Figur best
soluti

in the rper,
unrea
3.3.

In topic
VT) a cular
tissue s are
no lo ited
regio d by
irregu curs
when VT:
i) abn lated
where ways
form topic
VT w

F , and
the 12 ional
and s n be
seen atch
physi rmal
durat n do
not co cost
funct ape.
Howe ch is
a feat , the
gener arity
and d al to
110m nd a
negat ds to
the T t can

1c
Jo
ur

na
l P

re
-p

ro
of

e 4: (A) Cost values evolution through generations. (B) Normalized ECG estimated by the EA (dashed yellow),
on (plain orange) and reference ECG (plain blue). (C) Action potentials in the different cardiac regions.

ventricles would naturally be of the same speed as that of depolarization, which would give a much sha
listic T wave.
Physiological relevance
this section, the simulation results in a normal scenario and two pathological scenarios (ischemia and ec
re analyzed. Ischemia is a disorder of cardiac function caused by insufficient blood flow to the heart’s mus
s. It can lead to myocardial infarction, i.e. the death of myocardial muscle tissue. Tissue death implies that cell

nger able to generate action potentials 1. Here, ischemia was simulated by forcing action potentials in a delim
n of the right ventricle to remain at resting levels. Regarding the VT disorder, it is typically characterize
lar contraction of the heart originating in the ventricles, preventing the heart from filling properly. It oc
an electrical focus additionally to those in the SAN emits impulses. Two mechanisms can be the origin of
ormal automaticity where cells in the ventricle become self-excitable and act as pacemaker cells; ii) scar re
most of scar area in the heart is dead and is thus electrically no conducting but some narrow electrical path

one or multiple mini re-entrant circuits spontaneously within the ventricular myocardium. In our case, the ec
as simulated by forcing a stimulation at the apex, which causes a premature contraction of the ventricles.
ig. 10 displays the Local Activation Time (LAT) mappings corresponding to the associated action potentials
-Lead ECGs. LATs are calculated from action potentials upstrokes. LAT mappings provide valuable funct

tructural information about the initiation and the propagation pattern of cardiac electrical activity. It ca
in the case of sinus rhythm (blue) that the general shape of action potentials and their durations globally m
ological knowledge. Only bundle branches action potentials are quite long compared to their average no
ion. In fact, since it is a relatively small region in the heart domain, action potentials duration in this regio
ntribute much in the ECG shape. Information about their repolarization phase is difficult to integrate in the

ion and any variations in the repolarization phase of this region will not influence the simulated ECG sh
ver, the depolarization wave speed is important and is well identified since it regulates the PR interval, whi
ure that is integrated in the cost function. Although the identification process was performed only in lead I
al shapes of the rest of the 12-Lead ECGs agree well with morphological sinus-rhythm ECGs in terms of pol
urations: the P wave polarity is positive in all ECGs except in aVR, and its duration is normally less or equ
s. The QRS complex is represented by a positive deflection with a large, upright R in leads I, II, V4 - V6 a
ive deflection in aVR. Its duration is less or equal to 120 ms. The ST segment is isoelectric, sloping upwar
wave. The T wave polarity is the same as that of the QRS except in V2. In the ischemic scenario (orange), i
haracteristic wave formed by the exchange of ions between the inside and outside of the nerve cell
Page 13 of 24
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en that the action potentials are quasi similar to those of sinus rhythm, except for the electrically passive re
imulates the infarct. On the LAT mapping, the blue part in the atria is the SAN region, whereas the blue pa
ntricles represents the area without electrical activity. In the ECG, an elevation of the ST segment in leads II
aVF V1 and V2 is clearly visible. These findings match their clinical usage as a diagnostic criterion of myoca
tion. Concerning the ectopic VT scenario, action potentials in the atrial region are electrically inactivated
AT mapping, the blue part in the ventricles represents premature stimulation at the apex, whereas the blue pa
ria corresponds to their inactivation during the cycle. On ECGs, the P wave is non-existent with a successiv

waves. Furthermore, the QRS complex is of less amplitude than the first healthy beat and is larger.

(A)

(B)

e 5: Local activation times with action potentials, simulated 12-Lead ECGs and key instants selected from Le
) sinus-rhythm and ischemia scenario, and (B) tachycardia scenario

Inverse problem simulations
this section, numerical experiments conducted on data generated by the proposed model using different var

khonov-based inverse methods are described. More precisely, seven popular methods to choice the opt
arization parameter were evaluated.
Page 14 of 24
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. Performance evaluation
everal criteria are used for the evaluation of the performance of the tested methods. The first one is the Rel
(RE), which is calculated from the estimated solution 𝑠̂(𝜆𝑜𝑝𝑡) and the exact one 𝒔∗, in the same way as the opt
ion (see (24)). The closer to zero the RE is, the better the performance is. The mean and the standard devi

are calculated over 50 Monte Carlo (MC) simulations. Then, a success rate is calculated for each metho
uting the number of times each algorithm returns a value between 0 and 1 for the RE. In addition, the behav
methods through epicardial potential reconstructions mappings for a specific MC run has been illustrate. T

erformance of the methods is quantitatively and qualitatively evaluated with the ground truth through all t
ia.
. Data simulations
imulations are performed on an ellipsoid heart and torso, where a tetrahedral mesh was generated. It
ticed that, the level of refinement for the heart and torso meshes was fixed in order to have an adeq
acy/complexity trade-off. Indeed, a mesh convergence analysis was performed by varying the number of n
epicardial volume. In accordance with [8], from a certain threshold where the mesh was no longer consid

e, the refinement of the mesh does not affect the generation of the 12-Lead ECGs, but increases the comput
For instance, 6 shows the ECG of the Lead I for 4374 nodes (plain blue line) and 19830 nodes (dashed
It can be seen that, the generated ECGs are highly correlated. Thus, in our context, the heart domain m

ins 4374 nodes (leading to 17418 elements) and 256-body surface measurements are randomly selected
ed before, three different scenarios has been simulated and a 10 dB additional white noise was considere
of them. The variation grid for parameter 𝜆 takes 500 logarithmically equally spaced points between 10−24
he experiments are conducted on all instants of the ECG signals, but the results will focus on different key ins
ed from lead II of the standard 12-Lead ECGs as shown in Fig. 10. Points 1 and 2 represent atrial depolariz
l contraction), points 3, 4, and 5 represent ventricular depolarization (ventricular contraction), while points 6
resent ventricular repolarization.

Figure 6: Comparison of two levels of refinement on the Lead I

. Choice of the regularization operator
he first step in solving the inverse problem was to choose the regularization operator 𝑹, i.e. 𝑰 , 𝑽 or 𝑳. F
nts the RE values as a function of 𝜆, at instants 1 and 3 of a sinus rhythm for the identity, the gradient and
ian operators. 𝜆𝑜𝑝𝑡 was chosen based on the optimal criterion defined by (24). Results are in general slightly b
the gradient (𝑹 = 𝑽 ) is used. Thus for the rest of the study, 𝑹 = 𝑽 .
Page 15 of 24
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e 7: RE curves for the three-regularization operators 𝑅 = 𝐼 (blue), 𝑅 = 𝑉 (orange) and 𝑅 = 𝐿 (purple) for insta
3, for the optimal criterion method

. Regularization parameter calculation
he seven methods mentioned above was applied for the choice of the regularization parameter, namely: opt
ion, L-curve, U-curve, CRESO, GCV, RGCV and DP. For example, Fig.8 depicted the curves of these metho
ion of 𝜆 for time instant 3. It can be seen that the automatic choices of the regularization parameter (𝜆̂) is recov
desired location, i.e. at the corner of the L-curve, at the first local maximum for CRESO, at the minimum o

ions for U-curve, GCV and RGCV, and finally at the intersection of the two curves for the DP. Note that, fo
ve method, the optimal 𝜆̂ is different then those of the other methods.

(A) L-curve (B) U-curve (C) CRESO

(D) GCV (E) RGCV (F) DP

e 8: 𝜆̂ estimated using (A) L-curve, (B) U-curve, (C) CRESO, (D) GCV, (E) RGCV and (F) DP for time insta

ig. 9A shows a box plot representing the success rate for the different methods computed over 50 MC
rst remark is that, for the L-curve, U-curve and CRESO methods, the results are poor (the median is l

60 %), i.e. they do not always succeed in determining an appropriate regularization parameter 𝜆. Among
methods, the RGCV and DP algorithms offer quasi-equivalent behaviors with respect to the optimal crite
erform better than the other approaches with a quasi-perfect success rate. Regarding GCV, it gives interme
Page 16 of 24
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) (B)

) (D)

e 9: (A) Box plot of success rate for the 7 methods. (B)-(D) Graphical representation of mean of RE and su
or optimal criterion, RGCV and DP methods in the case of sinus-rhythm

s with a median success rate greater than 85% and a small disparity. This first experiment clearly shows tha
V and DP algorithms, as the optimal method, provide less aberrant results than the other techniques in the stu
xt. Therefore, for all subsequent experiments, only the RGCV and DP methods will be considered.
ig. 9B-D show the RE as a function of time (blue), as well as the success rate (red). Notice that the error cu
ver the method, is inversely proportional to the ECG amplitude. This is due to the fact the power noise i
for all instants. In other words, the SNR varies as a function of the ECG amplitude. Globally, RGCV and
e as the optimal method. More particularly, DP is a bit more efficient than RGCV: the RE of RGCV and
ged over the 400 time instants, are equal to 0.75 and 0.62, respectively. In Fig. 11 (in Appendix), an examp
rdial mapping of the reference and the estimated solutions using optimal criterion, RGCV and DP are dep
l time instants. The estimated mappings are globally in line with the quantitative results: optimal criterion, RG
P give quasi-similar performance. Moreover, results obtained at time instant 3, 4, 6 and 7 are very close to
nce whereas the solutions obtained at instant 1, 2 and 4 do not correspond to the reference. As pointed before
entially due to the fact that the local SNRs of instants 1 and 2 (atrial contraction), and 5 (at the level of S-w
wer than that of the rest instants.
. Investigating pathological cases
his section can be viewed as a proof of concept, where the interest of the proposed method heart-tors
te the ECGI methods for different pathological cases is highlighted. To do so, three previous pipelines (Tikh

arization combined with the optimal criterion, RGCV and DP) are applied on two pathological scenarios, na
mia and ectopic VT. As for the first experiment, the global SNR is set to 10 dB and the number of MC runs is
In both scenarios, the results presented in Fig. 10 are in line to those obtained on the sinus rhythm. Indeed, R
ely proportional to the local SNR. The global RE of RGCV and DP, averaged over all time instants, are equal
nd 0.65 respectively for the ischemia, and ii) 0.71 and 0.47 respectively for VT. These results are also confir
visualizing an example of estimated epicardial mappings (Fig. 12 and Fig. 13 in Appendix). For instance

l inspection of the estimated mappings at time instant 5 (Fig. 12) shows clearly that the computed inverse solu
t able to precisely delineate the ischemic region, whatever the used pipeline. This can be explained by the

he Tikhonov regularization leads to a blurred solution, which is not expected in the ischemic case. As far a
Page 17 of 24
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(A)

(B)

e 10: RE and success rate for the optimal criterion, RGCV and DP methods in the case of (A) ischemia and
ic VT

enario is concerned, it can be seen that the estimated mappings of instants 3 and 6, which have very little en
te satisfactory whatever the used inverse method.
the ectopic VT scenario, Fig. 10(B) shows that for instant 6, where the SNR is very low, performance is

th RE and success rate whatever the method is used. For the rest of the instances, the averaged RE result
vely good, but with worse performance for instant 3 due to its SNR. The mappings (Fig. 13) show that the re
ed by RGCV and DP are also quasi-similar for VT. For the instants 3 and 6, which have very little energy
s are poor. Indeed, while no or very little energy is expected at the level of the atria, the reverse reconstru
s electrical activity. Fig. 12 and Fig. 13 are appended in Annex for sake of place.
imitations
ven if the obtained results are interesting, the proposed framework has some limitations. Clearly, there are s
side concerning the shape of the S and T waves. It could be observed that the amplitude of the T wave in
ated ECG is much higher compared to the reference. This can be explained by a strong gradient between
icular layers. Indeed, since the action potential duration does not vary smoothly in the ventricular regio
polarization front moves from the epicardium to the endocardium, an abrupt potential difference occurs in
ary separating the layers, causing a T wave of higher amplitude. Note that adding an additional layer to

icles in the heart geometry therefore enables to produce a T wave with coherent duration. Without the addit
icular layer, the repolarization wave in the ventricles would naturally be of the same speed as that of depolariza

would give a sharp T wave as one can observe in [9]. In addition, the used of a geometry where both ventr
the same size (which is not the case in practice) can also leads to a non-perfect shape of T-wave. As for the S w
fluence of the electric axis of the heart is not studied in this work, which can explains its amplitude differ
the reference. Another limitation of this study is that sensitivity analysis is performed only for a sinus rhy
ld be extended to other scenarios to explore model parameters that may be related to pathological cases.
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improve the simulation of certain cardiac pathologies. Finally, the parameters identification, proposed for
CG lead and for a fixed resolution mesh, can be improved by exploiting more ECG leads and using several m
es.

onclusion and perspectives
his paper provides a simplified, fast, controllable and evolving 3D heart torso model, intended to per
itative evaluations of inverse methods on simulated data. The exploitation of the monodomain formalism
HN phenomenological model allow for a fast generation of ECG signals. Region-dependent model parame
cterizing the electrical properties of the main anatomical structures of the heart are used in order to well repre
opagation of cardiac electrical activity. This study details the parameter identification process that has been
er to generate ECG signals that best fit a given ECG reference. It is shown that, by proposing an adeq
unction it is feasible to reproduce the main temporal features and the general aspect of an observed real E
sitivity analysis of the monodomain model with respect to its parameters is also given to identify the
eters having the highest influence on the generated cardiac electrical activity. This identification process succ
ing the same solution when only these highly sensitive parameters are identified, and also suggests tha
s are reproducible for different healthy ECGs. Moreover, it is noteworthy to mention that the use of the F
lism allows us to consider anisotropic structures and the simplified geometry offers the possibility to easily s
fluence of some modeling errors over the ECGI method performance, such as errors due to the considered m
tion. Finally, using this model, it is possible to consider several source formulations when dealing with the inv

em. Indeed, it provides volumetric transmembrane potentials as well as epicardial potentials.
he second part of the paper presents a comprehensive study of Tikhonov regularization-based methods for sol
CG inverse problem and shows the utility of such a low-resolution 3D model to evaluate the performance of E
ds. More particularly, the influence of the considered methods for choosing an adequate regularization param

died and the results show that the Tikhonov method with RGCV or DP are more efficient in the studied con
that the RGCV method has already been identified as an efficient method to estimate the penalty parameter
pplication of the best inverse pipelines on realistic pathological activation patterns, such as ischemia and
line the interest of the proposed model to analyze the behavior of inverse methods in different situations
ple, it has been shown that the Tikhonov regularization-based methods do not succeed in the case of lower
s and/or pathological ECG signals. All obtained results demonstrate that the proposed low-resolution 3D h
model is an interesting and promising signal generator in the context of ECG inverse method evaluation.
ccording to the limitation section, some perspectives of this work can be distinguished between the ca
ling part and the inverse problem part. Regarding the modeling part, the sensitivity analysis could be extend
to explore model parameters that can be linked to pathological cases. This can serve to better identify the m
eters for simulating certain cardiac pathologies. In addition, as mentioned previously, only one ECG lead

d one fixed mesh resolution are exploited to identify the optimal parameter set that generate the more rea
. Further improvements will consist in studying the influence of both the number of the reference ECG leads
solution mesh used to maximize similarity measure between a real ECGs and the ones simulated by our m
could lead to the generation of a more accurate ST-segment. Regarding the ECG inverse problem, further w
rranted on investigating the behavior of other approaches for solving the ECG inverse problem.
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e 11: Estimated epicardial mapping with the optimal regularization parameter of optimal criterion, RGCV and
ds in the case of sinus-rhythm
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e 12: Estimated epicardial mapping with the optimal regularization parameter of optimal criterion, RGCV and
ds in the case of ischemia
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e 13: Estimated epicardial mapping with the optimal regularization parameter of optimal criterion, RGCV and
ds in the case of TV
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 Design of a simplified, fast, controllable and evolving 3D heart torso model
 Identification of the most influential hyperparameters using a genetic algorithm
 Ability of the model to simulate several cardiac electrical behaviors
 A useful tool to evaluate the ECG problem inverse techniques
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