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A B S T R A C T   

Irrigated agriculture is the primary driver of freshwater use and is continuously expanding. Precise knowledge of 
irrigation amounts is critical for optimizing water management, especially in semi-arid regions where water is a 
limited resource. This study proposed to adapt the PrISM (Precipitation inferred from Soil Moisture) method
ology to detect and estimate irrigation events from soil moisture remotely sensed data. PrISM was originally 
conceived to correct precipitation products, assimilating Soil Moisture (SM) observations into an antecedent 
precipitation index (API) formula, using a particle filter scheme. This novel application of PrISM uses initial 
precipitation and SM observations to detect instances of water excess in the soil (not caused by precipitation) and 
estimates the amount of irrigation, along with its uncertainty. This newly proposed approach does not require 
extensive calibration and is adaptable to different spatial and temporal scales. The objective of this study was to 
analyze the performance of PrISM for irrigation amount estimation and compare it with current state-of-the-art 
approaches. To develop and test this methodology, a synthetic study was conducted using SM observations with 
various noise levels to simulate uncertainties and different spatial and temporal resolutions. The results indicated 
that a high temporal resolution (less than 3 days) is crucial to avoid underestimating irrigation amounts due to 
missing events. However, including a constraint on the frequency of irrigation events, deduced from the system 
of irrigation used at the field level, could overcome the limitation of low temporal resolution and significantly 
reduce underestimation of irrigation amounts. Subsequently, the developed methodology was applied to actual 
satellite SM products at different spatial scales (1 km and 100 m) over the same area. Validation was performed 
using in situ data at the district level of Algerri-Balaguer in Catalunya, Spain, where in situ irrigation amounts 
were available for various years. The validation resulted in a total Pearson’s correlation coefficient (r) of 0.80 
and a total root mean square error (rmse) of 7.19 mm∕week for the years from 2017 to 2021. Additional vali
dation was conducted at the field level in the Segarra-Garrigues irrigation district using in situ data from a field 
where SM profiles and irrigation amounts were continuously monitored. This validation yielded a total bi-weekly 
r of 0.81 and a total rmse of − 9.34 mm∕14-days for the years from 2017 to 2021. Overall, the results suggested 
that PrISM can effectively estimate irrigation from SM remote sensing data, and the methodology has the po
tential to be applied on a large scale without requiring extensive calibration or site-specific knowledge.   

1. Introduction 

From a global perspective, irrigation has the largest water footprint 
among all human activities (Gleick, 2014), accounting for more than 
70% of the total water withdrawals (Foley et al., 2011). The demand of 

irrigation steadily grew over the last decades (Wada et al., 2011) and it is 
expected to grow between 11% (Alexandratos and Bruinsma, 2012) and 
19% Coates et al., (2012) by 2050, due to increasing food demand and 
the need to adapt to climate change (Wada et al., 2013; Hejazi et al., 
2014; Fischer et al., 2007; Haddeland et al., 2014; Riediger et al., 2014). 
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The quantification of irrigation amounts and its uncertainties is, there
fore, a critical activity for water management, especially in semi-arid 
regions, where water is a limited resource. It is also fundamental to 
monitor the impact of irrigation on the global and regional hydrological 
water cycle (de Vrese et al., 2016; Ferguson and Maxwell, 2012; Harding 
and Snyder, 2012) and other earth system processes (McDermid et al., 
2023). 

Despite the importance of monitoring irrigation water use with 
precision, detailed information on irrigation amounts is often lacking 
worldwide (Folhes et al., 2009; Balasubramanya and Stifel, 2020; Foster 
et al., 2020; OECD, 2015). The main reason for this lack of information is 
the difficulty of measuring irrigation amounts locally using in situ sen
sors, as measurements are often either unavailable or not standardized. 
Furthermore, irrigation water abstraction sites are sometimes unknown. 
Remote sensing data could potentially address these shortcomings 
(Massari et al., 2021). These data are available at a global scale, at 
different spatial and temporal resolutions, and they can directly provide 
spatially distributed information on irrigation amounts. 

Most of the previous works attempted to estimate irrigation amounts 
at different spatial scales assimilating remote sensing data into hydro
logical and land surface models. Various approaches proposed to 
assimilate observations of Soil Moisture (SM) Brocca et al. (2018); 
Kumar et al. (2015); Zaussinger et al. (2019), Evapotranspiration (ET) 
(Brombacher et al., 2022; Droogers et al., 2010; Kragh et al., 2023) or 
vegetation indexes from optical bands (Maselli et al., 2020; 
Olivera-Guerra et al., 2023; Hamze et al., 2023) to reproduce the actual 
(or ideal) water amounts supplied to the study area. An overview of the 
existing methodologies for irrigation estimation is presented in Massari 
et al. (2021) which sorts the different methodologies based on the 
remote sensing data used (sensor type and temporal resolution). Simi
larly, Foster et al. (2020) performed a meta-analysis over 41 previous 
research employing different methodologies, classified by the type of 
inputs used: thermal infrared, microwave SM, or crop coefficients from 
different spectral bands. The study concluded that remote sensing is an 
effective and low-cost solution to tackle the lack of information on 
irrigation amounts, but overconfidence in the results and a lack of 
proper validation of methodologies at different scales can be 
counter-productive and even harmful to general efforts on improving 
water management practices. 

The majority of the approaches propose the assimilation of remote 
sensing data into a Land Surface Model (LSM) such as Noah (Nie et al., 
2022; Modanesi et al., 2022, SURFEX (Escorihuela and Quintana-Seguí, 
2016) and the Community Land Model (Sacks et al., 2009; Zhu et al., 
2020; Yao et al., 2022). Other approaches proposed to estimate irriga
tion by closing the water balance equation using SM observations 
(Brocca et al., 2018, or comparing ET observations between irrigated 
pixels and non-irrigated areas (Brombacher et al., 2022), or between 
observed and modeled hydrological variables (Kumar et al., 2015; 
Zaussinger et al., 2019; Zhang and Long, 2021; Koch et al., 2020; Kragh 
et al., 2023; Peng et al. (2021) highlighted the need of using SM ob
servations with a spatial resolution of at least 1 km to adequately 
describe irrigation practices. 

Brocca et al. (2018) proposed to input SM observations into a simple 
soil water balance equation, modified from the SM2RAIN methodology, 
created for rainfall amounts correction (Brocca et al., 2014; Brocca et al., 
2016). The approach proved to be successful in estimating irrigation at 
the district level, using different SM datasets as inputs (Dari et al., 2020; 
2023) and coupling it with ET products (Dari et al., 2022). Nevertheless, 
the methodology showed increasing errors during rainier seasons and in 
discriminating between precipitation and irrigation amounts (Brocca 
et al., 2018; Dari et al., 2023; Brombacher et al. (2022) also proposed a 
simple approach based on the difference of actual ET between irrigated 
and natural hydrological similar pixels. The approach proved to be 
effective only for the case in which enough natural pixels were available 
in the study area, which is not always the case for intensively cultivated 
areas. Koch et al. (2020) and Kragh et al. (2023) proposed to compare 

modeled and observed ET values to estimate net irrigation at a spatial 
resolution of 1 km and 5 km, respectively. These approaches focused on 
the estimation of net irrigation, which is only a portion of the actual 
irrigation amount, corresponding to the evaporative loss. Zhang and 
Long (2021) proposed instead a methodology based on the difference 
between observed and modeled ET and root-zone SM to estimate actual 
irrigation amounts. The approach provides monthly irrigation amounts 
at 1 km resolution, without requiring any need for calibration. This 
methodology is based on the assumption that the difference between 
observed and modeled hydrological variables is due to irrigation. 
However, this assumption is not always valid, as the difference between 
observed and modeled variables can be due to different factors, such as 
model errors, errors in the input data, or errors in the observations. 
Moreover, the methodology is validated only at a yearly scale, and using 
spatially aggregated data at the regional level. This makes it difficult to 
assess the performances of the methodology at a finer scale, which is 
often the scale at which irrigation management decisions are made. 

Recently, an increasing number of studies focused on irrigation es
timates at the field level, made possible thanks to the availability of 
high-resolution remote sensing products, which allows finer spatial es
timations but at the expense of a lower temporal frequency. Multiple 
studies investigated the feasibility of employing high spatial resolution/ 
low temporal frequency data for irrigation estimation. Olivera-Guerra 
et al. (2018) used thermal-infrared data from the Landsat mission and 
vegetation indexes from the Sentinel-2 mission to constraint an FAO-56 
water budget model and retrieve irrigation amounts at field scale. The 
approach proved useful in estimating total irrigation amounts over 5 
irrigated fields in Marocco, but performances were not satisfactory at 
daily to weekly scale due to the low temporal resolution of the Landsat 
product. The authors concluded that satisfactory results could only be 
obtained with a temporal frequency of thermal data finer than 10 days, 
and also suggested that including an SM product would lead to im
provements thanks to a better-defined topsoil condition. Similarly, 
Ouaadi et al. (2021) assimilated Sentinel-1 SM into an FAO-56 model. 
The study also showed how at least a 3-day revisit time is needed to 
correctly estimate irrigation amounts with this methodology. Modanesi 
et al. (2022) proposed to assimilate Sentinel-1 SM into the Noah-MP LSM 
coupled with an irrigation scheme (Niu et al., 2011; Ozdogan et al., 
2010). The study concluded that the methodology can correctly estimate 
irrigation amounts at field level even though strong over- and 
under-estimation of irrigation amounts at a biweekly scale are present, 
probably due to large uncertainties in the model inputs. Moreover, the 
authors concluded that the temporal frequencies of Sentinel-1 obser
vations, which were around 3 days in the study area, were not sufficient 
to detect all the irrigation events, and higher temporal resolution was 
needed. Finally, a study from Zappa et al. (2021) employed Sentinel-1 
derived SM with a 500 m resolution using a simple water balance 
equation. The study showed results in line with the abovementioned 
literature: large underestimations were found due to missing irrigation 
events between two different satellite overpasses. The authors 
concluded that a temporal frequency of 3 days is needed to correctly 
estimate irrigation amounts at the field level. The general conclusion 
from studies focusing on irrigation retrieval at the field level was the 
need for SM observations at higher spatial and temporal resolution 
(which is a requirement also confirmed by Massari et al. (2021) in their 
review for irrigation quantification and timing methodologies at the 
field level). 

This overview of state-of-the-art methods for estimating irrigation 
amounts highlighted some common shortcomings. Methods that employ 
LSM are often complex and require extensive calibration, which limits 
the generalization of the methodology. Moreover, This class of models 
requires a large amount of input data to correctly reproduce the state of 
the soil. Methods that employ remote sensing SM in simple water bal
ance equations (such as SM2RAIN) are instead limited by the satellite 
SM product used, which is often available at low spatial resolution 
(around 1 km) or insufficient temporal frequency. Moreover, the 
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majority of the proposed methodologies do not provide uncertainty 
estimation. 

In this study, we propose a novel methodology that builds on pre
vious research and tries to overcome these limitations. The methodology 
is based on the PrISM (Precipitation inferred from Soil Moisture) (Pel
larin et al., 2013) model, which is a simple soil water balance model that 
uses SM observations to estimate precipitation amounts. Similarly to 
SM2RAIN, the PrISM model is also originally developed as an inversion 

of SM observations to estimate precipitation amounts, but instead of a 
direct assimilation in the water balance equation, the method employs a 
particle filter assimilation scheme for SM into the Antecedent Precipi
tation Index Formula (API). This study proposes for the first time to 
adapt this methodology to estimate irrigation amounts instead of cor
recting precipitation amounts. Three main modifications to the algo
rithm are introduced in order to adapt the methodology to irrigation 
estimation and to overcome the limitations of previous methodologies: i) 

Fig. 1. On the top panel, a map representing the location of the two study areas, the Algerri-Balaguer irrigation district (green box) and the Foradada field (red box), 
which are located in the province of Lleida, in Catalunya, Spain. The main irrigation districts of the region are delineated. On the lower left panel, the Algerri- 
Balaguer irrigation district (in blue), on a map of irrigated and non-irrigated fields, from the SIGPAC-DUN administrative dataset. Meteo stations (red dots) and 
the water pumping station (green cross) are also shown. On the lower right panel, the Foradada field (in blue), on a map of irrigated fields from SIGPAC-DUN. The 
closest meteo station (Baldomar) is also shown (green dot), together with the three SM sensors installed in the field, and the border of the Segarra-Garrigues irrigation 
district (black line). The dry field taken as a rainfed reference is also shown (red line). 
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a self-calibration process is performed in adjacent non-irrigated agri
cultural areas, to automatically retrieve the model’s parameters. ii) 
Realistic assumptions on irrigation frequency (based on the irrigation 
system installed in the field) are used to mitigate the underestimation 
effect of low temporal frequency (around 6 days) SM observations. 
Previous studies tried to mitigate this effect by directly introducing 
precise information on irrigation timing, which is very difficult to 
obtain; iii) the model provides a simple estimation of uncertainties, 
based on the possible timing of the irrigation event between two SM 
observations. This provides additional details on the performances of the 
model and allows for a better interpretation of the results. 

A synthetic study is carried out to assess the performance of the 
model in a controlled environment and to evaluate the novelties intro
duced by this methodology. The PrISM methodology is then tested over 
two different study areas, at the district and the field level, using actual 
satellite SM products with different temporal and spatial scales. At the 
district level, daily SM from SMAP disaggregated at 1 km using S3 LST 
was used over the 2016–2018 period. At field level, 6-day SM from 
SMAP disaggregated at 100 m using Landsat-7, Landsat-8 and Landsat-9 
LST is employed. These two applications allow to study the effect of low- 
resolution/high-frequency or high-resolution/low-frequency SM prod
ucts for the retrieval of irrigation amounts. Calibration is performed on 
the study area by selecting adjacent drylands, assuming that they have 
similar soil types and meteo conditions. The results are then validated 
using in situ irrigation data, and the performances of the model are 
discussed. 

2. Study areas 

This study proposes the application of the PrISM methodology for 
irrigation estimation at different spatial scales: district and field levels. 
Fig. 1 shows the location of the two study areas, the Algerri-Balaguer 
irrigation district and the Foradada field at the Segarra-Garrigues irri
gation district, both located in the province of Lleida, Catalunya, Spain. 

2.1. District level: Algerri-Balaguer 

The Algerri-Balaguer irrigation district is located north of Lleida in 
Catalunya, Spain, and has an area of approximately 71 km2. The region 
has a semi-arid climate, with total precipitation amounts of around 
420 mm and around 72 rainy days (for the years from 2017 to 2021). 
The consolidated irrigation infrastructure brings water from the Pyr
enees mountains, located northeast of the irrigation district, to the 
channel system that reaches individual fields. The area is ideal for 
studying the performances and the application at a large scale of this 
methodology. The main reasons are that i) the area has an irrigation 
monitoring system, in place since 2010, providing values of water 
flowing through the main pump at a daily scale for the district. The 
average cumulative amounts of irrigation for the period 2017–2021 
correspond to 540 mm∕year. Moreover, ii) the district borders a large 
non-irrigated agricultural area, which is close enough to share the same 
meteorological conditions and it is very useful to test the null hypothesis 
on the estimation of irrigation (it can give a clear estimate of any re
sidual bias of the model). Fig. 1 shows the Algerri-Balaguer irrigation 
district on the lower left panel (blue line) together with the adjacent 
non-irrigated area (red line), the location of the pumping station (green 
cross) and the meteo stations (red dots). As shown in (Olivera-Guerra 
et al., 2023), the majority of the area is irrigated (75%) with sprinkler or 
drip irrigation. The majority of the fields are irrigated with sprinkler and 
cultivates double crops: barley in winter and maize in summer. Trees are 
located in the southern part of the district and are mostly irrigated by 
drip techniques, requiring less irrigation amounts. 

2.2. Field level: Foradada 

A water flow meter together with three SM sensors is installed in a 

field near the village of Foradada (41.8656 N, 1.012 E), close to Lleida, 
in the Segarra-Garrigues irrigation district (Fig. 1). The irrigation district 
has been recently equipped with a canal system that feeds irrigation to 
the entire area, even though most of the farmers have not yet equipped 
their fields with irrigation systems, so the area is mostly rainfed (Fon
tanet et al., 2018). For this reason, the Foradada field is an interesting 
study area, since its soil conditions are very similar to surrounding areas 
in winter/spring when cultivation is mostly rainfed, but they strongly 
differ in summer, when the field is one of the few that are irrigated, and 
it is surrounded by drylands. The Foradada field is approximately 20 ha, 
equipped with a sprinkler irrigation system, and cultivated with double 
crops: cereals during winter/spring and maize during summer. A flow
meter was installed in the irrigation system and provided irrigation 
amounts for several consecutive years, from 2017 to 2021. SM sensors 
were installed in 3 different locations in the field, and monitored SM at 
different depths, even though measurements were only collected during 
the year 2017. The closest dryland field is selected for the calibration of 
the PrISM methodology and it is visible in red in the lower right panel of 
Fig. 1. 

3. Materials 

3.1. Soil moisture 

For this study, observed remote sensing SM is assimilated in the 
PrISM methodology to estimate irrigation amounts. To reach the 
adequate spatial resolution for analysis at the district and field level, 
DISPATCH (Merlin et al., 2012; Molero et al., 2016) was used to 
disaggregate the passive microwave SM product from SMAP (Entekhabi 
et al., 2010. Previous studies proved that both the original SM product 
from SMAP (Lawston et al., 2017) and the DISPATCH disaggregated 
product are capable of detecting the irrigation signal (Escorihuela and 
Quintana-Seguí, 2016). The original L3 enhanced SM product from 
SMAP is delivered at 9 km, and it is then downscaled to 1 km for the 
district-level study using MODIS optical and thermal data. Results at 
district scale produced using DISPATCH SM at 1 km are presented in 5.2. 
For the filed-level study, the 100 m product is retrieved from a disag
gregation of the SMAP SM using Landsat optical and thermal data, which 
has a 100 m resolution. Results at field scale produced using DISPATCH 
SM at 100 m are presented in 5.3. Details about the DISPATCH meth
odology used can be found in (Merlin et al., 2013), where disaggregation 
of SMOS data is proposed with both thermal products at 1 km and 
100 m. The only variation applied for this study was the use of a vege
tation extension version of DISPATCH, which overcomes the limitation 
of disaggregating SM over areas with high Normalized Difference 
Vegetation Index (NDVI), by using the Temperature Difference Vegeta
tion Index (TDVI) instead of the Soil Evaporative Efficiency (SEE) as a 
disaggregation parameter, as described in Ojha et al. (2021). 

3.2. Meteorological data 

For the district-level and field-level studies, meteorological data 
were retrieved from the Catalan meteorological network, which is 
openly accessible (https://ruralcat.gencat.cat/web/guest/agrometeo. 
estacions). Hourly air temperature and precipitation were retrieved 
from these meteo stations for the years 2017–2021. For the district-scale 
analysis, even though the nearby stations showed very similar values, 
the data were spatially distributed into the same grid and projection as 
the observed DISPATCH SM data at 1 km using the nearest neighbor 
approach (using the kd-tree algorithm (Maneewongvatana and Mount, 
1999). Eleven of the closest stations were used to create this product, 
and they are identified in the lower left panel of Fig. 1. For the analysis at 
the field level, the data from the Baldomar meteo station was used, since 
it is the closest station to the Foradada fields, located approximately at a 
6 km distance. 
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3.3. In situ irrigation data 

In situ irrigation data are available as cumulative values for the 
entire district of Algerri-Balaguer. The infrastructure built for irrigation 
in the area delivers water from the Pyrenees mountains through 
constantly monitored and measured canal systems. Available data at 
daily resolution are openly accessible from the Automatic Hydrologic 
Information System of the Ebro river basin (SAIH Ebro). These data are 
then processed to account for losses due to drainage, pipe leaking and 
evaporation, corresponding to 5.8%, as proposed by (Olivera-Guerra 
et al., 2023) and weekly aggregated to account for any delay from the 
measuring date to the supply of irrigation to the soil. Finally, the data 
are converted from m3 to mm by dividing it by the area of the district, 
corresponding to 70.79 km2, as in (Dari et al., 2020). For the field-level 
study, irrigation data for the years from 2017–2021 were available from 
a flowmeter directly installed in the irrigation system of the Foradada 
field. 

4. Methodology 

The PrISM methodology (Pellarin et al., 2020; Pellarin et al., 2013) 
was originally designed to correct precipitation amounts using remotely 
sensed SM. The method employs a simple soil moisture/precipitation 
model which is a slight modification of the Antecedent Precipitation 
Index (API) and a particle filter assimilation scheme to ingest these SM 
observations. The approach proposed in this study follows the same 
structure of the classical PrISM, even though some additional steps are 
added in the processing pipeline. The main change proposed is the use of 
two sets of inputs, extracted from two different adjacent areas, irrigated 
and rainfed respectively, with the assumption that they share similar 
meteo conditions and soil types. Data coming from the rainfed area is 
used for calibration, to estimate the main parameters of PrISM, which 
are then used to retrieve irrigation amounts coming from the irrigated 
pixel. The methodology is described in detail in the following sections. 

Fig. 2 visualizes and enumerates the main steps of the proposed 
methodology. In the first half of the process, on the rainfed pixel, the 
three main parameters of the API formula are retrieved (steps 1 and 2), 
and the API formula is then applied to the precipitation data from the 
rainfed pixel (step 3) to create a modeled SM. This modeled SM is then 
compared with the observed SM, to retrieve the two parameters for the 
CDF-matching, p1 and p2. In the second half of the process these pa
rameters are applied to data coming from the irrigated area: a first guess 

of irrigation amount from the observed SM is computed (step 5), using 
the inverted API formula. This first guess is then used as input for the 
classic PrISM formulation and it is corrected to finally have a precise 
estimation of irrigation and precipitation amounts (step 6), from which 
the irrigation profile is retrieved by subtraction with the initial precip
itation. In this study, the PrISM algorithm was designed using the Py
thon programming language, version 3.9, and is freely available on the 
GitHub website (https://github.com/Giov-P/PrISM). 

4.1. API formula 

The API is a simple semi-empirical model used to reproduce soil 
water dynamics using time series of precipitation as input. API is widely 
used in rainfall-runoff applications to parameterize the SM conditions 
(Sittner et al., 1969; Descroix et al., 2002). In its initial formulation, it 
provides a proxy of the surface SM using as inputs a single precipitation 
observation and the parameter τ, which controls the soil drying-out 
velocity. This study employs the API formulation proposed by (Pel
larin et al., 2020), which improves the accuracy of the formula by 
constraining the SM between two extreme values, representing the re
sidual and saturated SM conditions. Additionally, the new API formula 
directly estimates volumetric SM, expressing it in m3∕m3, instead of mm. 
The API is formulated as follows: 

SMt = (SMt− 1 − SMres)⋅e−
Δt
τ + (SMsat − (SMt− 1 − SMres))⋅

(
1 − e−

Pt
dsoil

)
+ SMres

(1) 

Where SMt is the Soil moisture at time t in [m3∕m3] retrieved from 
the precipitation Pt at time t, expressed in [mm], the soil moisture SMt− 1 
at time t − 1, the drying-out velocity τ expressed in [h], the saturated 
and residual soil moisture values SMres and SMsat, the soil thickness of 
the soil moisture dsoil expressed in [mm] and the interval of time between 
two observations Δt, expressed in [h]. 

In the original formulation of the API, the only parameter that pre
sents a spatio-temporal variability is τ, derived from the air temperature 
T, while SMres is spatially varying (following a temporal average of NDVI 
and T) and dsoil also varies spatially, following a sigmoid function. 

In this study, a data-driven approach was employed. The two pa
rameters SMres and SMsat are determined for each pixel according to the 
maximum and minimum values of each time series of observed SM (step 
1 of Fig. 2), dsoil is set constant to 50 [mm], given that it is the average 
soil depth at which observed SM is provided. Following a sensitivity 

Fig. 2. Flowchart of the methodology. Data from the rainfed time series are used to retrieve the main parameters of PrISM (left side of the flowchart). These pa
rameters are then applied to the irrigated pixel and irrigation amounts are retrieved (right side of the flowchart). The main steps in the processing pipeline are 
numbered from 1 to 6. 
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study over the API parameters, τ was found to be the most sensitive 
parameter, with the largest impact on the modeled SM. For this reason, 
calibration of this parameter is performed based on the best fit between 
the model climatology and observed SM. 

As detailed in Pellarin et al. (2020), in addition to the calibration of 
the τ parameter, a CDF-matching procedure is performed before 
assimilating the observed SM data into the model using the particle 
filter. The CDF-matching parameters are calculated exclusively between 
the modeled and observed time series of the rainfed pixel and the 
retrieved parameters are successively applied to the irrigated time se
ries. The matching is performed using a linear fitting of the observed 
data against the modeled data, following the procedure illustrated by 
this formula: 

SMCDF,obs = p1 + p2⋅SMobs (2)  

with p2 = σAPI
σobs 

and p1 = SMobs − p2 ⋅ SMAPI. 
The calibration of τ and the CDF-matching procedure are only 

computed on rainfed areas, where SM is only driven by precipitation, 
thus observed and modeled SM ideally represent the same evolution. 
Limiting this step to rainfed-only areas is particularly important since it 
avoids removing the observed irrigation signal that would occur if 
performing the CDF-matching over an irrigated pixel (Kumar et al., 
2015; Jalilvand et al., 2023). As explained in this section, the proposed 
methodology includes both a calibration step and a CDF-matching 
procedure, which can be considered a second (fully empirical) calibra
tion. This choice is justified by the different functions that these two 
steps serve: calibration of the API parameters is used to remove any bias 
between the modeled and observed SM time series, but it only affects the 
mean of the bias, while the CDF-matching procedure is used to remove 
any bias in the variance. The need for CDF matching is then justified by 
the fact that the API model is a simplification of the soil water balance 
equation, and it does not account for all the processes that affect the soil 
water dynamics. The two steps are performed sequentially, and the 
calibration of the API parameters is performed first, to avoid any bias in 
the CDF-matching procedure. 

4.2. First guess 

The API formula is used in steps 3 and 6 of the methodology pro
posed in Fig. 2, while an inverted API formula is used for step 5, to 
retrieve a first guess of precipitation and irrigation from observed SM. 

The inverted API formula is the following: 

Pt&It = − dsoil⋅log
(

1 −
(SMt − SMres) − (SMt− 1 − SMres)e−

Δt
τ

(SMsat − (SMt− 1 − SMres) )

)

(3)  

This direct inversion of the observed SM into precipitation and irrigation 
only provides a first guess and not a precise amount, since it does not 
account for errors related to the simplification introduced by the use of 
the API model and the intrinsic errors from the observed SM. Never
theless, retrieving this first guess allows us to overcome one of the main 
limitations of the PrISM methodology, which is the inability to create 
precipitation (or irrigation) events (Pellarin et al., 2020). 

In order to improve the quality of the first guess, a preprocessing step 
is applied before the ingestion of this first guess into the standard PrISM 
model. This preprocessing step involves the removal of all the negative 
estimation of precipitation and irrigation amounts, which are auto
matically set to 0, plus a temporal downscaling from the resolution of 
the observations (usually in the order of days, when the SM observations 
are retrieved from satellite products) to the resolution of the precipita
tion dataset (which is in the order of hours). 

Temporal downscaling is a particularly important step in this 
methodology. This step is needed to have the same temporal frequency 
between irrigation (which is retrieved from inverted SM with a temporal 
resolution usually in the order of days) and precipitation (which has a 
higher temporal resolution, in the order of hours). Once an irrigation 
event is detected between two SM observations, the precise timing at 
which the irrigation event occurs remains unknown, and some design 
choices are needed to constrain this uncertainty. Two different scenarios 
are retrieved from the downscaling: one scenario where irrigation is 
placed at the beginning of the temporal window where the event is 
detected, and the second scenario where irrigation is placed at the very 
end of the temporal window, happening at the same time of the observed 
SM. The first scenario is here called the “maximum scenario” since it 
leads to the maximum possible estimation of irrigation amounts, as 
shown in Fig. 3. In this scenario, the largest amount of water is needed, 
because of the largest drying-out period that elapses between the irri
gation events and the observed SM. The second scenario is exactly 
opposite to the first one and places the irrigation events right at the same 
time when the SM is observed. This is a “minimum scenario” since it 
leads to the least amount of estimated irrigation. In this scenario, the 
irrigation amount instantly drives the SM level observed, and there is no 
drying-out period. Fig. 3a shows these two scenarios and the modeled 

Fig. 3. Visualization of the temporal downscaling approach. In order to constrain the timing of the irrigation events, two scenarios are elaborated. The “maximum 
estimation” scenario assumes that irrigation occurs right at the beginning of the temporal window where the event is detected, while the “minimum scenario” places 
the event right at the end of the temporal window. Using these approaches allows constraining the irrigation amounts between these two retrieved values. On the left 
(A), an example of the max and min scenario without any constraint on irrigation frequency. On the right (B), the constraint on daily irrigation amounts is applied to 
the “max” and “min” scenarios. 
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SM derived with the PrISM approach. The irrigation amounts retrieved 
from these two extreme scenarios lead to define an empirical uncertainty 
of the estimated irrigation amount since the real value will ideally be 
contained in between these two estimations. Instead of using these two 
extreme scenarios, a more straightforward approach would be to 
aggregate the initial precipitation to the SM temporal frequency and 
estimate irrigation with the same temporal resolution. However, this 
approach would limit the quality of the retrieved irrigation amounts, 
since only one irrigation amount could be retrieved between each SM 
observation, not allowing to estimate uncertainties. Furthermore, the 
temporal aggregation would implicitly assume a constant and contin
uous amount of irrigation or precipitation between two SM observa
tions, which is not always the case. Nevertheless, in case Precipitation is 
not available at a higher temporal resolution than SM, this approach 
could still be valuable to have a rougher estimation of irrigation 
amounts. 

Fig. 3b shows an adaptation of the methodology to introduce an 
additional constraint on the irrigation timing: when observed SM data 
comes with a larger frequency than 24 h and an irrigation event is 
detected, it is assumed that multiple events are present in the window 
between these two observations, and they are distanced 24 h apart. The 
max and min scenarios are considered in this case as well. This 
constraint is applied under the regime of sprinkler irrigation, which is a 
type of irrigation that follows this daily frequency, while for more 
traditional irrigation systems, e.g. surface irrigation, the frequency is 
around once every two weeks with large amounts, so this constraint is 
not applied. This study focuses on an area where sprinkler irrigation is 
majorly used, so the constraint on the daily frequency is applied. 

4.3. Particle filter 

A particle filter assimilation technique is used to assimilate SM 
observation into the API model. Román-Cascón et al. (2017) demon
strated how introducing this assimilation scheme is advantageous for 
hydrological models, especially for the simple API model. Particle filter 
is advantageous compared to the class of assimilation techniques 
derived from the Kalman filter since it does not assume a Gaussian 
probability distribution of the prior sample, and the observation can be 
adapted to any non-linear and non-Gaussian application (Gordon et al., 
1993; Moradkhani et al., 2005), which is most suitable for SM assimi
lation (Crow and Loon, 2006). 

The particle filter methodology adopted in this study is derived from 
Pellarin et al. (2020), which follows the particle filter theory for SM 
assimilation proposed by Yan et al. (2015). As a first step, random sto
chastic perturbations are applied to the first guess of precipitation and 
irrigation amounts. This perturbation is created by multiplying these 
amounts by a set of 300 factors that vary uniformly between 0 and 2. 

Secondly, the amounts of irrigation and precipitation that are perturbed 
with the set of 300 factors, are then forced into the API formula to 
retrieve a final set of perturbed modeled SM time-series. Consequently, 
the assimilation of observed SM is performed every time 5 consecutive 
observations are available: in this window, the modeled SM set is 
evaluated against the observed SM through minimization of the total 
rmse and only the 30 factors leading to the smallest rmse are averaged 
together to retrieve a final value for the particular window. The same 
process is then applied to the next set of 5 observations, in a rolling 
window fashion, so that for each observation 4 factors are retrieved and 
averaged together. The final retrieved factor is finally applied to the first 
guess of precipitation and irrigation, to have a final corrected amount. 

After the particle filter data assimilation, the last step involves 
separating the amount of precipitation from irrigation in order to obtain 
the final product. This final procedure is performed by removing all the 
precipitation events from the final time series, by setting to zero the 
amount of irrigated water in case a precipitation event was originally 
present in the dataset. 

5. Results and discussion 

5.1. Synthetic study 

This synthetic study is performed to assess the performance of PrISM 
in a controlled environment. Real data from one year of precipitation 
and irrigation are retrieved from the in situ data available in the For
adada field. From these data, a synthetic SM profile is created using the 
API formula, all the parameters needed were retrieved from air tem
perature values and average NDVI, using the formulas proposed in Pel
larin et al. (2020). A comprehensive number of tests are performed 
modifying this synthetic SM profile to adapt it to realistic scenarios. 
Three variations are introduced: the addition of white noise to simulate 
instrumental error from the observed SM, a variation of the temporal 
resolution of the data, a reduction in the frequency of available SM, and 
finally a variation of the spatial resolution of the data, which is simu
lated by changing the different percentage of irrigation present in the 
pixel detected by the observed SM. All the different synthetic SM profiles 
are successively assimilated into the PrISM model to retrieve the 
amounts of precipitation and irrigation. The performances of the model 
are evaluated in terms of the total error of estimated precipitation and 
irrigation, and the correlation between the estimated and the real daily 
irrigation amounts. 

Fig. 4 visually presents the SM profiles used for the synthetic study 
and the precipitation and irrigation time series used as inputs to create 
the SM profiles and to evaluate the performances. Fig. 4A and C show SM 
from different noise levels and temporal frequencies. These SM profiles 
are retrieved from the distribution of precipitation and irrigation 

Fig. 4. Visualization of all the different SM profiles used for the synthetic study. (A) shows the SM profile with different noise levels, (B) shows the precipitation and 
irrigation amounts from in situ data taken from the Foradada field, which are used to build the synthetic observed SM profiles using the API formula. (C) shows 
different temporal samplings applied to the SM profile to reproduce the lower availability of SM from satellite data, while (D) shows the corresponding irrigation and 
precipitation for the period visualized. 
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presented in Fig. 4B and D. The SM profiles created from different per
centages of irrigation are here omitted but results from those tests are 
shown in the appendix A. 

Fig. 5 visualizes the results from the synthetic study for 2 different 
configurations of the PrISM methodology, which correspond to the un
constrained version (left column) and a version where a modern irri
gation system is assumed, so irrigation is created with a daily frequency 
(right column). Each plot shows the performances of PrISM when 
decreasing the temporal frequency of SM observations (expressed in h in 
the x-axis) and when increasing the noise (represented by the different 
colors of the curves). Error bars are retrieved from irrigation amounts 
corresponding to the maximum and minimum scenario. Results are 
presented in terms of the total error of estimated annual precipitation 
and irrigation in the first row of Fig. 5, while the second row shows 
results in terms of daily irrigation correlation (expressed by the Pear
son’s r coefficient) between in situ irrigation and irrigation estimated by 
PrISM. 

Analyzing Fig. 5A, it can be noticed that the error on the total 
amount of precipitation and irrigation grows towards negative values 
(underestimating the total amounts) when the temporal frequency of the 
SM observations decreases. This underestimation is caused by increasing 
amounts of missed irrigation events, especially with observations at a 
temporal frequency lower than 24 h, since irrigation is performed daily 
in this simulation and not all events can be detected if SM observations 
are not available daily. This explains the sharp increase in underesti
mation of the total amounts after the 24 h temporal frequency of SM 
observations. On the other hand, increasing noise in the observed SM 
has the opposite effect of overestimating the total amounts. This is also 
easily explainable: higher noise leads to an increase of “false positives” 
irrigation events, created by the random fluctuation of the irrigation 
signal. These two trends partially compensate for each other in terms of 
the total error of precipitation and irrigation, but they both contribute to 
quick degradation of the correlation values (as it can be seen in Fig. 5B). 

The right column of Fig. 5 shows results for the assumption of daily 
irrigation. This assumption distributes irrigation on a daily whenever an 
irrigation event is detected, which is a realistic assumption for modern 
irrigation practices, such as sprinkler irrigation, which usually happens 
with this frequency. Fig. 5B and C show how this assumption greatly 
improves the performances of PrISM, both in terms of error on the 
annual estimated amount of irrigation and precipitation and correlation 
of daily irrigation, proving that it is possible to mitigate the effect of 
limited availability of observed SM if information about irrigation 
practices is available. As it is noticeable from Fig. 5B, the error on the 
total amount of irrigation and precipitation shows the same degrading 
trend for the two configurations in the left and right columns, until it 
reaches the 24 h temporal resolution of observed SM. After this temporal 
resolution, values stabilize when using the assumption of daily irriga
tion. The same behavior can be observed in Fig. 5D, where the corre
lation flattens after the 24 h temporal frequency. It is also noticeable 
how correlation slightly improves when degrading the temporal fre
quency of SM profiles with a high noise content (above 2%). This is also 
reasonable since with the daily constraint the model is less dependent on 
the noisy SM profiles and performs slightly better when fewer obser
vations are present because it also reduces the frequency of “false pos
itive” detection. 

Results for this synthetic experiment are in line with previous studies 
that proposed a similar approach, based on assimilating SM observations 
to estimate irrigation amounts. Filippucci et al. (2020) showed a daily 
correlation lower than 0.3 when decreasing the temporal frequency of 
the observation up to 120 h, and similarly, in Zappa et al. (2022) the 
correlation between retrieved and actual irrigation amounts decreased 
down to 0.4 for a temporal resolution of 144 h and a simulated irrigated 
quantity of 5 mm. These results are very well in line with what has been 
presented in Fig. 5C, where the daily correlation r is lower than 0.3 with 
higher temporal frequencies than 120 h. 

Jalilvand et al. (2023) retrieved irrigation from a synthetic study 

Fig. 5. Results from the synthetic study that shows the performances of PrISM in terms of total error from retrieved precipitation+irrigation (first row) and cor
relation of daily irrigation (second row). Results are presented for two different PrISM configurations: with no constraint (left column) and constraining irrigation 
events to a daily frequency (right column) which corresponds to assuming a modern irrigation practice, e.g. sprinkler irrigation. All the plots show the performance 
degradation when decreasing the SM temporal frequency (expressed in hourly frequency h along the x-axis), and when adding noise to the signal, as shown for the 
different lines described in the legend. Error bars represent the variation of values between the “maximum” and “minimum” scenario. 

G. Paolini et al.                                                                                                                                                                                                                                 



Agricultural Water Management 290 (2023) 108594

9

with fixed noise levels and 3 different temporal frequencies (1, 6, and 
12-day temporal frequency), also showing a negative bias due to missing 
detected irrigation. Additionally, it shows how degradation due to lower 
temporal frequencies of observations can be avoided completely when 
irrigation timing is known (which is in line with the constrained results 
shown in Fig. 5B and D). Nevertheless, results from the synthetic study 
presented in this work, demonstrated how it is not strictly necessary to 
know the exact timing of irrigation events, but it is sufficient to know the 
irrigation frequency (e.g. daily irrigation) to avoid the degradation of 
the performances of PrISM. 

5.2. District scale: Algerri-Balaguer 

The PrISM model adapted for irrigation estimation is consequently 
applied to observed SM data at 1 km resolution, derived from the 
disaggregation through DISPATCH of SMAP SM gridded at 9 km with 
NDVI and LST from MODIS at 1 km. Given that the SM and precipitation 
variables across the dryland area are quite homogeneous, calibration 
results do not vary across the pixels in the area, so a single representative 
pixel from the dry-land area is selected to calibrate the parameters p1, p2, 
smres, smsat, and τ, following the procedure illustrated in Fig. 2. Never
theless, the methodology can be easily extended to a larger area and 
multiple pixels, as long as the assumption of similar meteo conditions 
and soil types is valid. Following calibration, results are then produced 
for each pixel of the irrigated area of Algerri-Balaguer. Fig. 6 shows the 
results for the year 2017. 

Fig. 6A and B shows the spatial distribution of the irrigation amounts 
for the winter and summer period of the year 2017. The red area rep
resents the dryland area, while the blue area represents the irrigated 
area, and the average amounts of irrigation for the two areas and the two 
seasons are written in the respective boxes. It is possible to notice how 
the spatial distribution of the irrigation amounts correctly detects the 
irrigated and dryland areas, showing most of the irrigation amounts in 
“summer” for the irrigated areas, with values reaching 600 mm (blue 
textbox in Fig. 6B), which is an amount of irrigation expected in this 
area. Nevertheless, it is also possible to notice how a small amount of 
irrigation is also detected in the dryland area both in “winter” and 
“summer”, with an average irrigation amount of around 50 mm for both 
seasons. This amount should be considered as an error of the model, 
irrigation is not practiced in this dryland area. This error is also visible in 
the time series of Fig. 6C, where the irrigation time series of the dryland 
area (red lines) shows some isolated irrigation events occurring both in 
winter and in summer. The fact that these events seem very homoge
neous for all the drylands pixels (both in timing and amount) suggests 
that they are not real irrigation events, but they are most probably 
precipitation events that were not included in the Precipitation datasets 
used as input, and for this reason, are misclassified as irrigation. 

Another interesting result from the spatial distribution of Fig. 6B is 

the difference in irrigation amounts between the northern and southern 
parts of the irrigated area. The northern part of the irrigated area shows 
a higher amount of irrigation, whilst the southern part generally shows 
lower amounts of irrigation. This can be explained by the different 
irrigation practices of the two areas: the northern part is mainly culti
vated with double crops and irrigated by sprinkler systems, which re
quires a higher amount of irrigation, while orchard trees are mainly 
present in the southern part and they are subject to drip irrigation, 
which requires a lower amount of irrigation. 

In order to evaluate the performances of the PrISM model at the 
district level, the results are compared with the in situ data available for 
the Algerri-Balaguer district. Fig. 7 shows the results for the years 
2017–2021 and the performances of the model are evaluated against in 
situ data in terms of Pearson’s correlation (r), rmse, and bias. 

As illustrated in Fig. 7, PrISM shows a good correlation with the in 
situ data, with a total r equal to 0.80 for all the years, and oscillating 
between 0.79 (2018) and 0.87 (2020) when considering the single years. 
A slight underestimation of the irrigation amounts is present: the bias 
equals − 1.76 mm∕week for the overall total, and it oscillates between 
− 3.64 mm∕week (2017) and 0.43 mm∕week (2020) for the different 
years. The model shows a good performance also in terms of rmse, with a 
total rmse of 7.19 mm∕week, and between 5.06 mm∕week (2020) and 
8.81 mm∕week (2017) for the single years. Generally, it can be seen that 
2020 shows the best performances for all metrics, but it could be related 
to the smaller portion of the year used for the comparison. As a matter of 
fact, in situ data were not available for a relatively large period during 
the irrigation season, which could affect the metric computation for that 
year. Conversely, 2017 shows lower performances while being the only 
year with no missing periods. Nevertheless, the performances only 
slightly vary over the years and we can conclude that the total metrics 
are representative of the performances of PrISM in Algerri-Balaguer. 

These results can be compared with previous works that developed 
different irrigation estimation techniques over the same area. Dari et al. 
(2020) firstly presented results on a district scale estimation of irrigation 
in Algerri-Balaguer for the year 2016 − 2017, showing a correlation 
coefficient r of 0.76 and a rmse of 6.11 mm∕5-days, using DISPATCH SM 
retrieved from SMAP, as in this study. Additionally, Dari et al. (2022) 
reported for the same years a correlation coefficient r between 0.61 and 
0.76 and a rmse between 6.11 and 8.14 mm∕5-days, depending on the 
different dataset used, since multiple experiments were performed using 
SM and ET datasets at 1 km. When converting the results of our study to 
the same 5-day temporal resolution, a correlation r of 0.78 is found, and 
a rmse of 6.45 mm∕5-days for the year 2017. These results show a slight 
improvement concerning these two previous studies, in terms of corre
lation r, while a similar rmse is found. 

Dari et al. (2023) reported for the years 2016–2019 a correlation 
coefficient r equals to 0.78 and a rmse of 14.41 mm∕14-days for the 
Algerri Balaguer district, using the SM2RAIN algorithm with SM from 

Fig. 6. Results from PrISM applied at the pixel level in the Algerri-Balaguer district and the adjacent dryland area. (A) shows the spatial distribution of the irrigation 
amounts in Algerri-Balaguer for the winter period (January to April and October to December of the year 2017). The borders of the irrigated and dryland areas are 
delineated in blue and red, and the total amount of irrigation is shown. (B) shows the equivalent maps for the summer season (April to October of 2017). (C) shows 
the irrigation time series retrieved for all the pixels inside the irrigated area (blue lines) and the pixels in the dryland (red lines). The orange background shows the 
summer period. 
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Sentinel-1. If converted to a 14-day period, the PrISM methodology 
shows higher performances, with a correlation r of 0.84 and a rmse of 
12.16 mm∕14-days. Nevertheless, it is important to notice that the re
sults from Dari et al. (2023) are retrieved from Sentinel-1 SM at 1 km, 
which is a different dataset from the one used in this study. Additionally, 
the results from Dari et al. (2023) are retrieved after a calibration of the 
model using in situ data from the year 2019, which is not the case for the 
other studies that employed SM2RAIN, which fully rely on remote 
sensing data. 

5.3. Field scale: Foradada 

The PrISM model is also applied at the field level for the Foradada 

field, using the SM product from DISPATCH at 100 m. The model is 
calibrated with the same procedure described in Section 5.2, using the 
time series from a non-irrigated field very close to the Foradada field, as 
shown in the lower right panel of Fig. 1. The results are shown in Fig. 8. 

Fig. 8A shows in purple the in situ SM and in green the PrISM SM 
between the maximum and minimum scenarios, which follows closely 
the observations from DISPATCH 100 mSM, depicted as orange di
amonds. It is important to notice that the purple line that indicates insitu 
SM is not scaled with the green line representing SM built from PrISM, 
since in-situ data are not calibrated against the Dispatch remotely sensed 
SM assimilated by PrISM. Nevertheless, visual inspection reveals a good 
agreement between the trends of the two SM curves, which is a useful 
indicator of the goodness of the results. Irrigation is shown in Fig. 8B and 

Fig. 7. Time series of irrigation retrieved from PrISM at the pixel level (blue lines) and average retrieved irrigation (red line) compared with in situ data (black line) 
for the Algerri-Balaguer district. The analysis shows the results from different years in terms of total irrigation amount observed (Itot,EST) and from the insitu station 
(Itot,TRUE), Pearson’s correlation (r), rmse, and bias. 
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it is possible to notice how retrieved irrigation from PrISM (the green 
bands between the “maximum” and “minimum” scenarios) is generally 
in agreement with the in situ irrigation periods and amounts, in purple. 
It is noticeable that, for the month of July, the retrieved irrigation 
amounts are in close agreement with the in situ data, while there is a 
progressive underestimation of irrigation amounts during August, 
especially towards the end of the month and the start of September. This 
underestimation is caused by the drop in values of the DISPATCH SM at 
the end of August, suggesting a dry soil condition, which seems to 
disagree with the in situ SM measurements and irrigation amounts. This 
discrepancy highlights the need for precise (and frequent) SM observa
tions in order to obtain a correct irrigation retrieval from PrISM, and 
showcases the impact that errors on multiple consecutive observations 
have on this estimation. 

From a quantitative point of view, PrISM generally shows good 
performances when compared to in situ data. Fig. 8C shows the rela
tionship between weekly irrigation amounts estimated by PrISM for the 
minimum and maximum scenarios and the in situ irrigation amounts. 
The legend shows the metrics extracted from this comparison (Pearson’s 
correlation, rmse, and slope and intercept of the linear relationship). 
rmse corresponds to 12.61 mm∕week for the maximum scenario and 
7.93 mm∕week for the minimum scenario, while the correlation corre
sponds to 0.69 for the maximum scenario and 0.70 for the minimum 
scenario. The slope of the linear relationship is 0.5 for the maximum 
scenario and 0.4 for the minimum scenario, while the intercept is 1.4 for 
the maximum scenario and 1 for the minimum scenario. 

In situ irrigation amounts from the years 2018–2021 were also 
available for the Foradada fields, even though the SM sensors were 
removed from the field for the years following 2017. Fig. 9 shows the 
scatter plot between in situ vs. PrISM irrigation amounts. Time series of 
SM and irrigation retrieved from PrISM for these years are added in 
Appendix B. 

Results from the year 2018 show the best agreement with in situ 
data, with a correlation of 0.84, an rmse of − 10.52 mm∕week, and a bias 
of − 1.80 mm∕week. The following years show lower performances, with 
a correlation of 0.66, 0.59, and 0.57, an rmse value of 17.95, 24.29 and 
19.58 mm∕week and a bias of − 7.40, − 4.07 and − 5.68 mm∕week for 
2019, 2020 and 2021 respectively. Generally, the metrics from these 
different years are quite consistent and they do not show a dramatic 

change. For the last three years, from 2019 to 2021, the lower perfor
mances can be attributed to gaps in the observed SM, with fewer 
available observations than in 2018, especially during the winter period. 
Additionally, in 2019 SMAP had a malfunctioning and was switched to 
safe mode from the 19th of June to the 23rd of July, making observations 
during that period unavailable. 

Aggregated results for the years 2017–2021 show a bi-weekly cor
relation r of 0.81 and an rmse of 25.81 mm∕14-days (as shown in 
Fig. B.5), which are in line with the results obtained at the district level, 
even if they show a degradation of the performance. As expected from 
the synthetic study, irrigation retrieved with PrISM at the field level 
shows an underestimation of the total irrigation amounts, mainly caused 
by the low temporal frequency of the observed SM, which is derived 
from Landsat LST, available at best every 8 days in cloud-free conditions. 
Nevertheless, the model shows a good correlation with the in situ data 
and seems to correctly reproduce the SM and irrigation profiles. 

Compared with other studies performed at the field level using 
remotely sensed SM, PrISM shows better performances in terms of cor
relation and rmse, even though experiments were performed in different 
areas and with different datasets. Ouaadi et al. (2021) uses SM from 
Sentinel-1 data at field level to retrieve 15-day cumulated irrigated 
amounts, with a final correlation r of 0.64, an rmse of 28.7 mm∕15-days 
and a bias of 1.9 mm∕15-days. Zappa et al. (2021) also used Sentinel-1 
data to detect irrigation events at field level, with a mean Pearson cor
relation r = 0.64 and a large variability of the bias, varying from 
8 mm∕season to − 98 mm∕season for the different fields. Both these 
studies stress the importance of a higher temporal frequency of the SM 
observations, which is the main driver for improvements in irrigation 
amount retrieval. Brombacher et al. (2022) proposed a methodology to 
estimate irrigation amounts at field level from the difference in actual ET 
of an irrigated pixel against a “hydrological similar pixel”, found in the 
surrounding natural areas. Results in the Ebro Valley (same study region 
of this work) were not statistically significant, since only a few areas 
were identified as hydrological similar pixels and they were quite distant 
from the irrigated fields. The authors proposed further studies to 
investigate the possibility of using non-irrigated agricultural pixels 
instead of natural areas, which is in line with the approach presented in 
this study. 

In general, the methodology follows a similar development as the 

Fig. 8. Results of the PrISM model applied at field level for the Foradada field, using the SM product from DISPATCH at 100 m. The estimated (Itot,EST) and real 
(Itot,TRUE) amount of irrigation is shown in the figure title. (A) shows the time series of observed SM from DISPATCH (orange diamonds), the in situ SM at 5cm from 
capacitative sensors (purple), and the resulting SM curves from the PrISM approach for the minim and maximum scenarios (green lines). (Note that in situ SM is not 
calibrated against dispatch SM, hence the SM curves are not scaled.) (B) shows the time series of precipitation (blue line) from the closer meteo station of Baldomar, 
the in situ irrigation amounts (purple line), and the amounts of irrigation estimated by PrISM for the minimum and maximum scenarios (green lines). (C) shows the 
scatter plot between the weekly irrigation amounts estimated by PrISM for the maximum (circles) and minimum (triangles) scenarios and the in situ irrigation 
amounts. The legend shows the metrics extracted from this comparison (Pearson’s correlation, rmse, and the slope and intercept of the linear relationship). 
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SM2RAIN algorithm Brocca et al. (2018); Dari et al. (2020), since they 
are both adapted from a precipitation correction approach employing 
SM observations into a simple model. One particular difference between 
these two methodologies is the use of a different modeling approach and 
data assimilation: while SM2RAIN uses the original water balance 
equation and directly assimilates SM observations into the model, PrISM 
uses the API formula and assimilates SM observations through a particle 
filter approach. The API formula proposed might be considered a solu
tion to the water balance ordinary differential equation, as shown in Pan 
et al. (2003), which is an element of connection between the two 
models. Regarding the assimilation of SM into the model, the particle 
filter approach is more robust than the direct assimilation of SM into the 
water balance equation, since it takes into account observation un
certainties and effectively combines effecctively a physical model and 
successive observational data (i.e. this study employed a rolling window 
of 5 consecutive observations for each run of the particle filter). Addi
tionally, this study also introduces the possibility of constraining the 
irrigation frequency to a daily frequency, as well as the creation of 
different scenarios for the irrigation amounts, which allows for the 

creation of a range of possible irrigation amounts. These two features are 
not present in SM2RAIN, but they can easily be added to it since they are 
model agnostic. 

6. Conclusion 

This study introduces a new methodology for estimating irrigation 
amounts based on PrISM (Precipitation Inferred from Soil Moisture). 
The methodology is lightweight and data-driven, capable of replacing 
complex LSM models with a simple API formula, coupled with a particle 
filter assimilation scheme while maintaining similar performances at 
different spatial scales. The proposed methodology only requires ob
servations of SM and precipitation amounts, along with a few parame
ters that can be retrieved from these variables during a self-calibration 
step run over dry areas adjacent to the irrigated ones. Originally, the 
classical PrISM methodology was exclusively designed to correct pre
cipitation amounts and did not allow for the creation of precipitation (or 
irrigation) events. However, this study demonstrates how it is possible to 
create precipitation and irrigation events by using a first guess of the SM 

Fig. 9. Comparison between in situ and PrISM irrigation amounts during 4 different years (2018–2021) for the Foradada field. The maximum (circle) and minimum 
(triangle) scenarios produced by PrISM are shown. The dotted line represents the linear relationship from the average PrISM values. The green band is the interval of 
values between the linear relationship formed by the maximum and minimum scenarios. The legend shows the metrics (Pearson’s correlation, rmse, and the slope 
and intercept of the linear relationship) extracted from the comparison between in situ irrigation and average PrISM values. 
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profile, derived from the inversion of the API formula, directly applied to 
observed data. Additionally, the methodology was adapted for irrigation 
estimation by i) adding a maximum and minimum scenario, allowing the 
creation of a range of possible irrigation amounts, and ii) introducing the 
possibility of constraining the irrigation frequency to a daily frequency, 
which is a realistic assumption for modern irrigation practices, such as 
sprinkler irrigation. 

The results of the synthetic study demonstrated that constraining 
irrigation timing is beneficial when assimilating SM observations with 
low temporal frequency (lower than 72 h). This overcomes the limita
tion of high spatial resolution SM products, which are notably suffering 
from low temporal resolution. Using a constrained daily irrigation 
approach leads to a visible performance improvement when compared 
with the unconstrained approach. 

PrISM was then successfully applied at the district scale using ob
servations from the DISPATCH SM at 1 km product, showing similar or 
even better results than previous studies conducted in the same study 
area. Additionally, PrISM was applied at the field scale using DISPATCH 

SM at 100 m. The results demonstrated how the methodology can be 
applied at different spatial resolutions and temporal frequencies, 
ranging from 1 to 2 days at the district level to around 6 days at the field 
level. The performances obtained improve the current state-of-the-art in 
estimating irrigation amounts from remotely sensed SM. 

In general, the methodology can be easily applied to large areas if an 
irrigation map is available as auxiliary information. This map is used to 
select the rainfed area and perform the calibration step. When applied at 
the field scale, it is also beneficial to provide the methodology with a 
map of irrigation systems, which is used to constrain the irrigation fre
quency (daily for modern irrigation systems such as sprinkler and drip, 
and biweekly for traditional flood irrigation systems). Maps of irrigation 
systems have been recently developed (Paolini et al., 2022) and could be 
applied to this methodology in future iterations over larger areas. 

Future work should be directed towards studying the influence of 
different precipitation datasets on irrigation retrieval and assessing the 
uncertainties created by the use of remotely sensed meteorological data, 
which is expected to be considerable (Foster et al., 2020). For this study, 

Fig. A.1. Same description as in Fig. 5, but for a synthetic study where the pixel is only partially irrigated and different percentages of irrigation are presented. The 
irrigation amount is not completely retrieved for irrigation percentages lower than 100% and there is a bigger underestimation (the irrigation signal is mixed with the 
signal from dryland). 

Fig. B.1. time series and scatter plot of soil moisture and irrigation amounts retrieved by PrISM for the Foradada field in 2018. Same description as in Fig. 8.  
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Fig. B.2. time series and scatter plot of soil moisture and irrigation amounts retrieved by PrISM for the Foradada field in 2019. Same description as in Fig. 8.  

Fig. B.3. time series and scatter plot of soil moisture and irrigation amounts retrieved by PrISM for the Foradada field in 2020. Same description as in Fig. 8.  

Fig. B.4. time series and scatter plot of soil moisture and irrigation amounts retrieved by PrISM for the Foradada field in 2021. Same description as in Fig. 8.  
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precipitation was retrieved from a dense network of in situ meteo sta
tions, ensuring a high fidelity of the product. Errors in precipitation 
timings and amounts will directly affect the irrigation retrieval, since 
irrigation is retrieved by subtraction to the initial precipitation profile, 
similar to other approaches for irrigation estimation and timing (Dari 
et al., 2020; Abolafia-Rosenzweig et al., 2019; Zappa et al., 2022; Le 
Page et al., 2023) and precipitation is always assumed as exempt from 
errors. Remote sensing precipitation products may not always be 
available at high temporal or spatial resolution, causing a possible 
degradation of the results. In particular, when using a precipitation 
dataset with a lower temporal resolution in PrISM, it is expected that the 
maximum and minimum irrigation scenarios will tend to be closer to 
each other and the quality of the amounts of irrigation will decrease, up 
to the edge case where precipitation and soil moisture used have the 
same temporal resolution, and the two scenarios represent the same 
amount of irrigation. 

As demonstrated by Jalilvand et al. (2019), implementing a bias 
correction post-processing step in the methodology improves the 
retrieval of irrigation amounts. This approach removes the bias by 
subtracting the false irrigation amounts detected in the adjacent 
non-irrigated pixel from the actual irrigated pixel. This post-processing 
step could be a straightforward implementation in PrISM, as adjacent 
non-irrigated pixels are already identified and used for calibration. With 
this approach, false detection of irrigation events (mostly linked to 
missing precipitation events in the initial datasets, which are then 
classified as irrigation) is expected to be mitigated. 

New SM products are expected to be available in the near future, 
such as the SMOS-HR mission (Rodríguez-Fernández et al., 2019) and 
ROSE-L mission (Pierdicca et al., 2019), which could provide access to 
higher spatial resolution SM observations and allow for combination of 
multiple SM products from different sources, which in turn will increase 
temporal and spatial availability of this variable. The advent of these 
new products will allow for a more precise estimation of irrigation 
amounts at the field level. 
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Appendix A. Additional results from the synthetic study 

Additional tests were performed for the case where observed SM was 
retrieved from a pixel covering an area that is only partially irrigated 
(simulated using different fractions of irrigated area). Synthetic SM 
observations were built using three different fractions of the irrigated 
area: 100%, 80%, and 40%. Additionally, different temporal frequencies 
and observation noises were evaluated, as in Fig. 5. The tests were 
performed using the two scenarios of PrISM presented in this study: 
unconstrained and constrained with daily irrigation frequencies. 
Fig. Appendix A.1 shows the results in terms of total cumulative error 
and Pearson’s correlation r.ăResults indicate how decreasing irrigation 
percentages in the pixel leads to a sharp underestimation of the total 
amount of irrigation and precipitation, and it also leads to worse per
formances in terms of r for the unconstrained scenario. The constrained 
scenario shows better performances in terms of r for all the cases, but the 
total amount of irrigation is still underestimated. This is because the 
irrigation signal is mixed with the signal from dryland in the SM 
observation and the model is not able to account for that. A future 
postprocessing approach could account for different fractions of irri
gated area for each pixel (using a map of irrigated fields) and correct the 
underestimation effect by simply dividing the retrieved irrigation 
amounts by the fraction of irrigated area. 

Fig. B.5. Final scatter plot field level (aggregated at biweekly level) for all the years.  
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B. Additional Results from the Foradada field 

PrISM for irrigation amount retrieval was applied to the Foradada 
field from 2017 and 2021. Fig. Appendix B.1, B.2, B.3 to Appendix B.4 
show the results in terms of time series and scatter plots of the retrieved 
irrigation amounts and SM observations as it was presented for the year 
2017 in Fig. 8. Finally, Fig. 9 shows the comparison for all the years 
between in-situ and estimated irrigation amounts, at a bi-weekly scale 
Fig. B.5. 
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