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Summary Statement 

Eight types of convolutional filters were standardized for radiomics analyses. 

Key Results 

● Mean filters, Laplacian-of-Gaussian filters, Laws kernels, Gabor kernels, as well as 
separable and non-separable wavelets (including decomposed forms) are now well-
defined and standardized for radiomic analyses. 

● Applying a filter to an image creates a response map. Thirty-three reference 
response maps and 323 reference feature values computed from response maps 
were identified. 

● A web-based tool is provided for validating filter implementations in radiomics 
software packages.  
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Abstract 
Background: Filters applied to medical imaging can highlight various structures and patterns. 
Despite their widespread use in radiomics analyses, lack of standardization of convolutional 
filters negatively affects reproducibility. 
 
Purpose: To standardize convolutional filters for radiomics analyses. 
 
Materials and Methods: This study consisted of three phases. In the first phase, we  
aimed to establish 36 reference response maps for convolutional filters based on digital 
phantoms: mean, Laplacian-of-Gaussian, Laws kernels, Gabor kernels, separable and non-
separable wavelets (including decomposed forms) and Riesz transformations of 
convolutional filters. In the second phase, we aimed to find reference values for 396 
intensity-based features computed from response maps of 22 filter and image processing 
configurations, based on computed tomography (CT) imaging. Afterwards, reproducibility of 
standardized convolutional filters and feature values was assessed during a validation 
phase, using a public dataset of multi-modal imaging (CT, FDG-PET, T1w-MR) from 51 
patients with soft-tissue sarcoma. 
 
Results: In phase 1, 15 teams from 7 countries were able to find reference response maps 
for 33 of 36 filter configurations. In phase 2, 11 teams were able to find reference feature 
values for 323 of 396 features. Consensus on reference feature values for Riesz 
transformations was not established. During the validation phase, 458 of 486 features were 
found to be reproducible among 9 teams. Coefficient of variation and quartile coefficient of 
dispersion features were found to be poorly reproducible for band- and high-pass filters. 
 
Conclusion: Eight types of convolutional filters for radiomics were standardized and 
reference responses and reference feature values for verification and calibration of 
radiomics software packages were obtained. A web-based tool is available for checking 
compliance of radiomics software with the reference. 

Main body 

Introduction 
Radiomics is the high-throughput processing of medical images to support clinical decision 
making (1). The intermediate steps in this process, and variability therein, are known to 
affect the reproducibility of the resulting decision support tools. The Image Biomarker 
Standardization Initiative (IBSI) previously established standards for digital image processing 
and computation of hand-crafted, quantitative radiomic features (2). This has improved 
interchangeability between IBSI-compliant radiomics software packages, provided that the 
same image processing and feature parameters are used (3,4). 
 
Filters are frequently used in radiomics studies as they allow characteristics to be 
emphasized such as edges (e.g., sharp tumor boundaries), vessels, blobs, or holes in 
medical imaging. However, the use of Laplacian-of-Gaussian, wavelets and other filters has 
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not been standardized, and their use has been found to be poorly reproducible (5). Many of 
these filters are convolutional filters, hence the focus of this work. With convolution, filters 
are systematically slid across the entire image, yielding a response map that spatially 
locates the image characteristics mentioned earlier. Radiomic features, such as mean 
intensity, can then be computed from the region of interest (ROI) within the response map. 
 
Here, the IBSI aimed to improve reproducibility of convolutional filters for radiomics by: (a) 
establishing definitions for convolutional filters, including commonly used ones such as 
wavelets; (b) integrating the convolutional filters into the previously established general 
radiomics image processing scheme (2); (c) providing datasets, associated reference 
response maps and reference feature values, as well as tools for verification and calibration 
of radiomics software packages; and (d) updating the IBSI guidelines for methodological 
reporting to include details concerning convolutional filters. 

Materials and Methods 

 
Figure 1: Study overview. The study is divided into three phases. In the first phase, 
convolutional filters were applied to digital phantoms to identify reference response maps. In 
the second phase, reference values were identified for intensity-based features computed 
from response maps of a chest CT image. In the third phase, the results of the first two 
phases were validated using a multi-modal dataset. Unlike the first two phases, the 
validation phase is not iterative. 
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Study design 
This standardization effort was divided into three phases (Fig. 1). During the first two phases 
the implementation and use of convolutional filters were standardized. Phase 1 concerned 
the creation of reference response maps, i.e., the expected result of applying a convolutional 
filter with specific parameters to an image. In phase 2, convolutional filters were integrated 
into a radiomics workflow for the purpose of finding reference values for radiomic features 
computed from response maps. In phase 3, we assessed whether standardization of 
convolutional filters resulted in reproducible feature values. 

Convolutional filters 
Convolutional filters transform an image to a response map by convolution. These filters 
consist of numerical weights that are pre-defined or parameterized in the spatial domain or in 
the frequency (Fourier) domain. Several convolutional filters were assessed, i.e., mean filter, 
Laplacian-of-Gaussian filter, Laws kernels, Gabor kernels, separable and non-separable 
wavelets, and Riesz transformations of convolutional filters, see Fig. 2. Further details are 
supplied in supplementary note 1 and in the reference manual. 
 

 
Figure 2: Convolutional filtering is positioned after resampling in the overall radiomics 
workflow (top panel). This workflow starts with an image that is obtained from a repository or 
archiving system in a digital format, such as DICOM. Then the image is optionally converted 
(e.g., from PET activity to standardized uptake values) and post-processed (e.g., MR bias-
field correction). Segmentation masks are either loaded in a digital format, or automatically 
created. Both image and segmentation masks are then optionally resampled. Response 



maps are created by optionally filtering the image. Both response map and segmentation 
mask are then used to compute hand-crafted radiomic features. This study attempts to 
standardize several types of convolution filters (bottom panel). The original CT image is 
shown for reference. Decomposition of separable and non-separable wavelets is not shown. 
The image processing scheme and convolutional filters are described in more detail in the 
reference manual. 

Participating teams 
Teams of radiomics researchers were invited to participate in the IBSI. Participation was 
voluntary and open for the duration of the study. Teams were eligible to participate if they (a) 
developed their own radiomics software, and (b) their software is IBSI compliant. A team 
was not required to participate in all phases of the study. 

Phase 1: Establishing reference response maps 
In phase 1, several digital phantoms were used, and thirty-six convolutional filter 
configurations were defined to establish reference response maps (supplementary note 2). 
Teams computed response maps for each filter configuration and uploaded these to a 
central website (https://ibsi.radiomics.hevs.ch/; supplementary note 7). 
 
The level of consensus for each response map was assessed using the same metrics as 
previously (2): (a) by the number of teams that matched the tentative reference response 
map (supplementary note 4); and (b) the previous number divided by the number of teams 
that contributed a response map. Level of consensus was then: none, if the tentative 
reference response map was not produced by over 50% of contributing teams; weak, match 
between fewer than three teams; moderate, three to five; strong, six to nine; very strong, ten 
or more. 

Phase 2: Defining feature reference values 
Convolutional filtering was integrated into the general radiomics image processing scheme 
(Fig. 2). Image processing and convolutional filter configurations were then defined for each 
filter. Both 2D and 3D filter configurations were created, yielding twenty-two configurations in 
total (supplementary note 3). Teams computed a response map for each configuration from 
a publicly available CT image of a patient with lung cancer (6). Eighteen intensity-based 
features were then computed from the gross tumor volume ROI in each response map 
(supplementary note 5). After computing feature values, teams uploaded their results to the 
website. The level of consensus for feature values was assessed using the same metrics as 
in phase 1 by using contributed values for each feature as input and comparing matches 
within a tolerance margin (supplementary note 5). 

Phase 3: Validation 
After completing phases 1 and 2, teams were asked to compute intensity-based features 
from the gross tumor volume segmentation in response maps of a multimodality imaging 
cohort (co-registered CT, 18F-FDG-PET, and T1-weighted MRI). This cohort consisted of 51 
patients with soft-tissue sarcoma obtained from The Cancer Imaging Archive (7–9). PET and 
MRI were pre-processed to ensure that conversion of PET activity concentration to 
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standardized uptake value and MR bias field correction and normalization could not affect 
validation results (supplementary note 3). Nine image processing and convolutional filter 
configurations were specified for each modality. Teams were blinded to the results submitted 
by other teams. After submitting results, obvious configuration errors were reported back to 
the submitting team. 
 
Reproducibility was assessed using the two-way, random-effects, single rater absolute 
agreement intraclass correlation coefficient (ICC) (10). Based on Koo and Li (11), 
reproducibility of each feature was assigned to one of the following categories, based on the 
lower bound of the 95% confidence interval of the ICC (12): poor, lower bound less than 
0.50; moderate, between 0.50 and 0.75; good, between 0.75 and 0.90; and excellent, 
greater than 0.90. 

Results 

Fifteen teams from seven countries participated in the first phase, eleven teams in the 
second phase, and nine teams in the validation phase. Eleven teams had developed publicly 
available software: CaPTk, CERR, FAST, LIFEx, MIRAS, MIRP, moddicom, S-IBEX, 
SPAARC, and the McGill and Université de Sherbrooke teams (see supplementary note 6). 

Of the thirty-six response maps that were assessed in the first phase, moderate or better 
consensus was found for seventeen (47%) at the initial timepoint (Fig. 3). At the final time-
point, moderate or better consensus was achieved for thirty-three (92%) configurations, of 
which twenty-four (67%) were very strong. Full consensus was reached for configurations 
corresponding to mean filters, Laplacian-of-Gaussian filters, Laws kernels, Gabor kernels, as 
well as separable and non-separable wavelets (including decomposed forms). No or only 
weak consensus was achieved for three (8%) configurations, corresponding to 
configurations involving Riesz transformations (Fig. E1). 

At the initial time point of the second phase, moderate or better consensus was achieved for 
198 (50%) of 396 features, aggregated over twenty-two different filter configurations. At the 
final time-point 323 (82%) features had at least moderate consensus. Again, full consensus 
was reached for features computed from response maps of mean filters, Laplacian-of-
Gaussian filters, Laws kernels, Gabor kernels, as well as separable and non-separable 
wavelets (including decomposed forms), except for the quantile coefficient of dispersion 
feature for three-dimensional non-separable wavelets. No consensus was established for 
features based on (steered) Riesz transformations (Fig. E2) because too few teams 
submitted values for these features. 

In summary, eight types of convolutional filters were standardized in the first two phases. 
The reproducibility of features from response maps created by these filters was assessed in 
the third phase. Here, good to excellent reproducibility of features was found for 458 (92%) 
of 486 features. Overall, nineteen (4%) features were poorly reproducible, and were found 
for Laplacian-of-Gaussian, separable and non-separable wavelet filters. Most of these 
features were either coefficient of variation or quartile coefficient of dispersion features that 
represented eight and nine of nineteen features, respectively. A list of poorly reproducible 
features is provided in Table E1. No dependence on imaging modality could be observed. 
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Figure 3: Results overview. In phase 1, participating teams computed thirty-six response 
maps of convolutional filters according to predefined configurations. These response maps 
were compared, and consensus was measured. Teams updated their implementations 
iteratively, which led to an improvement of consensus over time (arbitrary unit, the entire 
process took twenty-four months). Consensus strength was based on matching the voxel-
wise difference between response maps and the tentative reference response map within a 
tolerance: weak, match between fewer than three teams; moderate, three to five; strong, six 
to nine; very strong, ten or more; none, 50% of the teams or more did not match. The 
number of participating teams at each timepoint is shown. In phase 2, participating teams 
computed 396 features from response maps of convolutional filters according to predefined 
filter and image processing configurations. As in phase 1, teams updated their 
implementations iteratively. However, unlike phase 1, improvement in consensus was mostly 
due to more teams enrolling over time (arbitrary unit, the entire process took eight months). 
Consensus strength was based on the number of teams matching the tentative reference 
feature value within a tolerance and was assigned according to the same categories as in 
phase 1. In phase 3, reproducibility of features computed from response maps was 
validated. Teams computed 486 features from a public dataset of fifty-one patients with soft-
tissue sarcoma that were scanned using CT, FDG-PET, and T1w-MR imaging. 
Reproducibility was assessed using the lower bound of the 95% confidence interval of an 
intraclass correlation coefficient: poor, lower bound less than 0.50; moderate, between 0.50 
and 0.75; good, between 0.75 and 0.90; excellent, greater than 0.90; and unknown, 
computed by fewer than two teams. 

 



Discussion 

Convolutional filters are commonly used in radiomics studies. However, due to lack of proper 
consensus-based reference implementations, features computed from response maps 
provided by these filters are difficult to reproduce (5). In this study, fifteen teams from seven 
countries collaborated to remedy this situation by providing reference response maps, 
reference feature values and reference documentation. We were able to standardize and 
validate eight different filter types: mean, Laplacian-of-Gaussian, Laws kernels, Gabor filters, 
and separable and non-separable wavelet filters in both undecomposed and decomposed 
forms. 

The presented results complement the previous results of the Image Biomarker 
Standardization Initiative (2). That work focused on standardizing both the image processing 
scheme for radiomics and a large set of radiomic features. It aimed to improve reproducibility 
of radiomics studies by mitigating the effect of using different radiomics software packages, 
and by providing a common framework for describing methodological details. This work adds 
to the previous by standardizing the use of convolutional filters that are frequently used in 
radiomics. 

This work has several implications: first, we found that most types of convolutional filters are 
not trivial to implement reproducibly across implementations, as evidenced by the initial lack 
of consensus on response maps in phase 1. Thus, we must assume that current clinical or 
research radiomics software in advanced image analysis workstations that offer 
convolutional filters yield feature values that are not reproducible in external settings, thereby 
hampering external validation and further clinical studies.  

The second implication is that “IBSI-compliant” software is now expected to reproduce the 
reference response maps and reference feature values found in this study, insofar as 
convolutional filters are available in the software, in addition to the reference feature values 
that were previously found (2). Compliance may be checked using web-based tools 
(https://ibsi.radiomics.hevs.ch/), or manually using the provided reference response maps 
and feature values. Compliant software is expected to produce response maps where every 
voxel deviates from the reference response map by at most 1% of the range of intensity 
values of the reference response map. A feature value should be reproduced within the 
tolerance margin around the reference feature value.  

Third, even though we contextualized our efforts within radiological imaging, our work is 
relevant for quantitative image analysis in general, including digital pathology. Finally, the 
IBSI reporting checklist for methodological details is now replaced by an updated version 
that includes reporting items for convolutional filters. 

We standardized mean filters, Laplacian-of-Gaussian filters, Laws kernels, Gabor filters, and 
separable and non-separable wavelets. We also assessed Riesz transformations of 
convolutional filters in phases 1 and 2. Despite their attractive characteristics from a signal 
processing point-of-view, implementing Riesz transformations was not trivial and too few 
teams did so. Therefore, we could not provide reference response maps and reference 
values for Riesz transformations, and we did not assess these during the validation phase. 
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As Riesz transformations are only very rarely used in radiomics studies, the impact should 
be minimal. 

Most features computed from response maps were reproducible after validation. However, 
several features could not be computed in a reproducible manner, notably the coefficient of 
variation and quartile coefficient features in conjunction with high- and band-pass 
convolutional filters. Such filters are characterized by a response map with a mean intensity 
of zero. Coefficient of variation relies on a division by the mean intensity in the ROI that is 
close to zero. The quartile coefficient of dispersion relies on division by the sum values of the 
first and third quartiles of intensities in the ROI, which can be very similar except for their 
sign, as the distribution is again centered around zero. In the presence of high- and band-
pass convolutional filters, the division operation present in both features led to otherwise 
negligible numeric differences between teams becoming relevant. This led to poor 
reproducibility. Therefore, these features should not be used in combination with high- and 
band-pass filters. 

In this work, we standardized intensity-based statistical features computed from response 
maps, but not other types of features. Particularly, morphological features are mostly 
redundant as these are based on segmentation masks that are explicitly not altered by 
convolutional filtering. Most texture features, in our estimation, would be too abstract to allow 
for interpretation. We recommend computing only intensity-based features from response 
maps, as otherwise hundreds to thousands of features might be added to a radiomics 
analysis. This makes the process of creating a generalizable and interpretable radiomics 
model more difficult in the typical setting where at most a few hundred images are available 
for analysis (13). 

A limitation of this work is its necessarily restricted scope. Compliance with IBSI reference 
values helps to improve reproducibility of radiomic features (3,4). However, a radiomics 
study also comprises image acquisition, reconstruction, segmentation, and data analysis 
steps (14,15), which we did not address here or in our previous work. Differences in, for 
example, image acquisition protocols are known to affect the appearance of an image, and 
therefore also reproducibility of radiomic features (16). Such effects can be reduced by 
harmonization and cross-calibration of scanners and protocols (17) and post-hoc techniques 
such as perturbation (18,19), batch normalization (20), and other methods (21). 

Another limitation is that participation in the IBSI does not guarantee that a particular 
software package is compliant with the IBSI reference. Changes introduced in software (3), 
or design choices may limit compliance (22). It is therefore important that developers 
integrate comparison with the reference standard into their testing framework, and where 
absent, for users to assess whether the software is compliant. 

The IBSI has so far focused on radiomics using hand-crafted features, and with this work 
offers a comprehensive reference standard for their computation. We recognize that there 
are more features and other filters than the ones we have standardized so far. These are not 
implemented often and will be hard to standardize for that reason. In the future, the IBSI will 
focus on deep learning applications of radiomics, with an aim to provide a reference 
standard for image pre-processing. 
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In conclusion, we standardized the use of eight types of convolutional filters for radiomics, 
and produced reference response maps, reference feature values and tools for verification 
and calibration of radiomics software packages. 
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