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Abstract: The problem of estimating the spatio-functional expectile regression for a given spatial
mixing structure (Xi, Yi) ∈ F ×R, when i ∈ ZN , N ≥ 1 and F is a metric space, is investigated. We
have proposed the M-estimation procedure to construct the Spatial Local Linear (SLL) estimator
of the expectile regression function. The main contribution of this study is the establishment of
the asymptotic properties of the SLL expectile regression estimator. Precisely, we establish the
almost-complete convergence with rate. This result is proven under some mild conditions on the
model in the mixing framework. The implementation of the SLL estimator is evaluated using an
empirical investigation. A COVID-19 data application is performed, allowing this work to highlight
the substantial superiority of the SLL-expectile over SLL-quantile in risk exploration.

Keywords: functional data; small ball probability; local linear estimation; Kolmogorov entropy;
complete convergence; asymmetric least square regression

1. Introduction

Spatial data is commonly generated in multiple fields of study such as economet-
rics, epidemiology, environmental science, image analysis, oceanography, meteorology,
geostatistics, and others. Generally, the collection of this data occurs across various dis-
ciplines and is subsequently subjected to statistical analysis at designated measurement
sites. Please refer to [1–5] in order to gain insights into various statistical applications. It
is important to emphasize the significance of including a spatio-temporal framework in
the modeling of some real problems. In this study, we employ the latest advancements in
spatio-functional statistics to propose the Local Linear Free-Distribution (LLFD) modeling
of Spatio-Functional Chronological Series Data (SFCSD).

In the context of nonparametric estimation for spatial data, the existing papers are
mainly concerned with the estimation of probability density and regression functions;
we cite a key reference: Tran [6]. He gave the asymptotic normality of the probability
density function by the kernel estimation. Ref. [7] introduced a kernel method to estimate
a spatial conditional regression under mixing spatial processes and investigated weak
consistency and convergence rates. The general problem of the regression estimation for
random fields is examined by [8]. The authors showed the uniform consistency on compact
sets of the proposed spatial predictor as well as its asymptotic normality. Alternatively
to the kernel Nadaraya–Watson, the LLFD was introduced by [9]. Under mild regularity
assumptions, the authors established the asymptotic normality of the proposed estimator
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and its derivatives. The auto-regression function was investigated by [10]. The authors
established the uniform convergence on compact sets under general conditions and the
optimal rates of convergence in L∞, while the spatial LLFD estimation was considered
in [11]. In the same way, Li and Tran [12] combined the LLFD estimation with the nearest
neighbor algorithm. For recent references on the topic, we refer to [13,14]. Concerning the
SFCSD case, the initial exploration was conducted by [15]. In the last reference, the weak
and strong consistencies of the estimate together with almost-sure rates of convergence are
established. For further asymptotic results on this operator, one can refer to [16,17], while,
for other functional models such as the modal regression and/or the quantile regression,
we refer to [18–20]. Ref. [5] developed an asymptotic theory of conditional U-statistics for
locally stationary random fields. The authors employed a stochastic sampling scheme that
may create irregularly spaced sampling sites in a flexible manner and include both pure
and mixed increasing domain frameworks.

In this paper, we investigate conditional expectile, which is based on the least asymmet-
rically weighted squares estimation, which was adopted from the econometrics literature
and is one of the fundamental statistical application tools. This method frequently employs
the [21] concept of expectiles, the least squares equivalent of the conventional quantiles.
They were given this name because they resemble the quantiles of a random variable,
but, unlike quantiles, they are based on a quadratic loss function, as in the case of the ex-
pectation; see [22–25] for more information. The expectile regression function has various
uses in insurance, finance, and economics. In particular, it is used to assess the uncertain
prospective positions of outcomes. The first investigations in this model were introduced
in [26]. They utilized the parametric techniques to provide an estimator of the expectile
model in unconditional and uni-dimensional cases. In the finite-dimensional case, the ex-
pectile operator was elaborated by [25] for the i.i.d. case and [27] for the strong mixing case.
More alternative functional times series cases and or smoothing algorithms were developed
in the literature for functional statistics. Such studies include the ergodic case in [28] and
the k number of neighborhoods in [29]. In [30], a modification of ranked set sampling
called moving extremes ranked set sampling is considered for the best linear unbiased
estimator for the simple linear regression model. It is worth noting that the modeling of
functional data has increasingly become an appealing avenue of research in mathematical
statistics. This research direction has been popularized through numerous monographs or
journal special issues (see, for instance, [31–33]). In this context, various regression models
are introduced to appropriately fit this kind of data. We mention, for instance, the linear
regression [34], the single index functional model (see [35], the classical regression [36], the
functional partial linear regression (see [37], and the relative error regression [38]. For more
recent references on the subject, refer to [39]. However, all the aforementioned models con-
trol the co-variability between the input and output variables through the central tendency.
The expectile regression model fits this co-variability in a more comprehensive manner,
allowing one to control the center as well as the tails of the data.

In this work, we investigate the spatio-functional estimation using the LLFD algorithm.
We demonstrate the almost-complete convergence (a.c.c) rate of the constructed expectile
regression estimators. We establish these results under general conditions, allowing the
consideration of several particular situations. For instance, the strong mixing case is a
special case of our spatial setting and the kernel method is a particular case of local linear
strategy. This theoretical development has many applied derivatives, for example in
financial risk assessment. It constitutes a good financial risk tool, such as for liquidity risk
in banking or market risk in stock exchanges. The effectiveness of the proposed estimator
is evaluated using a real data model and empirical data analysis.

The layout of the article is as follows. We present the spatio-functional model in
Section 2. In Section 3, we specify the necessary conditions for the main results. The con-
vergence rate of the proposed estimator is presented in Section 4. Section 5 is dedicated
to discussing the computationability of the constructed expectile regression estimators.
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Section 6 presents some concluding remarks. To prevent interrupting the flow of the
presentation, all proofs are gathered in Appendix A.

2. Methodology
2.1. The Spatio-Functional Structure

Let (X~i,Y~i),~i ∈ ZZN be a functional random field valued in F × IR. The functional
space (F , Dis) is structured as a semi-metric space with distance Dis. Furthermore, let N
be a nonnegative integer in IN∗ and suppose that (X~i,Y~i) is observed over a polyhedron
area expressed by

I~n =

{
~i = (i1, . . . , iN) ∈ ZZN : ik = 1, 2, . . . nk, k = 1, . . . , N

}
.

The vector~i = (i1, i2, . . . , iN) in ZZN is called a site and, for the N-uplet~n = (n1, n2, . . . , nN)

in ZZN , we let ~̂n = ∏N
i=1 ni. The asymptotic design of this article is the increasing domain

asymptotic. Formally, the latter is achieved when min{ni} → ∞ and |ni/nj| < C and/or
C′ for j, k such that 1 ≤ j, k ≤ N, with C and/or C′ being nonnegative constants. For this
asymptotic design, we suppose that the functional (X~i,Y~i) for~i ∈ ZZN has a strong mixing
characteristic: there is a function ψ(·) such that ψ(u) ↓ 0 as u→ ∞:

Mα

(
F(A), F(B)

)
= sup

E∈F(A), E′∈F(B)

∣∣∣IP(E ∩ E′)− IP(E)IP(E′)
∣∣∣

≤ φ
(

Card(A), Card(B)
)

ψ
(

Dist(A, B)
)

, (1)

where A, B are two subsets with finite cardinals and F(C) is the sigma-algebra generated

by the functional indexed by~i ∈ C. Dist
(

A, B
)

means the distance between A and B in

the Euclidean sense and Card(C) denotes the cardinal of C. φ : N2 → R+ is a symmetric
nondecreasing positive function in each variable. Finally, the functions φ(·) and ψ(·) satisfy

for all integers n, m φ
(
n, m

)
≤ C min

(
n, m

)
, (2)

and

for some a > 0
∞

∑
i=1

iaψ(i) < ∞. (3)

Remark 1. Notice that assumption (2) may be replaced by the following one:

ψ(n, m) ≤ C(n + m + 1)κ , for some κ > 0.

Both the conditions (2) and (3) are used in [6,10]. It is important to observe that, when the value of
N is equal to 1, the process (Xi, Yi) is referred to as a strong mixing process. In his comprehensive
analysis, [40] provided a detailed examination of mixing processes, illustrating his points with
relevant examples. To facilitate the reader’s comprehension of the spatio-functional data that meet
the strong spatial mixing condition, as denoted by Equations (1)–(3), we provide an example of such
data, namely, the spatial linear process. The definition and theoretical features of this process can
be found in the works of [41,42]. Ref. [43] demonstrates that this particular process, given certain
supplementary conditions, fulfills the assumption in (1).
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2.2. Numerical Approximation of Expectile with Curve Regressor

In the rest of the paper, we assume that the functional random field (X~i,Y~i) satisfies
the conditions (2) and (3). The LLFD of the expectile is obtained by assuming, for every Z
in the vicinity of X , for p ∈ (0, 1),

EXPp(Z) = EXPp(X ) + EXP′p(X )α(Z ,X ) + o(α(Z ,X )) with α(Z ,Z) = 0. (4)

where α(·, ·) is a bilinear locating function such that

For all X ′ ∈ F , C′Dis(X ,X ′) ≤ |α(X ′,X )| ≤ Dis(X ,X ′). (5)

Under this smoothing consideration, we define the LLFD of the expectile of EXPp(x) by
finding the minimizers (β̂1, β̂2) of

min
(β1,β2)∈R2

∑
~i∈I~n

(
Y~i − β1 − β2α(X~i, x)

)2
∣∣∣∣p− 11{Y~i−β1−β2α(X~i ,x)≤0

}∣∣∣∣E(Dis(x,X~i)
λ

)
, (6)

where λ is a positive real sequence and E is a kernel function. Recall that the definition
(6) is motivated by the natural definition of the pth expectile of Y , conditioned by X = x,
denoted by EXPp(x), that is, minimizer w.r.t. t, of the following minimization problem:

min
t

IE
[
Lp(Y − t) |X = x

]
, (7)

where Lp(s) = |p − 11{
s>0
}|s2 and 11A is the indicator of A. Observe that, unlike the

kernel estimator, the LLFD estimator is not explicitly defined. Thus, the establishment
of the claimed asymptotic properties is a hard problem. In particular, this requires the
representation of Bahadur associated with ÊXPp(y|x).

Remark 2.

• The Nadaraya–Watson estimator employs local constant approximations. According to the
numerical analyst [44], “Through all of scientific computing runs this common theme:
Increase the accuracy at least to second order. What this means is: Get the linear term right”.
To clarify, a local constant approximation is deemed inadequate, whereas a local linear fit
is considered preferable. Local linear fitting is an approach that is appealing from both a
theoretical and practical perspective. The advantages of local linear fitting are discussed
in the work of [45]. The proposed methodology demonstrates its adaptability to several
design types, encompassing both random and fixed patterns, as well as highly clustered and
virtually homogeneous designs. Moreover, it is worth noting that there is a lack of border
effects observed in this context. The bias observed at the boundary remains consistent with
that observed in the interior, without the need for the implementation of specific boundary
kernels. No adjustments to the boundary are necessary when using local linear fitting, which
is particularly advantageous in multidimensional scenarios where the boundary can involve
a significant number of data points (see references [46,47]). Modifications to boundaries in
higher dimensions pose significant challenges;

• It is clear that the regular regression can be viewed as particular case for our study. Indeed,
if we put p = 0.5, the optimization problem (7) is equivalent to optimization with a scoring
function associated to the least squared error. Thus, we can say that this also covers the local
linear estimation of the regular regression studied, as constructed by [48].
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3. Hypotheses and Notation

Let (un), for n ∈ N, be a sequence of real r.v.s. We say that (un) converges almost-
completely (a.co.) toward zero if, and only if, for all

ε > 0,
∞

∑
n=1

P(|un| > ε) < ∞.

Moreover, we say that the rate of the almost-complete convergence (a.c.c.) of (un) toward
zero is on the order vn (with vn → 0 ), and we write un = Oa.co.(vn) if, and only if, there
exists ε > 0 such that

∞

∑
n=1

P(|un| > εvn) < ∞.

This kind of convergence implies both the almost-sure convergence and the convergence
in probability. We aim to demonstrate the a.c.c. of the locally linear estimator ÊXPp(x) of
EXPp(x). Firstly, we define

Gp(y|x) := IE
[
Lp(Y − t) |X = x

]
,

Γ1(y|x) := −IE
[
(Y − y)11{Y−y≤0

} | X = x
]
,

Γ2(y|x) := IE
[
(Y − y)11{Y−y>0

} | X = x
]
.

Next, assume the following:

(C1) The small function P(X ∈ B(x, λ)) = ϕx(λ) satisfies ϕx(λ) > 0. Moreover, there
exists a function χx(·) such that

for all S in [0, 1], lim
λ→0

ϕx(Sλ)

ϕx(λ)
= χx(S)

and the function α(·, ·) exists such that

sup
U∈B(x,R)

|α(U , x)− Dist(x,U )| = o(R);

(C2) The operators Γi=1,2(·|x) are in class C1(IR) and satisfy ∀t1, t2 ∈ IR, ∀z1, z2 ∈ Nx,∣∣∣Γi(t2|z2)− Γi(t1|z1)
∣∣∣ ≤ C(dki (z1, z2) + |t1 − t2|k

′
i ), for some, ki, k′i > 0;

and Gp(·|x) verifies
∂Gp(EXPp(x)|x)

∂, y
< 0;

(C3) For all~j 6=~i,

0 < sup
~i 6=~j

IP
[
(X~j,X~i) ∈ B2(x, λ)

]
≤ C(ϕx(λ))

(a+1)/a,

for C > 0 and 1 < a < δ
N . Moreover, the random field (Xj, Yj)j∈N satisfies, for all

~j 6=~i, almost surely,

IE
[∣∣Y~iY~j∣∣∣∣∣X~i, X~j

]
≤ C < ∞, and IE

[∣∣Y~i∣∣q∣∣∣X~i] < C < ∞,

for some q > 4;
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(C4) The kernel E(·) is supported in (−1, 1), nonnegative, and differentiable in its support,
satisfying that

D =


E(1)−

∫ 1

−1
E ′(t)χx(t)dt E(1)−

∫ 1

−1
(tE(t))′χx(t)dt

E(1)−
∫ 1

−1
(tE(t))′χx(t)dt E(1)−

∫ 1

−1
(t2E(t))′χx(t)dt


is a positive definite matrix;

(C5) There exists V0 > 0, such that

Cñ
5N
δ −1+V0 ≤ ϕx(λ); for C > 0.

Obviously, the five assumptions are not restrictive. They cover the functional aspect,
the nonparametric feature, as well as the spatial dependency. Precisely, the functional path
is explored by (C1), and the nonparametric aspect is explored by (C2), while the spatial
dependency is evaluated by (C3). The rest of the conditions can be considered as technical
assumptions allowing the rate of the a.c.c. All the considered assumptions are compared
to the previous works in nonparametric spatial functional time series data; for instance,
see [29].

4. Main Results

The a.c.c. convergence rate of ÊXPp(x) to the expectile EXPp(x) is stated as follows.

Theorem 1. If (C1)–(C5) hold, then, as~n→ ∞,

∣∣∣ÊXPp(x)− EXPp(x)
∣∣∣ = O(λκ) + Oa.co.

(√
ln ñ

ñϕx(λ)

)
,

where κ is equal to min(k1, k2, k′1, k′2).

Proof. For the theorem’s proof, we put α~i = α(X,X~i) and~i ∈ In E~i = E(λ
−1Dis(x,X~i)).

For this, we recall the following lemma.

Lemma 1 (see [18]). Consider A~n as a vectorial sequence of functions that satisfy the following:

(i) For every λ ≥ 1 and multivariate ς:

>A~n(λς) ≤ >ςA~n(ς);

(ii) Let D a positive definite matrix and multivariate ς0. Verify ‖A~n(ς0)‖ = oa.co.(1) and

sup
‖ς‖≤M

‖A~n(ς) + λ0Dς−A~n(ς0)‖ = oa.co.(1), for λ0 > 0.

Then, for any multivariate sequence ς~n(ς0), in such a way that A~n(ς~n) = oa.co.(1), we have

‖ς~n‖ ≤ M, a.co. (8)

For all ς = (ρ, υ) in R2, we let

Φ~i(ς) = Lp(Y~i − (ρ + EXPp(x))− (λ−1υ + EXP′p(x))α(X~i, x)),

where
Lp(t) = t

(
p11[t≥0] + (1− p)11[t≤0]

)
.
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Observe that Lp(t) is the same as in (7). Thus, the main result is deduced from the use of
Lemma 1 in [18] on

A~n(ς) =
1

ñϕx(λ)

(
∑~i∈In

Φ~i(ς)E~i
∑~i∈In

Φ~i(ς)λ
−1α~iE~i

)
.

Of course, we have to check the required conditions on

A~n(ς) and ς~n =

(
ÊXPp(x)− EXPp(x)

λ(ÊXP′p(x)− EXP′p(x))

)
.

Subsequently, the theorem’s proof is concluded from the following technical lemmas.

Lemma 2. If (C1)–(C5) hold, then

‖A~n(ς0)‖ = O(λk) + Oa.co.

(√
ln ñ

ñϕx(λ)

)
.

Lemma 3. If (C1)–(C5) hold, then

sup
‖ς‖≤M

‖ E[A~n(ς)−A~n(ς0)] + gp(EXPp(x)|x)Dς ‖= O(λκ),

where

gp(y|x) = −
(

∂

∂t
Γ1(EXPp(x)|x) + ∂

∂t
Γ2(EXPp(x)|x)

)
.

Lemma 4. If (C1)–(C5) hold, then

sup
‖ς‖≤M

‖ A~n(ς)−A~n(ς0)−E[A~n(ς)−A~n(ς0)] ‖= Oa.co.

(√
ln~n

ñϕx(λ)

)
.

5. Real Data Application

Since COVID-19 has appeared, the health authorities in various countries have acceler-
ated scientific research to control the propagation of the pandemic. At this stage, statistical
modeling constitutes a principal tool to predict the future movement of the pandemic,
allowing us to prevent the fast spread of the infection by this virus. The most appropriate
models for these issues are those used to analyze the extreme values (see, [49,50]). The ex-
treme values (EV) analysis is usually based on the estimation of the quantile function.
Alternatively, we aim in this paper to implement the expectile model to fit the extreme
values of the COVID-19 data. Recall that, as previously discussed, the expectile function
has many advantages as risk models compared to the quantiles. In particular, the quantiles
is an incoherent measure and it is defined by a backtesting measure based only on the
frequencies of violations of fixed risk threshold, whereas the expectiles are coherent and
elicitable with tail expectation. Therefore, as the expectation function relates the frequencies
and values of data, the expectile model measures the risk’s severity and frequency. On the
other hand, the scoring measure of the expectile model is more regular and more smooth
than the quantile. Thus, its implementation is very easy in practice. Next, the expectile is
more sensitive to outliers, which is widely beneficial in risk investigation. In this sense, it
detects the excessive propagation of risk better. For these reasons, the usefulness of the
expectile regression in this kind of risk analysis is indisputable. To emphasize this great
importance, we conduct a comparison study between both models (quantile and expectile).
Note that the quantile estimator Q̂unp is obtained by taking in (6)

Lp(s) = (2p− 1)s + |s|.
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Such comparative study is performed using COVID-19 data collected from 50 states in the
USA during the period 3 April 2020 to 3 April 2021. The studied data are available on the
website (https://covidtracking.com/data/, accessed on 1 August 2023). In this comparison
study, we aimed to control the effect of the spatial interaction between the states on the
propagation of the pandemic. Specifically, we predict the number of hospitalized cases
one day ahead given the curves of the last 30 days of the positive tests in the neighboring
states. Formally, we denote by Y(i1,i2) the number of hospitalized cases at day i1 in the state
i2 and, in X(i1,i2), the curve of the last 30 days before i1 at the state i2. The spatio-temporal
interaction of the data is shown in Figure 1.

Positive_case

2020−07 2020−08 2020−09

2020−10 2020−11 2020−12

2021−01 2021−02 2021−03

50000

100000

150000

200000

250000

Figure 1. The spatio-temporal interaction of the hospitalized cases.

It is clear that the spatial vicinity of the states influences the propagation of the
pandemic, in the sense that the propagation of the pandemic in the states affects others.
Moreover, it clearly clearly that the data are affected by the presence of outliers in the hos-
pitalized cases over the considered period, varying between 0 and 90,000 cases. Therefore,

https://covidtracking.com/data/
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in order to accentuate the feasibility of the expectile and to detect the impact of the spatial
interaction in the propagation of the pandemic, we compare the spatial prediction approach
for the two models in both situations. In the first one, we neglect the spatial interaction
within the data and we proceed without spatial trending, while the second one is based
on the spatial detrending. Specifically, we control the spatial trending of two variables
(response and explanatory) by the same approach as in [9], using the regression relationship
defined by

X̃i = m1(i) + Xi and Ỹi = m2(i) + Yi.

So, in the first situation, we compute the estimators ÊXPp and Q̂unp by (X̂i, Ŷi)i, whereas,
in the second situation, we construct the estimators from the initial data (Xi, Yi)i. Obviously,
the transformed data for the first situation are obtained by a pilot estimator for the functions
m1 and m2. The latter is defined by

m̂1(i0) =
∑i∈In K(a−1

n ‖i0 − i‖)Xi

∑i∈In K(a−1
n ‖i0 − i‖)

(
resp. m̂2(j0) =

∑j∈In K(b−1
n ‖j0 − j‖)Yj

∑j∈In K(b−1
n ‖j0 − j‖)

)
,

where K is the kernel function and an and bn constitute the bandwidth parameters within
the real regression. Thus, the estimators ÊXPp and Q̂unp for the spatial detrending
situation are obtained by

Ŷi = Ỹi − m̂2(i) and X̂i = X̃i − m̂1(i).

The real regressions m1 and m2 are obtained using the R-code npreg in the np-R-package.
The bandwidth parameters bn and an are selected by default, using the routine npregbw
from the same R-package. The operator–estimators ÊXPp and Q̂unp are deduced from the
(0, 1)-quadratic kernel, and the smoothing sequence λ is selected locally by using a method
of cross-validation over the k-nearest neighbors under the following MSE error:

MSE(p) =
1
n ∑

i

(
Yk − ξ̃0.5(Xk)

)2
,

where ξ̃p means both estimators ÊXPp and Q̂unp. This rule is optimized from the subset

Hn =

{
a ≥ 0 :

n

∑
i=1

11B(z,a)(Xi) = k

}
,

where k ∈ {5, 15, 25, . . . , 0.5n}. Furthermore, the selection of the semi-metric is obtained by
PCA-metric, which is more appropriate for this kind of discontinuous functional regressors.
The EV comparison study is evaluated for the case p = 0.01, in the sense that we predict the
1% largest values of the parabolised hospitalized case for the 50 states at various periods.
The prediction results are evaluated using the following backtesting measure:

Err =
1
50

50

∑
i=1

ρ0.95(Yi − ξ̃0.95(Xi)).

We evaluate this error for various periods. Specifically, we evaluate this error for 60 different
days with both models and both situations. The box-plot of these errors is given in Figure 2.

Without surprise, the efficiency of ÊXPp and Q̂unp are strongly affected by the spatial
correlation as well as the choice of the model, in the sense that the Spatial Expectile With
Detrending (SEWD) performs better than the other models. It is clear that the SEWD shows
preferment over the Spatial Expectile Without Detrending (SEWOD), the Spatial Quantile
With Detrending (SQWD), and the Spatial Quantile Without Detrending (SQWOD). Such
a statement confirms the spatial interaction within the data, which is that the error in
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the spatial detrending is smaller than the case when the spatial dependency is not taken
into account.

SEWD SQWD SEWOD SQWOD

0
1

0
2

0
3
0

Figure 2. The spatio-temporal interaction among the hospitalized cases.

6. Concluding Remarks

As a risk model within regression settings, the M-estimation technique is employed to
construct a Spatial Local Linear (SLL) estimate for the expectile function. As asymptotic
behavior, we explicitly define the convergence rate for the obtained estimator. Two princi-
pal features characterize this contribution. The first one is the strong mixing property of
the spatial correlation, while the second one concerns the dimension of the input random
variable, which is is not necessarily finite. Such consideration allows one to improve the
asymptotic property of the constructed estimator in spatio-functional time series analysis.
Moreover, the expression of the convergence rate explores various factors of this study,
including correlation, data functionality, and the functional class of the distribution. The im-
plementation of the SLL estimator is assessed through empirical investigation. A real
data application is conducted to showcase the superiority of the SLL-expectile over the
SLL-quantile in risk assessment. The outcomes of the computational part confirm the
advantages of the expectile over the quantiles as a risk analyzer. This is mainly due to the
high sensitivity of the outliers exhibited by the expectile model. The extreme events have
great consideration in risk analysis because they generate an important cost in practice. In
addition to these important outcomes, the present paper introduces significant avenues
for future exploration. Specifically, forthcoming research could delve into adapting our
framework to handle censored data scenarios, which hold promise for intriguing findings.
Another pivotal question involves delving into the limiting distributions of the estima-
tors under investigation. This endeavor involves intricate mathematical complexities that
transcend the scope of the present paper.

Furthermore, the path of investigation leads to the consideration of a functional kNN
local linear approach for expectile regression estimators. This potential avenue presents the
prospect of an alternative estimator that combines the merits of both methodologies—the
local linear technique and the kNN approach.
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The literature on nonparametric regression analysis, specifically where both the out-
come and regressor variables are of functional nature, is still limited in the literature.
Moreover, the application of our findings to this particular scenario is an inherent possibil-
ity within the scope of our current study. It should be noted that the concept of expectile,
as employed in this paper, is not applicable when the variable Y is of a functional na-
ture. This is due to the inherent inability to establish an order among functional variables.
However, it is possible to utilize [51]’s concept for situations where the answer variable
is multi-dimensional.

Another potential direction for future research involves the exploration of more intri-
cate dependence structures, such as the ergodic spatial dependence or the quasi-association
functional random fields.
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Appendix A

This section is devoted to the proof of our results. The aforementioned notation is also
used in what follows.

Proof of Lemma 2. Let us define, for j = 0, 1,

Aj
~n =

1
ñϕx(λ)

∑
~i∈In

Φ~i(ς0)λ
−jα

j
~i
E~i, j = 0, 1.

Thus, it suffices to prove

Aj
~n = O(λk) + Oa.co.

(
ln ñ

ñϕx(λ)

)1/2
, j = 0, 1.

Therefore, we split the proof into two assertions:

∣∣∣Aj
~n −E

[
Aj
~n

]∣∣∣ = Oa.co.

(√
ln ñ

ñϕx(λ)

)
for j = 0, 1. (A1)

and
E
[

Aj
~n

]
= O(λκ), for j = 0, 1, (A2)

https://covidtracking.com/data/
https://covidtracking.com/data/
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starting with the deterministic part (A2). Using the fact that

(1− p)Γ1(EXPp(x)|x) + pΓ2(EXPp(x)|x) = 0,

we readily infer that

E
[

A0
~n

]
=

1− p
ϕx(λ)

E
[
E1(Y1 − EXPp(x) + EXP′p(x)α~111[Y1≤EXPp(x)+EXP′p(x)α~1)]

]
+

p
ϕx(λ)

E
[
E1(Y1 − EXPp(x) + EXP′p(x)α~111[Y1≥EXPp(x)+EXP′p(x)α~1]

]
≤ 1− p

ϕx(λ)
E
[∣∣∣Γ1(EXPp(x) + EXP′p(x)α~1|(X~1)− Γ1(EXPp(x)|x)

∣∣∣E1

]
+

p
ϕx(λ)

E
[∣∣∣Γ2(EXPp(x) + EXP′p(x)α~1|(X~1)− Γ2(EXPp(x)|x)

∣∣∣E1

]
.

Making use of the condition (C2), we obtain

E
[

A0
~n

]
≤ Cλκ .

Conversely, for E
[
A1
~n

]
, we use

λ−1α~1E111B(x,h)(X1)| ≤ E1,

implying that
E
[

A1
~n

]
≤ E

[
A0
~n

]
≤ Cλκ .

Now, to investigate (A1), let us define

Aj
~n =

1
ñϕx(λ)

∑
~i∈In

ς
j
~i

where
ς

j
~i
= (Φ~i(ς0)λ

−jα
j
~i
E~i − IE[Φ~i(ς0)λ

−jα
j
~i
E~i]) for j = 0, 1.

Next, consider a spatial block composition as in [6]. This decomposition splits the sum on
2N sums. Indeed, for a given p~n, we define

T(1, x,~n,~j) =
2jk p~n+p~n

∑
ik=2jk+1k=1,2,...,N

ς
j
~i
,

T(2, x,~n,~j) =
2jk p~n+p~n

∑
ik=2jk+1k=1,2,...,N−1

(j~n+1)p~n

∑
i~n=2j~n p~n+p~n+1

ς
j
~i
,

T(3, x,~n,~j) =
2jk p~n+p~n

∑
ik=2jk+1k=1,2,...,N−2

2(jN−1+1)p~n

∑
iN−1=2jN−1 p~n+p~n+1

2jn p~n+p~n

∑
i~n=2jn p~n+1

ς
j
~i
,

T(4, x,~n,~j) =
2jk p~n

∑
ik=2jk p~n+1k=1,2,...,N−2

2(jN−1+1)p~n

∑
iN−1=2jN−1 p~n+p~n+1

2(j~n+1)p~n

∑
i~n=2j~n p~n+p~n+1

ς
j
~i
,

and so on. Next, let

T(2N−1, x,~n,~j) =
2(jk+1)p~n

∑
ik=2jk p~n+p~n+1k=1,2,...,N−1

2j~n p~n+1

∑
i~n=2j~n p~n+p~n

ς
j
~i
,
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T(2N , x,~n,~j) =
2(jk+1)p~n

∑
ik=2jk p~n+1k=1,2,...,N

ς
j
~i′

.

Additionally, we set
U(x,~n, i) = ∑

~j∈J
T(i, x,~n,~j),

with

J =

{
~j = (jk)1≤k≤N with 0 ≤ jk ≤ rk − 1

}
,

and r~i = 2n~i p−1
~n , i = 1, . . . , N. Remark that

| A~n(ς0)− IE[A~n(ς0)] |=
1

ñϕx(λ)

2N

∑
~i=1

U(x,~n, i). (A3)

So, it suffices to compute

IP(U(x,~n, i) ≥ ηñϕx(λ)) for all i = 1, . . . , 2N .

We prove only the case i = 1; the proof of the other cases is obtained using the same ideas.
It is obtained by enumerating the M = ∏N

k=1 rk = 2−Nñp−N
~n ≤ ñp−N

~n random variables
T(1, x,~n,~j);~j ∈ J in the line order Z1, . . . , ZM. Thus, each Zj is

Zj = ∑
i∈I(1,x,~n,~jj)

ς
j
~i
,

with

I(1, x,~n,~jj) =

{
~i : 2jkj

p~n + 1 ≤ ik ≤ 2jkj
p~n + p~n; k = 1, 2, . . . N

}
.

Clearly, each set I(1, x,~n,~jj) contains pN
~n sites and are distant by at least pN

~n . Therefore,
the variables Z1, Z2, . . . , ZM can be approximated by independent variables Z∗1 , Z∗2 , . . . , Z∗M
identically distributed as Zj=1,...,M, such that

r

∑
i=1

IE | Zi − Z∗i |≤ 2CMpN
~n φ((M− 1)pN

~n , pN
~n )ψ(pN

~n ).

Furthermore,
IP(U(x,~n, 1) ≥ ηñϕx(λ)) ≤ V1 + V2n,

where

V1 = IP

(
|

n

∑
j=1

Z∗~j |≥
ηñϕx(λ)

2

)
and

V2 = IP
(

∑ | Z~j − Z∗~j |≥
ηñϕx(λ)

2

)
.

For V2, we use the Markov inequality to obtain

V2 = IP
(

∑ | Z~j − Z∗~j |≥
ηñϕx(λ)

2

)
≤ 1

ηñϕx(λ)
∑ IE

[
| Zj − Z∗j |

]
≤ 2MpN

~n (ηñϕx(λ))
−1φ((M− 1)pN

~n , pN
~n )ψ(p~n).
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As ñ = 2N MpN
~n and φ((M− 1)pN

~n , pN
~n ) ≤ pN

~n , then, for η = η0

√
ln ñ

ñϕx(λ)
, we have

V2 ≤ ñpN
~n (ln ñ)−1/2(ñϕx(λ))

−1/2ψ(p~n).

By choosing p~n = C
(

ñφx(λ)

ln ñ

)1/2N
, we have

V2 ≤ ñψ(p~n). (A4)

Consequently, combining (3) and (C4), we conclude that

∑
~n

ñψ(p~n) < ∞.

Concerning V1, we write

V1 = IP

(
|

n

∑
j=1

Z∗~j |≥
Mηñϕx(λ)

2M

)

≤ 2 exp

(
−(ηñϕx(λ))2

MVar[Z∗1 ] + CpN
~n ηñϕx(λ)

)
.

Next, we asymptotically evaluate Var[Z∗1 ]. Indeed,

Var[Z∗1 ] = ∑
~i∈I(1,x,~n,1)

Var[ς~i] + R~n,

where
R~n = ∑

~i 6=j∈I(1,x,~n,1)

| cov(ς~i, ς~j) | .

By Assumptions (C1) and the first part of (C3), we have

Var[ς~i] ≤ C(ϕx(λ) + (ϕx(λ))
2).

Hence,
∑

~i∈I(1,x,~n,1)

Var[ς~i] = O(pN
~n ϕx(λ)).

Now, for R~n, we split the sum over

S1 = {~i,~j ∈ I(1, x,~n, 1) : 0 <‖~i−~j ‖≤ C~n},
S2 = {~i,~j ∈ I(1, x,~n, 1) :‖~i−~j ‖> C~n},

where C~n goes to +∞ when~n→ ∞. Therefore,

R~n = ∑
(~i,~j)∈S1

| cov(ς~i, ς~j) | + ∑
(~i,~j)∈S2

| cov(ς~i, ς~j) |

= R1
~n + R2

~n.

On the one hand, we have

R1
~n ≤ C ∑

(~i,~j)∈S1

| IE[E~iE~j] | + | IE[E~i]IE[E~j] |)

≤ CpN
~n ϕx(λ)

(
(ϕx(λ))

1/a + ϕx(λ)
)
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≤ CpN
~n (ϕx(λ))

(a+1)/a.

On the other hand, we have

R2
~n = ∑

(~i,~j)∈S2

| cov(ς~i, ς~j) | .

As the random variables Ej are bounded, we deduce from covariance inequality in [52] that

| cov(ς~i, ς~j) |≤ Cψ(‖~i−~j ‖).

Therefore, we obtain

R2
~n ≤ C ∑

(~i,~j)∈S2

ψ(‖~i−~j ‖) ≤ CpN
~n ∑
~i:‖~i‖≥C~n

ψ(‖~i ‖)

≤ CpN
~n C−Na

~n ∑
~i:‖~i‖≥C~n

‖~i ‖Na ψ(‖~i ‖).

Let us denote
C~n = (ϕx(λ))

−1/Na.

Then, we have

R2
~n ≤ CpN

~n C−Na
~n ∑

~i:‖~i‖≥C~n

‖~i ‖Na ψ(‖~i ‖)

≤ CpN
~n (ϕx(λ)) ∑

~i:‖~i‖≥C~n

‖~i ‖Na ψ(‖~i ‖).

Once again, by (3) and (C4), we obtain

R2
~n ≤ CpN

~n (ϕx(λ)) and R1
~n ≤ CpN

~n (ϕx(λ)).

Consequently, we have
Var[Z∗1 ] = O(pN

~n (φx(λ))),

implying

V1 ≤ exp(−C(η0 ln ñ)).

Finally, we conclude that

∣∣∣Aj
~n −E

[
Aj
~n

]∣∣∣ = Oa.co.

(√
ln ñ

ñϕx(λ)

)
.

Since A~n(ς0) =

(
A0
~n

A1
~n

)
, then

‖A~n(ς0)‖ = O(λk) + Oa.co.

(
ln ñ

ñϕx(λ)

)1/2
.

Hence, the proof is complete.

Proof of Lemma 3. We write

A~n(ς) =

(
A0
~n(ς)
A1
~n(ς)

)
with Aj

~n(ς) =
1

ñϕx(λ)
∑

~i∈In

Φ~i(ς)λ
−jα

j
~i
E~i.
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The bias term of A~n(ς) is

E
[
A0
~n(ς)

]
=

1− p
ϕx(λ)

E
[
Γ1(EXPp + ρ + (λ−1υ + EXP′p)α~i|X1)E1

]
+

p
ϕx(λ)

E
[
Γ2(EXPp + ρ + (λ−1υ + EXP′p)α~i|X1)E1

]
,

while, for A~n(ς),

E
[
A1
~n(ς)

]
=

1− p
ϕx(λ)

E
[
Γ1(EXPp + ρ + (λ−1υ + EXP′p)α~i|X1)α~iE1

]
+

p
ϕx(λ)

E
[
Γ2(EXPp + ρ + (λ−1υ + EXP′p)α~i|X1)α~iE1

]
.

By simple analytical arguments, we obtain

E
[
A0
~n(ς)

]
−E

[
A0
~n(ς0)

]
= +

1− p
ϕx(λ)

(
∂

∂t
Γ1(EXPp, x)(E[E1], λ−1E[α~iE1])ς

)
+

p
ϕx(λ)

(
∂

∂t
Γ2(EXPp|x)(E[E1], λ−1E[α~iE1])ς

)
+O(λκ) + o(‖ς‖),

and

E
[
A1
~n(ς)

]
−E

[
A1
~n(ς0)

]
= +

1− p
ϕx(λ)

(
∂

∂t
Γ1(EXPp|x)(λ−1E[α~iE1], λ−2E[α2

~i
E1])ς

)
+

p
ϕx(λ)

(
∂

∂t
Γ2(EXPp|x)(λ−1E[α~iE1], λ−2E[α2

~i
E1])ς

)
+O(λκ) + o(‖ς‖).

Finally, we obtain

E[A~n(ς)−A~n(ς0)]

= −
gp(EXPp|x)

ϕx(λ)

(
E
[
E~i
]

E
[
λ−1α~iE1

]
E
[
λ−1α~iE1

]
E
[
λ−2α2

~i
E1

] )ς

+O(λκ) + o(‖ς‖).

It is shown in [53] that

λ−aE[αa
~i
E b

i ] = ϕx(λ)

(
E b(1)−

∫ 1

−1
(uaE b(u))

′
χx(u)du

)
+o(ϕx(λ)).

Hence, we conclude that

sup
‖ς‖≤M

‖ E[A~n(ς)−A~n(ς0)] + g(EXPp|x)Dς + o(‖ ς ‖) ‖= O(λκ).

Thus, the proof is completed.
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Proof of Lemma 4. We use the compactness of the ball B(0, M) in R2, that is,

B(0, M) ⊂
d~n⋃

j=1

B(ϑj, l~n), ϑj =

(
ρj
υj

)
and l~n = d−1

~n = 1/
√

n.

Then, ∀ς ∈ B(0, M); we put j(ς) = arg minj | ς− ϑj | and we write

sup
‖ς‖≤M

‖ A~n(ς)−A~n(ς0)−E[A~n(ς)−A~n(ς0)] ‖

≤ sup
‖ς‖≤M

‖ A~n(ς)−A~n(ϑj) ‖

+ sup
‖ς‖≤M

‖ A~n(ϑj)−A~n(ς0)−E[A~n(ϑj)−A~n(ς0)] ‖

+ sup
‖ς‖≤M

‖ E[A~n(ς)−A~n(ϑj)] ‖ .

We combine the inequalities

|Lp(t)−Lp(t0) |≤ C|t− t0|+ t0|11[t<0] − 11[t0<0]|,

and
|11[Y<a] − 11[Y<b]| ≤ 11[|Y−b|≤|a−b|],

to prove
sup
‖ς‖≤M

‖ A~n(ς)−A~n(ϑj) ‖≤ 2 ∑
~i∈In

W~i,

where
W~i = W1~i + W2~i + W3~i,

and

W1~i =
1

ñϕx(λ)
sup
‖ς‖≤M

11{[|Y~i−(ρj+EXPp(x))−(λ−1υj+EXP′p(x))α~i|≤Cl~n]}

∣∣∣∣∣∣∣∣( 1
λ−1α~i

)∣∣∣∣∣∣∣∣E~i,
W2~i =

1
ñϕx(λ)

sup
‖ς‖≤M

11{[|Y~i−(ρj+EXPp(x))−(λ−1υj+EXP′p(x))α~i|≤Cl~n]}

∣∣∣∣∣∣∣∣( 1
λ−1α~i

)∣∣∣∣∣∣∣∣E~iY~i,
W3~i =

lñ
ñϕx(λ)

∣∣∣∣∣∣∣∣( 1
λ−1α~i

)∣∣∣∣∣∣∣∣E~i.
For W1~i and W3~i, we adopt the same techniques as in Lemma (2), where ς~i is replaced by
W1~i and W3~i. Thus, since E[W1~i] = O(ln ϕx(λ)) and E[W3~i] = O(l2

~n ϕx(λ)), we obtain

∣∣W1~i

∣∣ = Oa.co.

(√
ln ñ

ñϕx(λ)

)
and

∣∣W3~i

∣∣ = Oa.co.

(√
ln ñ

ñϕx(λ)

)
.

However, as W2~i is unbounded, we analyze via the truncation method. Indeed, we define

W2~i =
1

ñϕx(λ)
sup
‖ς‖≤M

11{[|Y~i−(ρj+EXPp(x))−(λ−1υj+EXP′p(x))α~i|≤Cl~n]}

∣∣∣∣∣∣∣∣( 1
λ−1α~i

)∣∣∣∣∣∣∣∣E~iY∗~i ,

such that
Y∗~i = Y~i11{Y~i |<γn

}.
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So, the convergence of W2~i is a consequence of

IP

(∣∣∣W∗2~i −W2~i

∣∣∣ > η

√
log ñ

ñϕx(λ)

)
, (A5)

∣∣∣IE[W∗2~i]− IE[W2~i]
∣∣∣ = o

(√
log ñ

ñϕx(λ)

)
, (A6)

and

IP

(∣∣∣W∗2~i − IE
[
W∗

2~i

∣∣∣ > η

√
log ñ

ñϕx(λ)

)
. (A7)

Concerning (A5). By Markov’s inequality,

IP
(∣∣∣W∗2~i −W2~i

∣∣∣ > ε0

(√
log ñ

ñ ϕx(λ)

))
≤ ∑

~i∈I~n

IP
(
Y~i > γn

)
≤ ñγ

−q
n IE

[
Y q
]
.

It follows that

IP

(∣∣∣W∗2~i −W2~i

∣∣∣ > η

√
log ñ

ñϕx(λ)

)
≤ Cñγ

−q
n . (A8)

For (A6). By Holder’s inequality with ι1 =
q
2

, for ι2, such that

1
ι1

+
1
ι2

= 1,

we have ∣∣∣IE[W∗2~i]− IE[W2~i]
∣∣∣

≤ C

IE
[
E1

] IE
[∣∣Y ∣∣11{Y≥γn

}E~i]

≤ γ−1
n

IE
[
E1

] IE1/ι1
[∣∣Y2ι1

∣∣]IE1/ι2
[
E ι2

1

]

≤ Cγ−1
n

IE
[
E1

] IE1/ι2
[
E ι2

1

]
,

allowing ∣∣∣IE[W∗2~i]− IE[W2~i]
∣∣∣ ≤ Cγ−1

n ϕ
(1−ι2)/ι2
x (λ). (A9)

Concerning (A7). We adopt spatial block techniques as in Lemma 2, where ς~i is replaced
by W∗

2~i
. The main difference is in the variance term. For W∗

2~i
, we have

Var
[
W∗

2~i

]
≤ Cl~n; IE

[
E2
~i
Y∗2~i

]
≤ C Cl~nIE

[
E2
~i
Y2

i

]
≤ Cl~nIE

[
E2
~i

IE
[
Y2
~i

∣∣X~i]] ≤ Cl~n ϕx(λ).

It follows that
∑

~i∈I(1,~n,1)

Var
[
W∗

2~i

]
= O

(
l~n pN

~n ϕx(λ)
)

.
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Next, for ~i 6=~j, we have

cov(Λ~i, Λ~j) ≤ C IE
[
E~i|Y

∗
~i
|E~j|Y

∗
~j
|
]

≤ C IE
[
E~iEj|Y~iY~j|

]
≤ C IE

[
E~iEjIE

[
|Y~iY~j||X~iX~j

]]
≤ C IE

[
E~iE~j

]
≤ C ϕxx(a+1)/a(λ).

But, as IE
[
Y p

i |X~i
]
< ∞, we give ∀~i 6=~j

cov(Λ~i, Λ~j) ≤ ‖Λ~i‖
2
p ϕ1−2/p(‖~i−~j‖)

≤ C ‖E~iY
∗
~i
‖2

p ϕ1−2/p(‖~i−~j‖)

≤ C ‖E~iY~i‖
2
p ϕ1−2/p(‖~i−~j‖)

≤ C ‖E~i‖
2
p ϕ1−2/p(‖~i−~j‖)

≤ C ϕxx2/p(λ)ϕ1−2/p(‖~i−~j‖)).

Therefore, for cn = ϕxx(λ)2/Np(a+1)−1/Na, we infer

∑
~i 6=~j∈I(1,~n,1)

∣∣∣ cov(Λ~i, Λ~j)
∣∣∣

≤ ∑{
~i,~j∈I(1,~n,1)

∥∥∥~i−~j∥∥∥≤c~n

}
∣∣∣ cov(Λ~i, Λ~j)

∣∣∣
+ ∑{

~i,~j∈I(1,~n,1)
∥∥∥~i−~j∥∥∥>c~n

}
∣∣∣ cov(Λ~i, Λ~j)

∣∣∣
≤ C pN

~n ϕxx(λ)
(

cN
~n ϕxx(λ)1/a

+c−Na
~n ϕxx2/p−1(λ) ∑

~i:‖~i‖≥c~n

∥∥∥~i∥∥∥Na
ϕ1−2/p

(∥∥∥~i∥∥∥))
≤ CpN

~n ϕxx(λ).

Finally,

Var
[

∑
~i∈I(1,~n,1)

Λ~i

]
= O

(
pN
~n ϕxx(λ)

)
,

allowing

V1 ≤ exp
(
− C(η0) log ñ

)
. (A10)

This implies ∣∣W1~i

∣∣ = Oa.co.

(√
ln ñ

ñϕx(λ)

)
.

which deduces the result of this lemma.
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