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METhodological RadiomICs Score (METRICS): A quality scoring tool for 

radiomics research 

Abstract 

Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score 

(METRICS), to assess and improve research quality of radiomics studies. 

Methods: We conducted an online modified Delphi study with a group of international experts. 

It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel 

discussion among EuSoMII Auditing Group members to identify the items to be voted; and 

Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items 

eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the 

median ranks derived from expert panel opinion and their rank-sum based conversion to 

importance scores, the category and item weights were calculated. 

Results: In total, 59 panelists from 18 countries participated in selection and ranking of the 

items and categories. Final METRICS tool included 30 items within 9 categories. According to 

their weights, the categories were, in descending order of importance: study design, imaging 

data, image processing and feature extraction, metrics and comparison, testing, feature 

processing, preparation for modeling, segmentation, and open science. A web application and 

a repository were developed to streamline the calculation of the METRICS score and to collect 

feedback from the radiomics community.  

Conclusion: In this work, we developed a scoring tool for assessing the methodological 

quality of the radiomics research, with a large international panel and a modified Delphi 

protocol. With its conditional format to cover methodological variations, it provides a well-

constructed framework for the key methodological concepts to assess the quality of radiomic 

research papers. 

Clinical relevance statement: A quality assessment tool, METhodological RadiomICs Score 

(METRICS), is made available by a large group of international domain experts, with 

transparent methodology, aiming at evaluating and improving research quality in radiomics 

and machine learning. 

Keywords: Radiomics; Deep learning; Artificial intelligence; Machine learning; Guideline 

  



 

Abbreviations:  

CLEAR = CheckList for EvaluAtion of Radiomics research 

ESR = European Society of Radiology 

EuSoMII = European Society of Medical Imaging Informatics 

IQR = Interquartile range 

MAIC-10 = Must AI Criteria-10 checklist 

METRICS = METhodological RadiomICs Score 

RQS = Radiomics Quality Score 

TRIPOD = Transparent reporting of a multivariable prediction model for individual prognosis 
or diagnosis 

 

 

Key points:  

● A methodological scoring tool, i.e.,METRICS, was developed for assessing the 

quality of the radiomics research, with a large international expert panel and a 

modified Delphi protocol. 

● Proposed scoring tool presents the expert opinion-based importance weights of 

categories and items with a transparent methodology for the first time. 

● METRICS accounts for varying use cases, from handcrafted radiomics to entirely 

deep learning-based pipelines. 

● A web application was developed to help with the calculation of the METRICS score 

(https://metricsscore.github.io/metrics/METRICS.html) and a repository was created 

to collect feedback from the radiomics community 

(https://github.com/metricsscore/metrics).  
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Introduction  

Radiomics is an evolving field of image analysis technique for extracting quantitative features 

from medical images with the premise of building predictive models and assisting clinical 

decision-making [1]. Since its introduction into medicine more than a decade ago, an 

exponential number of radiomics-related articles have been published yearly [2]. However, a 

growing translational gap exists between radiomics research and clinical practice [3, 4]. One 

of the main reasons for this issue is the poor quality of research methodology, including but 

not limited to, poor study design, inadequate description of image segmentation, feature 

extraction or model building methodology, lack of generalizability, lack of data, model and 

code sharing practices, all of which ultimately limit the reproducibility of the proposed 

radiomics models [3, 5–8]. 

  

In 2017, Lambin et al [9] proposed the radiomics quality score (RQS), a set of 

assessment criteria covering the radiomics workflow to improve the quality of radiomics 

research. Since then, many systematic reviews have been published applying the RQS to 

published research to examine the quality of radiomics studies [10]. Nevertheless, some RQS 

item definitions may lead to ambiguity and the applicability of the items can be limited based 

on different characteristics of the study design, which may negatively affect the reproducibility 

of the score even among experts in the field [10, 11]. In addition, as shown previously [11], a 

high RQS score does not always guarantee high quality of a study or lack of significant bias 

[12]. Furthermore, this assessment system was developed by a small group of researchers 

and the development process was not detailed in-depth in terms of how it deals with the 

relative importance of each item that contributes to overall radiomics research quality. Thus, 

the need for an easy-to-use and transparent evaluation system developed by an international 

group of experts persisted.  

  

Recently, the CheckList for EvaluAtion of Radiomics Research (CLEAR) guideline for 

reporting radiomics studies that covers the entire life cycle of optimal radiomics research, was 

published and endorsed by the European Society of Radiology (ESR) and European Society 

of Medical Imaging Informatics (EuSoMII) [13]. The CLEAR reporting guideline has great 

potential to improve the quality of reporting in radiomics papers, which would ultimately lead 

to an improvement in research quality. Nevertheless, reporting guidelines are not assessment 

tools or instruments for measuring research quality [14, 15]. Thus, the need remains for an 

easy-to-use, reproducible assessment system for radiomics research. In this paper, we 

propose a new quality assessment tool, METhodological RadiomICs Score (METRICS), which 

was developed by a large group of international experts in the field and is easy to use, aimed 

https://www.zotero.org/google-docs/?Sq5VnE
https://www.zotero.org/google-docs/?OypuD2
https://www.zotero.org/google-docs/?NE3V6S
https://www.zotero.org/google-docs/?JxOVPo
https://www.zotero.org/google-docs/?VCjjaE
https://www.zotero.org/google-docs/?jU90WC
https://www.zotero.org/google-docs/?tFEs5x
https://www.zotero.org/google-docs/?LXmT1P
https://www.zotero.org/google-docs/?cAlLDt
https://www.zotero.org/google-docs/?vSZ7na
https://www.zotero.org/google-docs/?qMghwd


 

at improving research quality and closing the gap between research and clinical translation in 

radiomics and machine learning.  

Material and Methods 

Design and Development 

As there is no guidance for developing scoring systems, the recommendations for developing 

reporting guidelines were followed [16]. Therefore, a steering committee (T.A.D., B.K., and 

R.C.) was established first to organize and coordinate the development of METRICS.  

To develop the METRICS tool, an online modified Delphi study with a group of 

international experts was planned. The process was organized in three stages. The steering 

committee members conducted the first stage (Stage#1), consisting of item preparation. The 

second stage (Stage#2) was held with the participation of a group of panelists from the 

EuSoMII Radiomics Auditing Group for discussion of the items to be voted on. The third stage 

(Stage#3) was carried out in 4 rounds by two separate groups of panelists to determine the 

METRICS items and their weights. The first three rounds of Stage#3 were aimed at 

determining which methodological items were eligible for METRICS. The items' weights were 

then determined in the final round of Stage#3. Following each round, the panelists received 

structured feedback on the preceding round to reconcile individual opinions. 

The surveys were open for at least two weeks in each round in Stage#3, and a 

reminder e-mail was sent one week, three days, and one day before the deadline. When 

necessary (e.g., when overlapping with major conferences or holidays), deadlines were 

extended to ensure a reasonable number of panelists was achieved. 

The modified Delphi surveys were carried out using a Computer Assisted Web 

Interviewing (CAWI) system, i.e., Google Forms (Google LLC). For online group discussions 

online platforms, i.e., Google Docs (Google LLC) or WhatsApp (Meta Platforms Inc.), were 

used. 

To simplify the calculation of the METRICS score, the development of an online 

calculation tool was planned. A GitHub repository was also planned for providing updates and 

gathering community feedback.  

Anonymity 

Although the panelists voted independently, the voting rounds of the modified Delphi exercise 

were not anonymous to track panelists’ participation. Only the organizers had access to the 

panelists’ data, and they preserved the anonymity of the votes and their respective comments 

during and after the voting tasks (i.e., when feedback was provided after rounds).  

https://www.zotero.org/google-docs/?8V6K6a


 

Informed consent 

At the start of the Delphi questions, participants' informed consent was requested using the 

same form. Participants may have opted out of the study at any time. Those who indicated a 

desire to decline the survey were to be deleted from future invitations. Only while the round 

was active, panelists could withdraw their votes. 

Consensus criteria 

The vote for “strongly agree” and “agree” accounted for agreement and “strongly disagree” 

and “disagree” accounted for disagreement. The “neutral” votes were not included in either 

decision. The consensus was defined a priori as either agreement (agreement ≥75%) or 

disagreement (disagreement ≥75%) [17]. If there was no agreement or disagreement, it was 

referred to as "no consensus," and they were voted again. If “no consensus” items did not 

achieve agreement in the next voting, they were removed from the tool. The consensus items 

with disagreement were removed from the tool without further discussion. 

Recruitment of participants  

Individuals having significant experience in radiomics, machine learning, deep learning, 

informatics, or related editorial tasks from various countries were invited via an e-mail 

describing the development plan of the METRICS tool and explaining its purpose. Members 

of the EuSoMII Radiomics Auditing Group (Group#1 panelists) were assigned to discussion 

panels in Stage#2 and Round#3 of Stage#3. Other invitees (Group#2 panelists) were 

assigned to modified Delphi voting rounds (i.e., Round#1, Round#2, and Round#4 of 

Stage#3). 

Modified Delphi 

Stage#1 (preparation) 

To identify potential items, a thorough and systematic literature review was conducted. Two 

members of the steering committee performed an independent literature search in PubMed 

using the following syntax to find the relevant checklists, guidelines, or tools: (radiomics) AND 

((checklist) OR (guideline)). The search date was January 24th, 2023. All entries and related 

publications, if accessible by the readers, were assessed to determine the currently available 

tools. All eligible documents found were independently evaluated by the entire steering 

committee to develop the initial template of METRICS. 

Participants were requested to consider the following principles: i, there should be no 

overlap between items; ii, an ideal study should be able to achieve a perfect score (i.e., all 

points available or 100%), meaning that items should not be mutually exclusive; iii, items must 

https://www.zotero.org/google-docs/?2PHJ5v


 

be objectively defined, to increase reproducibility; iv, not only hand-crafted but also studies 

based on deep learning should be considered and item conditionality should be assessed 

accordingly; v, since this is a methodological scoring system, the items should be mainly 

related to the “materials and methods” and “results” sections of a research paper; vi, while 

items should also aim at improving the methodological reproducibility and transparency of the 

studies, METRICS is not a reporting checklist; and vii, items should point out potential bias 

sources and help users to avoid them. 

 Considering the principles defined above, an initial draft was created with three 

organizers of the METRICS project. For any disagreement among the organizers, the 

decisions were made based on a majority vote.  

Stage#2 (discussion with Group#1 panelists) 

The items prepared by the organizers were presented to the EuSoMII Radiomics 

Auditing Group with the same principles and discussed online. This stage was an open 

discussion and not anonymous. The panelists were free to suggest adding, removing, 

merging, and modifying items.  

Stage#3 (modified Delphi rounds) 

Round#1 (item selection) 

On a 5-point Likert scale (strongly agree; agree; neutral; disagree; strongly disagree), the 

Group#2 panelists were asked to rate the extent to which they agreed with the inclusion of 

each item on the METRICS tool. With a text box, participants were further asked for 

suggestions on the item's name and definition. In addition, a text box was provided at the end 

of each section for participants to suggest additional items. After this round, the Group#2 

panelists were provided with a statistical summary of each item from Round#1, along with 

anonymous comments. 

Round#2 (continued for item selection) 

The same panelists as in Round#1 were invited to participate in Round#2. Panelists who were 

invited but did not respond to Round#1 were also invited to participate in Round#2. Using the 

same structure as Round#1, panelists were also presented with items that reached no 

consensus as well as new item or items suggested in previous round.They were asked to use 

the same 5-point Likert scale to express their level of agreement with the inclusion of each 

item in the METRICS tool. No new item proposal was asked in this round. After Round#2, the 

same panelists were provided with a statistical summary of each item from Round#2, along 

with anonymized comments. 



 

Round#3 (group discussion with EuSoMII Radiomics Auditing Group) 

The purpose of Round#3 was to discuss the results of the previous rounds, modify if 

necessary, and finalize the items to be included in the METRICS tool. It was held on online 

platforms (Google Docs and WhatsApp Group). All Group#1 panelists were invited. The 

discussion included both agreed and unresolved topics. Any modification proposals were 

discussed and items were edited in consensus by the steering committee. 

Round#4 (ranking of finalized items to determine the weights) 

Group#2 panelists who participated in at least one of the first two rounds (Round#1 and 

Round#2) were invited to this round. The panelists were asked to rank the categories and then 

all items within each category in order of their importance in radiomics research. After 

Round#4, the same panelists were provided with an anonymized statistical summary of each 

item and category. 

Pilot testing 

We invited Group#1 panelists to test the usability and understandability of the online checklist. 

Also, the final METRICS tool was tested on studies from the literature, including a sample of 

different pipeline designs and aims (i.e., handcrafted radiomics, deep radiomics and end-to-

end deep learning; lesion characterization and region of interest segmentation). 

Statistical analysis 

Descriptive statistics (i.e., median, interquartile range, percentage) were used to present the 

results. The ranks derived from hierarchical (i.e., multi-tiered) ranking with expert panel opinion 

were aggregated using their median value. Using the rank-sum method [18, 19], median ranks 

were first converted to importance scores with the following formula: Score = (N+1) - Rank, 

where N is the total number of categories or total number of items within a category. The 

category weights were then rescaled to 1. The final weights of each item were computed as 

the product of the category and item weights (e.g., [weight of Category A] x [weight of Item#1 

in Category A]). The items within the respective category went through the same rescaling 

procedure. The final METRICS score was calculated on a percentage scale, accounting for 

the conditionality of items and categories.  

https://www.zotero.org/google-docs/?uFRsQw


 

 

Results 

All key points are summarized with a flowchart in Figure 1. 

Modified Delphi 

In total, the 3 steering committee members invited 61 experts to participate in this study, 56 of 

which accepted the invitation. In detail, 14 experts from the EuSoMII Radiomics Auditing 

Group (Group#1) accepted the invitation to participate in panel discussions (i.e., discussions 

at Stage#2 and Round#3 of Stage#3), together with the steering committee members. 

Furthermore, 42 experts (Group#2) accepted the invitation to perform Delphi voting (i.e., rating 

in Round#1 and Round#2; ranking in Round#4 of Stage#3). Country data of all participants is 

presented in Figure 2. 

The literature search resulted in 58 publications. After independent evaluation of the 

content of these publications by steering committee members, 16 relevant checklists, 

guidelines or quality scoring tools were identified as potentially useful for designing a new 

quality scoring tool [9, 20–34]. Based on the results of this literature review and previous 

experience, 33 items were initially drafted. These items were then reduced to 30 after 

discussion with the Group#1 panelists in Stage#2, as three were considered unclear or partly 

overlapping with other entries, with which they were merged.  

The 30 items obtained after Stage#2 discussion were presented to the Group#2 

panelists for the first round of the Delphi survey, which was completed by 40 of the 42 

panelists. The consensus for an agreement was achieved for 26 items, while 4 items failed to 

achieve any consensus. No item reached the consensus threshold for disagreement. There 

was one new item proposal that was added to the list after discussion by the steering 

committee (item#17, robustness assessment of end-to-end deep learning pipelines). A 

summary of the votes in Delphi Round#1 is presented in Figure 3. The highest agreement 

(100%) was achieved by item#21 (i.e., consideration of uncertainty). 

Following the Round#1, 4 items with no consensus and 1 newly proposed item were 

presented to the Group#2 panelists in Round#2 of the Delphi process. In this round, 41 of the 

42 panelists participated. The consensus for an agreement was achieved for 30 items. There 

was no consensus on one item about prospective data collection, which was therefore 

removed from the list. There was no disagreement with consensus. A summary of the votes 

in Round#2 is presented in Figure 3. 

https://www.zotero.org/google-docs/?qQh0TY


 

All Group#1 panelists were invited to Round#3 for the panel discussion by the steering 

committee members. A small number of minor modifications were made to the item definitions 

at this time. The agreement was achieved for all 30 items within 9 categories. 

 The final Delphi round, Round#4, consisted of ranking of all 9 categories and the 30 

items divided by category. This was performed by all 42 of the Group#2 panelists. A summary 

of the category and item ranks in Round#4 is presented in Supplementary file 1 Figure S1 

and Supplementary file 1 Figure S2, respectively.  

Weights calculated for categories and items are presented in Figure 4. For categories, 

the highest and lowest weights belonged to study design and open science, respectively. 

According to their final weights, top 5 items with highest weights were as follows: item#3 (i.e., 

high-quality reference standard with a clear definition; weight, 0.092); item#27 (i.e., external 

testing; weight, 0.075), item#2 (i.e., eligibility criteria that describe a representative study 

population; weight, 0.074), item#11 (i.e., appropriate use of image preprocessing techniques 

with transparent description; weight, 0.062), and item#18 (i.e., proper data partitioning 

process; weight, 0.060). The lowest weights belonged to the three items of category “open 

science” and were as follows: item#28 (i.e., data availability, weight, 0.007), item#29 (i.e., code 

availability, weight, 0.007), and item#30 (i.e., model availability, weight, 0.007). 

Anonymized individual votes and ranks obtained in the Round#1, Round#2, and 

Round#4 of the Stage#3 are presented in Supplementary file 2. 

Finalized METRICS tool 

The final METRICS tool included 30 items within 9 categories and is presented in Table 1 with 

relative item weights. It also accounts for different study pipelines by including several 

conditional items. Figures 5 and 6 present a flow diagram to exemplify their usage in practice. 

A user-friendly online calculation tool was prepared to streamline the calculation of the 

METRICS score (https://metricsscore.github.io/metrics/METRICS.html). It also allows printing 

(paper and PDF) and exporting (Excel spreadsheet). Supplementary file 3 (without 

explanation) and supplementary file 4 (with explanation) allow downloading the METRICS 

tool in table format. However, the use of the online tool mentioned above is highly 

recommended, as the final METRICS percentage score is based on the maximum achievable 

absolute score after accounting for item conditionality. This calculation can be performed 

automatically by the web-based tools (both online and offline versions). Supplementary file 

5 includes evaluation examples from the literature, covering the use of METRICS on different 

radiomics pipeline designs.  

https://metricsscore.github.io/metrics/METRICS.html


 

A GitHub repository was also set up for the METRICS tool 

(https://github.com/metricsscore/metrics). The discussion function was also activated to 

receive community feedback to improve it in the future. Also, an offline version of the 

calculation tool can be downloaded from this repository, which requires no setup or installation 

but directly starts working on common web browsers such as Google Chrome (recommended; 

Google LLC). The online calculation tool and potential updates can also be accessed via this 

repository.  

Total score categories 

To improve the comprehensibility of the METRICS total score, we propose the use of 5 

arbitrary categories as a representation of gradually increasing quality, namely total score 

between 0-20%, “very low”; 21-40%, “low”; 41-60%, “moderate”; 61-80%, “good”; and 81-

100%, “excellent” quality. However, these categories should be validated through future 

systematic reviews using METRICS, and should be used as a complement of METRICS and 

not as a substitute for the quantitative score.  

Discussion  

In this work, we developed a scoring tool for assessing the methodologic quality of the 

radiomics research, i.e., METRICS, based on the input of a diverse and large international 

panel with 59 participants. Our study was conducted in 3 consecutive stages, with 4 rounds of 

the modified Delphi exercise in the last stage. Based on panelist ratings, 30 items within 9 

categories were ultimately included in the METRICS tool. The weights of these items were 

then calculated using a hierarchical ranking of categories and items based on the rank-based 

assessment by the Delphi panelists. A web application was developed to automate the 

calculation of the METRICS score, and a repository was created to collect feedback from the 

radiomics research community. 

There have been only few tools proposed to assess the methodological quality of 

radiomics research in the literature, e.g., the RQS [9]. Despite the fact that the RQS was 

published as part of a review article, it has received so much attention from the community 

that it became the de facto standard for evaluating radiomics methodology [10]. Although it 

was developed and published by leading radiomics researchers, it lacked methodological 

transparency in terms of how it was developed and how the scores for each item were 

assigned. The first and most widely used version was designed to evaluate traditional 

radiomics and modeling in general, and thus does not apply to deep learning workflows. 

Although not directly related to radiomics, the Must AI Criteria-10 (MAIC-10) checklist can be 

used to evaluate the quality of AI and medical imaging studies [35]. It aims to simplify the 

https://github.com/metricsscore/metrics
https://www.zotero.org/google-docs/?YeaPN6
https://www.zotero.org/google-docs/?5K8ClQ
https://www.zotero.org/google-docs/?NtniYk


 

process while overcoming some of the limitations of other published checklists in the fields of 

artificial intelligence and medical imaging. MAIC-10 is a very short and simple tool that covers 

a wide range of concepts. According to the authors of MAIC-10, unlike other checklists or 

quality scoring tools, it was designed to provide a quantitative, objective, and reproducible 

quality score with a broad scope of applications across studies on AI in medical imaging. 

MAIC-10 achieved a high correlation score to CLAIM [26], a widely used 42-item reporting 

checklist, despite being tested on a small number of publications from the journal in which it 

was published. It was also proposed as the most reproducible checklist in terms of intra-

observer reproducibility, with CLAIM taking second place. However, the MAIC-10 scores are 

unweighted, namely ignoring the relative importance of each item and simply assigning a 

score of 1 for adherence. Such a simple scoring strategy was also used for the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 

checklist as well [36]. A recent radiomics-specific reporting checklist, the CLEAR checklist, 

was developed by an international initiative led by a group of experts and endorsed by ESR 

and EuSoMII [13]. Although CLEAR was designed primarily as a reporting tool and not a 

methodological guide, it still provides useful information about the methodology. Furthermore, 

it has a shortened version called CLEAR-S that focuses solely on methodological aspects and 

open science, with no score or weights. There are also reporting checklists for AI and medical 

imaging that were not specifically designed for radiomics, such as CLAIM [26]. CLAIM is a 

highly cited checklist that provides guidance for reporting and methodology. However, it was 

created by a relatively small group of scientists with no formal methodology for determining 

item eligibility, such as the Delphi method. Of note, a recent article provides a comprehensive 

review of available guidelines that can be used in AI research and medical imaging [37]. 

To develop the proposed scoring system, we used a modified Delphi method with an 

international group of panelists and defined weights of each item to present a more nuanced 

way of assessment. As a result, the category “Study Design” had the highest weight, and thus 

the biggest effect on the final score. This result is such that adhering to all items of the category 

may already allow a METRICS score ranging between 20% and 25%, considering all possible 

conditionals. It includes three items as follows: i, adherence to radiomics and/or machine 

learning-specific checklists or guidelines; ii, eligibility criteria that describe a representative 

study population; and iii, high-quality reference standard with a clear definition. The first item 

was introduced as a new concept in comparison to the RQS [9] and MAIC-10 [35] tools. The 

authors of the MAIC-10 checklist included the study design as a single item and defined it as 

a very broad concept. While most of their 10 items were discussed in at least half of the studies 

evaluated as part of the MAIC-10, the study design was not defined in any of the studies 

evaluated. Previously, the CLEAR checklist [13] and, to a lesser extent, CLAIM [26] drew 

attention to some of these concepts in terms of reporting. 

https://www.zotero.org/google-docs/?vi5bTE
https://www.zotero.org/google-docs/?CZAJle
https://www.zotero.org/google-docs/?GU8LYX
https://www.zotero.org/google-docs/?3kX6mx
https://www.zotero.org/google-docs/?6xkvcb
https://www.zotero.org/google-docs/?nMk2W7
https://www.zotero.org/google-docs/?YHLFdb
https://www.zotero.org/google-docs/?NYNFTb
https://www.zotero.org/google-docs/?VG7Q2F


 

It may appear surprising that the category related to open science practices had the 

lowest weight, and thus the lowest effect on the final score. As widely known, radiomic studies 

suffer from significant reproducibility issues, which have been mainly attributed to the lack of 

data, code, and model sharing practices leading to poor generalizability [8, 38–40]. This 

apparent discrepancy may be attributable to the panelists' consideration that proper study 

design “comes first”. In other words, if the study’s methodological steps are flawed, data and 

model availability becomes a secondary concern as these would still lack reproducibility. It 

should be noted that “reproducibility” refers to the ability to implement the same methods 

reported in a study on the same input data and obtain identical findings. This is entirely 

dependent on sharing of data, code and models and represents a guarantee of the correctness 

in reporting study results. On the other hand, “replicability” defines the ability of obtaining 

consistent results in relation to the same hypothesis when using a different patient population 

(and even partially different methodology). In practice, replicability is a better indicator of 

robustness of the conclusions drawn from a study in relation to a specific hypothesis and does 

not require meeting the criteria of the METRICS open science items, but only appropriate 

reporting of the study hypothesis and methodology. Finally, “generalizability” refers to the 

ability of a model to be applicable on a different patient distribution compared to the original 

study, and represents one of the major challenges facing radiomics and its translation to the 

clinical setting. More information on these topics can be found in [41]. This apparently 

counterintuitive disconnection between open science practice and study quality can also be 

seen elsewhere in the recent literature. For instance, in a meta-research study about AI 

literature published in RSNA journals, it was reported that only 13% of the included literature 

shared data, 30% of the included literature shared code and only 11% of the shared code was 

actually reproducible [42]. Another recent literature review showed a similar trend, where the 

data sharing rate within randomly sampled AI publications from Q1-Q2 journals was only 1%, 

and proper model sharing (i.e., sharing premodeling, modeling, and post-modeling files at 

once) was observed in only 6% of the included studies [8]. Our belief is that papers scoring 

highly on METRICS will allow improved replicability and generalizability. 

Even though an item focused on the role of prospective study design/data collection 

was initially included, the panelists were unable to reach an agreement on it, and it is not 

present in the final METRICS tool. The RQS, on the other hand, places a strong emphasis on 

prospective studies, particularly those registered in trial databases, and awards the studies 

with the highest score of the tool for this item [9]. Based on the feedback of the panelists during 

Round#1 of Stage#3, the most likely reason for this would be that radiomics research requires 

large data sets, which are difficult to achieve with prospective studies when compared to 

retrospective design and data sets. Another issue raised by panelists was the potential 

penalization of large retrospective data sets in comparison to prospective studies with small 

https://www.zotero.org/google-docs/?sCIiW8
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data sets. Therefore, despite its undoubtedly high importance in clinical research, the role and 

added value of prospective data collection currently remain uncertain in radiomics and artificial 

intelligence research within the medical imaging domain, and could be secondary compared 

to other considerations on overall data labeling and management as established by the 

METRICS expert panel. It would be worthwhile to receive community feedback on this and 

other topics in the future, which may contribute to future revisions of METRICS. 

Our work has several distinguishing features and strengths. First, the weights obtained 

in this work were not assigned arbitrarily but were the result of expert ranking. This was a 

primary goal of the study as there has been no previous work on radiomics quality scoring that 

has presented a transparent methodology for assigning item weights. Second, the METRICS 

tool considers not only hand-crafted radiomics but also deep learning-based radiomics. Third, 

both Group#1 and Group#2 had a large number of panelists. Furthermore, the panel was 

diverse in terms of country and domain expertise. This was necessary to reduce noise in 

calculations. Fourth, panelist participation in the Delphi rounds was also very high, with a 

minimum of 95% (40 of 42). Fifth, we created an easy-to-use web application to streamline 

scoring. This was crucial because METRICS contains conditional items that cover all aspects 

of radiomics, which may make the calculation difficult on paper. Finally, we established a living 

repository to discuss the METRICS tool and its content and receive feedback in order to 

improve them in the future. 

There are however several limitations to declare. First, our modified Delphi procedure 

was not completely anonymous and the steering committee had access to identities, which 

was a significant deviation from the standard Delphi exercise. We chose this approach to 

ensure panelist participation. Nevertheless, we kept the votes and comments anonymous for 

other panelists. Second, the ranking in Round#4 of Stage#3 did not account for potential items 

of equal importance. An analytical hierarchy process and pairwise voting could have been an 

alternative approach that takes equality into account. However, by this method, the number of 

questions would have been doubled in Round#4, which might cause fatigue and had negative 

effects on the scoring process. Third, during tool development, the need for conditional items 

became apparent, even if their use may complicate the scoring process. In reality, radiomic 

research involves numerous methodological variations and nuances that could be overlooked 

with a fixed item list. However, the availability of online and offline automated calculation tools 

should help mitigate this limitation. Fourth, the conditionality of the items or categories was 

not taken into account when calculating weights. Dynamic weights would have necessitated 

calculations of all possible conditional combinations and, as a result, multiple rankings, which 

is impractical and of limited value as differences are expected to be small compared to the 



 

current METRICS tool. Fifth, the number of items in each category varied. Nonetheless, the 

weighting process accounted for this to avoid biases in the final tool due to item number within 

categories. Sixth, the order of the items and categories in the Delphi rounds was fixed, which 

may have an influence on ranking and introduce bias. Alternatively, the order of these could 

have been randomized during voting, and this could have been done independently for each 

panelist as well. Finally, the reproducibility of the METRICS was not evaluated. Such an 

analysis necessitates a dedicated study design by incorporation of other tools for comparison, 

which should be performed in a future investigation. 

In conclusion, we developed a scoring tool for a comprehensive assessment of the 

methodologic quality of the radiomics research, i.e., METRICS, with a large international panel 

of experts and by using a modified Delphi protocol. With its flexible format to cover all 

methodological variations, it provides a well-constructed framework for the key methodological 

concepts to assess the quality of the radiomic research papers. A web application was 

developed to help with the calculation of the METRICS score, and a repository was created to 

collect feedback from the radiomics community. We hope that the researchers would benefit 

from this tool when designing their studies, assessing the methodological quality of papers in 

systematic reviews, and that journals would adopt the METRICS quality scoring tool for peer 

review. Comments and contributions to this tool are welcome through its repository to improve 

it in the future. 
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Tables  

Table 1: METRICS tool. 

1 Conditional for studies including region/volume of interest labeling. 2 Conditional for studies using fully automated 

segmentation. 3 Conditional for the hand-crafted radiomics. 4 Conditional for tabular data use. 5 Conditional on the 

use of end-to-end deep learning. 6 Score is simply the weight if present and 0 otherwise. Proposed total score 

categories: 0-20% = very low, 21-40% = low, 41-60% = moderate, 61-80% = good, and 81-100% = excellent. 

 

 

 

Categories  No. Items Weights Score6 

Study Design  #1 Adherence to radiomics and/or machine learning-specific 
checklists or guidelines 

0.037  

#2 Eligibility criteria that describe a representative study 
population 

0.074  

#3 High-quality reference standard with a clear definition 0.092  

Imaging Data  #4 Multi-center 0.044  

#5 Clinical translatability of the imaging data source for 
radiomics analysis 

0.029  

#6 Imaging protocol with acquisition parameters 0.044  

#7 The interval between imaging used and reference standard 0.029  

Segmentation1  #8 Transparent description of segmentation methodology 0.034  

#9 Formal evaluation of fully automated segmentation2 0.022  

#10 Test set segmentation masks produced by a single reader 
or automated tool 

0.011  

Image 
Processing 
and Feature 
Extraction 

 #11 Appropriate use of image preprocessing techniques with 
transparent description 

0.062  

#12 Use of standardized feature extraction software3 0.031  

#13 Transparent reporting of feature extraction parameters, 
otherwise providing a default configuration statement 

0.041  

Feature 
Processing 

 #14 Removal of non-robust features4 0.020  

#15 Removal of redundant features4 0.020  

#16 Appropriateness of dimensionality compared to data size4 0.030  

#17 Robustness assessment of end-to-end deep learning 
pipelines5 

0.020  

Preparation 
for Modeling 

 #18 Proper data partitioning process 0.060  

#19 Handling of confounding factors 0.030  

Metrics and 
Comparison 

 #20 Use of appropriate performance evaluation metrics for task 0.035  

#21 Consideration of uncertainty 0.023  

#22 Calibration assessment 0.018  

#23 Use of uni-parametric imaging or proof of its inferiority 0.012  

#24 Comparison with a non-radiomic approach or proof of added 
clinical value 

0.029  

#25 Comparison with simple or classical statistical models 0.018  

Testing  #26 Internal testing 0.037  

#27 External testing 0.075  

Open Science  #28 Data availability 0.007  

#29 Code availability 0.007  

#30 Model availability 0.007  

Total METRICS score (should be given as percentage)  



 

Figures 

 

Figure 1: Key steps in the development of METRICS. Boxes related to stages and rounds 

are color-coded based on the main group of panelists involved. Dotted lines indicate the 

participation of organizers in the discussions in the relevant rounds as panelists. *Including 

organizers (i.e., steering committee members).



 

 

Figure 2: Country of panelists. a, World map for distribution of 59 panelists including three 

organizers by country. b, Countries by groups. Group#1, EuSoMII auditing group including 

three organizers; Group#2, voters participated in Round#1, Round#2, and Round#4 of 

Stage#3. In case of multiple countries, the country of the first affiliation was considered.



 

 

Figure 3: Rates from modified Delphi Round#1 and Round#2 of Stage#3. The number of the 

items matches those of the final METRICS tool. Item#X, i.e., prospective data collection, 

stands for the excluded item from the final METRICS tool. Please note Item#17 is missing in 

Round#1, which is the proposed item in Round#1 to be voted in Round#2. 

  



 

 

 

 
Figure 4: Weights of METRICS categories and items.



 

 
Figure 5: Use of conditions for the “Segmentation” section. Please note, the term 

“segmentation” is referred to either fine (e.g., semantic or pixel-based) or rough (e.g., cropping 

or bounding box) delineation of a region or volume of interest within an image or image stack 

for model training or evaluation. Studies can also be performed without such annotations, for 

example, using class labels that are assigned either to the entire image, volume, exam or 

patient or with unsupervised approaches that require no labeling at all (e.g., clustering models).   



 

 
Figure 6: Use of conditions related to the sections “Image Processing and Feature Extraction'' 

and “Feature Processing”. Please note the flowchart assumes a single pipeline is used in a 

given study. However, different techniques might coexist in a single study. For instance, a 

study might include both hand-crafted feature extraction and end-to-end deep learning for 

comparison purposes, in such a case, all conditions can be selected as “Yes”. 

 

  



 

Electronic Supplementary Materials  

 

 

Supplementary File 1: Rank statistics. 

 

 

Figure S1: Box plots for rank statistics of categories. The closer a rank is to 1, the greater its 

importance. 

  



 

 
Figure S2: Box plots for rank statistics of items. The closer a rank is to 1, the greater its 

importance. 



 

Supplementary file 2: Votes and ranks in Round#1, Round#2, and Round#4 of Stage#3. 

  



 

Supplementary file 3: METRICS tool without explanations. 

1 Conditional for studies including region/volume of interest labeling. 2 Conditional for studies using fully automated 

segmentation. 3 Conditional for the hand-crafted radiomics. 4 Conditional for tabular data use. 5 Conditional on the 

use of end-to-end deep learning. Proposed total score categories: 0-20% = very low, 21-40% = low, 41-60% = 

moderate, 61-80% = good, and 81-100% = excellent.

Categories No. Items Weights Score 

Study Design #1 Adherence to radiomics and/or machine learning-specific checklists or 
guidelines 

0.037  

#2 Eligibility criteria that describe a representative study population 0.074  

#3 High-quality reference standard with a clear definition 0.092  

Imaging Data #4 Multi-center 0.044  

#5 Clinical translatability of the imaging data source for radiomics analysis 0.029  

#6 Imaging protocol with acquisition parameters 0.044  

#7 The interval between imaging used and reference standard 0.029  

Segmentation1 #8 Transparent description of segmentation methodology 0.034  

#9 Formal evaluation of fully automated segmentation2 0.022  

#10 Test set segmentation masks produced by a single reader or 
automated tool 

0.011  

Image 
Processing and 
Feature 
Extraction 

#11 Appropriate use of image preprocessing techniques with transparent 
description 

0.062  

#12 Use of standardized feature extraction software3 0.031  

#13 Transparent reporting of feature extraction parameters, otherwise 
providing a default configuration statement 

0.041  

Feature 
Processing 

#14 Removal of non-robust features4 0.020  

#15 Removal of redundant features4 0.020  

#16 Appropriateness of dimensionality compared to data size4 0.030  

#17 Robustness assessment of end-to-end deep learning pipelines5 0.020  

Preparation for 
Modeling 

#18 Proper data partitioning process 0.060  

#19 Handling of confounding factors 0.030  

Metrics and 
Comparison 

#20 Use of appropriate performance evaluation metrics for task 0.035  

#21 Consideration of uncertainty 0.023  

#22 Calibration assessment 0.018  

#23 Use of uni-parametric imaging or proof of its inferiority 0.012  

#24 Comparison with a non-radiomic approach or proof of added clinical 
value 

0.029  

#25 Comparison with simple or classical statistical models 0.018  

Testing #26 Internal testing 0.037  

#27 External testing 0.075  

Open Science #28 Data availability 0.007  

#29 Code availability 0.007  

#30 Model availability 0.007  

Total METRICS score (should be given as percentage)  



 

Supplementary file 4: METRICS tool with explanations. 

Categories No. Items Weights Score6 

Study Design #1 Adherence to radiomics and/or machine learning-specific checklists or 
guidelines 
>>> Whether any guideline or checklist, e.g., CLEAR checklist, is used 
in designing and reporting, as appropriate for the study design (e.g., 
handcrafted radiomics or deep learning pipeline). 

0.037  

#2 Eligibility criteria that describe a representative study population 
>>> Whether inclusion and exclusion criteria are explicitly defined. 
These should lead to a representative study sample that matches the 
general population of interest for the study aim. 

0.074  

#3 High-quality reference standard with a clear definition 
>>> Whether the reference standard or outcome measure is 
representative of the current clinical practice and robust. Examples of 
high-quality reference standards are preferably histopathology, well-
established clinical and genomic markers, the latest version of the 
prognostic tools, guideline-based follow-up or consensus-based expert 
opinions. Examples of poor quality reference standards are those 
based on qualitative image evaluation, images that are later used for 
feature extraction, or outdated versions of prognostic tools. 

0.092  

Imaging Data #4 Multi-center 
>>> Whether more than one institution is involved as a diagnostic 
imaging data source for radiomics analysis. 

0.044  

#5 Clinical translatability of the imaging data source for radiomics analysis 
>>> Whether the source of the radiomics data is an imaging technique 
that reflects established standardization approaches, such as 
acquisition protocol guidelines (e.g., PI-RADS specifications). 

0.029  

#6 Imaging protocol with acquisition parameters 
>>> Whether the image acquisition protocol is clearly reported to 
ensure the replicability of the method. 

0.044  

#7 The interval between imaging used and reference standard 
>>> Whether the time interval between the diagnostic imaging exams 
(used as an input for the radiomics analysis) and the outcome 
measure/reference standard acquisition is appropriate to validate the 
presence or absence of target conditions of the radiomics analysis at 
the moment of the diagnostic imaging exams. 

0.029  

Segmentation1 #8 Transparent description of segmentation methodology 
>>> Whether the rules or the method of the segmentation are defined 
(e.g., margin shrinkage, peri-tumoral sampling, details of segmentation 
regardless of whether manual, semi-automated or automated methods 
are used). In the case of DL-based radiomics, the segmentation can 
refer to the rough delineation with bounding boxes or cropping the 
image around a region of interest. 

0.034  

#9 Formal evaluation of fully automated segmentation2 

>>> If a segmentation technique that does not require any sort of 
human intervention is used, examples of the results should be 
presented and a formal assessment of its accuracy compared to 
domain expert annotations included in the study (e.g., DICE score or 
Jaccard index compared with a radiologist’s semantic annotation). Any 
intervention to the annotation in terms of volume or area should be 
considered as the use of a semi-automated segmentation technique. 
This item also applies to the use of segmentation models previously 
validated on other datasets. 

0.022  

#10 Test set segmentation masks produced by a single reader or 
automated tool 
>>> Whether final segmentation in the test set is produced by a single 
reader (manually or with a semi-automated tool) or an entirely 
automated tool, to better reflect clinical practice. 

0.011  

Image 
Processing and 
Feature 
Extraction 

#11 Appropriate use of image preprocessing techniques with transparent 
description 
>>> Whether preprocessing of the images is appropriately performed 
considering the imaging modality (e.g., gray level normalization for 
MRI, image registration in case of multiple contrasts or modalities) and 
feature extraction techniques(i.e., 2D or 3D) that are used. For 

0.062  



 

instance, in the case of large slice thickness (e.g., ≥5 mm), extreme 
upsampling (e.g., 1 x 1 x 1 mm3) of the volume might be inappropriate. 
In such a case, 2D feature extraction could be preferable, ensuring in-
plane isotropy of the pixels. On the other hand, achieving isotropic 
voxel values should be targeted in 3D feature extraction, to allow for 
texture feature rotational invariance. Also, whether gray level 
discretization parameters (bin width, along with resulting gray level 
range, or bin count) are described in full detail. Description of different 
image types used (e.g., original, filtered) should also be included (e.g., 
high and low pass filter combinations for wavelet decomposition, sigma 
values for Laplacian of Gaussian edge enhancement filtering). If the 
image window is fixed, it should be clarified. 

#12 Use of standardized feature extraction software3 

>>> Whether a standardized software (e.g., compliant with IBSI) was 
used for feature extraction, including information on the version 
number. 

0.031  

#13 Transparent reporting of feature extraction parameters, otherwise 
providing a default configuration statement 
>>> Whether feature types (e.g., hand-crafted, deep features) and 
feature classes (for hand-crafted) are described. Also, if a default 
configuration statement is provided for the remaining feature extraction 
parameters. A file presenting the complete configuration of these 
settings should be included in the study materials (e.g., parameter file 
such as in YAML format, screenshot if a dedicated file for this is not 
available for the software). In the case of DL, neural network 
architecture along with all image operations should be described. 

0.041  

Feature 
Processing 

#14 Removal of non-robust features4 

>>> Whether unstable features are removed via test-retest, 
reproducibility analysis by analysis of different segmentations, or 
stability analysis [i.e., image perturbations]. Instability may be due to 
random noise introduced by manual or even automated image 
segmentation or exposed in a scan-rescan setting. The specific 
methods used should be clearly presented, with specific results for 
each component in multi-step feature removal pipelines. 

0.020  

#15 Removal of redundant features4 

>>> Whether dimensionality is reduced by selecting the more 
informative features such as with algorithm-based feature selection 
(e.g., LASSO coefficients, Random Forest feature importance), 
univariate correlation, collinearity, or variance analysis. The specific 
methods used should be clearly presented, with specific results for 
each component in multi-step feature removal pipelines. 

0.020  

#16 Appropriateness of dimensionality compared to data size4 

>>> Whether the number of instances and features in the final training 
data set is appropriate according to the research question and 
modeling algorithm. This should be demonstrated by statistical means, 
empirically through consistency of performance in validation and 
testing, or based on previous evidence in the literature. 

0.030  

#17 Robustness assessment of end-to-end deep learning pipelines5 

>>> Whether DL pipeline consistency of performance has been 
assessed in a test-retest setting, for example by a scan-rescan 
approach, use of segmentations by different readers, or stability 
analysis [i.e., image perturbations]. The specific methods used should 
be clearly presented. 

0.020  

Preparation for 
Modeling 

#18 Proper data partitioning process 
>>> Whether the training-validation-test data split is done at the very 
beginning of the analysis pipeline, prior to any processing step. Data 
split should be random but reproducible (e.g., fixed random seed), 
preferably without altering outcome variable distribution in the test set 
(e.g., using a stratified data split). Moreover, the data split should be on 
the patient level, not the scan level (i.e., different scans of the same 
patient should be in the same set). Proper data partitioning should 
guarantee that all data processing (e.g., scaling, missing value 
imputation, oversampling or undersampling) is done blinded to the test 
set data. These techniques should be exclusively fitted on training (or 
development) data sets and then used to transform test data at the 
time of inference. If a single training-validation data split is not done 

0.060  



 

and a resampling technique (e.g., cross-validation) is used instead, test 
data should always be handled separately from this. 

#19 Handling of confounding factors 
>>> Whether potential confounding factors were analyzed, identified if 
present, and removed if necessary (e.g., if it has a strong influence on 
generalizability). These may include different distributions of patient 
characteristics (e.g., gender, lesion stage or grade) across sites or 
scanners. 

0.030  

Metrics and 
Comparison 

#20 Use of appropriate performance evaluation metrics for task 
>>> Whether appropriate accuracy metrics are reported, such as AUC 
for Receiver Operating Characteristics (ROC) or Precision-Recall 
(PRC) curves and confusion matrix-derived accuracy metrics (e.g., 
specificity, sensitivity, precision, F1 score) for classification tasks; MSE, 
RMSE, and MAE for regression tasks. For classification tasks, the 
confusion matrix should always be included, to allow the calculation of 
additional metrics. If training a DL network, loss curves should be 
presented. 

0.035  

#21 Consideration of uncertainty 
>>> Whether uncertainty measures are included in the analysis, such 
as 95% confidence interval (CI), standard deviation (SD), or standard 
error (SE). Report on methodology to derive that distribution (ie. 
bootstrapping with replacement, etc). 

0.023  

#22 Calibration assessment 
>>> Whether the final model’s calibration is assessed. 

0.018  

#23 Use of uni-parametric imaging or proof of its inferiority 
>>> Use of a single imaging set (such as a single MRI sequence rather 
than multiple, or a single phase in a dynamic contrast-enhanced scan) 
should be preferred, as multi-parametric imaging may unnecessarily 
increase data dimensionality and risk of overfitting. Therefore, in the 
case of multi-parametric studies, uni-parametric evaluations should 
also be performed to justify the need for a multi-parametric approach 
by formally comparing their performance (e.g., DeLong’s or McNemar’s 
tests). This item is also intended to reward studies that experimentally 
justify the use of more complex models compared to simpler 
alternatives, in regard to input data type. 

0.012  

#24 Comparison with a non-radiomic approach or proof of added clinical 
value 
>>> Whether a non-radiomic method that is representative of the 
clinical practice is included in the analysis for comparison purposes. 
Non-radiomic methods might include semantic features, RADS or 
RECIST scoring, and simple volume or size evaluations. If no non-
radiomics method is available, proof of improved diagnostic accuracy 
(e.g., improved performance of a radiologist assisted by the model’s 
output) or patient outcome (e.g., decision analysis, overall survival) 
should be provided. In any case, the comparison should be done with 
an appropriate statistical method to evaluate the added practical and 
clinical value of the model (e.g., DeLong’s test for AUC comparison, 
decision curve analysis for net benefit comparison, Net Reclassification 
Index). Furthermore, in case of multiple comparisons, multiple testing 
correction methods (e.g., Bonferroni) should be considered in order to 
reduce the false discovery rate provided that the statistical comparison 
is done with a frequentist approach (rather than Bayesian). 

0.029  

#25 Comparison with simple or classical statistical models 
>>> Whether a comparison with a simple baseline reference model 
(such as a Zero Rules/No Information Rate classifier) was performed. 
Use of machine learning methods should be justified by proof of 
increased performance. In any case, the comparison should be done 
with an appropriate statistical method (e.g., DeLong’s test for AUC 
comparison, Net Reclassification Index). Furthermore, in case of 
multiple comparisons, multiple testing correction methods (e.g., 
Bonferroni, Benjamini–Hochberg, or Tukey) should be considered in 
order to reduce the false discovery rate provided that the statistical 
comparison is done with a frequentist approach (rather than Bayesian). 

0.018  

Testing #26 Internal testing 
>>> Whether the model is tested on an independent data set that is 
sampled from the same source as the training and/or validation sets. 

0.037  



 

#27 External testing 
>>> Whether the model is tested with independent data from other 
institution(s). This also applies to the studies validating the previously 
published models trained at another institution. 

0.075  

Open Science #28 Data availability 
>>> Whether any imaging, segmentation, clinical, or radiomics analysis 
data is shared with the public. 

0.007  

#29 Code availability 
>>> Whether all scripts related to automatic segmentation and/or 
modeling are shared with the public. These should include clear 
instructions for their implementation (e.g., accompanying 
documentation, tutorials). 

0.007  

#30 Model availability 
>>> Whether the final model is shared in the form of a raw model file or 
as a ready-to-use system. If automated segmentation was employed, 
the corresponding trained model should also be made available to 
allow replication. These should include clear instructions for their usage 
(e.g., accompanying documentation, tutorials). 

0.007  

Total METRICS score (should be given as percentage)  

1 Conditional for studies including region/volume of interest labeling. 2 Conditional for studies using fully automated 

segmentation. 3 Conditional for the hand-crafted radiomics. 4 Conditional for tabular data use. 5 Conditional on the 

use of end-to-end deep learning. 6 Score is simply the weight if present and 0 otherwise. Proposed total score 

categories: 0-20% = very low, 21-40% = low, 41-60% = moderate, 61-80% = good, and 81-100% = excellent.  



 

Supplementary file 5: Evaluation examples for the demonstration of how to use METRICS. The table reports 

whether each of the example studies fulfill (“yes”) or not (“no”) the item requirements or if the item is not applicable 

to the study design (“n/a”), as appropriate. Please note that conditional item weights do not influence the maximum 

obtainable total score in case of non-applicability. 

 

Items/Conditions Weights Cuocolo 
(2021)1 

Gitto 
(2021)2 

Kobayashi 
(2021)3 

Study Design     

Item#1 0.037 
no no no 

Item#2 0.074 
yes yes yes 

Item#3 0.092 
yes yes yes 

Imaging Data  
    

Item#4 0.044 
no yes yes 

Item#5 0.029 
no yes yes 

Item#6 0.044 
yes yes yes 

Item#7 0.029 
yes yes yes 

Segmentation  
    

Condition#1  
yes yes yes 

Condition#2  
yes no yes 

Item#8 0.034 
yes yes yes 

Item#9 0.022 
yes n/a yes 

Item#10 0.011 
yes yes yes 

Image Processing and Feature Extraction  
    

Condition#3  
no yes no 

Item#11 0.062 
yes yes yes 

Item#12 0.031 
n/a yes n/a 

Item#13 0.041 
no yes yes 

Feature Processing  
    

Condition#4  
no yes yes 

Condition#5  
yes no no 

Item#14 0.02 
n/a yes no 

Item#15 0.02 
n/a yes no 

Item#16 0.03 
n/a yes no 



 

Item#17 0.02 
no n/a n/a 

Preparation for Modeling  
    

Item#18 0.06 
yes yes yes 

Item#19 0.03 
no no 

yes 

Metrics and Comparison  
    

Item#20 0.035 
yes yes yes 

Item#21 0.023 
yes yes yes 

Item#22 0.018 
no yes no 

Item#23 0.012 
yes yes no 

Item#24 0.029 
yes yes no 

Item#25 0.018 
no no no 

Testing  
    

Item#26 0.037 
yes yes no 

Item#27 0.075 
no yes no 

Open Science  
    

Item#28 0.007 
yes yes yes 

Item#29 0.007 
no yes yes 

Item#30 0.007 
no yes no 

METRICS score 
63.70% 91.10% 

68.00% 

METRICS score category Good Excellent Good 
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