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Abstract. This comparative study addresses the quantification of gait 

deviations from normal gait, and across different motor impairments induced 

by neurological diseases. We compared Gait Deviation Index and Gait Profile 

Score, well-known in the literature, to a novel 3D-metric based on Dynamic 

Time Warping (DTW). These deviation measures are analyzed following the 

same methodology, based on unsupervised learning, on the same database. 

Results show that our 3D-metric outperforms the others. This confirms that for 

finely quantifying deviations, it is crucial to consider different references to 

represent normal gait variability, as well as using an elastic distance (DTW) for 

matching two gait cycles.  
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1 Introduction 

 
Gait, the coordinated series of movements that allow humans to move from one place 

to another, is a fundamental aspect of our daily lives. The study of gait has deep 

implications for various fields, including biomechanics, rehabilitation, sports science, 

and robotics. Recent advances in sensor technology, such as inertial measurement units 

(IMUs) [1–5] and motion capture systems [6, 7], have made it possible to collect high-

resolution angular data from multiple joints simultaneously [1, 8–11]. Clinical Gait 

Analysis (CGA) exploits such sequences describing gait, for decision aid to clinicians 

[12, 13]. In the framework of gait rehabilitation, quantitative measures are necessary to 

assess the progress of a patient during a therapy. Several works in the literature tackle 

this field and different measures have been proposed up to now [13]. One of the most 

widely used is the Gait Deviation Index (GDI) [14] among others, such as the Gait 

Profile Score (GPS) [15] and Gillette Gait Index (GGI) [16]. The objective of such 

measures is to quantify the deviation from the normal gait pattern. 

Ideally, a well-defined gait deviation measure should be able to detect abnormal gait 

and also to characterize the intensity of the deviation. With this particular focus, in this 

paper, we study comparatively the GDI and a new measure that we have recently 

proposed [17]. In particular, our aim is to evaluate what exactly each measure quantifies 

on a same dataset. We perform this analysis on patients suffering from neurological 

diseases (Cerebral Palsy, Traumatic Brain Injury, Spinal Cord Injury, Stroke, or 

Multiple Sclerosis), who are followed at the Movement Analysis Laboratory of Coubert 

Rehabilitation Center, at UGECAM Ile-de-France. 
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In order to measure gait deviations, the first step is to define a good reference for 

normal gait. This crucial aspect has been tackled in different ways in the literature. The 

most common paradigm to define a normal gait reference is to average normalized gait 

cycles (usually into 51 points) belonging to all healthy subjects of a given dataset, as 

considered by the GPS [15]. Another option is to construct a universal space of gait 

features, based on both healthy and pathological subjects, and to average in such space 

the vectors corresponding to healthy subjects, as done by the GDI [14]. By contrast, we 

have proposed to represent normal gait by K reference cycles in order to take into 

account the natural variability of gait in the healthy population [17]. Of note, the GDI 

considers the “universal” variance of gait in both healthy and pathological populations. 

In order to measure gait deviations from normal gait, the second step is to define the 

metric. Usually, the literature exploits the Euclidean distance [14, 15]. We have 

compared it to an elastic distance, namely Dynamic Time Warping (DTW), and showed 

that DTW is better suited for comparing gait cycles [17].   

In this work, we will analyze the differences and relative contributions of the above-

mentioned works, on the Coubert Rehabilitation Center (CRC) dataset. In particular, 

we will assess, with a common methodology, the different gait deviation measures, in 

terms of motor impairments induced by the neurological diseases: Hemiplegia, 

Paraplegia and Tetraplegia.  

This paper is organized as follows. Section II presents the CRC dataset, describes 

the main approaches in the literature of gait deviations, and the methodology used to 

compare them. Results are given in Section III. Conclusions and perspectives are stated 

in Section IV. 

 
2 Database and Methods 

 
2.1 Database 

We exploited angular kinematic data acquired during a spontaneous gait task in 52 

healthy subjects and 38 patients suffering from neurological diseases. Data was 

collected at Movement Analysis Laboratory of Coubert Rehabilitation Center, at 

UGECAM Ile-de-France, using Codamotion optoelectronic system. The system 

recovers angle kinematics during walking for five joints (pelvis, hip, foot, ankle and 

knee) in three planes (sagittal, frontal and transverse), with a sampling rate of 100 Hz.  

The recruited healthy subjects were young adults with no motor function impairment 

(see Table I).  

 
Table 1. Descriptive statistics of our dataset 

 

 Healthy subjects  Pathological patients  

Number of patients  52  38  

Female  34  13  

Age (mean ± std)  22.62 ± 3.89 (y.o)  46.82 ± 12.93  

Height (mean ± std)  1.71 ± 0.09 (m)  1.70 ± 0.10   

Weight (mean ± std)  65.28 ± 10.77 (kg)  71.06 ± 13.99  

Speed (mean ± std)  1.20 ± 0.14 (m/s)  0.52 ± 0.24  

 

Patients were followed-up at the Coubert Rehabilitation Center for motor problems 

caused by neurological diseases (Cerebral Palsy, Traumatic Brain Injury, Spinal Cord 

Injury, Stroke, or Multiple Sclerosis). These diseases are often the cause of motor 

impairments affecting one or more limbs of the upper and/or lower body: Hemiplegia 

(HP), Tetraplegia (TP) or Paraplegia (PP). We have 18 HP patients, 11 TP patients and 

9 PP patients.  
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2.2 Preprocessing 

The angular kinematics of each joint, captured during each gait trial, is a periodic signal 

consisting of different consecutive cycles, defined between the initial contact event and 

the terminal swing event (see Figure 1.a). This signal was segmented into gait cycles, 

automatically detected with the High-pass algorithm [18] and controlled by an expert 

(see Figure 1.b).  

 

 
 

Fig. 1. Knee angular kinematics in the sagittal plane: (a) a periodic sequence of one trial; (b) a 

raw segmented knee cycle; (c) the normalized segmented knee cycle. Red dotted lines define 

the beginning and end of a gait cycle. 

 

We focused on the analysis of the knee joint kinematics in the sagittal plane only. 

Gait cycles are normalized into 51 points, as shown in Figure 1.c. The number of cycles 

was not the same for all trials and differed for each patient. The total number of knee 

sagittal cycles used is 872 cycles: 526 cycles belong to healthy subjects, 162 for HP, 

106 for TP, and 78 for PP patients.   

 

2.3 Gait Deviation Index (GDI) 

This index exploits Singular Value Decomposition (SVD) performed on gait data 

including the normalized angular kinematics (into 51 points) of 9 angles 

simultaneously: pelvic and hip angles in sagittal, frontal and transversal planes, knee 

and ankle angles in sagittal plane and foot in transversal plane. Thus, each subject is 

represented by a gait vector 𝑔 of 459 dimensions (51 points x 9 angular kinematics). 

SVD is performed on vectors of both healthy and pathological populations, to obtain 

singular vectors  𝐹𝑘, called gait features. In this framework, 𝑚 singular vectors are used 

to reconstruct gait vectors, according to (1):   

 

                                 𝑔̃𝑚 = ∑ 𝑐𝑘. 𝐹𝑘
𝑚
𝑘=1    𝑤ℎ𝑒𝑟𝑒   𝑐𝑘 = < 𝑔 ; 𝐹𝑘 >                                    (1)  

 
The deviation is then given by:  

 

  𝐺𝐷𝐼𝛼
𝑟𝑎𝑤  =𝑙𝑛 (||𝑐𝛼 − 𝑐𝑇𝐷||

2
)      (2) 

 
The gait deviation index is then obtained as follow:  

 

  𝐺𝐷𝐼 = 100 − 10 𝑧𝐺𝐷𝐼𝛼
𝑟𝑎𝑤      (3) 
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 𝑤ℎ𝑒𝑟𝑒         𝑧𝐺𝐷𝐼𝛼
𝑟𝑎𝑤  =

𝑧𝐺𝐷𝐼𝛼
𝑟𝑎𝑤−𝑀𝑒𝑎𝑛({𝐺𝐷𝐼𝑘

𝑟𝑎𝑤 }
𝑘∈𝑇𝐷

)

𝑆𝑇𝐷({𝐺𝐷𝐼𝑘
𝑟𝑎𝑤 }

𝑘∈𝑇𝐷
)

    (4) 

 

 

2.4 Our Methodology 

As in [17], we apply the unsupervised K-Medoids (K=3) on all healthy cycles, to 

retrieve normal gait references, called “Normal Gait Profiles” (NGPs). This method 

allows finding real representatives, i.e. gait cycles belonging to individuals in the 

dataset. The classical version of K-Medoids usually exploits the Euclidean distance as 

a dissimilarity metric. However, this distance does not take into account time shifts of 

similar patterns when comparing two cycles [17]. To overcome these limitations, we 

integrated in the K-Medoids algorithm an elastic distance, namely Dynamic Time 

Warping (DTW) [19]. DTW relies on finding the best warping path to assign two time 

signals, by minimizing the cumulative distance between the assigned points in the two 

signals. This distance has been used in gait analysis [20] and more recently to measure 

gait symmetry [21, 22]. Then, we studied the deviation of pathological gait cycles from 

the obtained NGPs, according to the three types of motor impairments. Each gait cycle 

is characterized by a 3D vector, composed of the cycle’s DTW distances to the three 

NGPs. In an attempt to stratify deviations from NGPs, we applied Agglomerative 

Hierarchical Clustering (AHC) using Ward’s linkage function [23]. This algorithm 

makes it possible to analyze the deviations across different clusters (in this case 3 

clusters), thereby suggesting three degrees of severity among pathological cycles. The 

methodology is presented in detail in [17]. 

 
3 Results 

 
3.1 Our Approach 

We applied K-medoids by fixing K = 3 to consider two extreme behaviors and one 

intermediate one. Figure 2 shows the three NGPs (medoids) on 51 points.   

 

 
 

Fig. 2. The three NGP (cycles) representing healthy subjects in our dataset, extracted with the 

K-medoids algorithm. 
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We notice that the three NGPs capture the diversity present in the healthy population, 

particularly in the stance phase: during the loading response [24], the three NGPs show 

variability as well as time shifts between one another (see Figure 2). This reflects the 

potential of DTW for time-aligning two signals at important transitions. On the other 

hand, Table II shows, through the metadata of the three NGPs, this diversity of the 

healthy population, especially in height, weight and speed.  

Table 2. Metadata associated with the three NGP  

NGP  Gender  Age (y.o)  Height (m)  Weight (kg)  Speed (m/s)  

NGP 1  F  20  1.61  65.0  1.23  

NGP 2  F  27  1.66  64.7  1.00  

NGP 3  M  22  1.83  68.1  1.17  

  
 As explained in Section II.D, we perform AHC in the 3D space, to investigate the 

potential of such 3D-metric to finely quantify gait deviations according to different 

pathologies (HP, PP and TP). Figure 3 displays the distribution of cycles per person in 

clusters. Each person is represented by a vertical bar, accounting for the number of 

cycles of this person in each cluster. A color code is used for a better visualization of 

the deviations: green gait cycles are the closest to healthy gait, red cycles are the most 

distant, and orange cycles have an intermediate behavior. For a better readability, 

healthy controls (HC) are grouped on the left and patients are grouped by motor 

impairment on the right, sorted as follows: Hemiplegia (HP), Paraplegia (PP) and 

Tetraplegia (TP).   

 

 

 
Fig. 3. Distribution of cycles per person (a bar represents one person) within the three clusters. 

Cycles in green are the closest to NGPs, followed by cycles in orange and then in red (the most 

distant to NGPs). Persons are grouped according to their class: HCs for healthy controls, HP 

for Hemiplegic, PP for Paraplegic and TP for Tetraplegic patients. 

 
We notice in Figure 3 that all healthy cycles are grouped into the closest cluster to 

the NGPs (green cluster). On the other hand, we observe different distributions in 

clusters between motor impairments (HP, PP, TP). On HP patients, most patients have 

their cycles assigned to two clusters: 13 HP patients among the 18 have some of their 

cycles in the green cluster and the remaining ones are mostly in the red cluster. This is 

in accordance with the lateral impact of Hemiplegia: the healthy side is close to the 

NGPs (green cluster), whereas the cycles of the impacted side are considered as being 

strongly (red) or slightly (orange) impacted. For PP patients, most of their cycles are 

assigned to the orange (intermediate) cluster. Only two patients have all their cycles 

assigned to the red one. Finally, as TP patients have incomplete Tetraplegia, we observe 

more cycles assigned to the green cluster comparatively to PP patients. 
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These results show the effectiveness of the proposed 3D-metric in finely quantifying 

gait deviations from healthy gait according to each specific pathology.  

 
3.2 Comparative Analysis with GDI and GPS 

We computed GDI considering the 9 angular kinematics for all cycles, as explained in 

Section II.C. For the purpose of comparing our 3D-metric to the GDI, we performed an 

AHC on the obtained GDI values.   

Figure 4 displays the distribution of GDI values per cluster after performing AHC. 

We display in green the cluster containing the cycles with highest GDI, in red the cluster 

containing the cycles with lowest GDI, and in orange the intermediate one.  We notice 

that the green cluster, representing the closest cycles to normal gait, gather GDI values 

around 100 or higher, as expected.  

 

 

 
 

Fig. 4. GDI distribution per cluster after performing AHC.  

 

Figure 5 shows the distribution of cycles per person in the three resulting clusters 

based on GDI.   

 

 

 
 

Fig. 5. Distribution of cycles per person after AHC based on GDI values calculated on 9 angular 

kinematics. 
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When comparing the distribution of cycles with GDI (Figure 5) and that with our 

3D-metric (Figure 3), we first notice that, with GDI, most HP patients have their cycles 

in the red cluster, thereby losing the distinction between the impacted and nonimpacted 

sides. Also, almost all TP cycles are in the orange cluster, with intermediate GDI values, 

as we can expect for incomplete TP patients. However, there is no specific trend in both 

HP and PP. We conclude that GDI is not precise enough to characterize these motor 

impairments in terms of gait deviation.  

We propose to compute the GDI values considering only the knee angular 

kinematics as our 3D-metric. Figure 6 reports the results in the three clusters. There is 

no distinctive trend between motor impairments: almost all pathological cycles are 

assigned to the red cluster. All these results highlight that our 3D-metric outperforms 

the GDI in finely quantifying gait deviations from normality.   

 

 

 
 

Fig. 6. Distribution of cycles per person after AHC based on GDI values calculated on knee 

angular kinematics. 

 

 
For a complete comparison, we also computed the GPS on the same data (only the 

knee joint), considering as reference the average cycle of all the healthy cycles as in 

[15]. Figure 7 shows that GPS is highly correlated to GDI, as found in [14], with the 

same exponential trend. 

 

 

 
 

Fig. 7. GPS as a function of GDI on the knee joint. 
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4 Conclusions 

 
This study has the objective to quantify gait deviations from normality and to 

characterize deviation trends across different motor impairments related to neurological 

diseases. Our proposed 3D-metric was compared to the GDI and GPS on the CRC 

dataset. Results demonstrate the potential of our 3D-metric in characterizing finely gait 

deviations, although only the knee joint has been exploited up to now. The effectiveness 

of our approach relies on one hand, on constructing a normal gait reference that takes 

into account gait variability in the healthy population. On the other hand, the DTW 

metric for measuring deviations is suited to match cycles showing temporal shifts.   

In future work, we will extend our approach considering the other joints’ angular 

kinematics and study which joints are more pertinent to characterize each motor 

impairment.  
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