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ABSTRACT In this paper, we introduce a novel end-to-endmultimodal video captioning framework based on
cross-modal fusion of visual and textual data. The proposed approach integrates amodality-attentionmodule,
which captures the visual-textual inter-model relationships using cross-correlation. Further, we integrate
temporal attention into the features obtained from a 3D CNN to learn the contextual information in the
video using task-oriented training. In addition, we incorporate an auxiliary task that employs a contrastive
loss function to enhance the model’s generalization capability and foster a deeper understanding of the
inter-modal relationships and underlying semantics. The task involves comparing the multimodal repre-
sentation of the video-transcript with the caption representation, facilitating improved performance and
knowledge transfer within the model. Finally, a transformer architecture is used to effectively capture and
encode the interdependencies between the text and video information using attention mechanisms. During
the decoding phase, the transformer allows the model to attend to relevant elements in the encoded features,
effectively capturing long-range dependencies and ultimately generating semantically meaningful captions.
The experimental evaluation, carried out on the MSRVTT benchmark, validates the proposed methodology,
which achieves BLEU4, ROUGE, and METEOR scores of 0.4408, 0.6291 and 0.3082, respectively. When
compared to the state-of-the-art methods, the proposed approach shows superior performance, with gains in
performance ranging from 1.21% to 1.52% across the three metrics considered.

INDEX TERMS Multimodal video captioning, multimodal learning, cross correlation, transformers, con-
trastive learning.

I. INTRODUCTION
Video is a highly popular media, well-suited to capturing
dynamic events and engaging both our visual and auditory
senses. Today, thanks to the facility of acquisition and trans-
mission, video content is omnipresent on various social media
platforms. However, the vast amount of video data available
on the Internet would be of limited use without appropriate
tools that can make it possible to access/identify/retrieve it
effectively. Within this framework, one important challenge
is to describe and summarize the semantics of a given video
in natural language.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaoqing Pan .

In this paper, we notably tackle the task of video cap-
tioning, which consists of automatically generating textual
descriptions of the video content. Video captioning method-
ologies have the potential to facilitate the way we consume
and interact with videos across a wide range of applications
including accessibility, education, healthcare, and security.
The numerous benefits of video captioning have led to a
growing interest in the research community. This task is how-
ever highly challenging, as it requires jointly understanding
the visual content, dialogue and actions within the video
in order to generate grammatically correct and semantically
meaningful sentences. To improve the accuracy of the video
captioning process, multimodal learning techniques can be
used to incorporate information from multiple modalities
such as text, audio and video.
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FIGURE 1. Overview of the proposed multi-modal architecture.

Most of the time, a video captioning model includes two
main components: (1) an encoder to represent the input fea-
tures and (2) a decoder whose task consists of generating
captions, while ensuring the coherence of the sentence. Early
deep-learning-based approaches use 2D Convolutional Neu-
ral Networks (CNNs) or 3D CNNs [1] at the encoder level,
and Recurrent Neural Networks (RNNs) for the decoder [2],
[3]. With the broad success of transformer architectures [4] in
the Natural Language Processing (NLP) domain, recent years
have featured a trend toward the use of attention mechanisms
in both encoder and decoder. Most models [5], [6], [7] rely
on large datasets to learn more discriminative multimodal
features, with instructional datasets such as HowTo100M
[10] and Cooking312k [11] being advantageous due to their
aligned speech and transcripts available. Several approaches
[5], [6], [12], [13] pre-train sequence-to-sequence models on
such unlabeled data using denoising auto-encoders. In this
case, the input is purposely modified by masking random
words/frames to create artificial noise. This process enables
the model to learn robust representations by reconstructing
the original input from the corrupted version.

The human perceptual system is inherently multimodal,
being capable of integrating information from various sen-
sorial modalities, including vision, hearing, touch, taste, and
smell [15]. Replicating this sophisticated system and effi-
ciently harnessing the rich information present in videos
remains an open issue of research. The question is how
to encompass a diverse range of spatio-temporal elements,
including temporally varying visual appearances, motion
information, audio features, overlaid text and speech infor-
mation.

In this work, we propose a novel architecture for multi-
modal video captioning. Given an open-domain video and its

associated transcript, the objective is to generate ameaningful
video description, close to the human judgment and percep-
tion. The scope of the videos ranges from general content
such as arbitrary YouTube videos or specific ones such as
instructional videos with fine-grained activities.

The proposed framework is illustrated in Figure 1.
It includes a modality-attention module that uses cross-
correlation to simultaneously learn text-guided video features
and video-guided textual features. Furthermore, we intro-
duce an auxiliary task based on contrastive learning
between video-transcript and caption embeddings, which
improves the representation of inter-modal relationships
(Figure 1). The objective of the contrastive loss func-
tion is to align the visual-transcript representation with the
correct caption representation, while simultaneously dis-
tinguishing them from other captions within the batch.
The alignment ensures that the model focuses on captur-
ing relevant features by discerning meaningful multimodal
interactions from irrelevant or unrelated information. Fur-
thermore, the integration of a contrastive loss enhances
the model’s generalization capability while mitigating
overfitting.

It is important to note that the caption information is strictly
used during the training phase. It serves as a form of super-
vision to guide the model in learning grounded multimodal
representations. During inference, the model just uses the
knowledge and patterns learned during the training phase to
generate the predicted caption.

In view of the success of attention mechanisms, we lever-
age the transformer architecture for both the encoder and
decoder.

To summarize, the main contributions of the paper are the
following:
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1) A novel multimodal video captioning framework that
incorporates various attention mechanisms to learn
inter-modal and intra-modal representations.

2) A modality-attention strategy that employs cross-
correlation to reduce the gap between the visual and
textual modality

3) The use of a contrastive loss between the video-
transcript multimodal representation and the cap-
tion embedding to improve the understanding of
inter-modal relationships and underlying semantics.

4) A comprehensive experimental evaluation on the chal-
lenging MSRVTT dataset, which shows that the pro-
posed method outperforms state-of-the-art approaches,
reaching a 0.4408 BLEU4 score.

5) A fine-level investigation of the impact of each modal-
ity in the framework.

The rest of the paper is organized as follows. In Section II,
we present the state-of-the-art video captioning methods.
Two families of approaches are here identified, includ-
ing video-based techniques that rely solely on visual cues
and multimodal methods that integrate multiple modali-
ties. Section III provides a comprehensive overview of the
proposed methodology, detailing the key steps involved.
In section IV, we provide the different training strategies used
to optimize the model. Section V presents the experimen-
tal setup, dataset, and ablation studies conducted. Finally,
Section VI concludes the paper by summarizing our main
findings, and highlighting potential directions of future work.

II. RELATED WORK
Early video captioning methods [17], [18] follow rule-based
methods. The principle here consists of detecting subjects,
verbs, and objects (also known as SVO-triplets) from the
videos, which are then combined into sentence templates.

More recently, video captioning has been reformulated as a
machine translation task [19], [20], [21], leading to the devel-
opment of the encoder-decoder paradigm that is commonly
used today. Within this framework, the encoder processes
a set of video features and accumulates its hidden states.
The resulting output state is then passed to a decoder, which
generates a natural language caption based on the encoded
information. Such an approach makes it possible to model
complex video features, and thus generate captions that are
semantically more meaningful than those obtained by rule-
based methods. Moreover, the encoder-decoder paradigm can
be trained in an end-to-end fashion, allowing the simultane-
ous optimization of both encoder and decoder. This leads to
improved performance when applied to the video captioning
task. We can identify two families of approaches that exploit
the encoder-decoder paradigm: the visual-based techniques
and the multimodal methods.

A. VISUAL-BASED APPROACHES
Visual-based approaches in video captioning focus primar-
ily on extracting relevant visual information from video

frames. Such approaches leverage computer vision tech-
niques to analyze the visual content of the video and
identify important elements such as objects, scenes and
actions, together with their corresponding spatial and tem-
poral relationships. In early works, the visual encoder is
implemented as a 2D CNN applied to video frames. Thus,
Venugopalan et al. [22] propose a framework where CNN
features from each frame are averaged and provided as
input to the decoder at every time step. Zhang et al. [23]
introduce the GMNet model, incorporating a guidance mod-
ule within the encoder-decoder model for video caption
generation. GMNet facilitates word generation by consid-
ering both preceding and subsequent words in the caption.
The model utilizes a soft attention mechanism and lever-
ages InceptionV4 [24] to extract semantic features from the
video.

To capture temporal dynamics within the video, the
2D-CNN architecture has been later extended to 3D-CNN
[1]. Xu et al. [25] introduce a two-module model for video
captioning. A proposal module extracts features using 3D
convolutional layers (C3D), while a so-called segment pro-
posal network (SPN) is used for obtaining temporal segments.
The model maps the visual representation onto a common
vector space, while the syntactic representation relies on
the Part-of-Speech (POS) tagging structures of the video
description.

Hemalatha and Sekhar [28] introduce a video captioning
approach that incorporates domain-specific decoders through
the use of a domain classifier. The model utilizes ResNet152
for extracting 2D-CNN features and a 3D-CNN for extracting
temporal features. To obtain a video representation, both
the 2D-CNN and 3D-CNN features are aggregated using
VLAD [29].

For sentence generation, many existing approaches rely
on recurrent neural networks (RNNs) such as LSTM [26]
and GRU [27] to generate the caption. Yao et al. [30], Don-
ahue et al. [31] and Venugopalan et al. [32] use the LSTM
architecture for yielding variable-length video descriptions.
Guo et al. [33] further incorporate attention mechanisms
within the LSTM model to refine the captions. Similarly,
Zhang et al. [34] introduce a hierarchical decoder with
temporal or spatial attention. The model implements a
teacher-recommended learning system to leverage external
language models and incorporate linguistic information.

Overall, visual-based approaches primarily focus on lever-
aging visual cues to generate accurate and descriptive cap-
tions. They are particularly effective in scenarios where the
video content is predominantly visual and lacks significant
audio or textual cues. However, in many applications videos
contain multiple modalities such as visual, audio, and textual
information (e.g., subtitles). Such modalities contribute to the
overall meaning of the video and need to be jointly considered
to generate meaningful captions [35].
The multimodal approaches have gained popularity in the

video captioning task as they provide a more comprehensive
understanding of the video.

VOLUME 11, 2023 115479



K. Ouenniche et al.: Vision-Text Cross-Modal Fusion for Accurate Video Captioning

B. MULTIMODAL APPROACHES
Currently, various methods adopt multimodal learning in
video captioning tasks. Hessel et al. [35] use both automatic
speech recognition (ASR) and video features to perform
video captioning and claim that most of the enhancement
in performance is attributable to the use of ASR. Simi-
larly, Shi et al. [36] train their video captioning model on
both visual and ASR inputs and demonstrate the benefits of
adding textual input to the overall understanding of the video.
Inspired by such results, we also consider in our work both
visual and textual modalities.

However, multimodal video captioning also presents sev-
eral challenges. One major challenge concerns the alignment
between different modalities, as the content of the visual and
textual channels may not always be perfectly synchronized
[10], [37], [9]. Furthermore, the size and complexity of mul-
timodal datasets can raise challenges for training models that
are both accurate and efficient [38], [39]. To tackle such
issues, several works [9], [11], [13], [35] use instructional
videos [10], [37], where the synchronization between visual
content and subtitles is more favorable for video caption-
ing task. While such videos are useful for training, they
have a specific structure that may not be representative of
real-world scenarios [14]. This makes it difficult to generalize
the model on unseen data. Furthermore, real-world speech
tends to be less structured, with key actions or events in the
video not always corresponding to the same segments in the
input transcript. To address the visually misaligned narra-
tions, various approaches have employed contrastive learning
between video and transcript. For instance, MIL-NCE [9]
leverages weak and noisy training signals in instructional
videos by combining multiple instance learning with con-
trastive learning. Meanwhile, VideoCLIP [40] constructs
temporally overlapped pairs of video and text clips of varying
lengths, aiming to enhance the quality and quantity of the pre-
training dataset.

Traditionally, most existing methods have applied the
contrastive loss to the outputs of visual and text encoders,
typically before the multimodal fusion stage [41]. The pri-
mary aim of this loss is to establish alignment between the
video and transcript during the pre-training phase. In our
approach, we tackle the alignment challenge differently by
incorporating the modality attention module. This module
is specifically designed to bridge the gap between video
and text modalities before feeding them into a transformer
encoder. Utilizing cross-correlation, the modality atten-
tion module generates text-conditioned visual features and
video-conditioned textual features, facilitating more effective
alignment. Our model is extensively evaluated on a diverse
range of YouTube videos using the MSRVTT dataset. Con-
versely, the contrastive loss serves the purpose of aligning
the multimodal representation of the input with its cor-
responding caption. In contrast to previous state-of-the-art
models, we apply this loss to the output of the multimodal
transformer.

1) ARCHITECTURE
In view of the success of transformers in several domains,
recent methods use this architecture at both encoder and
decoder levels. Under this framework, the state of the
art encoder architectures can be classified into three main
families.

The share-type paradigm, illustrated in Figure 2(a),
includes Unicoder-VL [21], VL-BERT [43], UNITER [44],
VideoBERT [11], and VideoAsMT [12]. In this case, the
textual and visual modalities are fed into a single encoder that
generates a unified representation. While computationally
efficient, this approach suffers from modality entanglement
due to the vast differences among various modalities [45].
This challenge stems from the fact that several modali-
ties may interfere, particularly when there are numerous
modalities and tasks involved [46]. It is challenging for a
foundational model with a single module to find a good
balance between the advantages of modality collaboration
and the impact of modality entanglement across various
modalities.

FIGURE 2. The three main paradigms of video-text training.

The cross-type paradigm, illustrated in Figure 2(b),
includes models like ViLBERT [47] and LXMERT [48].
Within this framework, multiple separate encoders are used to
accommodate the different interactions between modalities.
In contrast to the single-stream input in the share-type, the
two-stream input allows for interactions between different
modalities at various representation depths. At the same
time, the cross-type approach can be more computationally
demanding due to the use of several cross-encoders.

Finally, the joint-type paradigm, illustrated in Figure 2(c),
is used by models such as SwinBert [7], UniVL [6], MV-GPT
[5] and GIT [8]. This paradigm utilizes a two-stream input,
similar to the cross-type architecture, allowing for effective
capture of intra-modal features. However, in contrast to the
cross-type, the joint-type architecture incorporates a single
encoder to capture inter-modal dependencies. This approach
offers a good trade-off between computational efficiency and
the capacity to capture modality-specific features and inter-
actions. For this reason, in our work, we have adopted the
joint-type encoding paradigm.

Concerning the decoder, several architectures can be con-
sidered. One common approach is to use RNNs, which
generate the caption word by word, in a sequential manner.
This method has the advantage of being able to capture
long-term dependencies between words, but can suffer from
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slow convergence and difficulty in modeling complex rela-
tionships between visual and textual components [4]. More
recently, several studies [5], [6], [7], [11] have explored
transformer-based models for video captioning, which show
promising results due to their ability to capture long-range
dependencies and relationships between different modalities.
We follow this line of work and use the attention mech-
anism to sequentially generate the caption. We use both
the encoder’s hidden states and the previously generated
words in the caption as supervisory signals for the attention
mechanism.

2) TRAINING STRATEGIES
In recent years, vision-language pre-training has gained con-
siderable popularity within the research community [45],
[53], [54], [55]. This approach involves an initial phase where
multimodal models are pre-trained on extensive datasets in
an unsupervised manner, followed by subsequent fine-tuning
for specific downstream tasks (e.g. video captioning, action
recognition, video question answering). Typically, the con-
sidered datasets comprise videos along with their associated
transcripts, a resource that is abundantly available. These
methods learn multimodal representations by formulating
proxy tasks such as masked language modeling [5], [6],
or vision-language matching [45], [53].
The paradigm of pre-training followed by fine-tuning for

multimodal models is undeniably effective and has yielded
remarkable results across various applications [41], [56].
However, it is essential to acknowledge that this approach
comes with substantial resource requirements, primarily in
terms of hardware, rendering it unfeasible for small-scale
setups. This is particularly the case when considering mul-
timodal models with billions of parameters, such as the
GIT model [8], which has over 5 billion parameters and
is pre-trained on 10.5 billion samples. Additional statistics
for similar models can be found in Section V-D, TABLE 3.
The resource-intensive demands penalize the adoption and
deployment of such approaches in the case of applications
where the computational ressources are limited/constrained,
most often for economical reasons.

Within this context, let us note that pre-training undoubt-
edly enhances the model’s performances. Thus, compar-
ing pre-trained models with models learnt from scratch
is not entirely equitable. In our case, due to hardware
constraints, we opt for an alternative strategy by forgo-
ing pre-training altogether. Despite this, we demonstrate
that competitive results can still be achieved. The pro-
posed approach leverages the available resources efficiently,
focusing on task-specific training without the need for
massive pre-training datasets or extensive computational
power. This resource-aware approach not only makes mul-
timodal modeling accessible to a wider range of users
and applications but also highlights the potential for effec-
tive multimodal model development in resource-constrained
environments.

III. MODEL ARCHITECTURE
Figure 1 illustrates the synoptic scheme of the proposed
approach, which comprises three fundamental elements:
(1) the modality attention module, (2) the joint encoder and
(3) the decoder. As a preprocessing step, we start by extract-
ing the visual and textual embeddings.

A. FEATURE EXTRACTION
The feature extraction process concerns the two components
involved, which are the visual and textual (with both tran-
script and caption) data.

In order to acquire the visual representations, we utilize a
uniform sampling approach to divide the video into N fixed-
length, non-overlapping clips of 16 frames each. The clips
are then processed with the help of the S3D network [1],
which is designed to learn robust video representations. Prior
to use, the S3D model has been pre-trained on HowTo100M
[10] with the MIL-NCE technique [9]. This technique is
widely adopted in multimodal learning [6], [40], [57] for its
robust handling of diverse and noisy data sources. The feature
activations before the final fully connected layer are extracted
and we apply average pooling to generate a dv = 1024-
dimensional vector (the v subscript stands here for visual).
Subsequently, a feed forward network that includes a linear
projection, followed by the GeLU [49] activation function
and layer normalization, is used to yield the final feature
vector (of the same size dv). The resulting visual features
are represented as a N × dv matrix, denoted by V . Let us
underline that the S3D model is used only as a backbone for
feature extraction and its weights are frozen.

A video transformer is further employed to effectively cap-
ture the dependencies between frames in video clips and learn
the inherent temporal dynamics of video objects, actions, and
scenes. This approach enables us to learn grounded visual
features that are specifically optimized for the task of video
captioning, without being restricted to pre-extracted features
from external models. In addition, using a pre-extracted
feature-based model with a transformer architecture can sig-
nificantly reduce the computational cost of training, as the
S3D model can be pre-trained on large-scale video datasets
and the transformer can be fine-tuned on a smaller dataset
dedicated to video captioning.

To take into account the dynamic dependencies between
clips, we employ temporal attention on the feature vector
V . Our approach is motivated by the observation that video
data often contains redundant information, and only a limited
number of clips contain discriminative information that is
relevant to the video captioning task. For this reason, a multi-
head temporal attention mechanism is applied on the visual
descriptor V . For each attention head h ∈ {1, . . . ,H v} (where
H v denotes the number of visual attention heads), we first
compute the associated QueryVh ,KeyVh and ValueVh compo-
nents defined as:

Queryvh = VW v
query,h; Keyvh = VW v

key,h (1)

Valuevh = VW v
value,h (2)
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whereW v
query,h,W

v
key,h andW

v
value,h are three learnable matri-

ces of size
(
dv ×

dv
Hv

)
.

The visual temporal attention for a given attention head is
computed as:

Attentionvh = softmax(
Queryvh(Key

v
h)
T

√
dv/Hv

)Valuevh (3)

where superscript T denotes the matrix transpose operator.
The attention heads are then concatenated under the form

of a (N × dv) matrix, denoted by Attentionv and globally
gathering the visual representation. An additional projection
is considered in order to obtain the final visual representation,
denoted by Fv and defined as:

Fv = AttentionvW v
convert (4)

where W v
convert is a learnable matrix of size (dv × d). This

final operation performs the dimensionality conversion of the
visual feature to a common dimension d that will also be used
for the textual representation.

Concerning the textual data, we consider the audio tran-
script (if the audio channel includes speech) as well as the
video captions.

To obtain the audio transcript from the input video, we uti-
lize the Whisper model [50], which is an ASR algorithm
that exhibits human-level robustness in English speech
recognition, even in the presence of background noise and
reverberation.

Whatever the source (audio transcript or caption), the tex-
tual data undergo a tokenization process using WordPieces
[51], which segments the text into sub-words using a vocabu-
lary of Svoc = 30,000 tokens. The tokenized sequences are fed
into the BERT-based uncased model [52], following previ-
ous state-of-the-art methods [56], to perform the embedding.
As recommended in [49], the first token in the input sequence
is represented as a dedicated [CLS] token, and the final one
is represented by a so-called [SEP] token. To achieve equal
length for all the tokenized text sequences, we expand the
sentence using padding, with the help of a dedicated [PAD]
token. Let us denote by M the length of the padded tok-
enized sequences, which correspond to the maximal number
of tokens that are allowed to appear in a given sentence. Let
us also mention that a random masking of the tokens can also
be considered. In this case, the input token is replaced by a
dedicated token, denoted by [MASK].

The BERT approach also employs a self-attention mecha-
nism, yielding in output a (M × dBERT ) feature matrix, with
dBERT = 768, corresponding to the activations of the last
BERT layer.

The text embedding approach is applied to both transcript
and caption data. Similarly to the visual component, the
transcript feature matrix is finally converted into a (M × d)
matrix denoted by F t , with d being the common dimension
considered also for the visual representation. The caption
feature matrix, denoted by Fc, does not require projection
onto a space of common dimension (see its utilization in
section IV) and thus remains of size (M × dBERT ).

Let us finally note that the BERT encoder is fine-tuned
separately for the transcript and the caption data.

B. MODALITY ATTENTION MODULE
Modeling visual and textual dynamics within and across
modalities is a highly intricate task. To overcome such a
challenge, we have developed a modality-attention module
(Figure 3) that effectively captures both intra and inter-modal
relationships between the visual and audio transcript modal-
ities. It is designed to bridge the gap between features Fv

and F t , which are generated from separate models trained on
different tasks.

FIGURE 3. The modality attention module.

As we use real-life videos as input, in a majority of
cases the feature vectors are not well-aligned. Figure 4 illus-
trates some video examples with their respective transcripts.
We observe that people tend to speak in a disorganized
manner, and the key actions or events in the video do not
necessarily correspond to the same segment of the input text.

The objective is to create an embedding space that makes
semantically related visual-textual pairs of features appear
closer together than unrelated pairs. This will enhance the
alignment between Fv and F t , and enable better modeling
of the interactions between visual and audio transcript data.
To this purpose, we consider the cross-correlation matrix Zt,v,
defined as:

Zt,v = F tWt,vFv
T

(5)

where Wt,v is a (d × d) learnable matrix and T denotes the
transpose operator.

A high coefficient in the correlation matrix Zt,v indicates
a strong relationship between the corresponding visual and
textual features. To create cross-correlation visual-transcript
(resp. transcript-visual) weights, we apply the column-wise
softmax operator over Zt,v (resp. ZTt,v), as described in the
equations (6) and (7):

F t−v = F tsoftmax(Zt,v) (6)

Fv−t = Fvsoftmax(ZTt,v) (7)

This approach enables us to develop more distinctive and
mutually constrained modality representations.

To avoid information loss during the cross-correlation
phase, we have considered a dense skip connection technique.
This means that we add the reweighted features F t−v and
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FIGURE 4. Video samples from the MSRVTT dataset for which the transcript and video data are not well-aligned.

Fv−t to the original representation of each modality, and
regularize the result with the help of a tanh function:

F̂ t−v = tanh(F t−v + F t ) (8)

F̂v−t = tanh(Fv−t + Fv) (9)

The modality attention module addresses the alignment
issue between modalities. In (5), the cross-correlation matrix
encodes the relationships between video and text features
learned by the model through the trainable parameter Wt,v.
Applying softmax to the matrix Zt,v enhances the discrim-
inative power of the features. The model assigns higher
weights to visual features when they exhibit strong corre-
lations with textual features, and vice versa. This process
potentially improves alignment between modalities. Specif-
ically, it makes it possible to capture and emphasize the most
salient correspondences between textual and visual elements.
The resulting outcome, seen in (6) and (7), is used to reweight
the input features based on their correlation with the other
modality. Finally, the skip connection technique in (8) and (9)
enforces the preservation of modality-specific information
while adding non-linearity to the model.

The obtained features are further exploited in the joint
transformer encoder, as described in the following section.

C. TRANSFORMER ENCODER
In order to make the video and text fully interact, we design a
transformer-based encoder. The transcript and visual features
are first concatenated into a single global descriptor F =

[F̂ t−v | F̂v−t ], which is a matrix of size (M + N ) × d .
The transformer architecture does not include any recurrent
connections, which means that the order of the input tokens
(or of video clips for the visual component) is lost during the
process. To overcome this limitation, a position embedding
technique is integrated. It consists of a trainable look-up table,
where the embedding of each position in the input sequence

is learned during training. To this purpose, we have followed
the approach suggested in [52], described in the following
equation:

Epos = Wpos(pos0, . . . , posM+N ) (10)

where Wpos of size (M + N ) × d is a lookup table, mapping
the position index of each token posi onto its corresponding
vector representation.

In addition, a modality embedding is integrated, in order to
differentiate between the visual and textual modalities:

Emod = Wmod (0, . . . , 0︸ ︷︷ ︸
M

, 1, . . . , 1︸ ︷︷ ︸
N

) (11)

where Wmod of size 2 × d is a lookup table, mapping
the type of each modality (text: 0; video: 1) onto a vector
representation.

The input to the encoder is defined as the sum of all these
three features:

F0 = F + Epos + Emod (12)

Our encoder comprises a number of Lenc self-attention
layers. Each layer l consists of Multi-head Self-Attention
(MSA), layer normalization (LN) and Feed Forward Network
(FFN). The considered layers, for l ∈ {0, 1, . . . ,Lenc − 1},
are recursively computed as illustrated in Figure 5 and as
described formally in the following equations:

F ′
l = MSA (LN (Fl−1)) + Fl−1 (13)

Fl = FFN
(
LN

(
F ′
l
))

+ F ′
l (14)

The FFN consists of two linear projections separated by a
GELU non-linearity [49].
To enhance the model performance, we employ a

multi-head attention mechanism, which splits the input
into H enc heads, allowing the model to attend to diverse
parts of the input simultaneously. For each attention head
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FIGURE 5. Overview of the encoder architecture. (left) Encoder block. (right) multi-head self-attention mechanism.

h ∈ {1, . . . ,H enc}, we compute the attention sub-layers of
the encoder as follows:

Attench,l
(
Qench,l ,K

enc
h,l ,V enc

h,l
)

= softmax(
Qench,l K

enc
h,l

T

√
d/H enc

)V enc
h,l (15)

Here, the queries Qench,l = LN (Fl)W enc
query,h,l , keys K

enc
h,l =

LN (Fl)W enc
key,h,l , and values V enc

h,l = LN (Fl)W enc
value,h,l repre-

sent linear projections of the multimodal inputFl and d/H enc

is a scaling factor used to address the vanishing gradient issue.
Finally, the MSA is computed in (16) as follows:

MSA(LN (Fl)) = Concat(Attenc1,l , . . . ,Att
enc
Henc,l)W

enc
l (16)

whereW enc
l represents the learnable linear projection matrix.

The outputs of the various heads are concatenated and
passed through a linear layer to obtain the final outputFenc

=

Fenc
Lenc−1 of size (M + N ) × d .

D. TRANSFORMER DECODER
The objective of the decoder is to generate a caption C =

C(xv, xt ) given the input video xv and transcript xt by max-
imizing the conditional probability p(C|xv, xt ). The caption
C is represented as an ordered sequence of tokens C =(
c1, c2, . . . , cLC

)
. The joint probability can be recursively

decomposed as follows:

p (C | xv, xt)

= p (c1 | xv, xt) × p (c2 | c1, xv, xt) × · · ·

× p
(
cLC | cLC−1, . . . , c1, xv, xt

)
(17)

During training, the decoder generates one token at a time,
conditionally to the previously generated tokens. However,
by adopting such an approach, the errors can propagate and
accumulate over time. In order to overcome this difficulty,

we use the teacher-forcing technique [53], where the ground
truth caption is forced to be provided until a certain token,
selected in a random manner. Solely beyond this token, the
model is allowed to generate its own ones. This technique
stabilizes the training and limits the propagation of errors
notably made in the early stages of the decoding process.
Formally, let yC,n

=
(
tC,1, . . . , tC,n

)
denote the sequence

of decoded tokens up to token n. This sequence is iteratively
providing new inputs YC,n to the decoder, as described in the
following equation:

∀n ∈ {1, 2, . . . ,LC } ,

YC,n
= dp(LN (emb(pad(yC,n)) + ECpos) (18)

where dp is the droput layer, LN is the layer normalization,
pad is the padding operator necessary to complete the yC,n

sequence up to length LC , emb is the embedding layer and
ECpos is the positional embedding of the caption.

The transformer decoder consists in Ldec identical
layers. Each layer l includes of a Masked-Multi-head Atten-
tion (MMA), layer normalization (LN), Multi-head Cross-
Attention (MCA) and a Feed Forward Network.

The first layer is initialized as:

Y c0 =

(
Y c,1, . . . ,Y c,LC

)
(19)

The subsequent layers, for l ∈ {1, . . . ,Ldec−1}, are recur-
sively computed as illustrated in Figure 5 and as described
formally in the following equations:

Y′
l
c
= MMA

(
LN

(
Yc
l−1

))
+ Yc

l−1 (20)

Y′′
l
c
= MCA

(
LN

(
Y′
l
c)

,LN (Fenc)
)
+ Y′

l
c (21)

Yc
l = FFN

(
LN

(
Y′′
l
c))

+ Y′′
l
c (22)
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TheMaskedMulti-head Attention mechanism represents a
modification of the self-attention mechanism, consisting in a
masking procedure whose goal is to prevent the decoder from
attending future positions during training. This ensures the
autoregressive property of the decoder, which is forced to get
access solely to the tokens that precede the current position.
The masking is achieved by setting the attention scores of
future positions to a very large negative value. This ensures
that the softmax operation applied to the attention scores
assigns a probability close to zero to the future positions, thus
effectively blocking their influence on the current position’s
representation. Formally, for each masked attention head h ∈{
1, . . . ,Hdec

}
and for each layer l, we compute the masked

attention (MAtt) as:

MAttdech,l

(
QMMAh,l ,KMMA

h,l ,VMMA
h,l

)
= softmax(

QMMAh,l KMMA
h,l

T

√
d/Hdec

+ 3)VMMA
h,l (23)

where the queries QMMAh,l = LN (Yc
l )W

MMA
query,h,l , the keys

KMMA
h,l = LN(Yc

l )W
MMA
key,h,l , and the values VMMA

h,l =

LN (Y cl )W
MMA
value,h,l represent linear projections of the decoder

input Y cl . Here,3 is the masking matrix of size LC × LC . It is
constructed such that the upper triangular portion (including
the main diagonal) is filled with negative infinity values, and
the lower triangular portion is filled with zeros.

We employ multi-head masked attention, and we concate-
nate the outputs of different heads as follows:

MMA(LN (Yc
l )) = Concat(MAttdec1,l , . . . ,MAtt

dec
Hdec,l)W

MMA
l

(24)

where WMMA
l represents the learnable linear projection

matrix.
Let us underline that during inference, the masked multi-

head-attention is similar to the self-attention as the model
does not have access to future positions.

The second attention sub-layer is a Multi-Head Cross
Attention (MCA), illustrated in Figure 7 and computed as
follows:

QMCAh,l = LN (Y′
l
c)WMCA

query,h,l; (25)

KMCA
h,l = LN (Fenc)WMCA

key,h,l (26)

VMCA
h,l = LN (Fenc)WMCA

value,h,l (27)

where WMCA
query,h,l,W

MCA
key,h,l,W

MCA
value,h,l of size d × d/Hdec are

learnable matrices. The cross attention CAttdech,l is computed
as follows:

CAttdech,l

(
QMCAh,l ,KMCA

h,l ,VMCA
h,l

)
= softmax(

QMCAh,l KMCA
h,l

T

√
d/Hdec

)VMCA
h,l (28)

The outputs of the different cross attention heads are then
concatenated and projected using a learnable matrix WMCA

l

FIGURE 6. Overview of the decoder architecture.

FIGURE 7. Multi-head cross attention process.

as follows:

MCA(LN
(
Y′
l
c)

,LN (Fenc))

= Concat(CAttdec1,l , . . . ,CAtt
dec
Hdec,l)W

MCA
l (29)

The output of the final layer Y cLdec is used to determine the
decoded token n as follows:

tC,n
= argmax(softmax(Y cLdecW

dec) (30)

using the learnable matrixW dec and use the softmax function
to compute the probability of the token.

During inference, the model does not have access to the
ground truth. Using the predicted output from the previous
time step can lead to a compounding error problem, where
even small errors in the prediction can accumulate and result
in poor performance. Therefore, we use the beam search
decoding strategy to mitigate this problem. It is a heuristic
algorithm that generates output sequences by keeping only
theK most probable candidates at each step. Formally, at each
time step n the decoder computes the probability distribu-
tion over the entire vocabulary for the next token as p(cn |

cn−1, . . . , c1, xv, xt ). Then we select the K candidates with
the highest probabilities. For each candidate, the process is
continued until an end token is generated or the maximum
length is reached. Among all the generated candidates, the
caption with the highest global probability is selected as
output.
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IV. TRAINING OBJECTIVES
Three training objectives are considered to optimize the
model: (1) masked language modeling, (2) contrastive learn-
ing and (3) caption generation.

A. MASKED LANGUAGE MODELING
Similarly to BERT, we also randomly replace 15% of the
tokens in the sentence with the special token [MASK] and
then generate the masked tokens given the known tokens
and video input. The Masked Language Modeling (MLM)
loss function is defined as the cross-entropy loss between the
predicted probability distribution over the vocabulary and the
true distribution for each masked token as seen in (31):

LMLM = −

Smask∑
i=1

Svoc∑
j=1

yij log(pij) (31)

Here, Smask is the number of masked tokens, Svoc is the size of
the vocabulary, yij is the true probability of the j-th token for
the i-th masked position and pij is the predicted probability
of the j-th token for the i-th masked position.

B. CONTRASTIVE LEARNING
Our goal is to create a system that can match a video xv
and transcript xt to their correct caption C by calculating
the dot product of their embeddings. We want to assign
to incorrect captions a large distance, meaning that the dot
product between their corresponding embeddings should be
small.

Formally, we start by extracting the multimodal represen-
tation of the video, with visual and transcript components.
As suggested in [52], we consider as a global representation
of the multimodal input the embedding Fenc

[CLS] of the [CLS]
token, which appears on the first position of the featurematrix
Fenc

= {Fenc
1 = Fenc

[CLS],F
enc
2 , . . . ,Fenc

M+N }. The global
video-transcript representation is then computed as:

Fglobal = dp(F[CLS]Wglobal + bglobal) (32)

where Wglobal of size d × d and bglobal of size d are learned
during training. We denote by f (xv, xt) the function that
associates a pair of video xv and transcript xt to their global
representation Fglobal.

Similarly, we extract the global representation of the cap-
tion embedding FCCLS (cf. Section A) and project it as follows:

Fcglobal = dp
(
FCCLSW

c
global + bcglobal

)
(33)

where matrix W c
global of size dBERT × d and vector bcglobal of

size d are learned during training. Let us denote by g(C) the
function that associates the caption C to its global represen-
tation Fcglobal.

The contrastive loss is then computed as:

LCont = max
f ,g

∑batchsize

i=1
log

×

 ef
(
xvi,,xti

)T
.g(ci)

ef
(
xvi ,xti

)T g(ci)+∑(
xvj ,xcj ,cj

)
∈Ni

ef (vj,tj)
T
.g(cj)


(34)

Here, given a positive triplet of index i in the batch
(
xvi , xti , ci

)
of (video, transcript, caption), we construct the negative set
Ni of negative triplet by concatenating incorrect captions
cj within the training batch to the (video, transcript) pair(
xvi , xti

)
as

(
xvi , xti , cj

)
with cj ̸= ci.

C. CAPTION GENERATION
The decoder loss measures the difference between the pre-
dicted and the ground truth captions using cross-entropy as
follows:

Ldecoder = −

∑LC

n=1
logP

(
cn | c1, . . . , cn−1, x t , xv

)
(35)

The final loss function considered for our model is simply
defined as the sum of all these three components:

Lmodel = LMLM + LCont + Ldecoder (36)

V. EXPERIMENTS AND RESULTS
The experimental evaluation has been carried out on the
publicly available MSRVTT dataset [16], described in the
following section.

A. DATASET
The MSRVTT (Microsoft Research Video to Text) dataset
is widely used for benchmarking video captioning methods.
It spans over 20 domains, including sports, news, education,
and how-to videos. The dataset comprises 10,000 video clips,
with an average length of 20 seconds, and 200,000 natu-
ral language descriptions, which have been collected from
crowd-workers, ensuring diverse and human-like language
expressions. The videos have been crawled from YouTube,
contributed by internet users, and thus correspond to real-life
situations.

The MSRVTT dataset raises several challenges, such as
recognizing objects, actions, and scenes, as well as under-
standing the context and generating semantically meaningful
captions. Additionally, it is worth noting that the MSRVTT
dataset comprises videos with both visual and audio modal-
ities, which adds an extra level of complexity to the task of
generating captions. Nevertheless, around 20% of the videos
in the dataset have no audio channel, while others have non-
English audio, making the task even more challenging with
sparse modalities.

In order to study the effect of each modality on the per-
formance of the model, we have manually annotated two
distinct subsets. The first subset, labeled as ‘‘vision and text’’
(534 samples), encompasses videos where both the visual
features and transcript information contribute to the video
captioning task. For example in Figure 8(a), the transcript
helps identify specific ingredients such as oil type, difficult to
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FIGURE 8. (a) Sample requiring both transcript and visual modalities for
caption generation. (b) Sample requiring visual cues only.

infer solely from visual modality. The second subset, called
‘‘vision only’’ (663 samples), comprises videos where the
task can be accomplished solely through visual cues. Some
of these videos include silent or non-English speaking videos,
where the transcript modality cannot be provided. Similarly,
videos featuring sports or other activities that emphasize
visual actions can be categorized in this subset. An example
is illustrated in Figure 8(b), where the transcript represents
the lyrics of music in the video and is not correlated with
the caption. We study the performance of our model on these
two subsets to better understand the role of the transcript
information in video captioning.

B. IMPLEMENTATION DETAILS
In the pre-processing stage, the videos are divided into N =

48 uniformly sampled clips. The clips are then processed with
the help of the S3D model. Next, the transformer encoder is
applied, with 6 layers to capture the sequential information
in the 3D feature. Each block consists of Hv = 12 attention
heads and a hidden size of dv = 1024.
Regarding the transcript, we utilize the Whisper ASR

model to extract the speech from the video. Our initial find-
ings indicate that the quality of the ASR model has a notable
influence on the overall performance. We apply the Whisper
model on the entire video rather than on individual clips,
as people commonly mention key objects or actions before
or after they are shown in the video (Figure 4). We set the
maximum number of tokens in a given phrase toM = 48.
The model includes a 2-layer transformer encoder and a

3-layer transformer decoder, both consisting of 12 attention
heads and a hidden size of d = 768. To accelerate the train-
ing process, we initialize the encoder and decoder weights
with the pre-trained weights proposed by the model in [6].
The training process is conducted using 2 NVIDIA GeForce
RTX 2080 GPUs over a period of 20 epochs, taking 4 days
to complete. We use a linear learning rate schedule with a
warm-up strategy, employing an initial learning rate of 1e-5.
To overcome the limited GPU memory, we use the gradient
accumulation technique [45] with 16 steps in conjunction

with a batch size of 256. This technique effectively increases
the batch size and allows us to update the model’s parameters
with fewer samples, without sacrificing the accuracy of the
gradient estimation. The final model is selected according to
the best performance obtained on the validation set.

C. ABLATION STUDY
Wehave conducted an ablation study in order to determine the
significance of each component within the framework. The
study compares several combinations to evaluate their relative
performances.

The following methods are considered for evaluation:

1) text only, which used only text as input, trained with
the transformer encoder and decoder.

2) video only, which used only video as input, also trained
with the transformer encoder and decoder.

3) video-text, which used both video and text as input but
did not employ the modality-attention module.

4) MAM, which adds the modality attention module
(MAM) to the former.

5) MAM + init, which uses the initialization of the
encoder and decoder weights from the model in [6].

6) MAM + Cont, which is trained with all objectives
from scratch on MSRVTT, including the contrastive
loss with the caption as input.

7) MAM + Cont + init, which initializes the encoder
and decoder weights using those of [6] and includes
both modality-attention and contrastive loss objective
techniques. We denote this complete architecture by
CapVT.

The following evaluation metrics are retained to evaluate
the performance of themodels: BLEU (1)-(4) [59],METEOR
[60] and ROUGE [61]. BLEU evaluates the quality of gen-
erated text based on the n-gram (1 to 4) overlap with the
reference text. ROUGE measures the overlap of n-grams and
word sequences between the generated and reference cap-
tions. METEOR considers both n-gram overlap and semantic
similarity between the generated and reference text. All
scores range between 0 and 1, with higher values indicating
better performances.

The results obtained, summarized in TABLE 1, demon-
strate that the complete CapVT model (MAM + Cont + init)
outperforms other models with a BLEU4 score of 0.4408,
indicating the importance of our training choices.

Pre-training the model on external large datasets can be
beneficial, but this process is often computationally expen-
sive and requires significant hardware resources. To address
this issue, we have used transfer-learning techniques to ini-
tialize the weights of our transformer encoder and decoder,
which allowed us to leverage the knowledge learned from a
larger dataset while reducing the computational load. This is
observed with an improvement in performance of 1.2% and
2.17% for BLEU4 when comparing MAM to MAM + Init
and MAM + Cont to CapVT, respectively. The study also
highlights the importance of the contrastive loss objective
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TABLE 1. Ablation study.

in improving the caption quality, as removing it leads to a
significant drop in performance (2.19% in terms of BLEU4).
Additionally, incorporating textual information is crucial for
generating accurate captions, as evidenced by the lower score
achieved when only the videomodality is considered. Finally,
the results indicate that the visual modality is more informa-
tive than the textual one as we achieve better results when
feeding only the visual modality as compared to feeding only
the textual modality.

As part of our study, we have also investigated how the
quality of the generated captions is affected by different
input modalities. For this purpose, we selected the first three
baselines: text-only model, video-only model and video-
text model. We have deliberately excluded the other models
that employ additional strategies such as modality attention
or contrastive loss. Our primary objective here is to solely
examine the impact of the input modality on the model’s
performance.

We have assessed the performance of each baseline on
videos that require only the visual modality to generate cap-
tions and those that require both visual and textual modalities.
However, it was not feasible to label videos that require
only textual modality in the MSRVTT dataset as certain
information, such as key objects/persons can only be per-
ceived through visual cues and not through text. We have
randomly selected 1179 test samples and manually labeled
them as either ‘‘vision-only’’ (663 samples) or ‘‘vision and
text’’ (534 samples) to evaluate the performance of each
baseline model on these different types of videos. TABLE 2
shows the performance comparison in terms of BLEU4 of
the three models trained with different input modalities. The
evaluation has been performed on the two subsets of samples
that require either only visual modality or both visual and
textualmodalities to generate captions. The following conclu-
sions can be drawn: (1) The effectiveness of video captioning
models is heavily influenced by the input modalities. The
different performances obtained on the two subsets under-
score the significance of the dataset’s modality composition.
(2) The text-only model struggles to generate captions from
visual content alone with a low score of 0.1671. (3) The
video-only model performs well in a vision-only context,
and may benefit from leveraging textual cues when available.

TABLE 2. Performance comparison (BLEU4) across models using different
input modalities on two subsets.

Thus, adding the textual modality as input improves the
performance with 11% on the vision-text subset. (4) The
video-text model consistently outperforms themodels relying
on a single modality on the two subsets. This observation
underscores the significance of multimodal approaches in
video captioning. The ability to seamlessly integrate visual
and textual information results in enhanced caption quality,
making the model versatile and well-suited for real-world
applications where both modalities are accessible.

D. COMPARISON WITH STATE OF THE ART
To facilitate a meaningful comparison between our work and
previous state-of-the-art models in the context of video cap-
tioning, we have examined key statistics pertaining to these
models. Specifically, we have compiled comprehensive data
encompassing model size (number of parameters), the scale
of pre-training samples, hardware infrastructure employed
(GPU/TPU), and the training duration. The detailed findings
of this analysis are presented in TABLE 3, drawing from
information extracted from the respective authors’ publica-
tions and the survey introduced in [41].

For a fair comparison, we have retained models that are
comparable to ours, including OA-BTG [21], VideoAsMT
[12], SwinBert [7], and OpenBook [3]. Additionally, we have
retained the UniVL model [6], as we leveraged its weights
to initialize the encoder and decoder parameters in our own
approach. This approach aims to deliver a comprehensive and
equitable evaluation of ourmethod in relation to its peers, thus
establishing a clear understanding of its performance within
a defined resource context.
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FIGURE 9. Qualitative results obtained on videos from the MSRVTT dataset.

TABLE 4 presents the comparison of CapVT with
the retained methods on the MSRVTT dataset. CapVT
outperforms previous methods by a significant margin of

1.28%, 1.52%, and 1.21% in terms of BLEU4, METEOR,
and ROUGE, respectively. Notably, even our model with-
out encoder-decoder initialization (MAM + Cont) achieves
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TABLE 3. Statistics of video captioning models. PT stands for pre-training.
x stands for unknown.

comparable results, highlighting the effectiveness of modal-
ity fusion using modality attention and the importance of
caption information in guiding the training. We anticipate
that further improvements can be achieved by integrating a
vision-language, end-to-end pre-training phase on the whole
model. The results obtained demonstrate the pertinence of
the CapVT model and its potential for achieving superior
performance in video captioning tasks.

E. QUALITATIVE RESULTS
Some examples of results obtained on the MSRVTT corpus
are illustrated in Figure 9. The results indicate that the qual-
ity of the predicted captions is affected by various factors,
including the availability of audio and visual information, the
complexity of the content and the accuracy of the ASR.When
the transcripts are pertinent (with salient words represented in
purple in Figure 9), combining textual and visual modalities
leads to precise captioning. In contrast, in the absence of the
audio or more generally when the transcript channel is not
consistent with the content (transcripts represented in red in
Figure 9), the predictions rely only on visual cues and are less

TABLE 4. Comparison with state of the art.

informative. In some cases, the model lacks access to external
knowledge, as illustrated in example 3, where specific infor-
mation like the car brand remains elusive from both visual and
textual cues. To address this limitation, future research axes
could explore the integration of external knowledge sources,
such as databases or ontologies, offering a promising prospect
for enhancing the model’s contextual understanding.

Another limitation arises from our offline transcript extrac-
tion, illustrated in case 9, where the model lacks awareness
that the transcript represents music lyrics. This highlights
a challenge where textual data can inadvertently introduce
noise into the model’s predictions. To mitigate this, integrat-
ing audio features emerges as a valuable strategy, not only for
recognizing music lyrics but also for scenarios necessitating
the recognition of environmental sounds or the capture of
emotional context in videos.

In general, the accuracy of the predicted captions is largely
influenced by the type and quality of the input data. In all
cases, incorporating multimodal approaches can enhance the
precision of the predictions.

VI. CONCLUSION
In this work, we have introduced CapVT, a novel architecture
that efficiently exploits and combines rich information from
both visual and transcript modalities for multimodal video
captioning. The proposed modality-attention module and
contrastive learning technique make it possible to enhance
the representation of inter-modal relationships, leading to a
new state-of-the-art performance on the MSRVTT dataset
with respect to various evaluation metrics. The proposed
model achieves a BLEU4 score of 0.4408, a METEOR score
of 0.3082, and a ROUGE score of 0.6291 representing an
improvement of 1.28%, 1.52%, and 1.21% respectively with
respect to the state of the art. Our comprehensive study of
each training strategy demonstrates the effectiveness of the
CapVT model and its potential for achieving superior per-
formances for the video captioning task. Furthermore, the
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study of the effect of the input modalities involved highlights
the effectiveness of our training strategies in improving the
model’s ability to generate accurate captions that rely on both
text and visual information.

We have also shown that the gain in performance strongly
depends on the nature of the data in different categories. This
indicates a need for further research to develop more effective
training methods that can take into account in a fine-grained
manner the data characteristics of various categories. Future
work could explore pre-training on larger datasets to further
improve the performance of our approach. Large-scale pre-
training allows the model to learn and capture the intricate
correlations and interactions between different modalities.
It facilitates the comprehension of complex multimodal pat-
terns that may not be discernible in smaller, more constrained
datasets. Another potential avenue can be the exploration of
knowledge-augmented models. External knowledge sources
can enhance the contextual understanding of video content,
improve caption accuracy, and ensure domain relevance.
They offer potential solutions to handle ambiguous or limited
sensory cues, adapt to evolving content, and reduce biases.
While knowledge-enhanced NLP models are widely studied,
the exploration of knowledge-enhanced vision and multi-
modal models is a relatively uncharted territory, presenting
an exciting opportunity for further research.

REFERENCES
[1] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new

model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 6299–6308.

[2] A. Rohrbach, A. Torabi, M. Rohrbach, N. Tandon, C. Pal, H. Larochelle,
A. Courville, and B. Schiele, ‘‘Movie description,’’ Int. J. Comput. Vis.,
vol. 123, no. 1, pp. 94–120, 2017.

[3] Z. Zhang, Z. Qi, C. Yuan, Y. Shan, B. Li, Y. Deng, and W. Hu, ‘‘Open-
book video captioning with retrieve-copy-generate network,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 9837–9846.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017,
arXiv:1706.03762.

[5] P. H. Seo, A. Nagrani, A. Arnab, and C. Schmid, ‘‘End-to-end generative
pretraining for multimodal video captioning,’’ 2022, arXiv:2201.08264.

[6] H. Luo, L. Ji, B. Shi, H. Huang, N. Duan, T. Li, J. Li, T. Bharti, and
M. Zhou, ‘‘UniVL: A unified video and language pre-training model for
multimodal understanding and generation,’’ 2020, arXiv:2002.06353.

[7] K. Lin, L. Li, C.-C. Lin, F. Ahmed, Z. Gan, Z. Liu, Y. Lu, and L. Wang,
‘‘SwinBERT: End-to-end transformers with sparse attention for video
captioning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 17949–17958.

[8] J.Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu, C. Liu, and L.Wang,
‘‘GIT: A generative image-to-text transformer for vision and language,’’
2022, arXiv:2205.14100.

[9] A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisserman,
‘‘End-to-end learning of visual representations from uncurated instruc-
tional videos,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020.

[10] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and J. Sivic,
‘‘HowTo100M: Learning a text-video embedding by watching hundred
million narrated video clips,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 2630–2640.

[11] C. Sun, A. Myers, C. Vondrick, K. Murphy, and C. Schmid, ‘‘VideoBERT:
A joint model for video and language representation learning,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 7464–7473.

[12] B. Korbar, F. Petroni, R. Girdhar, and L. Torresani, ‘‘Video understanding
as machine translation,’’ 2020, arXiv:2006.07203.

[13] G. Huang, B. Pang, Z. Zhu, C. Rivera, and R. Soricut, ‘‘Multimodal
pretraining for dense video captioning,’’ 2020, arXiv:2011.11760.

[14] R. Zellers, X. Lu, J. Hessel, Y. Yu, J. S. Park, J. Cao, A. Farhadi, and
Y. Choi, ‘‘MERLOT: Multimodal neural script knowledge models,’’ 2021,
arXiv:2106.02636.

[15] H. Mcgurk and J. Macdonald, ‘‘Hearing lips and seeing voices,’’ Nature,
vol. 264, no. 5588, pp. 746–748, Dec. 1976.

[16] J. Xu, T. Mei, T. Yao, and Y. Rui, ‘‘MSR-VTT: A large video description
dataset for bridging video and language,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5288–5296.

[17] P. Das, C. Xu, R. F. Doell, and J. J. Corso, ‘‘A thousand frames in just a few
words: Lingual description of videos through latent topics and sparse object
stitching,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2634–2641.

[18] A. Barbu, A. Bridge, Z. Burchill, D. Coroian, S. Dickinson, S. Fidler,
A. Michaux, S. Mussman, S. Narayanaswamy, D. Salvi, L. Schmidt,
J. Shangguan, J. M. Siskind, J. Waggoner, S. Wang, J. Wei, Y. Yin, and
Z. Zhang, ‘‘Video in sentences out,’’ 2014, arXiv:1204.2742.

[19] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[20] M. Rohrbach, W. Qiu, I. Titov, S. Thater, M. Pinkal, and B. Schiele,
‘‘Translating video content to natural language descriptions,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 433–440.

[21] J. Zhang and Y. Peng, ‘‘Object-aware aggregation with bidirectional tem-
poral graph for video captioning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 8327–8336.

[22] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, ‘‘Sequence to sequence—Video to text,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4534–4542.

[23] X. Zhang, C. Liu, and F. Chang, ‘‘Guidance module network for
video captioning,’’ in Proc. 40th Chin. Control Conf. (CCC), Jul. 2021,
pp. 7955–7959.

[24] C. Szegedy, S. Iofe, V. Vanhoucke, and A. Alemi, ‘‘Inception-v4,
inception-resnet and the impact of residual connections on learning,’’ in
Proc. AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[25] H. Xu, B. Li, V. Ramanishka, L. Sigal, and K. Saenko, ‘‘Joint event
detection and description in continuous video streams,’’ in Proc. IEEE
Winter Appl. Comput. Vis. Workshops (WACVW), Jan. 2019, pp. 396–405.

[26] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[27] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724–1734.

[28] M. Hemalatha and C. C. Sekhar, ‘‘Domain-specific semantics guided
approach to video captioning,’’ in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Mar. 2020, pp. 1576–1585.

[29] K. Hara, H. Kataoka, and Y. Satoh, ‘‘Learning spatio-temporal features
with 3D residual networks for action recognition,’’ in Proc. IEEE Int. Conf.
Comput. Vis. Workshops (ICCVW), Oct. 2017, pp. 3154–3160.

[30] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
A. Courville, ‘‘Describing videos by exploiting temporal structure,’’ in
Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 4507–4515.

[31] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, T. Darrell, and K. Saenko, ‘‘Long-term recurrent
convolutional networks for visual recognition and description,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 2625–2634.

[32] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, ‘‘Sequence to sequence-video to text,’’ in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Dec. 2015, pp. 4534–4542.

[33] Z. Guo, L. Gao, J. Song, X. Xu, J. Shao, and H. T. Shen, ‘‘Attention-based
LSTM with semantic consistency for videos captioning,’’ in Proc. 24th
ACM Int. Conf. Multimedia, Oct. 2016, pp. 357–361.

[34] Z. Zhang, Y. Shi, C. Yuan, B. Li, P. Wang, W. Hu, and Z.-J. Zha, ‘‘Object
relational graph with teacher-recommended learning for video caption-
ing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 13278–13288.

[35] J. Hessel, B. Pang, Z. Zhu, and R. Soricut, ‘‘A case study on combining
ASR and visual features for generating instructional video captions,’’
in Proc. 23rd Conf. Comput. Natural Lang. Learn. (CoNLL), 2019,
pp. 419–429.

VOLUME 11, 2023 115491



K. Ouenniche et al.: Vision-Text Cross-Modal Fusion for Accurate Video Captioning

[36] B. Shi, L. Ji, Y. Liang, N. Duan, P. Chen, Z. Niu, and M. Zhou, ‘‘Dense
procedure captioning in narrated instructional videos,’’ in Proc. 57th Annu.
Meeting Assoc. Comput. Linguistics, 2019, pp. 6382–6391.

[37] R. Sanabria, O. Caglayan, S. Palaskar, D. Elliott, L. Barrault, L. Specia,
and F. Metze, ‘‘How2: A large-scale dataset for multimodal language
understanding,’’ 2018, arXiv:1811.00347.

[38] W. Guo, J.Wang, and S.Wang, ‘‘Deepmultimodal representation learning:
A survey,’’ IEEE Access, vol. 7, pp. 63373–63394, 2019.

[39] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, ‘‘Multimodal machine learn-
ing: A survey and taxonomy,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 2, pp. 423–443, Feb. 2019.

[40] H. Xu, G. Ghosh, P.-Y. Huang, D. Okhonko, A. Aghajanyan, F. Metze,
L. Zettlemoyer, and C. Feichtenhofer, ‘‘VideoCLIP: Contrastive pre-
training for zero-shot video-text understanding,’’ in Proc. Conf. Empirical
Methods Natural Lang. Process., 2021, pp. 6787–6800.

[41] Z. Gan, L. Li, C. Li, L. Wang, Z. Liu, and J. Gao, ‘‘Vision-language
pre-training: Basics, recent advances, and future trends,’’ Found. Trends
Comput. Graph. Vis., vol. 14, no. 3–4, pp. 163–352, 2022.

[42] G. Li, N. Duan, Y. Fang, M. Gong, and D. Jiang, ‘‘Unicoder-VL: A univer-
sal encoder for vision and language by cross-modal pre-training,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 11336–11344.

[43] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, ‘‘VL-
BERT: Pre-training of generic visual-linguistic representations,’’ 2019,
arXiv:1908.08530.

[44] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and J. Gao, ‘‘Unified
vision-language pre-training for image captioning and VQA,’’ in Proc.
AAAI Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 13041–13049.

[45] H. Xu, Q. Ye, M. Yan, Y. Shi, J. Ye, Y. Xu, C. Li, B. Bi, Q. Qian,
W. Wang, G. Xu, J. Zhang, S. Huang, F. Huang, and J. Zhou, ‘‘MPLUG-
2: A modularized multi-modal foundation model across text, image and
video,’’ 2023, arXiv:2302.00402.

[46] Y. Fang, W. Wang, B. Xie, Q. Sun, L. Wu, X. Wang, T. Huang, X. Wang,
and Y. Cao, ‘‘EVA: Exploring the limits of masked visual representation
learning at scale,’’ 2022, arXiv:2211.07636.

[47] J. Lu, D. Batra, D. Parikh, and S. Lee, ‘‘ViLBERT: Pretraining task-
agnostic visiolinguistic representations for vision-and-language tasks,’’
2019, arXiv:1908.02265.

[48] H. Tan andM.Bansal, ‘‘LXMERT: Learning cross-modality encoder repre-
sentations from transformers,’’ in Proc. Conf. Empirical Methods Natural
Lang. Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), 2019, pp. 5100–5111.

[49] D. Hendrycks and K. Gimpel, ‘‘Gaussian error linear units (GELUs),’’
2016, arXiv:1606.08415.

[50] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, ‘‘Robust speech recognition via large-scale weak supervi-
sion,’’ 2022, arXiv:2212.04356.

[51] Y. Wu et al., ‘‘Google’s neural machine translation system: Bridging the
gap between human and machine translation,’’ 2016, arXiv:1609.08144.

[52] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[53] S. Chen, H. Li, Q. Wang, Z. Zhao, M. Sun, X. Zhu, and J. Liu,
‘‘VAST: A vision-audio-subtitle-text omni-modality foundation model and
dataset,’’ 2023, arXiv:2305.18500.

[54] S. Yan, T. Zhu, Z. Wang, Y. Cao, M. Zhang, S. Ghosh, Y. Wu, and
J. Yu, ‘‘VideoCoCa: Video-text modeling with zero-shot transfer from
contrastive captioners,’’ 2022, arXiv:2212.04979.

[55] B. Yang, T. Zhang, and Y. Zou, ‘‘CLIP meets video captioning: Concept-
aware representation learning does matter,’’ in Pattern Recognition and
Computer Vision. Cham, Switzerland: Springer, 2022, pp. 368–381.

[56] X. Wang, G. Chen, G. Qian, P. Gao, X.-Y. Wei, Y. Wang, Y. Tian, and
W. Gao, ‘‘Large-scale multi-modal pre-trained models: A comprehensive
survey,’’Mach. Intell. Res., vol. 20, no. 4, pp. 447–482, Aug. 2023.

[57] M. C. Schiappa, Y. S. Rawat, and M. Shah, ‘‘Self-supervised learning
for videos: A survey,’’ ACM Comput. Surv., vol. 55, no. 13s, pp. 1–37,
Dec. 2023.

[58] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ 2013, arXiv:1301.3781.

[59] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, ‘‘BLEU: A method for
automatic evaluation of machine translation,’’ in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics (ACL), 2001, pp. 311–318.

[60] A. Lavie andA.Agarwal, ‘‘Meteor: An automaticmetric forMT evaluation
with high levels of correlation with human judgments,’’ in Proc. 2nd
Workshop Stat. Mach. Transl. (StatMT), 2007, pp. 65–72.

[61] C.-Y. Lin and F. J. Och, ‘‘Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics,’’
in Proc. 42nd Annu. Meeting Assoc. Comput. Linguistics (ACL), 2004,
pp. 605–612.

[62] Q. V. Le, N. Jaitly, and G. E. Hinton, ‘‘A simple way to initialize recurrent
networks of rectified linear units,’’ 2015, arXiv:1504.00941.

[63] A. Ratnaparkhi, ‘‘A linear observed time statistical parser based on max-
imum entropy models,’’ in Proc. 2nd Conf. Empirical Methods Natural
Lang. Process. (EMNLP), 1997, pp. 1–10.

KAOUTHER OUENNICHE received the engi-
neering degree from Ecole Polytechnique de
Tunisie, in 2019. She is currently pursuing the
Ph.D. degree with Institut Polytechnique de Paris,
Télécom SudParis. She then, joined the ARTEMIS
Department, Télécom SudParis, in 2020. Her
research interests include computer vision, natu-
ral language processing, multimodal learning, and
content-based video indexing.

RUXANDRA TAPU (Member, IEEE) received the
B.S. degree (Hons.) in electronics, telecommu-
nications, and information technology, and the
Ph.D. degree in electronics and telecommunica-
tion from the University Politehnica of Bucharest,
Romania, in 2008 and 2012, respectively, and the
Ph.D. degree (Hons.) in informatics from Univer-
sity Paris VI-Pierre et Marie Curie Paris, France.
Since 2012, she has been a Senior Researcher
with the ARTEMIS Department, Télécom Sud-

Paris, France. Her research interests include content-based video indexing
and retrieval, pattern recognition, and machine learning techniques.

TITUS ZAHARIA (Member, IEEE) received the
engineering degree in electronics and telecom-
munications and the M.Sc. degree from the
Politehnica University of Bucharest, Bucharest,
Romania, in 1995 and 1996, respectively, and
the Ph.D. degree in mathematics and computer
science from University Paris V–Rene Descartes,
Paris, France. He joined the ARTEMIS Depart-
ment, Télécom SudParis, as an Associate Profes-
sor, in 2002, where he become a Full Professor,

in 2011. His research interests include visual content representationmethods,
with 2D/3D compression, reconstruction, recognition, computer vision, and
indexing applications.

115492 VOLUME 11, 2023


