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Abstract 

In the last few years, the multi-modal emotion recognition has become an important research issue in the affective computing 

community due to its wide range of applications that include mental disease diagnosis, human behavior understanding, human-

machine/robot interaction or autonomous driving systems. In this paper, we introduce a novel end-to-end multimodal emotion 

recognition methodology, based on audio and visual fusion designed to leverage the mutually complementary nature of features 

while maintaining the modality-specific information. The proposed method integrates spatial, channel and temporal attention 

mechanisms into a visual 3D convolutional neural network (3D-CNN) and temporal attention into an audio 2D convolutional neural 

network (2D-CNN) to capture the intra-modal features characteristics. Further, the inter-modal information is captured with the 

help of an audio-video (A-V) cross-attention fusion technique that effectively identifies salient relationships across the two 

modalities. Finally, by considering the semantic relations between the emotion categories, we design a novel classification loss 

based on an emotional metric constraint that guides the attention generation mechanisms. We demonstrate that by exploiting the 

relations between the emotion categories our method yields more discriminative embeddings, with more compact intra-class 

representations and increased inter-class separability. The experimental evaluation carried out on the RAVDESS (The Ryerson 

Audio-Visual Database of Emotional Speech and Song), and CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset) 

datasets validates the proposed methodology, which leads to average accuracy scores of 89.25% and 84.57%, respectively. In 

addition, when compared to state-of-the-art techniques, the proposed solution shows superior performances, with gains in accuracy 

ranging in the [1.72%, 11.25%] interval. 
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1. Introduction 

Emotions are omnipresent in any moment of our daily life and play an important role in human interaction. They 

reveal intentions, carry empathy and, in some cases, allow us to transmit information more effectively. The nature of 

human communication is inherently multi-modal and includes both linguistic and paralinguistic components. The 

former refers to the spontaneous conversational exchange (verbal content), while the latter refers to characteristics that 

are performed either intentionally or subconsciously that involve aspects related to facial expressions, body gestures, 

or vocal features such as speaking rate or intonation.  

In the last decades, the issue of emotion analysis has drawn an increasing interest in various research fields that 

involve artificial intelligence, psychology, neurosciences, medicine and autonomous driving systems. Within this 

framework, a large variety of both continuous and discrete emotional models [1] can be considered. The dimensional 

models represent emotions as a continuous spectrum (i.e., activation and valence), while the latter one quantifies 

emotions into a set of discrete categories. In the pioneering work of Eckman and Friesen [2], [3], the discrete emotions 

are qualified into a set of six basic states (i.e., fear, disgust, sadness, happiness, anger, and surprise) that human can 

perceive similarly regardless of their regional, ethnical, or cultural differences.  

Automatic discrete emotion identification in real world scenarios is a very difficult and challenging task, which 

requires a high level, cognitive understanding of both verbal and non-verbal communication. In addition, the emotion 

recognition process is highly subjective because people can interpret emotion differently, depending on the 

environmental factors or current state of mind.  

Human emotions can be identified through various modalities, including facial expression, speech data, body 

gestures, text, or physiological data (e.g., electrocardiogram, electroencephalogram...), which typically carry 

complementary information. Although various studies have employed more complex modalities, audio and visual 

features are still the primary contact-free modalities used to convey emotions. Within the context of autonomous 

driving systems (ADS), it is becoming increasingly important to recognize continuously the driver’s emotions/state of 

mind, allowing thus the intelligent vehicle to respond in an optimized manner to the user needs and consequently select 

the optimal driving mode.  

In this paper, we introduce a novel multimodal emotion recognition framework based on A-V information designed 

to leverage the mutually complementary nature of features while maintaining the modality-specific information. The 

proposed system can be easily integrated in any ADS, being able to recognize the driver’s emotional state among a 

well-defined set of discrete emotional categories. We notably exploit the two non-invasive sources of information, 

which are the visual and audio signals. In real life scenarios, such data can be straightforwardly acquired with the help 

of a video camera installed inside the vehicle. 

The main contributions of the paper are the following: 

(1). A deep learning-based multimodal emotion recognition framework that includes various self-attention 

mechanisms. The system performs an independent analysis over the audio and video channels to extract discriminative 

inter-modal characteristics. For the visual channel, three different types of attention methods (including spatial, 

channel-wise and temporal) are employed, while for the audio channel solely the temporal attention is used. 

(2). A novel model-based fusion strategy which uses cross-attention and determines the interaction between A-V 

representations, while capturing the intra-modal correlations between modalities. 

(3). A learnable emotional metric that extends the traditional triplet loss function with an additional constraint, 

which enables to generate polarity-preserved attention maps. By taking into consideration the relations between the 

emotion categories more discriminative embeddings are obtained, with more compact intra-class representations and 

increased inter-class separability. 

(4). An extensive objective evaluation, carried out on the RAVDESS [4] and CREMA-D [5] datasets. The 

experimental evaluation demonstrates that the proposed methodology achieves better performances when compared 

with salient state-of-the-art methods. 

The paper is organized as follows. Section 2 presents the state-of-the-art dedicated to discrete emotion recognition, 

emphasizing the main families of existing approaches with related strengths and limitations. Section 3 describes the 

proposed methodology and details the key steps involved. The experimental setup, with training protocol, datasets and 

experimental results obtained are presented and discussed in Section 4. Finally, Section 5 concludes the paper and 

opens some perspectives of further work. 
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2. Related work 

In this section, we focus our attention solely on discriminative algorithms that have been introduced in the last 

couple of years. Depending on the type of modalities used to convey emotions, we can identify speech-based, visual-

based and multi-modal emotion recognition frameworks.  

2.1. Speech-based emotion recognition systems 

The performance of speech-based emotion recognition (SER) systems is highly dependent on the low-level features 

representation extracted from the audio signal. Traditional approaches rely on hand-crafted audio features (i.e., 

formant, loudness, linear productivity code...), speech statistics (i.e., mean, median, standard deviation…) or specific 

descriptors (i.e., Mel Frequency Cepstral Coefficient – MFCC). In order to automate the feature extraction process, 

dedicated frameworks such as OpenSmile [6] or Praat [7] have been introduced.  

By using the MFCC with spectral centroids as input to a Support Vector Machine (SVM) classifier, the Bhavan et 

al. approach [8] achieves a 72.91% accuracy rate on the RAVEDESS [4] corpus. However, the main limitation of such 

global level acoustic feature representation is the reduced capacity to capture the speech variation dynamics along the 

complete length of the audio segment. 

With the development of deep learning methods, SER models can extract relevant features from the audio stream 

without any human intervention. In [9], authors propose a system that infers affect-related salient features using 

convolutional neural networks (CNN). Pepino et al. [10] combines hand-crafted features and deep learning models 

(eGeMAPS) to represent the speech signal. For better accuracy, a transfer learning paradigm is employed, with the 

involved CNN pre-trained on different, large scale audio datasets. Both systems return superior accuracy scores when 

compared to traditional approaches.  

To generate more precise emotions bi-classification results, in [11] discriminative feature spaces are constructed 

for two different emotions pairs. Based on the observation that some archetypical emotions are closer in the feature 

space representation a Naïve Bayes decision fusion classifier is proposed. In [12], a Siamese CNN architecture is used 

to increase the intra-class compactness and inter-class separability. Issa et al. [13] propose a 1D-CNN architecture fed 

with traditional descriptors such as MFCC, chroma-gram, mel-scale spectrogram, Tonnetz representations and spectral 

contrast to identify emotion from raw audio signals. Recently, in [14] and [15] the authors propose various emotion 

recognition frameworks based on CNN architectures extended with NetVLAD [14] and GhostVLAD [15] layers for 

feature aggregation.  

In [16], recurrent neural networks (RNN) are proposed to learn short-time, frame-level acoustics as well as the 

appropriate temporal aggregation of features. Similarly, Tzinis et al. [17] introduced a RNN fed with both local and 

statistical (global) features. The system returns the best results when performing the analysis at different time scales 

and when extracting statistics at the level of the entire utterance. The triplet loss framework based on LSTM (Long 

Short-Term Memory) proposed in [18] is designed to learn a discriminative mapping of the feature embeddings. Based 

on the loss function, the intra-class distances can be reduced, while increasing the inter-class separation. In [19-21] 

various CNN models combined with LSTM [19] or with self-attention mechanisms [20-21] are used to increase the 

system robustness to noise or various compression artifacts. 

Recently, the authors in [22] studied the confidence estimation of deep neural networks (DNN) within the context 

of SER having as goal to generate a model that outputs predictions only when it is sufficient confident. The method is 

based on a novel loss function, so-called confidence metric, computed between two types of emotion representation. 

Similarly, the sentiment-aware emotion recognition method introduced in [23] combines speech analysis with text-

based sentiment classification. Other approaches [24-26] address the problem of DNN sensitivity to attacks of gradient 

distortions. In [24], Saurabh et al. are one of the first to propose the integration of a regularization term, derived from 

adversarial training, in order to smooth the model prediction. A different defense mechanism consists in training the 

model by augmenting the training dataset with attack samples, along with a feature similarity loss [25]. However, both 

methods [24], [25] can only guarantee protection against a specific (seen) type of attack at a pre-determined intensity. 

In [26], a self-supervised augmentation defense mechanism is proposed that learns to neutralize the gradient distortion 

without knowing the attack type, while in [27] the authors propose a model designed to generalize to unseen data with 

varying characteristics. Four different attributes have been considered to evaluate the performance of a CNN-LSTM 
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model: the corpus structure, the gender, the speakers, and the language. Finally, in [28] the magnitude and phase 

representations are used in the encoder part of a modified UNET architecture to cope with speech inputs acquired on 

the wild.  

From the analysis of the state-of-the art, the following conclusions can be highlighted: (1). Existent approaches are 

still far from satisfactory in recognizing emotions from real audio streams. Most methods heavily depend on the 

training datasets that contain elicited or acted speech segments. (2). The systems are highly sensitive to the length of 

the speech utterance. Some authors propose constraining the audio signal to a fixed length representation by clipping 

or padding the utterance. However, such an approach reduces the discriminative power of the overall descriptor. 

Let us now analyze the vision-ba sed emotion recognition solutions. 

2.2. Vision based emotion recognition systems 

As in the case of SER systems, various visual descriptors can be extracted from the facial morphology to detect 

expressions in video streams. Nguyen et al. [22] extract the 68 facial landmark points to encapsulate meaningful visual 

information in order to discriminate between emotion classes. By using the facial landmarks, the authors construct 32 

geometrical descriptors that are used to train a SVM classifier. In [23], a framework based on action units (AUs) is 

proposed. The model continuously detects the affective states using AUs that can be interpreted as an evolved version 

of landmark points. The AUs reflect the facial movement in time and not just the location for some regions of interest. 

The method is based on a stacked autoencoder network designed to predict discrete emotions. 

With the recent advances in deep learning techniques, the vision-based emotion recognition systems using 2D/3D-

CNN architectures that are receiving as input video frames/sequences, have returned higher recognition rates compared 

to traditional methods based on frame aggregation. 

EmotionalDAN [24] is an example of 2D-CNN designed to solve the emotion, valence, and landmark recognition 

problem in one stage. Facial landmarks are here incorporated as a part of the classification loss function and an 

alignment-dedicated deep network is extended with a term related to facial features. The spatial transformers 

networks (STN) [25] are designed to detect the main regions of interest from a video frame and correct the spatial 

variations of the input data [26]. Similarly, in [27] a STN framework designed to capture the facial landmarks or facial 

visual saliency maps is proposed. 

The facial expression recognition (FER) from video streams considers as single input a range of frames within a 

temporal analysis window. By using both textural and temporal information, it makes it possible to encode more stable 

expressions. In [28], authors use a C3D network, which consists in using 3D convolutional kernels with shared weights 

along the time axis instead of traditional 2D kernels. The network has been widely used for dynamic FER in [29-32]. 

Abbasnejad et al. [29] propose to deal with the lack of available data by generating large scale synthetic 3D faces. In 

[30], a late-fusion method that combines RNN with a C3D network is proposed. Ouyang et al. [31] use deep network 

transfer learning for feature extraction, a spatial-temporal model to capture the dynamics and reinforcement learning 

as optimization of the fusion strategies. In [32], a 3D-CNN is used to learn the static and dynamic features from facial 

image sequences and extract high-level dynamic features from optical flow sequences. 

Other approaches propose designing FER models that are trained on single images, carefully selected from a large 

training dataset [33]. The supervised and self-supervised learning methods proposed in [34] are designed to improve 

the classification accuracy of fine-grained and in-the-wild FER. The Visual Transformer with Feature Fusion (VTFF) 

introduced in [35] is able to identify emotions in wild environments under extreme conditions. The system focuses on 

challenging cases of faces with important occlusions or deformations, with different poses or affected by motion blur. 

The transformer uses two branches: an attentional selective fusion mechanism that leverages between feature maps 

and a second part that models the relation between visual words and global self-attention maps. The TransFER facial 

expressions recognition method introduced in [36] consists of a visual transformer with both global and local attention 

mechanisms, specifically designed to extract rich relation-aware representations between visual descriptors. In [37], a 

Graph Convolutional Network (GCN) framework is proposed, that exploits the dependencies between categorical and 

dimensional emotion recognition tasks. Abbasi et al. [38] construct a graph-based representation for facial expressions 

recognition of children and predict the subjects’ emotional state by using the automatically detected action units. 

Finally, a video-based FER is introduced in [39] that uses the emotion-wheel information as an inductive bias to 

improve the level of descriptiveness of the embedding features.  
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Globally, when analyzing the various state-of-the-art FER methods, the following conclusions can be highlighted: 

(1). Because the expression intensity in a video sequence varies over time it is very important to distinguish between 

peak and non-peak video frames; (2). The deep RNN/3D-CNN networks are designed to encode the temporal 

dependencies between consecutive frames. However, the performance of such systems is barely satisfactory. The RNN 

are unable to capture the powerful convolutional features, while the 3D-CNNs are applied over short video clips and 

ignore the long-range dynamics. In addition, training such architecture is highly difficult, notably when video data is 

insufficient.  

Let us now review the multi-modal emotion recognition frameworks. 

2.3. Multimodal emotion recognition systems 

Several studies apply multimodal audio-video analysis to predict emotions [33-35]. Nguyen et al. [33] introduce a 

novel method that integrates 3D-CNN and deep belief networks to effectively model spatial and temporal information 

presented in video and audio for emotion recognition. The method uses a feature-level fusion approach based on a 

bilinear pooling theory to combine visual and audio feature vectors. In [34], two distinct sets of acoustic and visual 

features are applied as input to a CNN extended with an RNN. Finally, an average fusion method is applied at the 

decision level. Kahou et al. [35] combine multiple deep neural networks for different data modalities (i.e., a CNN for 

facial expression analysis, a deep belief network to capture the audio information, a deep autoencoder for human action 

recognition and a shallow network for human mouth detection) into different aggregation strategies to predict 

emotions.  

The VAANet approach introduced in [36] proposes a CNN architecture with spatial, channel and temporal attention 

mechanisms to identify emotions in users’ generated videos. Both visual and audio information are here jointly 

exploited. Emotions are predicted using a late-fusion strategy that concatenates the descriptors from each modality. 

However, the framework neglects the interaction between the various features involved. The AVER [37] system 

proposes capturing the correlation between the A-V data using transformers with attention mechanisms over short 

video clips. Wang et al. [38] introduced an end-to-end knowledge injectable deep neural network able to associate 

implicit contextual knowledge when processing explicit A-V information. An audio-visual deep learning algorithm 

based on transformers is introduced in [39]. The fusion of the two modalities is performed using a cross-modal 

attention layer that consists of a dot-product attention of the key and value matrices computed from one modality with 

the query matrix given by the opposite modality. In [40], a system that fuses textual, audio and visual information is 

proposed. The sentence semantics is here extracted using a transformer architecture. The visual descriptors are 

obtained using a CNN model extended with an attention mechanism, while the temporal dynamics of the audio and 

visual signals are estimated with the help of a LSTM model. Recently, in [41], an optimal multimodal emotion 

recognition model is proposed that fuses the A-V features at the model level. 

Hu et al. introduced in [42] a graph-based dynamic fusion method able to aggregate the information from visual, 

audio, and textual modalities by exploring both unimodal and cross-modal interactions in a graph structure. The 

module reduces the redundancy and enhances the complementarity between the modalities by capturing the dynamics 

of contextual information in different semantic spaces. The MEmoBERT approach presented in [43] learns multimodal 

joint representations through self-supervised learning from self-collected, large-scale, unlabelled video data. A 

multimodal music emotion recognition method that jointly predicts the valence and arousal values by combining the 

audio, lyrics, track name, and artist of a given track is introduced in [44]. Recently, multiple transformer-based 

frameworks [45-47] have been proposed to fuse and enrich multimodal features from raw videos for the task of multi-

label video emotion recognition. Specifically, in [45] the method takes raw video frames, audio signals, and text 

subtitles as inputs and passes the information from multiple modalities through a unified transformer architecture for 

learning a joint multimodal representation. Chen et al. [46] propose a key-sparse transformer designed to focus only 

on relevant emotion-related features and to eliminate redundant information that limits the system performance. 

In [47], a three-branch transformer for video, audio and audio-video modalities is proposed. The experimental 

evaluation performed on two publicly available datasets demonstrates the powerfulness of multimodal concatenation 

of audio and video features that outperform single modalities. 

In a general manner, the state‐of‐the‐art analysis highlights the following conclusions: (1). Multimodal emotion 

recognition methods demonstrate superior performances compared to unimodal ones. Various fusion strategies 
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between different sources of information have been evaluated, including decision-level, feature-level, or model-level 

fusion. The model-level fusion returns the best results [41] because it leverages the complementary nature of the 

feature representations involved and extracts the cross-modal interaction between the audio-video channels. (2). Not 

all information from a video sequence is equally important for emotion recognition. In an image sequence, relevant 

emotional cues appear only in certain video frames. Similarly, in the audio stream not every word in the sequence 

contributes equally to the expressed emotion. (3). Most methods employ a two-stage shallow pipeline, which consists 

in extracting audio and visual features independently. They are thus agnostic to the complementary information 

between different A-V modalities. (4). To the best of our knowledge none of the state-of-the-art methods consider the 

correlation between various emotion classes, such as the emotions polarity defined by the Mikel’s wheel [42].  

In this paper, we propose a cross modal A-V fusion framework with double attention and deep metric learning that 

addresses the above problems for recognizing emotions, without requiring any auxiliary data except the initial pre-

training of the various CNN architectures involved. We start by dividing each video stream into segments (snippets) 

containing a fixed number of keyframes that are further applied as input to a 3D-CNN architecture. The backbone 

ResNet 3D [43] network generates low-level feature representations that capture the spatial-temporal dynamics of the 

visual information. The audio module extracts low-level descriptors (i.e., image spectrograms) from the corresponding 

audio stream. As for the visual representation, we start by dividing each image spectrogram into a set of audio samples 

that are fed as input to ResNet18 [44] CNN architecture. The audio and visual features are passed through different 

self-attention mechanisms designed to capture the intra-modal characteristic and determine the influence of the 

respective audio and visual descriptors to the final representation. In order to capture the inter-modal correlation 

between A-V information, a cross-attention method is proposed, which identifies salient relationships across the two 

modalities. Finally, the discrete emotion is predicted by passing the weighted descriptors through a set of fully 

connected layers. Under this framework, we design a novel classification loss that integrates an emotional metric 

constraint guiding the attention generation mechanisms. The relations between the considered emotional categories 

are here modeled according to Mikel’s wheel [42].  

The following section describes the proposed approach and details the various modules involved. 

3. Methodology 

Fig. 1 illustrates the proposed architecture that involves two processing chains, respectively dedicated to the audio 

and visual information. For the visual stream, three different attention mechanisms are employed, including spatial, 

channel and temporal, while the audio branch contains solely the temporal attention. The features from both modalities 

are exploited into a cross-attention fusion system. The training is performed by minimizing the proposed emotional 

metric loss in an end-to-end manner. 

 

 

Fig. 1. Proposed architecture with main modules involved. 
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3.1. Visual stream analysis 

The module extracts visual descriptors from variable length video documents (𝑥𝑉𝑖𝑑𝑒𝑜). A label 𝑦𝑉𝑖𝑑𝑒𝑜 is associated 

to each 𝑥𝑉𝑖𝑑𝑒𝑜. The visual model is designed to work on short snippets uniformly sampled within the entire video 

stream, with no overlapping parts. Specifically, we divide each image sequence into segments denoted by  {𝑥𝑖
𝑉𝑖𝑑𝑒𝑜}

𝑖=1

𝑁
, 

where N represents the total number of snippets. Each snippet contains a fixed number of k frames selected 

consecutively or not, depending on the length of the original input video.  

We have decided to use a 3D-CNN model for the visual analysis because we argue that the image-based features 

extracted from 2D-CNN architectures are not directly suitable for emotion recognition in video streams due to the lack 

of temporal information. In contrast with existing still image datasets usually employed for machine learning purposes, 

the first video databases were of relatively small sizes (i.e., a few thousands of training videos). However, with the 

development of Kinetics400 [62] or other large-scale datasets it becomes possible to reliably train 3D architectures 

and then perform finetuning for different tasks on smaller video sets. Nowadays, the 3D-CNNs have achieved 

significant advances and became the top performers on almost every video classification benchmark dataset [63]. 

We use the ResNet 3D [43] network as the backbone for the visual analysis module to generate high-level feature 

representations. The 3D ResNet101 performs 3D convolutions and 3D pooling. The CNN contains 101 layers grouped 

in 5 regions denoted conv1, conv2-x, conv3-x, conv4-x, conv5-x (that involve 3 successive convolution operations 

repeated x = 3, 4, 23 and 3 times, respectively). In our framework, we have removed the global average pooling layer 

at the end. The size of the convolutional kernels is 3 x 3 x 3 and the temporal stride is 1. Down-sampling of the inputs 

is performed by conv2-1, conv3-1, conv4-1 and conv5-1 layers, with a stride of 2. Each convolutional layer is followed 

by batch normalization and ReLU operations.  

The 3D-CNN receives as input N snippets, independently processes them, and extracts visual descriptors from the 

last convolutional layer (conv5-3). For a sample 𝑥𝑖
𝑉𝑖𝑑𝑒𝑜, we denote by 𝐷𝑖

𝑉𝑖𝑑𝑒𝑜 ∈ ℝℎ×𝑤×𝑚 the descriptor extracted at 

the output of the conv5 layer in the ResNet 3D architecture, where m is the total number of feature maps (i.e., 1024 

channels) and ℎ × 𝑤 is the spatial size (height and width) of the descriptor (i.e., 16 x 16). By flattening 𝐷𝑖
𝑉𝑖𝑑𝑒𝑜 ∈

ℝℎ×𝑤×𝑚 with respect to the height and width, we extract the output matrix 𝐷𝑖
𝑉𝑖𝑑𝑒𝑜 ∈ ℝ𝑠×𝑚, with 𝑠 = ℎ × 𝑤.  

Estimating emotions by assigning equal importance to the visual feature maps extracted from 3D-CNN models may 

lead to sub-optimal prediction because: (1). Some image regions have reduced relevance (e.g., the facial areas are 

more important when compared to the spatial context); (2). Only some feature maps carry discriminative semantic 

attributes necessary to identify emotions; (3). Not all video frames are equally important (i.e., emotions can be 

predicted by using some keyframes depicting the peak of emotion). The framework proposed in this paper notably 

aims at overcoming such limitations and difficulties by applying three different attention mechanisms (spatial, 

channel-wise and temporal). 

Spatial attention model: One important property of the human visual system is its capacity to obtain useful 

information with limited processing resources. Thus, humans are not processing the whole scene at once, but 

selectively focus on salient parts of images to capture the visual structure. Within the context of computer vision tasks, 

the process of spatial attention makes it possible to focus on regions that carry discriminative information within each 

feature map and thus to enhance the relevance/influence of such regions within the visual descriptor. Attention can be 

considered as a dynamic feature extraction mechanism that combines contextual fixation over time.  

We have developed a visual spatial (VS) multi-head self-attention module [45] to automatically explore the 

relevance of the video frame regions in order to recognize emotions (Fig. 2). Each head of attention requires three 

matrices: 𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑆 ∈ ℝ𝑠×𝑚/𝐻, 𝐾𝑒𝑦ℎ

𝑉𝑆 ∈ ℝ𝑠×𝑚/𝐻 and 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑆 ∈ ℝ𝑠×𝑚/𝐻. The projection on each head of attention 

ℎ ∈ {1, … , 𝐻} is determined as described in Eq. 1: 

𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑆 = 𝐷𝑖

𝑉𝑖𝑑𝑒𝑜  𝑊ℎ
𝑄  ;  𝐾𝑒𝑦ℎ

𝑉𝑆 = 𝐷𝑖
𝑉𝑖𝑑𝑒𝑜𝑊ℎ

𝐾   ;  𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑆 = 𝐷𝑖

𝑉𝑖𝑑𝑒𝑜  𝑊ℎ
𝑉 ,                                (1) 

where 𝐻  represents the number of attention heads, while 𝑊ℎ
𝑄 ∈ ℝ𝑚×𝑚/𝐻 , 𝑊ℎ

𝐾 ∈ ℝ𝑚×𝑚/𝐻  and 𝑊ℎ
𝑉 ∈ ℝ𝑚×𝑚/𝐻  are 

three learnable parameter matrices. The spatial attention mechanism for a given attention head can be computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ
𝑉𝑆 (𝑄𝑢𝑒𝑟𝑦

ℎ
𝑉𝑆

, 𝐾𝑒𝑦
ℎ
𝑉𝑆

, 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑆

) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑢𝑒𝑟𝑦ℎ

𝑉𝑆
(𝐾𝑒𝑦ℎ

𝑉𝑆
)

Τ

√𝑚/𝐻
) 𝑉𝑎𝑙𝑢𝑒ℎ

𝑉𝑆
,          (2) 
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Fig. 2. The VS self-attention module. 

For one attention head the 𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝑆 matrix can be interpreted as the set of embeddings on which we want to apply 

the attention mechanism, while the 𝐾𝑒𝑦ℎ
𝑉𝑆 represents the set of features against which we compute the attention. As 

the result of the dot multiplication and softmax(∙) the system determines a set of weights that are further multiplied 

with the 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑆 matrix to determine the spatial attention for one attention head.  

Instead of performing a single attention function it is beneficial to linearly project the queries, keys, and values 𝐻 

times with different, learnable linear projections. On the projected version we compute the spatial attention in parallel. 

For each corresponding video snippet 𝑥𝑖
𝑉𝑖𝑑𝑒𝑜, the results of all H attention heads are concatenated and once again 

projected using an extra parameter matrix 𝑊𝑂
𝑉𝑆 ∈ ℝ𝑚×𝑚: 

𝐷𝑖
𝑉𝑆 = 𝐶𝑜𝑛𝑐𝑎𝑡( 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1

𝑉𝑆, … , 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐻
𝑉𝑆)𝑊𝑂

𝑉𝑆 ,                   (3) 

where 𝐷𝑖
𝑉𝑆 ∈ ℝ𝑠×𝑚 represents the weighted spatial visual descriptor returned at output. 

The channel-wise attention model: We introduce the channel attention by exploiting the relevance of various visual 

feature maps extracted from the convolutional layers. As each channel can be considered as a feature detector, the 

channel attention is designed to focus on “what” is meaningful within a given input image. The core idea is to 

automatically learn a set of weights for each channel of the feature map, in order to assign larger weights to the visual 

descriptors that contain more important information, while ensuring smaller weights for invalid or less discriminant 

feature maps. 

Assuming that each channel (i.e., a column in the spatial visual descriptor 𝐷𝑖
𝑉𝑆  matrix) corresponds to the 

responsive activation of a convolutional kernel in the last layer of the 3D-CNN, the channel-wise attention can be 

interpreted as the process of selecting the relevant semantic attributes from the visual descriptors. Within this context, 

we introduce a channel-wise (VC) multi-head self-attention module that automatically assigns higher scores to relevant 

feature maps. To generate the channel-wise attention, we first transpose 𝐷𝑖
𝑉𝑆 to (𝐷𝑖

𝑉𝑆)Τ ∈ ℝ𝑚×𝑠. For each head of 

attention, we used the 𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝐶 ∈ ℝ𝑚×𝑠/𝐻 , 𝐾𝑒𝑦ℎ

𝑉𝐶 ∈ ℝ𝑚×𝑠/𝐻 and 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝐶 ∈ ℝ𝑚×𝑠/𝐻  matrices and computed the 

projection on each sub-space ℎ ∈ {1, … , 𝐻} as described in Eq. 4: 

𝑄𝑢𝑒𝑟𝑦ℎ
𝑉𝐶 = (𝐷𝑖

𝑉𝑆)Τ 𝑊ℎ
𝑄  ;   𝐾𝑒𝑦ℎ

𝑉𝐶 = (𝐷𝑖
𝑉𝑆)Τ𝑊ℎ

𝐾  ;  𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝐶 = (𝐷𝑖

𝑉𝑆)Τ 𝑊ℎ
𝑉 ,                (4) 

where 𝑊ℎ
𝑄 ∈ ℝ𝑠×𝑠/𝐻, 𝑊ℎ

𝐾 ∈ ℝ𝑠×𝑠/𝐻 and 𝑊ℎ
𝑉ℝ𝑠×𝑠/𝐻 are three learnable parameter matrices. 

The channel attention can be mathematically expressed as presented in Eq. 5. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ
𝑉𝐶(𝑄𝑢𝑒𝑟𝑦

ℎ

𝑉𝐶
, 𝐾𝑒𝑦

ℎ
𝑉𝐶

, 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝐶

) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑢𝑒𝑟𝑦

ℎ

𝑉𝐶
(𝐾𝑒𝑦

ℎ
𝑉𝐶

)
Τ

√𝑠/𝐻
) 𝑉𝑎𝑙𝑢𝑒ℎ

𝑉𝐶
,             (5) 

Finally, in order to determine the output of the module (𝐷𝑖
𝑉𝐶 ∈ ℝ𝑚×𝑠), the results from all attention heads (H) are 

concatenated and projected using the matrix 𝑊𝑂
𝑉𝐶 ∈ ℝ𝑠×𝑠. 

The temporal attention model: For a video, the discriminability of each frame to recognize emotions is obviously 

different. Only a limited number of frames contain discriminative information and can be directly used to convey 

emotions, while the rest correspond to background/contextual elements or preparatory stages. Treating each frame 

with equal importance may mislead the classifier and thus be responsible of wrong predictions. Based on such 
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observation we design a temporal attention mechanism able to automatically focus only on the video snippets that 

contain relevant keyframes.  

The first stage of the visual temporal (VT) multi-head self-attention module is to apply the spatial average pooling 

over the visual descriptor {𝐷𝑖
𝑉𝐶}𝑖=1

𝑁  returned by the channel attention module and reshape it to: 𝔻𝑉𝐶 = [𝑑𝑣1, … , 𝑑𝑣𝑁] ∈
ℝ𝑁×𝑚. We denote by 𝑑𝑣𝑖 the visual descriptor associated to the ith video snippet. In this context, the temporal attention 

can be defined as presented below: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ℎ
𝑉𝑇(𝑄𝑢𝑒𝑟𝑦

ℎ

𝑉𝑇
, 𝐾𝑒𝑦

ℎ
𝑉𝑇

, 𝑉𝑎𝑙𝑢𝑒ℎ
𝑉𝑇

) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑢𝑒𝑟𝑦

ℎ

𝑉𝑇
(𝐾𝑒𝑦

ℎ
𝑉𝑇

)
Τ

√𝑚/𝐻
) 𝑉𝑎𝑙𝑢𝑒ℎ

𝑉𝑇
,                       (6) 

The Query, Key and Value ∈ ℝ𝑁×𝑚/𝐻  matrices are computed using the 𝔻𝑉𝐶  visual features and the associated 

learnable parameter matrices (cf. Eq. 1). In order to determine the visual descriptor returned by the module (𝔻𝑉𝑇 ∈

ℝ𝑁×𝑚′
), the outputs from all the attention heads (H) are concatenated and projected using the matrix 𝑊𝑂

𝑉𝑇 ∈ ℝ𝑚×𝑚′
.  

3.2. Audio stream analysis 

Emotions play an important part in our daily life.? They can reflect psychological and physical states, but also have 

a vital role in human communication and cognition. The physiological signals such as electroencephalogram (EEG), 

temperature (T), electrocardiogram (ECG), electromyogram (EMG), galvanic skin response (GSR), respiration (RSP)) 

reflect responses to the central nervous system (CNS) and to the autonomic somatic nervous systems (ANS) of the 

human body, in which the human states change according to Connon’s theory [64]. Various researchers have tried to 

establish a stand and fixed relationship between the psychological signals, features and the classifiers. However, it has 

been demonstrated that it is difficult to precisely reflect emotional changes using physiological signals in both research 

and real applications [65]. Based on such observations, in our work we have decided to use the audio signal that is still 

one of the primary contact-free modalities used to convey emotions. 

The audio features are complementary to the visual descriptors and contain elements of information that can be 

used to characterize the affective, psychological state of an individual. To describe the audio signal, we have 

considered the most well-known audio representation that can be applied as input to a CNN system: the image 

spectrogram [46].  

The module extracts audio descriptors from variable length audio documents (𝑥𝐴𝑢𝑑𝑖𝑜). A label 𝑦𝐴𝑢𝑑𝑖𝑜 is associated 

to each 𝑥𝐴𝑢𝑑𝑖𝑜. As for the visual representation, we start by dividing each image spectrogram into N audio samples 

{𝑥𝑖
𝐴𝑢𝑑𝑖𝑜}

𝑖=1

𝑁
 that are fed as input to ResNet18 [44] CNN architecture. The 2D ResNet contains 18 layers grouped in 5 

regions denoted conv1, conv2-x, conv3-x, conv4-x, conv5-x (that involve 2 successive convolution operations 

repeated x = 2 times). In our framework we have removed the global average pooling layer at the end. The size of the 

convolutional kernels is 3 x 3. The down-sampling of the inputs is performed by conv2-1, conv3-1, conv4-1 and conv5-

1 layers, with a stride of 2. Each convolutional layer is followed by batch normalization and ReLU. 

We have used ResNet18, a 2D-CNN architecture designed for images where the convolutional kernels share the 

same weights across the horizontal and vertical axis. This is based on the translational invariance of the visual features, 

which means that the visual descriptors of an object are the same, no matter the location of the object within the image. 

For spectrogram images, this property remains true if the objects are shifted in the x dimension (time), but not shifted 

in the y dimension (frequency). The 2D-CNN framework has been modified in order to be adapted for spectrograms 

inputs. It independently processes all spectrograms segments and extracts audio descriptors from the last convolutional 

layer (conv5). For a sample 𝑥𝑖
𝐴𝑢𝑑𝑖𝑜, we denote by 𝐷𝑖

𝐴𝑢𝑑𝑖𝑜 ∈ ℝℎ′×𝑤′×𝑚′
 the descriptor extracted at the output of the 

conv5 layer in the ResNet architecture, where 𝑚′ is the total number of feature maps and ℎ′ × 𝑤′ is the spatial size of 

the descriptor (height and width). Then, the audio temporal (AT) multi-head self-attention module explores the 

influence of different audio segments. We apply the spatial average pooling over {𝐷𝑖
𝐴𝑢𝑑𝑖𝑜}

𝑖=1

𝑁
. and reshape it to a 

global feature representation 𝔻𝐴𝑢𝑑𝑖𝑜 = [𝑑𝑎1, … , 𝑑𝑎𝑁] ∈ ℝ𝑁×𝑚′
, where 𝑑𝑎𝑖  represents the audio descriptor associated 

to the ith image spectrogram segment. 
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Finally, the temporal attention is computed similarly as for the visual module (Eq. 6), which aims at quantifying 

the influence of the information included in different audio segments for the emotion recognition process. The output 

of the module is given by the 𝔻𝐴𝑇 ∈ ℝ𝑁×𝑚′
. 

3.3. Cross-modal attention fusion 

The audio-video fusion can be performed into three major stages: early, late or fusion at the level of the model. In 

early fusion [47], [48] the features from different modalities are concatenated after extraction in order to obtain a joint 

representation that is fed into a single classifier to predict the final outputs. Although such an approach allows the 

direct interaction between the modalities, it fails to leverage the inter-modal relationships and may suffer from data 

sparseness. So, the improvement in performance given by the concatenation of both modalities is only marginal. In 

contrast to feature-level fusion, in decision (late) fusion [49], [50] the classifiers are trained end-to-end independently, 

and the prediction outputs are combined to obtain the final classification results. Although decision-level fusion is 

easy to implement and does not require any additional training, such systems neglect the mutual relations and the 

correlation between the A-V modalities. The model-level fusion [45], [51], [52] uses the deep learning architectures 

to leverage the complementary nature of the various features involved and to extract the cross-modal interaction 

between the A-V channels.  

The A-V fusion mechanism introduced in this paper is a model-based method designed to encode the inter-modal 

correlation, while preserving the relevant and distinctive intra-modal information (Fig. 3).  

 

 

Fig. 3. The cross-modal attention fusion module. 

The cross-modal attention fusion module receives as input the visual and the audio features returned at the output 

of the temporal attention modules presented in Section 3.1 and Section 3.2. The visual features are denoted with 𝔻𝑉𝑇 ∈
ℝ𝑁×𝑚′

, while the audio features with 𝔻𝐴𝑇 ∈ ℝ𝑁×𝑚′
, where N represents the total number of snippets selected from 

video/audio stream and 𝑚′ is the size of the output feature descriptor (𝑚′=512). It can be observed that both modalities 

use the same number of N = 6 samples and return feature descriptors of equal sizes (𝑚′). 

To reliably fuse the two visual and audio modalities, we have developed a cross-attention mechanism, where 

features are separately learned for each modality under the constraints of the other modality. To reduce the gap of 

heterogeneity between the audio and visual modalities, the inter-modal relevance is determined using the 𝑊 matrix 

(𝑊 ∈ ℝ𝑚′×𝑚′
), whose weights are learned during training as follows:  

𝐶𝑜𝑟𝑟 = 𝔻𝐴𝑇  𝑊 (𝔻𝑉𝑇)Τ,                                                                     (7) 

where 𝑊 represents the cross-correlation weights among the A-V features and 𝑚′ is the dimension of the feature 

vectors from both modalities. In the resulting inter-modal correlation matrix 𝐶𝑜𝑟𝑟 ∈ ℝ𝑁×𝑁, high coefficient values 

indicate that the corresponding pairs of A-V segments are highly correlated. For each modality the attention weights 

(𝑊𝐴𝑢𝑑𝑖𝑜  and 𝑊𝑉𝑖𝑑𝑒𝑜) are computed as the column-wise softmax of 𝐶𝑜𝑟𝑟 and 𝐶𝑜𝑟𝑟𝑇 , respectively. Then, for each 

modality, the attention weights are used to assign different relevance scores to the features. Formally, the cross-

attention weights for the visual (𝔻𝑉𝑇̃) and audio (𝔻𝐴𝑇̃) modalities are computed as: 

𝔻𝐴𝑇̃ = 𝑊𝐴𝑢𝑑𝑖𝑜𝔻𝐴𝑇  and 𝔻𝑉𝑇̃ =  𝑊𝑉𝑖𝑑𝑒𝑜𝔻𝑉𝑇 ,                                                     (8) 
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We have used the skip connection to adjust the attention maps by taking into consideration the information retrieved 

from the different modality: 

𝔻𝐶𝑜𝑟𝑟−𝐴𝑇 = 𝑡𝑎𝑛ℎ(𝔻𝐴𝑇 + 𝔻𝐴𝑇̃) ,                                                               (9) 

𝔻𝐶𝑜𝑟𝑟−𝑉𝑇 = 𝑡𝑎𝑛ℎ(𝔻𝑉𝑇 + 𝔻𝑉𝑇̃) ,                                                             (10) 

where tanh(∙) denotes the hyperbolic tangent activation function. 

The final data representation is obtained by the direct concatenation of the audio and visual descriptors: 

𝔻𝐶𝑜𝑟𝑟−𝐴𝑉 = [𝔻𝐶𝑜𝑟𝑟−𝑉𝑇; 𝔻𝐶𝑜𝑟𝑟−𝐴𝑇],                                                        (11) 

The 𝔻𝐶𝑜𝑟𝑟−𝐴𝑉 features are fed as input to the fully connected layers. Applying the cross-correlation stage allows to 

bring the audio and visual embedding closer, while the dense skip connection enforces the modality-specific 

information. By using the cross-modal attention module during the multiple stages of the training process we are able 

to progressively learn optimal embeddings. Under such constraints, the framework can learn the right amount of 

compatibility between the two embeddings considered and thus preserve the intra-class information, while optimizing 

the objective function. 

The framework adopts an emotion metric that enables to generate polarity-preserved attention maps, described in 

the following section. 

3.4. Emotion metric loss 

In order to define the distance between emotions we have considered the 2D valence-arousal model described by 

the Mikel’s [42], wheel of emotions (Fig. 4a). By taking into consideration the discrete set of emotions identified by 

Eckman and Friesen in [2] and [3] we can establish three classes of emotions with positive polarity (i.e., happy, calm 

and surprise) and four emotions categories with negative polarity (i.e., sad, fear, anger and disgust). The neutral state 

has zero values for the valence and arousal, being located in the central of the wheel. The distance between different 

video clips depicting emotions is arguable subjective, but the general relationship is clear and should be satisfied: 

video stream presenting emotions of the same polarity should be closer to each other while those of different polarity 

should be further apart.  

 

 

Fig. 4. Hierarchical relation between emotions: a. Emotion representation with respect to Mikel’s wheel in the valence-arousal space; b. The 

proposed triplet loss function extended with an emotional constraint. 

Let us first review the conventional triplet loss function in its mathematical form. Suppose that we are given a set 

of training examples, where 𝒙 ∈ ℝ𝐷 denotes the feature embedding and 𝒚 ∈ {1, . . , 𝐾} the corresponding label, with K 



12 Bogdan Mocanu et al./ Image and Visual Computing (2022) 000–000 

the total number of classes. At each training iteration, we sample a mini-batch of triplets: 𝒯 = (𝑥𝑎 , 𝑥𝑝 , 𝑥𝑛) ∈  Γ, where 

Γ is the set training examples, that consists of an anchor point 𝑥𝑎, associated with a pair of positive instance 𝑥𝑝 and a 

negative sample 𝑥𝑛, whose labels satisfy: 𝑦𝑎 = 𝑦𝑝 ≠ 𝑦𝑛. The goal is to learn an embedding function to push away the 

negative example 𝑥𝑛  from the anchor sample 𝑥𝑎  by a distance margin 𝛼, compared with the distance between the 

anchor and the positive sample 𝑥𝑝: 

‖𝑥𝑎 − 𝑥𝑝‖
2

+ 𝛼 = ‖𝑥𝑎 − 𝑥𝑛‖2,                                                          (12) 

where ‖∙‖ represents the Euclidian distance. 

During training, in order to force the system to respect the triplet loss constraint described in Eq. 12, a hinge loss 

function is commonly used: 

𝐿𝑜𝑠𝑠 = ∑ [‖𝑥𝑎 − 𝑥𝑝‖
2

− ‖𝑥𝑎 − 𝑥𝑛‖2 + 𝛼]
+

𝑁

𝑖=1

,                                     (13) 

where [∙]+ = 𝑚𝑎𝑥(0, ∙) denotes the hinge function and 𝑁 is the total number of samples from the training set.  

However, directly optimizing the triplet loss function can lead to some videos to be incorrectly classified into 

categories that have opposite polarities. In addition, the natural relations between emotions are not considered. In our 

work, we propose to enrich the triplet loss function with an emotion constraint. The proposed principle is the following: 

as in the case of the traditional triplet loss approach, we ensure that an anchor example 𝑥𝑎 is closer to all samples 𝑥𝑝 

belonging to the same emotion class. In addition, we introduce the notion of related emotions, which are, by definition, 

negative emotion categories that have the same polarity as the considered emotion. We then constrain the related 

categories to be closer to the considered anchor class than the hard negative examples defined as negative emotions 

with opposite polarity (Fig. 4b). The emotion loss is mathematically formulated as presented in the following 

equations: 

‖𝑥𝑎 − 𝑥𝑝‖
2

+ 𝛼 = ‖𝑥𝑎 − 𝑥𝑟1
‖

2
,                                                          (14) 

‖𝑥𝑎 − 𝑥𝑟2
‖

2
+ 𝛽 = ‖𝑥𝑎 − 𝑥𝑛‖2,                                                          (15) 

where 𝛼 > 0 and 𝛽 > 0 denote the control parameters (margins) between the considered classes.  

The emotion metric is learned by minimizing the following loss function:  

𝐿𝑜𝑠𝑠𝑒𝑚𝑜𝑡𝑖𝑜𝑛 = ∑ [‖𝑥𝑎 − 𝑥𝑝‖
2

− ‖𝑥𝑎 − 𝑥𝑟1
‖

2
+ 𝛼]

+

𝑁

𝑖=1

+ ∑ [‖𝑥𝑎 − 𝑥𝑟2
‖

2
− ‖𝑥𝑎 − 𝑥𝑛‖2 + 𝛽]

+
,      (16)

𝑁

𝑖=1

 

Let us note that in the case of the neutral category, no related emotion can be identified. For video samples depicting 

the neutral emotion the traditional triplet loss is used. Since the emotion metric loss can be computed within mini-

batches of samples, we can train the entire framework effectively, in an end-to-end manner using off-the shelf-

optimizers to minimize the loss function in Eq. 16.  

4. Experiments and results 

To evaluate the effectiveness of the proposed method within the context of discrete emotion recognition, we have 

conducted extensive experiments on two publicly available datasets: RAVDESS [4] and CREMA-D [5]. Both datasets 

contain discrete emotions, performed at two levels of intensity (normal and strong), and recorded using both audio and 

visual channels. In addition, the ground truth provided by the human annotation is also available. 

4.1. Evaluation datasets  

The RAVDESS dataset [4] is a multimodal, gender-balanced database consisting of 24 professional actors, 

vocalizing two lexically matched statements in English, with North American accent. The dataset contains 1440 videos 
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with eight basic emotions: surprise, anger, fear, neutral, calm, happy, sad, and disgust. There are two different levels 

of intensity (normal and strong) considered for each expression of emotion, except for the neutral class that is 

represented only at the normal level. All types of recordings are available: audio only, video only and both audio and 

video. The recordings have an average duration of 3.82 ± 0.34 seconds. In our experiments, we have considered 

exclusively video streams with both audio and visual information because our goal is to perform multimodal emotion 

recognition. 

The CREMA-D dataset [5] consists of facial and vocal emotional expressions in sentences with 6 basic emotion 

labels: happy, sad, anger, fear, disgust and neutral. The dataset consists of 7440 video clips spoken by 91 actors (43 

females and 48 males) accounting a total of 3.5 hours. The age of the actors lays in range of 20 to 74 years with diverse 

ethnic background including: African American, Caucasian, Asian, Hispanic, and not specified. Actors read from a 

pool of 12 sentences to generate the discrete emotion dataset at four intensity levels: low, medium, high, and 

unspecified. The recorded video clips have been labelled by multiple human annotators in three modalities: audio only, 

video only and audio-visual. The video clips have an average length of 3.63 ± 0.53 seconds. In our experiments, we 

have considered exclusively the audio-video modality. The human recognition rate of the intended emotions for the 

audio-video stream is 63.6%. 

Despite the increasing number of publications that use RAVDESS [4] or CREMA-D [5] datasets, there is a lack of 

a common evaluation framework. To the very best of our knowledge, there is no technical evaluation baseline for the 

considered datasets, which makes it very difficult to compare the state-of-the-art techniques. For example, Atila et al. 

[19] reported an accuracy score of 96.1% on the RAVDESS database, but the actors’ distribution in folds is not 

specified. In addition, it is not clear if the same actor takes part in the training, but also in the testing sets. A different 

setup for evaluation is proposed by Pepino et al. [10], where 20 actors are used for training, two for validation and 

other two for testing. However, nothing is said about how the two actors in the testing dataset have been selected. The 

reported performance is dependent on the two single actors’ evaluation, which may or may not reflect the performance 

scores at the level of the entire dataset. In addition, the authors classify only seven (out of eight) emotions from the 

RAVDESS database. 

For all these reasons, in order to perform a fair evaluation, we have divided the data into training, validation and 

testing sets with all the samples from each speaker belonging to a particular set only and we have used all the emotion 

categories existent in the evaluation dataset. We have adopted a 10-fold cross validation with a split driven by the 

actors that are expressing the utterances. Thus, no overlap is allowed between the subjects’ clips: a video document is 

either in the test, validation or in the train datasets. The targeted percentages between train, validation and test are of 

80%, 10% and 10%, respectively. The results that are reported in the following sections represent the average values 

for the 10-folds cross validation. 

4.2. Implementation details 

For the visual modality, the system is based on the state-of-the-art 3D ResNet101 [43] architecture that receives as 

input aligned face instances with the resolution of 224 x 224 pixels. The 3D-CNN is initialized with a set of weights 

pre-trained on ImageNet [52] and Kinetics [53]. The video streams are divided into a fixed number of shorter snippets 

(𝑁 = 6). Each snippet contains 16 frames uniformly sampled. In total, 96 keyframes are selected from each video 

stream for further analysis. The number of frames between the selected keyframes varies with respect to the length of 

the input video (between 3.1 and 4.16 seconds), thus ranging within [0, 2] interval. In order to increase the variety of 

data, we have performed data augmentation on the training dataset by randomly cropping, flipping and brightness 

adjusting the input frames. For attention mechanisms we have considered H = 8 attention heads. 

For the audio module we fed as input to the 2D ResNet-18 [44], image spectrograms extracted from the speech 

signals. We have applied the Fast Fourier Transform with 256 frequency components and we have generated image 

spectrograms using a Hamming sliding window of 32 ms with a step of 10 ms. As for the visual representation, the 

image spectrogram is divided into 𝑁 =6 shorter parts of one second of audio content. In order to increase the system 

robustness and reduce the training time, the mean and variance normalization are performed over the image sequences. 

Specifically, each batch of elements is normalized to have zero mean and unit variance. This scheme introduces 

additional randomness in the network, since the output of a unit depends on the mini-batch statistics, as well as the 

input sample. In addition, the batch normalization helps reducing the training convergence time and the validation loss 
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to half. The 2D-ResNet [44] receives as input images with the resolution of 224 x 224 pixels and is initialized with the 

sets of weights pre-trained on ImageNet [52].  

For the audio-video fusion module, we have used the hyperbolic tangent as activation function. The weights of the 

matrices in the cross-attention module are initialized with the Xavier method [55]. We have used the Xavier 

initialization because with a standard weight initialization we have observed a sequentially occurring saturation 

phenomenon that is propagating up in the network, while the He initialization method [61] works better for layers with 

ReLU activation functions. 

The initial learning rate of the network was set to 1e-4 and a momentum of 0.9 is used with the Adam optimizer 

[54]. Because of the hardware limitations and memory constraints we have chosen a batch size of 16. To avoid 

overfitting, we have implemented an early stopping strategy to finish the training process: when the accuracy score 

does not improve in 20 epochs the training stops.  

4.3. Ablation study 

We have conducted ablation studies to verify the individual impact of the various components involved on the 

overall performance. More precisely, the main components under evaluation are the following: the visual attention 

mechanisms, the temporal attention mechanism dedicated to the audio modality, the cross-attention fusion strategy 

and finally the emotional-constrained loss function.  

First, we have used the triplet loss, and have investigated the influence of the various attention modules involved: 

the visual spatial (VS), the visual channel-wise (VC), the visual temporal (VT), the audio temporal (AT) and the audio-

video fusion. The emotion recognition accuracy rates of each category for the two datasets considered are summarized 

in Table 1 and 2, respectively. For all the testing scenarios, the framework architecture ends with one fully connected 

layer having the number of neurons equal to the total number of emotion classes. In all these cases, the traditional 

triplet loss function is used to train the network. 

After analyzing the experimental results gathered in Table 1 and Table 2, the following conclusions can be derived: 

1. The lowest accuracy scores are returned by the audio modality, with 76% and 62%, respectively, for the 

RAVDESS and CREMA-D datasets. The results can be explained by the nature of the audio data representation that 

depends on multiple factors such as sample duration, speaker accent or gender. However, if we analyze the emotion 

recognition rate provided by human observers on CREMA-D dataset using only the audio modality (49%) with the 

results obtained by the proposed framework it can be observed that our method outperforms human perception with 

more than 10%. 

2. The visual modality, even when using only the spatial attention, significantly outperforms the audio modality, 

which is understandable because all the videos from both datasets are recorded in a specific environment setting with 

little variation of the subject position. 

3. Adding attention (channel-wise and temporal) leads to performance gains, which demonstrate that the channel-

wise and temporal attention contribute to the video emotion recognition framework.  

4. The best results (with accuracy scores of 87.85% and 81.71% on the RAVDESS and CREMA-D datasets, 

respectively) are obtained by combining the audio and visual features (cf. Section 3.3).  

Table 1. Ablation study of the different attention mechanism involved in the proposed framework on the RAVDESS dataset. 

Method Surprise 

% 

Angry 

% 

Fearful 

% 

Neutral 

% 

Calm 

% 

Happy 

% 

Sad 

% 

Disgust 

% 

Average 

% 

AT 88.75 88.13 68.75 81.25 91.88 62.52 66.88 65.63 76.42 

VS 79.38 86.88 75.63 65.02 83.13 86.56 59.38 78.13 77.54 

VS + VC 82.51 88.13 77.52 67.51 84.38 88.75 60.01 78.75 79.17 

VS + VC + VT 82.02 87.51 80.01 75.25 84.25 92.51 66.88 84.38 82.02 

AT + VS + VC + VT 86.88 93.13 86.88 86.75 91.01 92.75 78.25 86.63 87.85 

Table 2. Ablation study of the different attention mechanism involved in the proposed framework on the CREMA-D dataset. 

Method Anger Fear  Neutral Happy Sad Disgust Average 
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% % % % % % % 

AT 73.75 50.63 72.63 49.63 65.63 64.38 62.77 

VS 84.94 64.38 76.25 90.63 63.13 77.51 76.14 

VS + VC 85.69 62.56 77.51 91.88 65.63 79.38 77.12 

VS + VC + VT 87.94 67.44 80.44 93.44 65.25 82.56 79.51 

AT + VS + VC + VT 88.81 70.25 84.63 93.69 67.94 84.94 81.71 

 

In addition, it can be observed that emotion recognition is a highly challenging process because emotions are 

complex or compound and are unlikely to be fully learned through only one modality. In contrast, emotions like 

happiness have clear markers in at least one modality (e.g., facial smile) and can therefore be learned with reasonable 

accuracy through visual classifiers. The facial expressions conveyed happiness the clearest, while vocal features 

conveyed anger better than other emotions. From our experiments, we have observed that in the context of emotion 

recognition, the gender of the speaker does not influence the performance scores obtained by the multimodal system.  

Secondly, we evaluated the effectiveness of the proposed emotion constraint loss by comparing it with the results 

obtained for the traditional triplet loss function. Table 3 presents the average accuracy rates obtained when all the 

attention mechanisms are involved on both audio and visual modalities.  

Table 3. Performance comparison of triplet loss function and the proposed emotion constraint loss 

Attentions Loss RAVDESS CREMA-D 

AT + VS + VC + VT Triplet loss 87.85% 81.71% 

AT + VS + VC + VT Emotion 

constraint loss 

89.25% 84.57% 

 

The results show that the introduction of the emotional constraint offers an average improvement of about 2%. This 

demonstrates the interest of introducing emotion relationships as prior knowledge to the classification task. Fig. 5 

presents the confusion matrices obtained on the two considered datasets. As it can be observed for both datasets the 

higher recognition scores are obtained for the angry and happiness emotion categories. The experimental results 

demonstrate the powerfulness of analyzing both audio and visual features that can offer complementary information 

when performing emotion classification.  

 

 
Fig. 5. The confusion matrixes on the evaluation datasets: (a). RAVDESS and (b). CREMA-D 
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4.4. System complexity evaluation 

We have considered the following complexity metrics to quantify the resources required by the overall framework 

architecture: 

1. The training time (min/epoch) – represents the amount of time, expressed in minutes, required to train the entire 

system for a single epoch. The reported value includes any time required within the low-level processing stages, the 

forward and the backward propagation passes of all batches. 

2. Inference time (ms/sample) – represents the amount of time, expressed in milliseconds (ms), required to perform 

the inference of a single snippet containing 16 frames. However, we need to highlight that a fixed number of 𝑁 =6 

snippets are processed in parallel, by the 3D-CNN/2D-CNN architectures in order to extract the output features.  

3. The maximum GPU utilization (GB) – we have evaluated the maximum GPU utilization, expressed in GBytes 

(GB) during training in order to determine the optimal hardware requirements. 

For a fair comparison, all experiments have been conducted on a working station with Intel i7-8700K CPU at 

3.70GHz, 32GB of RAM and Nvidia 3090Ti GPU. In order to minimize the impact of various randomly selected seeds 

involved within the system, we have conducted the experiments 10 times and computed the mean and standard 

deviation of the evaluation metrics. To avoid overcrowding the results, in Table 4 we report the mean values of the 

considered metrics. 

Table 4. The proposed system complexity evaluation 

Method Training time 

(min/epochs) 

Inference time 

(ms/sample) 

Peak GPU usage 

(GB) 

AT + VS + VC + VT with 

emotional constrain loss 
95 235 12 

 

Let us observe that the prediction time for a sample of 6 snippets with 16 frames is inferior to 250ms. Within this 

context, we can conclude that the proposed method can operate in real-time and is able to return a prediction for 

approximatively 4 seconds of video stream in less than 250ms. 

4.5. Comparison with the state-of-the-art 

We have compared the proposed framework with the following recent (published in the last here years)  state of the 

art emotion recognition methods: Ghaleb et al. [37], Su et al. [56], Fu et al. [57], Jimenez et al. [27], Chang et al. [59], 

Jimenez et al. [27] and Middya et al. [41]. All the methods retained for comparative evaluation report results on the 

the two datasets considered (RAVDESS and CREMA-D). The experimental results obtained are summarized in 

Table 5.  

Table 5. Comparison between the proposed framework and several state-of-the-art results on the RAVDESS and CREMA-D datasets 

Method Publication 

year 

Accuracy on 

RAVDESS 

Accuracy on  

CREMA-D 

Ghaleb et al. [37]  2020 79.00% 74.00% 

Su et al. [56]  2020 74.86% - 

Fu et al. [57]  2021 75.76% - 

Jimenez et al. [27]  2021 80.08% - 

Middya et al. [41]  2022 86.00% - 

Goncalves et al. [58 2022 - 71.7% 

Chang et al. [59]  2021 - 83.15% 

Proposed method - 89.25% 84.57% 

 

From the experimental results reported in Table 5 we can observe that the proposed framework outperforms the 

other models, with average accuracy scores of 89.25% on RAVDESS and 84.57% on CREMA-D dataset, respectively. 
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This behavior can be explained by the complexity of our method that exploits spatial, channel and temporal attention 

models to determine the intra-modal characteristics and the cross-attention fusion strategy to determine the correlation 

between the audio and video feature representation. In addition, the emotion constraint loss increases the system 

robustness to various types of noises existent in the video stream. In order to validate such an assumption, we have 

conducted an interpretability study, based on the visualization of the various attention maps involved and presented in 

the following section. 

4.6. Interpretability: visualization of features 

To investigate the interpretability of our framework, Fig. 6 presents the data distribution on the CREMA-D dataset. 

We have used the t-SNE embedding and generated a 2D representation of the sample feature distribution. For 

visualization purposes, in Fig. 6a we represent the samples in the 2D space when using the proposed framework with 

all the attention units involved from both modalities and adopting for the last fully connected layer the softmax loss 

function. We can observe that the classes are overlapping for most of the categories. Fig. 6b illustrates the feature 

space after applying the triplet loss function. In this case, it can be observed that the triplet loss function improves the 

feature separation into the novel sub-space. However, some clusters overlapping are still present, especially for 

emotion classes belonging to different polarities. Fig. 6c presents the same data distribution in the feature space, but 

when incorporating the emotion constraint loss introduced in Section 3.4. As it can be observed, our framework can 

separate the emotion classes more effectively. For the purpose of generalization, we have conducted the same set of 

experiments on RAVDESS database. From Fig. 7 we can observe a similar behavior for the data distribution. 

 

 

Fig. 6. Visualization of the audio-video feature embedding using t-SNE on the CREMA-D dataset: a. The feature space representation when 

using the softmax loss function; b. The feature space representation for triplet loss function; c. The feature space representation for triplet loss 

function extended with an emotional constraint. 

 

Fig. 7. Visualization of the audio-video feature embedding using t-SNE on the RAVDESS dataset: a. The feature space representation when using 

the softmax loss function; b. The feature space representation for triplet loss function; c. The feature space representation for triplet loss function 

extended with an emotional constraint. 
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Furthermore, we have studied the interpretability of the various attention mechanisms involved in the framework. 

To this purpose, we have exploited the Grab-Cam algorithm [60] that allows the visualization of the spatial attention 

mechanism on each attention head considered (Fig. 8 and Fig. 9). The final spatial attention, together with the visual 

temporal attention generated by our model is illustrated on various video snippets in Fig. 10 and Fig. 11. It can be 

observed that the proposed framework can successfully assign higher relevance scores not only to the discriminative 

frames, but also to various salient regions in the corresponding frames. 

 

 

Fig. 8. Visualization of the learned spatial attention heads/regions (H0 – H7) for an actor depicting the sadness  
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Fig. 9. Visualization of the learned spatial attention heads/regions (H0 – H7) for an actor depicting the disgust 

 

Fig. 10. Visualization of the learned spatial and temporal attention regions/video frames for an actor depicting the fear 
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Fig. 11. Visualization of the learned spatial and temporal attention regions/video frames for an actor depicting the disgust 

The following section presents the main drawbacks and limitations of the proposed framework architecture.  

4.7. Limitations 

The experimental evaluation conducted also makes it possible to identify some  limitations of the proposed 

methodology:  

(1). The unavailability of comprehensive, labelled video dataset: We have trained our framework on two publicly 

available datasets RAVDESS and CREMA-D showing actors of median age,between 20 and 50 years old, performing 

different discrete emotions. Thus, applying such architecture people with an age out of this range (e.g., older people) 

may reduce the accuracy scores because of the facial morphology variations involved. In addition, all emotions in the 

datasets are synthetically generated and may differ from natural expressions. Moreover, both databases are acquired 

in controlled environments. In real-life scenarios, the model may show lower performances because of the challenging 

lighting conditions or the partial occlusion of the subject’s face. 

(2). Sensitivity to face pose variation: A different drawback of the system relates to its inability to cope with 

important head pose variation (i.e., superior to 20 degrees). A strategy to solve such an issue is to include into the 

process 3D facial data with depth information.  

(3). The inability of identifying micro-emotions: The micro-emotions are brief expressions a person exhibits in 

high-stakes situations while showing their feelings. Such emotions may reveal the actual real state of a person but are 

very difficult to be identified by an automatic system or even by a novice person. 

(4). The capacity to detect only primary/basic emotions: The proposed system has been designed to detect only the 

primary emotional states. However, a person may perform many secondary emotional states (such as: frustration, 

depression, satisfaction, etc). To deal with such cases additional training data with corresponding annotations is 

required. 

5. Conclusions and perspectives 

In this paper, we have proposed a novel deep attention model for discrete emotion recognition. The proposed 

approach is based on multimodal audio and visual information fusion and is designed to leverage the mutually 

complementary nature of features while maintaining the modality-specific information. From the methodological 

point of view, the core of the approach relies on: (1). an intra-modal attention mechanism that takes full advantage of 

the CNN characteristics to yield attentive (spatial, channel-wise and temporal) visual and audio features; (2). a cross-

attention mechanism, that fusion the A-V data representations and efficiently combines the modalities in a 

complementary fashion; (3). a novel loss function that extends the triplet loss with a polarity constraint that takes into 

consideration the relations between the discrete emotion classes, designed to improve the latent space data 
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representation. By considering various attention mechanisms our model can better focus on discriminative face regions 

and relevant keyframes. In addition, the emotion constraint can guide the attention generation. 

The experimental results conducted on two popular benchmarks RAVDESS [4] and CREMA-D [5] validate the 

proposed framework which achieves state-of-the-art performances with average accuracy scores of 89.25% and 

84.57%, respectively. In addition, when compared to other methods [37], [56], [57], [27], [41], [58], [59] our 

methodology demonstrates its superiority with gains in accuracy ranging in the [1.72%, 11.25%] interval. 

For future work, we intend to extend the architecture to include both emotion classification and regression tasks. 

Furthermore, the performance of the model can be increased by taking into consideration the information included in 

the textual channel (i.e., speech to text transcripts, subtitle/close caption documents). 
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