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A posteriori error estimates for a fully discrete approximation of Sobolev equations

The paper presents an a posteriori error estimator for a (piecewise linear) conforming finite element approximation of some (linear) Sobolev equations in R d , d = 2 or 3, using implicit Euler's scheme. For this discretization, we derive a residual indicator, which uses a spatial residual indicator based on the jumps of conormal derivatives of the approximations and a time residual indicator based on the jump (in an appropriated norm) of the successive solutions at each time step. Lower and upper bounds are obtained with minimal assumptions on the meshes. Numerical experiments that confirm and illustrate the theoretical results are given.

Introduction

This paper deals with the a posteriori analysis of linear Sobolev equations of type

L 1 u t + L 2 u = f in Ω × (0, T ),
where L 1 , L 2 are second order differential operators, approximated using implicit Euler's scheme in time and a (piecewise linear) conforming finite element approximation in space. Such problems are interesting not only because they are generalizations of a standard parabolic problem but also because they arise naturally in a large variety of applications (model of fluid flow in fissured porous media [START_REF] Barenblatt | Theory of fluid flow through natural rocks[END_REF], two-phase flow in porous media with dynamical capillary pressure [START_REF] Cuesta | Infiltration in porous media with dynamic capillary pressure: travelling waves[END_REF][START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF], heat conduction in two-temperature systems [START_REF] Chen | On a theory of heat conduction involving two temperatures[END_REF][START_REF] Ting | A cooling process according to two-temperature theory of heat conduction[END_REF] and shear in second order fluids [START_REF] Coleman | An approximation theorem for functionals, with applications in continuum mechanics[END_REF][START_REF] Ting | Certain non-steady flows of second-order fluids[END_REF]).

Several approaches have been introduced to define error estimators for parabolic problems (like the heat equation, corresponding to the case where L 1 is reduced to the identity operator), let us quote [START_REF] Bergam | A posteriori analysis of the finite element discretization of some parabolic equations[END_REF][START_REF] Bernardi | Indicateurs d'erreur pour l'équation de la chaleur[END_REF][START_REF] Bernardi | A posteriori error analysis of the fully discretized timedependent Stokes equations[END_REF][START_REF] Cascón | Space-time adaptive algorithm for the mixed parabolic problem[END_REF][START_REF] Houston | Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems[END_REF][START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF][START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF][START_REF] Picasso | An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems[END_REF][START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF][START_REF] Verfürth | Error estimates for some quasi-interpolation operators[END_REF][START_REF] Verfürth | A posteriori error estimates for finite element discretization of the heat equation[END_REF]. To be able to extend these techniques to Sobolev equations, we need to be able to manage the replacement of the identity operator by a second order elliptic one. To the best of our knowledge such an approach has not been considered. Indeed we only found two papers related to this topic. The first one [START_REF] Liu | Finite element methods for Sobolev equations[END_REF] highlights a superconvergence phenomena on cartesian grids whose estimates can be bounded by the norms of known data so that some useful a posteriori error estimates can be derived, while the second one [START_REF] Tran | A posteriori error estimates with the finite element method of lines for a Sobolev equation[END_REF] obtains some error estimates by solving local nonlinear or linear pseudo-parabolic equations for corrections to the solution.

The schedule of the paper is the following one: Section 2 recalls the continuous problem and its discretizations. In Section 3 we introduce some notations and give some useful properties. Section 4 is devoted to the a posteriori analysis of the time discretization. The efficiency and reliability of the spatial error estimator are established in Section 5. The a posteriori analysis of the full discrete problem is considered in Section 6, where we show the efficiency and reliability of the sum of the spatial and time error estimators. Finally Section 7 is devoted to numerical tests which confirm our theoretical analysis.

Let us finish this section with some notations used in the remainder of the paper. For a bounded domain D, the usual norm and semi-norm of H s (D) (s ≥ 0) are denoted by

• s,D and |•| s,D , respectively. For s = 0, we will drop the index s. Furthermore, the inner product in L 2 (Ω) will be denoted by (•, •). Finally, the notation A B (resp. A B) means the existence of a positive constant C 1 (resp. C 2 ), which is independent of A and B as well as the discretization parameters h and τ p such that A ≤ C 1 B (resp. A ≥ C 2 B). The notation A ∼ B means that A B and A B hold simultaneously.

The continuous, time semi-discrete and full discrete problems

Let Ω be an open bounded of R d , d = 2 or 3, with a polygonal (d = 2) or polyhedral (d = 3) boundary Γ. Let T be a positive and fixed real number. For i = 1, 2, let L i be a second order elliptic operator in the form

L i (x, D x )u = - d k, =1 ∂ k (a (i) k, (x)∂ u) + d k=1 b (i) k (x)∂ k u + c (i) (x)u,
where a

(i) k, = a (i) ,k , b (i) 
k , c (i) ∈ L ∞ (Ω) and introduce the bilinear forms

a i (u, v) = Ω   d k, =1 a (i) k, (x)∂ u ∂ k v + d k=1 b (i) k (x)∂ k u v + c (i) (x)u v   dx, ∀u, v ∈ H 1 0 (Ω).
We suppose that a 1 and a 2 are symmetric, that a 2 is non negative, i.e.,

(1)

a 2 (u, u) ≥ 0, ∀u ∈ H 1 0 (Ω),
and that a 1 is coercive in H 1 0 (Ω), namely there exists α > 0 such that

(2) a 1 (u, u) ≥ α u 2 1,Ω , ∀u ∈ H 1 0 (Ω).
In this setting, we consider the following Sobolev equation: Let u be the solution of

               L 1 u t + L 2 u = f in Ω × (0, T ), u(•, t) = 0 on Γ × (0, T ), u(•, 0) = u 0 in Ω, (3) 
where u t means the time derivative of u. The datum f is supposed to satisfy f ∈ L 2 (0, T ; H -1 (Ω)) and the initial value u 0 ∈ H 1 0 (Ω). Under these assumptions, problem (3) or equivalently

(4) a 1 (u t (t), v) + a 2 (u(t), v) = (f (t), v), ∀v ∈ H 1 0 (Ω), ∀ a.e. t ∈ (0, T ),
has a unique (weak) solution in C([0, T ]; H 1 0 (Ω)), see [START_REF] Bekkouche | Fully discrete approximation of general nonlinear Sobolev equations[END_REF]. This system is a linear Sobolev equation in Ω, where some a priori error analyses were performed in [START_REF] Arnold | Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable[END_REF][START_REF] Ewing | Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations[END_REF][START_REF] Liu | Finite element methods for Sobolev equations[END_REF][START_REF] Ohm | L 2 -error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations[END_REF][START_REF] Ohm | L 2 -error estimates of the extrapolated Crank-Nicolson discontinuous Galerkin approximations for nonlinear Sobolev equations[END_REF][START_REF] Showalter | The Sobolev equation[END_REF] in some particular situations or with a kind of Neumann boundary conditions. Some a posteriori error analyses can be found in [START_REF] Liu | Finite element methods for Sobolev equations[END_REF][START_REF] Tran | A posteriori error estimates with the finite element method of lines for a Sobolev equation[END_REF].

Without loss of generality, we can assume that a 2 is also coercive in

H 1 0 (Ω), indeed by the change of unknown ũ(•, t) = e -λt u(•, t),
for a positive real number λ, we see that ( 4) is equivalent to

(5) a 1 (ũ t (t), v) + ã2 (ũ(t), v) = (e -λt f (t), v), ∀v ∈ H 1 0 (Ω), ∀ a.e. t ∈ (0, T ), where ã2 (u, v) = a 2 (u, v) + λa 1 (u, v), ∀u, v ∈ H 1 0 (Ω),
is clearly coercive in H 1 0 (Ω) due to (1)-( 2). Hence from now on we also suppose that a 2 is coercive and denote by

u a i = a i (u, u), ∀u ∈ H 1 0 (Ω),
two equivalent norms of H 1 0 (Ω). We further denote by u -1 the norm in H -1 (Ω) obtained by using the duality with the second norm of H 1 0 (Ω), in other words,

g -1 = sup v∈H 1 0 (Ω),v =0 | g; v | v a 2 , ∀g ∈ H -1 (Ω),
where •; • means the duality pairing between H -1 (Ω) and H 1 0 (Ω).

Time discretization using implicit Euler's scheme

We now suppose that f ∈ C([0, T ];

H -1 (Ω)). We further introduce a partition of [0, T ] into subintervals [t p-1 , t p ], 1 ≤ p ≤ N such that 0 = t 0 < t 1 < • • • < t N = T . Denote by τ p = t p -t p-1 the length of [t p-1 , t p ]
and by τ = max p τ p the global time mesh size. The semi-discrete approximation of the continuous problem (3) by an implicit Euler scheme consists in finding a sequence (u p ) 0≤p≤N solution of (6)

                 L 1 u p -u p-1 τ p + L 2 u p = f p in Ω 1 ≤ p ≤ N, u p = 0 on Γ 1 ≤ p ≤ N, u 0 = u 0 in Ω, with f p = f (•, t p ).
This problem admits a unique weak solution u p ∈ H 1 0 (Ω), whose variational formulation is [START_REF] Cascón | Space-time adaptive algorithm for the mixed parabolic problem[END_REF] a 1 (

u p -u p-1 τ p , v) + a 2 (u p , v) = Ω f p v, ∀v ∈ H 1 0 (Ω), or equivalently (8) a 1 (u p , v) + τ p a 2 (u p , v) = a 1 (u p-1 , v) + τ p Ω f p v, ∀v ∈ H 1 0 (Ω).
The unique solvability of the variational formulation ( 8) is clearly a direct consequence of the Lax-Milgram lemma.

Remark 2.1. An a priori error analysis of the explicit Euler scheme

(9) a 1 ( u p -u p-1 τ p , v) + a 2 (u p-1 , v) = Ω f p-1 v, ∀v ∈ H 1 0 (Ω),
was considered in [START_REF] Bekkouche | Fully discrete approximation of general nonlinear Sobolev equations[END_REF] since it is more appropriate for Sobolev equations. The a posteriori error analysis that we perform below for system [START_REF] Chen | On a theory of heat conduction involving two temperatures[END_REF] is immediately applicable to (9) since it can be re-written as

a 1,p ( u p -u p-1 τ p , v) + a 2 (u p , v) = Ω f p-1 v, ∀v ∈ H 1 0 (Ω),
where

a 1,p (u, v) = a 1 (u, v) -τ p a 2 (u, v),
that is coercive uniformly in p, if τ p is small enough.

Full discretization

Problem ( 8) is now discretized by a conforming finite element method. For that purpose, for any p = 0, 1 

V ph = {v ∈ H 1 0 (Ω) : v |K ∈ P 1 , ∀K ∈ T ph }.
The fully discrete approximation of problem (3) using Euler's scheme and the conforming finite element is then given by: Given an approximation

u 0 h ∈ V 0h of u 0 , find u p h ∈ V ph , 1 ≤ p ≤ N , such that (10) a 1 ( u p h -u p-1 h τ p , v h ) + a 2 (u p h , v h ) = Ω f p v h , ∀v h ∈ V ph , or equivalently (11) a 1 (u p h , v h ) + τ p a 2 (u p h , v h ) = a 1 (u p-1 h , v h ) + τ p Ω f p v h , ∀v h ∈ V ph .
Definition 2.2. Let u p be a solution of (8) and u p h a solution of (11), then we denote the spatial error by e p = u p -u p h .

Some useful notations and properties

For a boundary edge/face E we denote the outward normal vector by n E . Given an interior edge/face E, we choose an arbitrary normal direction n E and denote by K in and K ext the two elements sharing this edge/face. Without any restriction, we may suppose here that n E is pointing to K ext like in Figure 1. The jump of a function v across an edge/face E at a point x is defined by

d d d d$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ E n E K in K ext
v(x) E = lim α→0 + (v(x + αn E ) -v(x -αn E ) if E ∈ E int ph , v(x) if E ∈ E ph \ E int ph .
Note that the sign of v(x) E depends on the orientation of n E . However, quantity like a gradient jump ∇v • n E E is independent of this orientation.

In the sequel we will use local patches: for an element K we define ω K as the union of all elements having a common edge/face with K, for an edge/face E, let ω E be the union of both elements having E as an edge/face and finally for a node x, let ω x be the union of all elements having x as a node. Similarly denote by ωK (resp. ωE ) the union of all triangles sharing a node with K (resp. E).

Recall that the Clément interpolation operator is defined as follows: Denote by N ph the set of nodes of the triangulation T ph and by N int ph the set of interior nodes of the triangulation T ph . For each node x ∈ N int ph denote further by λ x the standard hat function associated with x, namely λ x ∈ V ph and satifies

λ x (y) = δ x,y , ∀y ∈ N int ph .
For any w ∈ L 2 (Ω), we define I 0 C w by

I 0 C w = x∈N int ph |ω x | -1 ωx w λ x . (12) 
Note that I 0 C w belongs to V ph . Moreover this operator has the following properties [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]:

Lemma 3.1. For all w ∈ H 1 0 (Ω), we have w -I 0 C w K h K ∇w ωK , ∀K ∈ T ph , (13) 
w -I 0 C w E h 1/2 E ∇w ωE , ∀E ∈ E int ph , (14) 
∇I 0 C w K ∇w ωK , ∀K ∈ T ph . ( 15 
)
If K ∈ T ph , then the element residual is defined on K by

R p K = f (•, t p ) -L 1 u p h -u p-1 h τ p -L 2 u p h |K , while if E ∈ E int ph , then the edge/face residual is J p E,n = A 1 ∇ u p h -u p-1 h τp + A 2 ∇u p h • n E E ,
where for i = 1 or 2, A i is the d × d symmetric matrix given by

A i = (a (i) k, ) 1≤k, ≤d .
Now we prove a property satisfied by the spatial error e p that we will use in the proof of the spatial error bounds.

Lemma 3.2 (Galerkin orthogonality).

The error e p satisfies the Galerkin orthogonality relation

(16) a 1 ( e p -e p-1 τ p , v h ) + a 2 (e p , v h ) = 0, ∀v h ∈ V ph .
Proof. It suffices to subtract [START_REF] Cascón | Space-time adaptive algorithm for the mixed parabolic problem[END_REF] with v = v h ∈ V ph to the identity [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF].

Lemma 3.3. The error e p satisfies

(17) a 1 ( e p -e p-1 τ p , v) + a 2 (e p , v) = K∈T ph K R p K v + E∈E int ph E J p E,n v, ∀v ∈ H 1 0 (Ω).
Proof. We first observe that

a 1 ( e p -e p-1 τ p , v) + a 2 (e p , v) = a 1 ( u p -u p-1 τ p , v) + a 2 (u p , v) - a 1 ( u p h -u p-1 h τ p , v) + a 2 (u p h , v) .
We transform the first term on the right-hand side using ( 7) and the second one by elementwise integration by parts, reminding that

a i (u, v) = K∈T ph K (A i ∇u • ∇v + d k=1 b (i) k ∂ k uv + c (i) uv .
This leads to the conclusion.

The above lemmas allow us to prove the following lemma.

Lemma 3.4. The following identity holds a 1 (e p , e p ) + τ p a 2 (e p , e p ) = a 1 (e p-1 , e p ) + τ p

K∈T ph K R p K (e p -I 0 C e p ) + τ p E∈E int ph E J p E,n (e p -I 0 C e p ). (18) 
Proof. We write a 2 (e p , e p ) = a 2 (e p , e p -I 0 C e p ) + a 2 (e p , I 0 C e p ), then we transform the first term using [START_REF] Liu | Finite element methods for Sobolev equations[END_REF] with v = e p -I 0 C e p and the second term using the Galerkin orthogonality relation [START_REF] Johnson | An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem[END_REF] 

with v h = I 0 C e p .

A posteriori analysis of the time discretization

Inspired from [START_REF] Bergam | A posteriori analysis of the finite element discretization of some parabolic equations[END_REF][START_REF] Bernardi | A posteriori error analysis of the fully discretized timedependent Stokes equations[END_REF][START_REF] Johnson | An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem[END_REF][START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF][START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF], that considered the heat equation, we define the time error indicator by ( 19)

η p t = τ 1/2 p u p h -u p-1 h a 2 , 1 ≤ p ≤ N.
The only difference with the above papers lies on the chosen norm of u p h -u p-1 h . For shortness we introduce the following notation: Denote by π τ f the step function which is constant and equal to f (t p ) on each interval (t p-1 , t p ), 1 ≤ p ≤ N . For a sequence v p ∈ H 1 0 (Ω), 0 ≤ p ≤ N , we denote by v τ its "Lagrange" interpolant, which is affine on each interval [t p-1 , t p ], 1 ≤ p ≤ N , and equal to v p at t p , i.e., defined by,

v τ (t) = t p -t τ p v p-1 + t -t p-1 τ p v p , ∀t ∈ [t p-1 , t p ], 1 ≤ p ≤ N.
Denote finally e τ = u -u τ , the time discretization error.

As

∂ t u τ = u p -u p-1 τ p on (t p-1 , t p ),
the semi-discrete equation ( 7) is equivalent to

(20) a 1 (∂ t u τ (t), v) + a 2 (u p , v) = (f p , v), ∀v ∈ H 1 0 (Ω), ∀t ∈ (t p-1 , t p ).
Taking the difference with (4), we derive the residual equation

a 1 (∂ t e τ (t), v) + a 2 (e τ (t), v) = ((f -π τ f )(t), v) (21) +a 2 ((u p -u τ )(t), v), ∀v ∈ H 1 0 (Ω), ∀ a.e. t ∈ (t p-1 , t p ).
This identity allows us to prove the next error bound. 

e τ (t n ) 2 a 1 + tn 0 e τ (s) 2 a 2 ds n p=1 (η p t ) 2 (22) 
+ tn 0 (u τ -u hτ )(s) 2 a 2 ds + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) .
Proof. The residual equation [START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF] 

((f -π τ f )(t), e τ (t)) dt + tp t p-1 a 2 ((u p -u τ )(t), e τ (t
≤ tp t p-1 (f -π τ f )(t) 2 -1 dt + tp t p-1 (u p -u τ )(t) 2 a 2 dt.
We now estimate the second term of this right-hand side. First by the definition of u τ we clearly have [START_REF] Ting | Certain non-steady flows of second-order fluids[END_REF] 

tp t p-1 (u p -u τ )(t) 2 a 2 dt = τ p 3 u p -u p-1 2 a 2 .
Secondly, using the triangular inequality, we simply write

(25) τ 1/2 p u p -u p-1 a 2 ≤ η p t + τ 1/2 p u p -u p h a 2 + τ 1/2 p u p-1 h -u p-1 a 2 .
Let us now show that ( 26)

τ p u p -u p h 2 a 2 + τ p u p-1 -u p-1 h 2 a 2 ≤ 6 tp t p-1 (u τ -u hτ )(t) 2 a 2 dt.
Indeed by definition, we have

(u τ -u hτ )(t) = t p -t τ p (u p-1 -u p-1 h ) + t -t p-1 τ p (u p -u p h ), ∀t ∈ [t p-1 , t p ],
and therefore

(u τ -u hτ )(t) 2 a 2 = t p -t τ p 2 u p-1 -u p-1 h 2 a 2 + t -t p-1 τ p 2 u p -u p h 2 a 2 + 2 (t p -t)(t -t p-1 ) τ 2 p a 2 (u p-1 -u p-1 h , u p -u p h ), ∀t ∈ (t p-1 , t p ).
Integrating this expression in t ∈ (t p-1 , t p ), one finds after simple calculations that

tp t p-1 (u τ -u hτ )(t) 2 a 2 dt = τ p 3 ( u p-1 -u p-1 h 2 a 2 + u p -u p h 2 a 2 + a 2 (u p-1 -u p-1 h , u p -u p h )).
Cauchy-Schwarz's inequality allows to conclude that (26) holds.

In conclusion, the identity [START_REF] Ting | Certain non-steady flows of second-order fluids[END_REF] and the estimates ( 25)-( 26) yield ( 27)

tp t p-1 (u p -u τ )(t) 2 a 2 dt (η p t ) 2 + tp t p-1 (u τ -u hτ )(t) 2 a 2 dt.
This estimate in [START_REF] Showalter | The Sobolev equation[END_REF] 

(f -π τ f )(t) 2 -1 dt + tp t p-1 (u τ -u hτ )(t) 2 a 2 dt.
Summing this estimate in p = 1, • • • , n leads to the conclusion. 

∂ t e τ 2 L 2 (0,tn;H 1 0 (Ω)) n p=1 (η p t ) 2 + tn 0 (u τ -u hτ )(s) 2 a 2 ds + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) . ( 28 
)
Proof. The residual equation [START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF] and the equivalence between the norms • a 1 and • a 2 directly give

∂ t e τ (t) a 1 (f -π τ f )(t) -1 + e τ (t) a 2 + (u p -u τ )(t) a 2 , ∀t ∈ (t p-1 , t p ).
Integrating the square of this estimate in t ∈ (t p-1 , t p ) and summing on p, we obtain

tn 0 ∂ t e τ (t) 2 a 1 dt tn 0 (f -π τ f )(t) 2 -1 dt + tn 0 e τ (t) 2 a 2 dt + tn 0 (u p -u τ )(t) 2 dt.
The second term of this right-hand side is estimated in [START_REF] Picasso | An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems[END_REF], while the third term is estimated via [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF].

Remark 4.3. In the implementation point of view, all the terms of the right-hand side of [START_REF] Picasso | An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems[END_REF] and of (28) should be computable. This is indeed the case for the terms (η p t ) 2 and f -π τ f 2 L 2 (0,tn;H -1 (Ω)) , while the term tn 0

(u τ -u hτ )(s) 2 a 2 ds is not, because the exact solutions u p are used, but it will be estimated by computational quantities in the next section (see Theorem 5.2 and the estimate (44) below).

Let us go on with the local time lower bound. 

(η p t ) 2 tp t p-1 ( e τ (t) 2 a 2 + ∂ t e τ (t) 2 a 1 ) dt (29) + τ p ( u p -u p h 2 a 2 + u p-1 -u p-1 h 2 a 2 ) + f -π τ f 2 L 2 (t p-1 ,tp;H -1 (Ω)) .
Proof. By the triangular inequality we may write

η p t τ 1/2 p ( u p -u p-1 a 2 + u p -u p h a 2 + u p-1 -u p-1 h ) a 2 ). ( 30 
)
Hence it remains to estimate the term τ 1/2 p u p -u p-1 a 2 . First we recall the identity (24)

τ p 3 u p -u p-1 2 a 2 = tp t p-1 (u p -u τ )(t) 2 a 2 dt.
Second taking as test function in (21) v = (u p -u τ )(t), with t ∈ (t p-1 , t p ), one ontains

a 1 (∂ t e τ (t), (u p -u τ )(t)) + a 2 (e τ (t), (u p -u τ )(t)) = ((f -π τ f )(t), (u p -u τ )(t)) + a 2 ((u p -u τ )(t), (u p -u τ )(t)), ∀ a.e. t ∈ (t p-1 , t p ).
With the help of Cauchy-Schwarz's inequality and the continuity of a 1 and the coerciveness of a 2 , we arrive at

(u p -u τ )(t) 2 a 2 ∂ t e τ (t) 2 a 1 + e τ (t) 2 a 2 + (f -π τ f )(t) 2 -1 , ∀ a.e. t ∈ (t p-1 , t p ).
Integrating this estimate in t ∈ (t p-1 , t p ) we deduce that

τ p 3 u p -u p-1 2 a 2 tp t p-1 ( e τ (t) 2 a 2 + ∂ t e τ (t) 2 a 1 + f -π τ f 2 -1 ) dt.
The conclusion follows by inserting this estimate in (30).

5 A posteriori analysis of the spatial discretization

An upper error bound

As usual [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] the exact element residual R p K it is replaced by an approximate element residual (31)

r p K = (f p h -L 1 u p h -u p-1 h τ p -L 2 u p h |K , where f p h is a finite dimensional approximation of f (•, t p ). A possible choice is (f p h ) |K := 1 |K| K f (x, t p ) dx, for all K ∈ T ph . Definition 5.1. Let p ≥ 1.
The local error estimator η p K is defined by

η p K = h K r p K K + E∈E K h 1/2 E J p E,n E
, while the global one η p is given by

(η p ) 2 = K∈T ph (η p K ) 2 .
The local and global approximation terms are defined by Proof. This upper bound is a consequence of Lemma 3.4 by estimating appropriately each term of the right-hand side of the identity [START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF]. First we transform

ξ p K = h K f (•, t p ) -f p h ω K , (ξ p ) 2 = K∈T ph (ξ p K ) 2 .
τ p K∈T ph K R p K (e p -I 0 C e p ) = τ p K∈T ph K r p K (e p -I 0 C e p ) + τ p K∈T ph K (f (•, t p ) -f p h )(e p -I 0 C e p ).
Using successively Cauchy-Schwarz's inequality, the estimate (13) and the definition 5.1 of the local estimator and the approximation term, we obtain

K∈T ph K R p K (e p -I 0 C e p ) K∈T ph h K ( r p K K + f (•, t p ) -f p h K ) |e p | 1,ω K K∈T ph (η p K + ξ p K ) |e p | 1,ω K .
By discrete Cauchy-Schwarz's inequality and the coerciveness of a 2 , we get (33)

K∈T ph K R p K (e p -I 0 C e p ) (η p + ξ p ) |e p | 1,Ω (η p + ξ p ) e p a 2 .
Similarly using [START_REF] Hassanizadeh | Thermodynamic basis of capillary pressure in porous media[END_REF] we estimate the edge residual term:

E∈E int ph E J p E,n (e p -I 0 C e p ) ≤ E∈E int ph J p E,n E e p -I 0 C e p E E∈E int ph J p E,n E h 1/2 E |e p | 1,ω E K∈T ph η p K |e p | 1,ω K .
As before discrete Cauchy-Schwarz's inequality yields 

E∈E int ph E J p E,
∂ t (u τ -u hτ )(t) a 1 ≤ sup v∈H 1 0 (Ω) a 1 (∂ t (u τ -u hτ )(t), v) v a 1 , ∀t ∈ (t p-1 , t p ).
Using the property

∂ t (u τ -u hτ )(t) = e p -e p-1 τ p , ∀t ∈ (t p-1 , t p ),
and the semi-discrete equation ( 8), for any t ∈ (t p-1 , t p ) we may write

a 1 (∂ t (u τ -u hτ )(t), v) = R p (v) -a 2 (e p , v),
where the residual R p is defined by

R p (v) = (f (•, t p ), v) -a 1 ( u p h -u p-1 h τ p , v) -a 2 (u p h , v), ∀v ∈ H 1 0 (Ω).
As [START_REF] Coleman | An approximation theorem for functionals, with applications in continuum mechanics[END_REF] implies that R p (v h ) = 0, ∀v h ∈ V ph , the above identity becomes

a 1 (∂ t (u τ -u hτ )(t), v) = R p (v -v h ) -a 2 (e p , v), ∀v h ∈ V ph , t ∈ (t p-1 , t p ).
Taking v h = I C v, applying Green's formula componentwise (see the proof of Lemma 3.3), and using the estimates ( 13) and ( 14) we get

|R p (v -v h )| (η p + ξ p ) v a 1 ,
and therefore

|a 1 (∂ t (u τ -u hτ )(t), v)| (η p + ξ p + e p a 2 ) v a 1 , ∀t ∈ (t p-1 , t p ).
This estimate in (36) leads to

∂ t (u τ -u hτ )(t) a 1 η p + ξ p + e p a 2 .
Integrating the square of this estimate in t ∈ (t p-1 , t p ) and summing on p = 1, • • • , n, the conclusion follows from the estimate (32).

A lower error bound

We now establish the lower error bound of the estimator η p K in a more or less standard way (see [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]). Since we consider a nonstationary problem, we further need the following assumption (see [START_REF] Bernardi | A posteriori error analysis of the fully discretized timedependent Stokes equations[END_REF][START_REF] Verfürth | A posteriori error estimates for finite element discretization of the heat equation[END_REF]), that is easily checked in an adaptive context: Assumption 5.4. For each 1 ≤ p ≤ N , there exists a conforming triangulation Tph such that each element K of T p-1,h or of T ph is the union of elements K of Tph such that h K ∼ h K .

We further need the assumption on the coefficients of the operators L i . Assumption 5.5. For each 1 ≤ p ≤ N , and i = 1, 2, the coefficients a

(i) k, , b (i)
k and c (i) are constant on each element K of Tph . 

η p K h K e p -e p-1 τ p 1,ω K + e p 1,ω K + K ⊂ω K ξ p K . ( 37 
)
Proof. Element residual: By fixing an arbitrary element K ∈ Tph and by recalling (31), we set

w p K := b K r p K ,
where b K = d+1 i=1 λ K i is the standard bubble function associated with K (see e.g. [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]). Standard inverse inequalities (cf. [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]Lemma 3.3]) and Lemma 3.

3 with v = w p K give r p K 2 K ∼ K r p K w p K = K (f p h -f (•, t p ))w p K + K R p K w p K = K (f p h -f (•, t p ))w p K + a 1 ( e p -e p-1 τ p , w p K ) + a 2 (e p , w p K ).
Hence by Cauchy-Schwarz's inequality and again standard inverse inequalities (reminding that u p-1 h and u p h are polynomials of degree 1 in K, see again [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]Lemma 3.3]), one obtains

r p K 2 K ( e p -e p-1 τ p 1,K + h -1 K e p 1,K + f p h -f (•, t p ) K ) r p K K .
This proves the estimate

(38) h K r p K K h K e p -e p-1 τ p 1,K + e p 1,K + h K f p h -f (•, t p ) K .
Now for K ∈ T ph , the assumption 5.4 yields

h 2 K r p K 2 K K∈ Tph : K⊂K h 2 K r p K 2 K .
Using the estimate (38) and the fact that h K ≤ h K for K ⊂ K we have proved that

(39) h K r p K K h K e p -e p-1 τ p 1,K + e p 1,K + ξ p K .
Edge/face residual: Next we consider an arbitrary edge/face E of Tph and define

w p E := b E J p E,n ,
where b E is the standard bubble function associated with E (see e.g. [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]). Using inverse estimates and Lemma 3.3 with v = w p E we obtain

J p E,n 2 E E J p E,n w p E = a 1 ( e p -e p-1 τ p , w p E ) + a 2 (e p , w p E ) - K∈ Tph K R p K w p E .
Hence Cauchy-Schwarz's inequality, standard inverse inequalities and the estimate (38) lead to

h 1/2 E J p E,n E K∈ Tph :E⊂K ( e p -e p-1 τ p 1,K + e p 1,K + h K f p h -f (•, t p ) K ).
By the assumption 5.4, we conclude that

(40) h 1/2 E J p E,n E K⊂ω E ( e p -e p-1 τ p 1,K + e p 1,K + ξ p K ).
The conclusion follows from the estimates (39) and (40).

Corollary 5.7 (Second local lower error bound). If Assumptions 5.4 and 5.5 hold, then for all 1 ≤ p ≤ N and all K ∈ T ph , it holds

(41) τ p (η p K ) 2 tp t p-1 ∂ t (u τ -u hτ )(t) 2 1,ω K dt + τ p e p 2 1,ω K + τ p K ⊂ω K (ξ p K ) 2 .
Proof. Direct consequence of the property

∂ t (u τ -u hτ )(t) = e p -e p-1 τ p , ∀t ∈ (t p-1 , t p ),
and Theorem 5.6.

A posteriori analysis of the full discretization

For all n = 1, • • • , N , denote the full error E(t n ) at time t n by

E(t n ) 2 = u(t n ) -u n h 2 a 1 + u n -u n h 2 a 1 + ∂ t (u -u τ ) 2 L 2 (0,tn;H 1 0 (Ω)) + ∂ t (u τ -u hτ ) 2 L 2 (0,tn;H 1 0 (Ω)) + tn 0 ( (u -u τ )(•, s) 2 a 2 + (u τ -u hτ )(•, s) 2 a 2 ) ds.
Combining the results from the previous sections, we get the following global upper and lower bounds: Theorem 6.1 (Full error bounds). For any n = 1, • • • , N , the next upper error bound holds:

E(t n ) 2 n p=1 (η p t ) 2 + τ p (η p ) 2 (42) + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) + n p=1 τ p (ξ p ) 2 + e 0 2 a 1 + τ 1 e 0 2 a 2 .
If moreover Assumptions 5.4 and 5.5 hold, then for any n = 1, • • • , N , the next lower error bound holds:

n p=1 (η p t ) 2 + τ p (η p ) 2 E(t n ) 2 + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) + n p=1 τ p (ξ p ) 2 . ( 43 
)
Proof. Let us start with the upper error bound. First the triangle inequality directly leads to

E(t n ) 2 u(t n ) -u n 2 a 1 + u n -u n h 2 a 1 + ∂ t e τ 2 L 2 (0,tn;H 1 0 (Ω)) + ∂ t (u τ -u hτ ) 2 L 2 (0,tn;H 1 0 (Ω)) + tn 0 ( e τ (•, s) 2 a 2 + (u τ -u hτ )(•, s) 2 a 2 ) ds.
By Theorem 4.1 and Corollary 4.2, and the easily checked estimate (44

) tn 0 (u τ -u hτ )(•, s) 2 a 2 ds n p=1 τ p ( u p-1 -u p-1 h 2 a 2 + u p -u p h 2 a 2 ),
we get

E(t n ) 2 n p=1 (η p t ) 2 + n p=1 τ p u p -u p h 2 a 2 + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) + u n -u n h 2 a 1 + ∂ t (u τ -u hτ ) 2 L 2 (0,tn;H 1 0 (Ω)) + τ 1 e 0 2 a 2 .
We conclude using Theorem 5.2 and Corollary 5.3. We now pass to the lower error bound. Summing [START_REF] Verfürth | A posteriori error estimates for finite element discretization of the heat equation[END_REF] 

on p = 1, • • • , n, we get n p=1 (η p t ) 2 tn 0 ( e τ (t) 2 a 2 + ∂ t e τ (t) 2 a 1 ) dt + n p=1 τ p u p -u p h 2 a 2 + τ 1 e 0 2 a 2 + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) .
By the estimate [START_REF] Tran | A posteriori error estimates with the finite element method of lines for a Sobolev equation[END_REF], we obtain

n p=1 (η p t ) 2 E(t n ) 2 + f -π τ f 2 L 2 (0,tn;H -1 (Ω)) . (45) 
On the other hand, by Corollary 5.7, we have

n p=1 τ p (η p ) 2 tn 0 ∂ t (u τ -u hτ )(t) 2 1,ω K dt + n p=1 τ p e p 2 a 1 + n p=1 τ p (ξ p K ) 2 .
Again thanks to [START_REF] Tran | A posteriori error estimates with the finite element method of lines for a Sobolev equation[END_REF], we obtain

n p=1 τ p (η p ) 2 E(t n ) 2 + n p=1 τ p (ξ p ) 2 . ( 46 
)
The estimate (43) directly follows from (45) and (46). Remark 6.2. Under Assumptions 5.4 and 5.5, Theorem 6.1 states that the error E(t n ) is equivalent to the global error estimator

  n p=1 (η p t ) 2 + τ p (η p ) 2   1/2
, up to approximation terms. Since each term of this global error estimator is computable, it may be used for an adaptive algorithm.

Numerical experiments

Our theoretical analysis is now confirmed by different numerical examples. The first two ones are used to confirm the efficiency and reliability of our error estimator, while the third and fourth ones illustrate the usefulness of our estimator by presenting an adaptive algorithm for solutions having a singular behaviour in space. For simplicity all the tests will be performed with L 1 = I -∆ and L 2 = -∆ (∆ being the standard Laplace operator).

A validation test

This example consists in solving the two dimensional Sobolev equation on the unit square Ω =]0, 1[×]0, 1[. Here, we use the Lagrange element on a regular mesh T ph = T h obtained by dividing each segment by n subintervals and dividing each obtained square into two triangles (see Figure 2). The tests are performed with T = 1s and the following exact solution u(x, y, t) = e -t xy(x -1)(y -1) in Ω×]0, 1[, so that u 0 (x, y) = xy(x -1)(y -1) in Ω and u(., t) |Γ = 0, for all t ∈]0, 1[. All numerical results will be presented at the final time T = 1s. First, we check that the numerical solution u N h converges towards the exact one. For that purpose, we have plotted in Figure 3 the error |u(•, t N ) -u N h | 2 1,Ω as a function of the meshsize (resp. time step) when the time step (resp. meshsize ) is fixed and small enough.

Here and below a double logarithmic scale is used in such a way that the slope of the curves gives the order of convergence. As we can see, this figure underlines the theoretical predicted optimal order of convergence h (resp. τ p ) as τ p (resp. h) is fixed and small enough (see [START_REF] Bekkouche | Fully discrete approximation of general nonlinear Sobolev equations[END_REF]). Now we investigate the main theoretical results which are the upper and lower error bounds (32) and (37). For that purpose, we fix a small time step τ p = 0.1s and let vary the meshsize h. 

Reliability of the spatial estimator

First, we define the ratio of the left-hand side and the right-hand side of the estimate (32) at the last time T = 1s:

q N up = e N 2 1,Ω + N p=1 τ p |e p | 2 1,Ω e 0 2 1,Ω + N p=1 τ p K∈T ph ((η p K ) 2 + h 2 K f p -f p h 2 K )
.

q N up is referred as the effectivity index. It measures the reliability of the estimator and is related to the global upper error bound. From Theorem 5.2, the ratio q N up is bounded from above. This is confirmed by our numerical results presented in Figure 4 and Table 1. Hence, the spatial estimator is reliable. Now, we define the (larger) ratio of the left-hand side and the right-hand side of the estimate (37) at the final time T = 1s:

q N low = max K∈T ph η N K h K e N -e N -1 τ p 1,ω K + e N 1,ω K + h K f N -f N h ω K .
q N low is related to the local lower error bound and measures the efficiency of the estimator. According to Figure 5 (see also Table 1), q N low is bounded from above as theoreticaly predicted in Theorem 5.6. Therefore our spatial estimator is also efficient.

Non structured meshes

In order to validate the reliability and efficiency of our spatial error estimator, we have approximated the same problem as before with the same elements but on different non structured meshes obtained by starting from a rough non structured mesh of size 0.2 (see Figure 6) and by dividing each triangle into 4 triangles by the standard regular refinements [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]. Figures 7 and8 (see also Table 2) show respectively the rations q N up and q N low with respect to the degrees of freedom. Again we may conclude that both ratios are bounded from above and consequently our spatial error estimator is reliable and efficient.

Figure 6: The non structured mesh on the unit square with h = 0.2.

Dependence of the error

From our previous considerations, the error between the exact solution and its approximated one is expected to depend on the space and/or time discretization. In order to illustrate this phenomenon, as in [START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF][START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF], we exhibit an example where the error due to the time discretization is more important than the error due to the space discretization, and another example where the converse phenomenon appears. For that purpose we consider the problem (3) for Ω =]0, 1[×]0, 1[ and T = 1s, with the exact solution u 1 and u 2 defined by: u 1 = sin(πx) sin(πy) sin(πt), u 2 = sin(πx) sin(πy) sin t.

The numerical results are shown in Tables 3 and4, where we present the values of the space indicator η, the time indicator η t , the error e := max 1≤p≤N e p 1,Ω and the spatial effectivity index q N up for different uniform triangulations and constant time steps. In the first case, we can conclude that the error is mainly due to the time discretization. Indeed from Table 3, we see that for a fixed time step and decreasing mesh sizes, the error is almost constant, while for a fixed mesh size and decreasing time steps, the error decreases. We moreover remark a close relationship between the error and the time indicator. For the second example, the error is mainly due to the time discretization, since we see converse relations between the error and the time steps and mesh size, while we clearly detect a relationship between the error and space indicator. For the first example q N up is correlated to the error, while for the second one, the distortion comes for the approximation terms. Let us further remark that the numerical experiments bring to light that the indicator η t is independent of h, while the indicator η is mainly independent of τ p . This important property of uncoupling the two error parts is effectively used in our adaptive algorithm described below, since the time (resp. space) refinements or unrefinements are (mainly) based on η t (resp. η). are satisfied, then summing from n = 1 to n = N, we obtain (48). Thus our algorithm, described in Algorithm 1, consists in finding time steps and triangulations such that (51) holds for all n. This will be achieved by using the elements η n and ξ n to control the mesh sizes, and using ξ n and η n t to control the time steps. Note that it is similar to the one proposed in [START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF][START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF].

An adaptive algorithm

In order to test our adaptive scheme, we consider two relevant examples. The first one when the Sobolev equation ( 3) is considered in the unit square ]0, 1[×]0, 1[ with the exact solution defined by (see [START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF][START_REF] Picasso | Adaptive finite elements for a linear parabolic problem[END_REF] This means that u is a Gaussian function whose center moves from point (0.3, 0.3) at time t = 0s to point (0.7, 0.7) at time t = 1s. The obtained meshes at times 0.1, 0. 
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 2 Figure 2: The mesh on the unit square with h = 0.2.
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 3 Figure 3: u(•, t N ) -u N h 1,Ω as a function of Dof at final time T = 1s for different h with τ p = 0.001s (resp. τ p with h = 0.00625).
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 4 Figure 4: q N up wrt DoF for uniform meshes
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 8 Figure 7: q N up wrt DoF for non structured meshes

From

  our theoretical considerations and the examples of the previous subsection, an adaptive algorithm has to use appropriately the space indicator η, the time indicator η t and the approximation error ξ. To design this algorithm, we first define the global indicator η

  5 and 1 are shown in Figures 9 with the tolerance δ = 0.25 and the parameter α = 0.5. From these

  

  , • • • , N , let us fix a conforming mesh T ph of Ω which is regular in Ciarlet's sense[9, p. 124]. All elements are triangles or tetrahedra and will be denoted by K. For an element K ∈ T ph , we recall that h K is the diameter of K and that h p = max ph is denoted by E ph . Let E int ph be the set of interior edges/faces of T ph and E K be the set of the edges/faces of the element K. Finally for an edge/face E ∈ E K ∩ E L we denote by h E = d

	K∈T ph	h K . The
	set of all edges/faces of T 2 ( |K| |E| + |L| |E| ), its mean height.	
	Introduce the conforming finite element space:	

  )) dt.

	Using Young's inequality, one obtains			
	(23)	1 2	a 1 (e τ (t p ), e τ (t p )) -	1 2	a 1 (e τ (t p-1 ), e τ (t p-1 )) +	1 2	tp t p-1	a 2 (e τ (t), e τ (t))

  leads to a 1 (e τ (t p ), e τ (t p )) -a 1 (e τ (t p-1 ), e τ (t p-1 )) +

		tp
		a 2 (e τ (t), e τ (t))
		t p-1
	t ) 2 + (η p	tp
		t p-1

Table 1 :

 1 q N up and q N low wrt DoF for uniform meshes.

		-0.7			
	-0.75			
	q N low	-0.8			
	-0.85			
		-0.9			
		2	3	4	5	6
				Dof	
		Figure 5: q N low wrt DoF for uniform meshes
		n	DoF	q N up	q N low
		4	56 0.125	0.20
		8	208 0.0759 0.16
		16	800 0.0614 0.14
		32	3136 0.0557 0.13
		64	12416 0.0532 0.127
		128	49408 0.0519 0.125
		256 197120 0.0514 0.124
		512 787456 0.0513 0.123

Table 2 :

 2 q N up and q N low wrt DoF for non structured meshes.

Table 4 :

 4 ((η n t ) 2 + τ n (η n ) 2 + τ n (ξ n ) 2 )Convergence results when using uniform triangulations and constant time steps for the second example.

	1/2
	.

  ) (52) u(x, y, t) = β(t) * exp(-50 * r 2 (x, y, t)), with r 2 (x, y, t) = (x -0.4 * t -0.3) 2 + (y -0.4 * t -0.3) 2 , and

	(53)	β(t) =	1 -exp(-50 * (0.98 * t + 0.01) 2 ) 1 -exp(-50 * (1 -0.98 * t + 0.01) 2 )	if t < 1/1.96, else .

1.57e-5 1.46e-5 1.02e-5 1.01e-5 3.70e-6 3.60e-006 3.54e-6 3.50e-6 Table 3: Convergence results when using uniform triangulations and constant time steps for the first example.

Let a preset tolerance δ and a parameter 0 ≤ α ≤ 1 be given. The goal of our adaptive scheme is to generate a sequence of sub-intervals [t n-1 , t n ] and mesh triangulations T nh , n = 1, ..., N such that Ind, defined by (47), is close to the preset of tolerance δ, in the sense that

To achieve these bounds, for all n = 1, ..., N, we define two local bounds: a left one Lb n defined by (49)

and a right one Rb n defined by (50)

If, for all n = 1, ..., N, the conditions (51)

figures we may conclude that the meshes are refined in the region of a large gradient of the solution and then follow correctly the moving centers.

Algorithm 1 The adaptive algorithm

Set

Same time iteration with bigger step else if (τ n

2 ) < Lb n then Continue with criteria Triangulation is too fine