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Abstract — Video question answering (VideoQA) is the 
process that aims at responding to questions expressed in 
natural language, according to the semantic content of a given 
video. VideoQA is a highly challenging task and demands a 
comprehensive understanding of the video document, including 
the recognition of the various objects, actions and activities 
involved together with the spatial, temporal and causal relations 
between them. To tackle the challenge of VideoQA, most 
methods propose efficient techniques to fuse the representations 
between visual and textual modalities. In this paper, we 
introduce a novel framework based on a conditional cross-
correlation network that learns multimodal contextualization 
with reduced computational and memory requirements. At the 
core of our approach, we consider a cross-correlation module 
designed to learn reciprocally constrained visual/textual 
features combined with a lightweight transformer that fuses the 
intermodal contextualization between visual and textual 
modalities. We test the vulnerability of the composing elements 
of our pipeline using black box attacks. To this purpose, we 
automatically generate semantic-preserving rephrased 
questions. The ablation study conducted confirms the 
importance of each module in the framework. The experimental 
evaluation, carried out on the MSVD-QA benchmark, validates 
the proposed methodology with average accuracy scores of 
43.58%. When compared with state-of-the-art methods the 
proposed method yields gains in accuracy of more than 4%and 
achieves a 43.58% accuracy rate on the MSVD-QA data set. 

Keywords—video question answering, multimodal learning, 
cross-correlation. 

I. INTRODUCTION  

The availability of large, annotated datasets have 
accelerated the progress of both computer vision and natural 
language processing methodologies, with a significant impact 
over a wide field of application domains, including image 
classification, speech recognition, reading comprehension and 
action recognition. Such advances have encouraged 
researchers to develop systems able to provide a holistic 
understanding of the scene, close to a human-level knowledge. 
Recently, Video Question Answering (VideoQA) has 
emerged as a testing ground to push boundaries in both 
domains. Given a video and an arbitrary question, the goal of 
a VideoQA model is to extract question-relevant semantic 
information and to infer an answer close to the ground truth. 
The task is highly challenging as it requires joint reasoning 
with both visual and textual elements, while taking into 
account their corresponding spatial, temporal and causal 
relations.  

The core of multimodal learning lies in effectively 
combining the representations between multiple modalities in 
order to leverage the complementary information involved. 
The fusion is not straightforward as the modalities exhibit 

different types and levels of detail. In the state of the art, there 
can be identified three families of techniques for multimodal 
data fusion. The early fusion approaches concatenate multiple 
modalities from raw or pre-processed data. The output is then 
directly passed to a classifier to predict the answer. In the case 
of late fusion technique, each modality is independently 
processed, followed by concatenation in the prediction phase. 
The intermediate fusion methods combine the features of each 
modality in multiple stages of the model to produce new 
representations that are more expressive than the original, 
individual ones. This last, hybrid technique is often more 
adequate for video question answering purposes and generally 
achieves superior performances. 

Recently, in the natural language processing community 
(NLP), there has been a paradigm shift from monolithic 
models with strong inductive biases such as CNNs and RNNs 
to general architectures based on attention [1]. More 
specifically, transformers have become the de facto standard 
for NLP task. Inspired by the success of attention mechanisms, 
there has been a growing interest to explore their potential 
application in multimodal learning. Recent works show that 
pre-training a transformer on large datasets followed by fine-
tuning outperform previous state of the art methods on various 
multimodal tasks such as video captioning, visual common 
sense reasoning and video question answering.   

The objective of this paper is to learn grounded joint visual 
and textual features to predict correctly the answer. Inspired 
by the success of transformers in AI applications, we use 
attention bottlenecks to fuse the modalities at multiple layers 
of the model. Developing and testing the performance of this 
model is challenging, due to multiple reasons. First, the 
complex interactions between multimodal data require very 
deep models. Hongsuck et al. [2] present a multimodal 
network composed of four transformers which learn intra-
modal contextualizations through the mechanism of self-
attention and inter-modal contextualization by computing 
question-guided attention over visual features. Similarly, 
in [3], authors present a heterogeneous memory network 
which learns the semantic visual and textual features 
independently through two self-attention-based transformers, 
then join them in a co-attention transformer. The proposed 
MERLOT [4] framework extracts the frame features using a 
CNN-based image encoder and the textual features with the 
help of a BERT-like transformer. Then, both representations 
are jointly encoded with a 12-layer transformer.   

 

 

 



The main drawback of such attention mechanisms is 
related to the quadratic time and space complexity, which 
penalizes the wide adoption of a transformer-only fusion 
network.  

To overcome such limitations, we design a novel 
framework based on a lightweight transformer that runs in 
conjunction with a cross-modality module. The latter uses 
cross correlation to reciprocally learn question-conditioned 
visual features and video-conditioned textual features. We 
finally feed the obtained constrained representations to a 2-
layer transformer that provides the final multi-modal 
representation (Fig.1).  

Generally, transformers require pre-training on large 
datasets to achieve competitive performance. Most techniques 
pre-train the model on task-agnostic datasets (usually videos 
with automatic speech recognition transcripts) then fine-tune 
on the considered VideoQA task. For example, Hongsuck et 
al. [2] pre-train the model on next utter prediction using the 
script extracted from HowTo100M [5]. MERLOT [4] uses 
general objectives (masked language modeling, frame-
transcript matching and temporal reordering to pre-train on 
YT-temporal 180M) that are not designed for video question 
answering. In contrast with such approaches, we use a task-
specific training process to learn more grounded features for 
the VideoQA task. We use the recently introduced 
HowToVQA69M data set, with over 69M video-question-
answer triplets. To reduce the memory and computational 
requirements, we randomly sample 164148 training examples 
and achieve competitive results.  

In addition, we test our model on the MSVD-QA [5] 
publicly available benchmark. Following previous state of the 
art methods, we have retained the accuracy metric to test the 
generalization of the network on the test set. However, several 
studies [7-9] have shown that despite recent advances, current 
models infer the answer without reasoning, relying instead on 
superficial correlations (i.e., biases) inherited from the 
training dataset. One reason of this behavior is the IID 
(independent and identically distributed) train-test split 
method. This suggests that models relying on priors during 
training demonstrate acceptable performance on the set. It is 
still unclear how VideoQA models perform in real-world 

situations. For this reason, we generate a novel test dataset to 
validate the robustness of our framework. More specifically, 
we apply adversarial attacks in a black-box scenario by 
distracting the model with rephrased questions (we consider 
here utilization of synonyms, changes in the word order or 
question length, various levels of redundancy) that preserve 
the over-all semantic similarity, automatically generated from 
a different distribution of the training set. Rephrasing attacks 
expose the brittleness of VideoQA models to linguistic 
variations in questions. We apply the attacks to each 
component of our pipeline and compare their robustness. This 
is important for investigating linguistic biases in the 
multimodal capability of VideoQA models (does the model 
really understand the question?) and for application in real-
world scenarios. To the very best of our knowledge, this is a 
first attempt to investigate the vulnerability of VideoQA to 
adversarial attacks. 

To summarize, in this paper we propose the following 
contributions: (1) A novel framework combining a cross-
modal correlation module with a multimodal fusion 
transformer designed to model the interactions between 
spatio-temporal, visual and textual representations. Compared 
with previous architectures, our system uses an efficient, 
lightweight model, leveraging only one 2-layer transformer. 
(2) A more discriminative set of reciprocally conditioned 
visual and textual features. This is opposed to a simple 
concatenation of pre-trained embeddings typically used in 
early fusion strategies. (3) An in-depth analysis of the 
sensitivity of the proposed framework and associated 
components with respect to textual rephrasing of the questions 
that can frequently appear in practice.  

The rest of the paper is organized as follows. In section II, 
we present the related work on video question answering. In 
section III, we present in details the proposed framework and 
describe the main modules involved. Finally, in Section IV, 
we experimentally analyze the related performances and 
compare them with state of the art methods. We also 
demonstrate the robustness of the proposed model through an 
ablation study. Finally, Section V concludes the paper and 
opens some perspectives of future work.  

 

Fig. 1. The proposed framework architecture. 

 



II. RELATED WORK  

In recent years, video question answering has attracted 
much attention and has known an accelerated development. 
VideoQA is challenging as it requires shared understanding of 
visual and textual cues to determine the correct answer. The  
state of the art solutions typically include four main 
components: video embedding, text embedding, multimodal 
fusion and answer prediction (using a classifier). For video 
embedding, existing approaches represent video at the frame 
level using 2D CNNs, e.g. VGG [10] and ResNet [11], and/or 
at the clip level using 3D CNNs, e.g. S3D [12] and I3D [32]. 
Question embedding extracts token-level features using well-
known NLP techniques such as GloVe [13] or BERT [14]. For 
cross-modality fusion, early techniques use monolithic 
models such as CNNs and RNNs. Zhao et al. [15] exploit a 
hierarchical double attention network to learn question-guided 
appearance and motion features with the help of Bi-GRU 
models. Yu et al. [16] propose a convolutional hierarchical 
decoder that computes a compatibility score between the two 
modalities by recursively evaluating the hidden matches. 
Monolithic models are relying on attention but are unsuitable 
to represent long-term dependencies. Another promising 
research direction for modeling evolving visual-textual 
interactions concerns the memory networks, which include an 
artificial memory component that can utilize even early 
information. Tapaswi et al. [17] adapt end-to-end memory 
networks for video question answering purposes. Kim et 
al.[18] incorporate attention mechanisms to prune out 
irrelevant temporal information from memory slots. Gao et al. 
[19] propose co-attention dynamic memory network to model 
appearance and motion interactions. Memory networks refine 
the answer gradually through multi-step reasoning and 
achieve competitive performances on relatively long videos.  

However, transformer-based networks [2,4,20-23] have 
recently surpassed in terms of performances such approaches. 
Within this context, the visual and textual features are 
extracted using pre-trained (fixed) models, then fused in a 
multimodal transformer. The framework is pre-trained on 
large-scale video-text datasets and fine-tuned on downstream 
tasks (VideoQA, video captioning, video-text retrieval…). 
The works reported in [2,23] perform intermodal 
contextualization by computing question-guided attention 
over visual features and intra-modal interaction through self-
attention. Lei et al.[20] and Yu et al. [21] solve the offline 
encoder problem by proposing an efficient sampling strategy 
during training. Zellers et al. [4] adopt end-to-end training by 
leveraging 2D models instead of 3D.   

In contrast with such techniques, we propose a cross-
correlation technique designed to reduce the heterogeneity 
between the video and text modalities. The proposed model is 
trained on a task-specific dataset: HowToVQA 69M [22] 
using a frozen visual backbone. We make the hypothesis that 
our model represents grounding features by jointly learning 
each modality representation under the constraint of the other.  

III. METHODOLOGY  

The synoptic scheme of the proposed method is illustrated 
in Fig.1. It contains two key components: (1) the cross-modal 
correlation module, and (2) the multimodal fusion module. As 
a pre-proccesing step, we start by extracting the video and text 
embeddings. 

A. Pre-processing: feature extraction 

To extract the visual representations, the video is 
uniformly sampled in N fixed length clips of 32 frames. We 
feed each clip to a S3D model, a 3D CNN architecture that 
aims at learning powerful video representations. The 3D 
model has been pre-trained on HowTo100M [5] using MIL-
NCE technique [25]. We take the feature activations before 
the final fully connected layer and apply average pooling to 
obtain a 1024-dimension vector. Finally, a feed forward 
network (linear projection followed by GeLU activation 
function [26] and layer normalization) is used to project the 
feature vector. During training, the S3D model weights are 
frozen to improve efficiency. The spatio-temporal features are 
denoted by 𝐹 = [𝐹 , … , 𝐹 ] ∈ ℝ ∗ , where 𝑑  is the 
dimension of the projection space.  

The text input is first tokenized using the WordPieces 
tokenizer [27], a sub-word segmentation algorithm with a 
30,000 token vocabulary. The first token of the input question 
is a [CLS] token and the last token is the [SEP] token. We use 
[PAD] token to truncate the sentence with equal length.  Each 
token is then fed to DistilBERT [28]. DistilBERT is an 
efficient, lightweight version of BERT, which is trained under 
low latency constraints. We use the activations of the last layer 
of DistilBERT to obtain a 768-dimensional feature vector 
which is then passed to a feed forward network, similarly to 
the video projection. The text embedding is denoted as 𝐹 =
𝐹 , … , 𝐹 ∈ ℝ ∗ , where 𝑇 is the number of tokens in the 

question. 

B. Cross-modal module 

Modeling video-text dynamics within and across 
modalities is an extremely challenging task. To mitigate this 
problem, we develop a cross-modal correlation module that 
efficiently accounts both intra and inter-modal relationships 
between modalities. Fig.2 represents the architecture of the 
proposed module. Inspired by the work in [29], we consider 
the cross-correlation matrix 𝜏 (Eq. (1)) that aims at modeling 
the relationships between the various visual and textual 
modalities involved: 

  𝜏 = 𝐹 𝑊𝐹 , (1) 

where 𝑊 ∈ ℝ ∗  is a learnable matrix. 

A high coefficient of the correlation matrix 𝜏 means that 
the corresponding video and text features are highly relevant. 
We generate the cross-correlation video-question (resp. 
question-video) weights by column-wise softmax over 𝜏 and 
𝜏 ,  respectively. This technique allows learning more 
discriminative representations for each individual modality, 
constrained by the other one. Formally, we compute the 
video-conditioned question features as:  

 𝐹 =  𝐹  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏 ) (2) 

Similarly, the question-conditioned video features are 
defined as: 

 𝐹 =  𝐹 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜏) (3) 

To prevent information loss in the cross-correlation stage, 
we have adopted the dense skip connection technique. The 
reweighted features 𝐹  and 𝐹  are thus added to the 
original modality-specific representation.  

 𝐹 = tanh (𝐹 + 𝐹 )    (4) 



 𝐹 = tanh (𝐹 + 𝐹 ) (5) 

The obtained features are further exploited in the multi-
modal fusion module, as described in the following section. 

 

Fig. 2. Cross-modal correlation architecture 

C. Transformed-based multimodal fusion  

Different from recurrent neural networks, transformers 
are order-insensitive. For this reason, we add a positional 
encoding to explicitly retain the information regarding the 
word position as in [14]. We differentiate the two modalities 
using a learned embedding layer which is added to each token 
to specify whether it belongs to the video or text (see Fig.1). 
The representation of the video and the question are 
computed as follows. 

 𝐹  = 𝑑𝑝(𝐹 + 𝑝𝑜𝑠 +  𝑚𝑜𝑑 ) (6) 

and   

 𝐹  = 𝑑𝑝(𝐹 + 𝑝𝑜𝑠 +  𝑚𝑜𝑑 ) (7) 

where  𝑚𝑜𝑑 ∈ ℝ  , 𝑚𝑜𝑑 ∈ ℝ  represent learnt modality 
embeddings; and [𝑝𝑜𝑠 , … , 𝑝𝑜𝑠 ]  ∈ ℝ ∗  are positional 
encodings. 𝑑𝑝 is the dropout layer.  

The input to the transformer 𝐹 ∈ ℝ ∗  is the 
concatenation of 𝐹  and 𝐹 .  

The transformer layers consist of an attention sublayer [1] 
followed by a position-wise feed-forward layer. The attention 
sublayers employ H attention heads. To obtain the sublayer 
output 𝑂 ∈ ℝ ∗  (𝑠𝑒𝑞 = 𝑇 + 𝑁) , we 
concatenate the results from each head and apply a linear 
projection. Each attention head operates on an input sequence 
𝑋 ∈ ℝ ∗ _ ∗  and computes the attended feature 
𝑍 ∈ ℝ ∗ _ ∗  as follows. 

 𝑧 = 𝛼 (𝑥 𝑊 )

_

 (8) 

The weight coefficient 𝛼  is calculated using a softmax 
function. 

 𝛼 =
𝑒𝑥𝑝 𝑒

∑ 𝑒
 (9) 

where  

  𝑒 =  
(𝑥 𝑊 )(𝑥 𝑊 )

𝑑
 (10) 

where 𝑊 ,  𝑊 ,  𝑊 ∈ ℝ ∗  are learnable matrices and 
𝑑  denotes a scaling factor. 

The output of the transformer is then passed to an MLP 
(linear projection followed by GELU activation and layer 

normalization) with softmax to predict the correct answer 
from the vocabulary of predefined answers. 

D. Rephrasing attacks 

The objective of adversarial attacks is to fool the learned 
model by manipulating the input provided to it. This is not 
only important to test the vulnerability of DL models to 
security threats but also to verify its robustness in real-world 
scenarios. Adversarial attacks have been first introduced in the 
image domain for object recognition [30-32], then attracted 
many follow-up efforts in other domains including natural 
language processing (NLP). Text attacks are more challenging 
due to different reasons: (1) Small changes in the image are 
unperceivable by humans while text changes can be easily 
identified; (2) The semantics of the image are not changed by 
small perturbations. In contrast, even minor text 
manipulations can affect the general meaning of a sentence.  

A successful attack should take such considerations into 
account, in order to be able to fool the DL model without 
changing the human judgement. Adversarial attacks can be 
categorized into two classes. A first one concerns the so-called 
white box attacks: in this setting, the attacker has access to the 
model information including input-output data, model 
architecture, parameters, loss functions and activation 
functions. The adversarial data is adjusted to maximize its 
influence on the classifier while keeping an imperceptible 
change. Most approaches use the gradient information of the 
loss with respect to the input to build the attack. In [33], 
authors use fast gradient sign method (FGSM) [31] by 
identifying the words with the most significant contribution to 
classification task. Specifically, they compute the cost 
gradient of training examples using backpropagation and 
assign the contribution of each item with respect to the 
magnitude of the cost gradient. Jacobian Saliency Map 
Adversary [34] (JSMA)-based methods [35-37] build 
adversarial perturbations using forward derivatives.  

In the case of the second family of methods, called black 
box attacks, the attacker has only access to input-output data. 
This approach uses heuristic methods or iterative queries to 
perform the attack. In [38], authors distract the textual input 
by appending meaningless sentences at the end of the 
paragraph. Such perturbations are crafted by iteratively 
querying the model until the output changes. In [39], various 
strategies are applied to affect the model’s performance such 
as random swap (transposing neighbor words), random 
deletion, stop-word dropout, paraphrasing as well as grammar 
and keyboard errors. In [40,41], the important tokens are 
identified based on a scoring system which measures the 
degree of perturbation of the model’s output. The selected 
tokens are then modified using four techniques: delete, 
replace, swap and add. In [42,43], authors generate 
semantically equivalent adversaries (SEA) to fool the model. 
Such approaches generate paraphrases and compare the 
model’s prediction with the original sentences. Other works 
[44,45] leverage generative adversarial networks (GANs) [46] 
to generate adversarial examples by searching for the 
neighbors of the input data in the latent space. The output of 
the adversarial attacks can be targeted, meaning that the 
attacker maps the output to a desired value, or untargeted in 
which case the attacker cares only about producing incorrect 
output. For multimodal attacks, there has been some work on 
image captioning [47], optical character recognition [48] and 
image question answering[49]. To the best of our knowledge, 



this is the first work to consider adversarial attacks issues 
under the framework of video question answering methods.  

Our objective is to verify the importance of the building 
elements of our pipeline and test their respective contribution 
to the model prediction. To allow a fair comparison, the same 
model-independent attacks are applied on the different 
models. For this reason, we apply untargeted black-box attack, 
meaning that we do not enforce any specific results. We use 
an automatic method to generate the rephrased questions 
without additional human intervention, which is more 
scalable in real-world environments. To this purpose, we 
have retained the BART approach [50], which is a sequence-
to-sequence NLP model that uses a BERT -like encoder (i.e., 
bidirectional encoder) and a GPT-like decoder (i.e., left-to-
right decoder). BART is pre-trained in an unsupervised 
manner using general objectives such as text corruption with 
random noise and text shuffling. The model is originally 
applied to sequence generation and machine translation tasks. 
The model is fine-tuned for text rephrasing purposes. The 
pre-trained model is directly used as a sequence-to-sequence 
model. At each time step, the model computes the probability 
of each word in the vocabulary to be the likely next word. 
Then, the next word is picked based on three decoding 
methods: (1) random sampling: we randomly choose the next 
word 𝑤  according to its conditional probability distribution. 
(2) top-K sampling [51]: we only sample the 𝐾  high 
probability words from the distribution. (3) top-p (nucleus) 
sampling: we sample from a set of words whose cumulative 
probability exceeds 𝑝.  

For training, we use three datasets: Quora [52] (400k 
training samples), MSRP [53](13M training samples) and 
PAWS [54] (108k training samples). The original data is 
filtered to ensure more diversity as follows. First, the 
sentence pairs that present more than 80% unigram overlap 
are removed. This first step minimizes the chance to copy the 
original sentence. We use Siamese BERT [55] to remove the 
question pairs with low semantic similarity. For MSRP and 
Quora, we only select the sentences that are rephrases to each 
other. Finally, the trained model is applied on the test set of 
MSVD-QA.  

TABLE I.    EXAMPLES OF REPHRASED QUESTIONS USING AUTOMATIC 
TECHNIQUE 

Original question Paraphrased question 
Who is on an ambulance 

stretcher 
Who is riding an ambulance 

stretcher? 
What are school aged children 

doing? 
What is a group of teenagers 

doing? 

How many elephants are 
spraying water on themselves? 

How many elephants are 
spraying water on 

themselves with their 
trunks? 

What is the best way to cut 
potato into pieces with a knife? 

Who is cutting into pieces a 
potato with a knife? 

What does a man pick up a card 
from? 

What does a man pick a card 
up from?  

What is climbing? What is climbing? 

 

Some examples of rephrased questions are provided in 
Table I. In order to compare the differences between the two 
datasets (original and rephrased) we compute the GLEU 
score [56] which is more suitable for single sentences. GLEU 
is a variant of the BLEU score that assigns more weight to n-
grams that are changed from the source. Specifically, the 

GLEU score is the minimum of recall (ratio of the number of 
matching n-grams to the total number of n-grams in the 
original question) and precision (the ratio of the number of 
matching n-grams to the total n-grams in the rephrased 
question). The GLEU score range is between 0 (no matches) 
and 1 (all match). We have obtained a GLEU score of 0.5638.  

IV. EXPERIMENAL EVALUATION 

The experimental evaluation has been carried out on the 
publicly available dataset MSVD-QA[5].    

A. Datasets 

Under the framework of a pre-training, then fine-tuning 
paradigm, we have trained the model on the HowToVQA 
69M task-specific dataset. HowToVQA 69M is today the 
largest videoQA available dataset, with over 69 million video 
question-answer triplets. The videos have been extracted 
from HowTo100M, which was originally designed for video 
captioning purposes. The question-answer pairs are 
automatically generated from the transcribed speech using 
two transformers. We randomly select 164148 training 
samples to reduce memory and computational requirements.  

For fine-tuning, we have retained the popular MSVD-QA 
videoQA dataset, which represents a smaller dataset 
automatically derived from MSVD. It contains 1970 clips and 
50505 question-answer pairs. MSVD-QA contains five 
categories of question, which are "What", "Who", and 
"When". The answer vocabulary contains 1852 training 
answers.  

B. Implementation details 

For pre-processing, we uniformly sample the video into 
𝑁 = 20  clips. Similarly, we set the maximum number of 
tokens in the question to 𝑇 = 20 . We project the video 
features and text features into a common embedding space of 
size d=512. For the multimodal transformer, a number of H=8 
attention heads are retained. In this setting, the scaling factor 
𝑑  is the fraction of the embedding size over the number 

of heads 𝑑 = = 64 . To train the rephrasing model 
BART, we select the high probability words based on top-K 
and p-sampling strategies. We set K=50 and p=0.95.  

The loss function of the proposed model is the sum of the 
cross entropy loss and the masked language modeling (MLM) 
loss. The MLM objective is to predict a randomly masked 
word from a predefined vocabulary of 30K words. MLM loss 
is the negative log-likelihood for masked words. Specifically, 
we randomly select with a probability of 15% all WordPiece 
tokens in each question. Once the token is selected, the data 
generator replaces the token with a special token [MASK] 
80% of the time, a random token 10% of the time, and the 
same token 10% of the time. The goal of this procedure is to 
influence the model to maintain a contextual representation 
of each input token, since it does not know which words will 
be predicted. 

A cosine annealing learning rate schedule has been used, 
with initial values of 10 for pre-training and 10  for fine-
tuning respectively. For optimization, we have adopted the 
Adam approach with batch size of 16 for pre-training and 32 
for fine-tuning. The training process has been run on 2 
NVIDIA GeForce RTX 2080 GPUs and for 20 epochs.  



The final model is selected according to the best 
performance on the validation set.  

C. Ablation study 

To investigate the effectiveness of each component of the 
pipeline, we have compared the performance of different 
baselines on both original and rephrased datasets. 

More precisely, the following test baselines have been 
retained: (B1). early fusion strategy by concatenating the 
video and text representations of pre-trained models and then 
feeding them into a fully connected layer to predict the correct 
answer; (B2) cross-modal matching that learns intra-modal 
representations of each modality under the constraint of the 
other (Section B); (B3) multimodal transformer that neglects 
the cross-modal module. (B4) The proposed architecture 
trained from scratch on MSVD-QA. Let us note that baseline 
models B1 to B4 are trained from scratch on MSVD-QA for 
computational efficiency. (B5) Our model pre-trained on a 
subset of HowToVQA 69M then fine-tuned on MSVD-QA.  

We use the accuracy metric as the answers do not exceed 
several words. The accuracy represents the ratio of the correct 
predictions with respect to the total number of input samples. 
The obtained results are summarized in Table II.  

 

TABLE II.  ABLATION STUDIES ON MSVD-QA. ACC1 REPRESENTS 
THE PERFORMANCE ON THE ORIGINAL DATASET. ACC2 REPRESENTS THE 

PERFORMANCE ON THE REPHRASED DATASET. 

Methods ACC1 ACC2 

B1. Early fusion baseline 27.33% 21.31% 

B2. Cross-modal module only 31.05% 25.81% 

B3. Transformer module only 37.88% 33.47% 
B4. Proposed model trained from scratch on 

MSVD-QA  
38.96% 33.87% 

B5. Proposed model pre-trained on HowToVQA 
then fine-tuned on MSVD-QA 43.57% 39.42% 

 

The following conclusions can be drawn. (1) The lowest 
score is obtained by directly concatenating video and text 
representations. This behavior can be explained by the 
heterogeneous nature of the two modalities involved which in 
addition are pre-trained with different tasks/datasets. (2) 
Cross-correlation technique yields more grounded 
representations as features are learned under the constraint of 
the other modality, with a 3.72% improvement in accuracy. 
(3) The best results are obtained using the full pipeline, which 
integrates extensive inter-modal interactions. (4) Pre-training 
on large task-specific datasets effectively optimizes the 
weights of the proposed architecture. (5) Our approach is more 
robust to rephrasing attacks then the transformer-only 
architecture. This is due to learning-conditioned features as 
opposed to simple concatenation.  

 
(a) 

Original question:  What are school aged children doing? 
Rephrased question:  What is a group of teenagers doing? 
Ground truth: Perform 
Original prediction: Perform 
Prediction after rephrase: Perform 

 
(b) 

Original question: What is a man showing in a box? 
Rephrased question: What is a man in a box? 
Ground truth: Gun 
Original prediction: Gun 
Prediction after rephrase: Gun 

 
(c)  

Original question: What flees from an eagle?  
Rephrased question: What escapes from an eagle?   
Ground truth: Rabbit 
Original prediction: Rabbit 
Prediction after rephrase: Rabbit 

 
(d) 

Original question: What is the dog enjoyed doing? 
Rephrased question: What do the dog like to do?  
Ground truth: Play 
Original prediction: Play 
Prediction after rephrase: Play 

 
(e)  

Original question: Who is playing the guitar on stage in front of an audience? 
Rephrased question: Who is playing guitar in front of an audience?  
Ground truth: Man 
Original prediction: Someone.  
Prediction after rephrase: Play. 

 
(f) 

Original question: What is a man demonstrating his skills with in front of a 
crowd? 
Rephrased question: What is a man doing in front of a crowd? 
Ground truth: Sword. 
Original prediction: Sword. 
Prediction after rephrase: Ball. 

Fig. 3. Examples of  results of our approach on the MSVD-QA data set, with both original and rephrased questions.  



Fig. 3 shows some examples of results obtained with the 
proposed approach on the MSVD-QA data set, with both 
original and rephrased questions. Let us note that if the 
question is not clear, we can state that the model is able to 
extract meaningful information from the video (example (e)), 
even if the prediction is wrong. 

D. Comparison with the state of the art 

We have compared our approach to various state of the 
art methods on the MSVD-QA dataset [5]. Table III 
summarizes the accuracy of the different VideoQA models 
retained for comparison. More precisely, we have considered 
the following methods Co-Mem [19], HCRN[23] , B2A [57] 
and CoMVT [2].  

The proposed method achieves the highest accuracy of    
43.57%. In particular, it outperforms the state of the art 
CoMVT model by 4.61%, even if CoMVT is pre-trained on 
a larger, task-independent dataset (HowTo100M). CoMVT 
uses four transformer blocks to model intra- and inter-model 
dynamics, while we use a simple weight matrix followed by 
a 2-layer transformer. This demonstrates the importance of 
task-oriented pre-training and the effectiveness of our model, 
which minimizes the required computational effort. 

TABLE III.  COMPARATIVE EXPERIMENTAL RESULTS 

Methods Accuracy 

Co-Mem [19] 31.7% 

HCRN [23] 36.1% 

B2A [57] 37.2% 

CoMVT [2] 42.6% 

Proposed model 43.57% 

 

V. CONCLUSIONS AND FUTURE WORK 

      In this paper, we have proposed a novel multimodal 
framework for video question answering. The proposed 
system is based on reciprocally constrained, cross-correlation 
conditioning of visual and textual features. Our system also 
integrates attention mechanisms using a multimodal, 
transformer-based approach to capture complex inter-modal 
dynamics. Ablation studies demonstrate the importance of 
each composing block of the approach. We have also proved 
the effectiveness of our pipeline by testing the robustness of 
the model to rephrasing attack. Finally, we have achieved 
43.57% of accuracy on MSVD-QA dataset outperforming 
previous state of the art CoMVT methods with 4.61%.  
      For future work, we envisage to extend the video 
question-answering framework in order to incorporate 
natural language script input and audio features. We also 
intend to apply our model on real video-question platform to 
perform a subjective system evaluation with user feedback. 
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