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Risk-sensitive safety analysis using
Conditional Value-at-Risk*
Margaret P. Chapman, Riccardo Bonalli, Kevin M. Smith,

Insoon Yang, Marco Pavone, Claire J. Tomlin

Abstract— This paper develops a safety analysis method
for stochastic systems that is sensitive to the possibility
and severity of rare harmful outcomes. We define risk-
sensitive safe sets as sub-level sets of the solution to
a non-standard optimal control problem, where a random
maximum cost is assessed via Conditional Value-at-Risk
(CVaR). The objective function represents the maximum
extent of constraint violation of the state trajectory, aver-
aged over a given percentage of worst cases. This problem
is well-motivated but difficult to solve tractably because
the temporal decomposition for CVaR is history-dependent.
Our primary theoretical contribution is to derive compu-
tationally tractable under-approximations to risk-sensitive
safe sets. Our method provides a novel, theoretically guar-
anteed, parameter-dependent upper bound to the CVaR of
a maximum cost without the need to augment the state
space. For a fixed parameter value, the solution to only
one Markov decision process problem is required to obtain
the under-approximations for any family of risk-sensitivity
levels. In addition, we propose a second definition for
risk-sensitive safe sets and provide a tractable method
for their estimation without using a parameter-dependent
upper bound. The second definition is expressed in terms
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(L2S), Université Paris-Saclay, Centre National de la Recherche
Scientifique (CNRS), CentraleSupélec, France (email: ric-
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of a new coherent risk functional, which is inspired by
CVaR. We demonstrate our primary theoretical contribution
via numerical examples.

Index Terms— Conditional Value-at-Risk, Stochastic op-
timal control, Safety analysis, Markov decision processes.

Fig. 1. The Conditional Value-at-Risk (CVaR) quantifies the upper tail
of a cost distribution. For an absolutely continuous, bounded random
variable Y representing a cost and α ∈ (0, 1], we illustrate the
expected cost in the α · 100% worst cases, which is CVaRα(Y ) in
this setting. The area of the shaded region is α. The expectation of Y ,
the Value-at-Risk of Y at level α (the lowest cost in the α · 100% worst
cases), and the essential supremum of Y are also shown.

Fig. 2. We develop a safety analysis method that generalizes stochastic
safety analysis by assessing the severity of random harmful outcomes.
We define the risk-sensitive safe set Srα in terms of CVaR and derive
an under-approximation Urα,γ that is computationally tractable. Srα
represents the set of initial states from which the maximum extent of
constraint violation of the state trajectory, averaged over the α · 100%
worst cases, can be reduced to a threshold r.

I. INTRODUCTION

CONTROL-theoretic formal verification methods for dy-
namical systems typically fall in the robust domain [20]–

[24] or in the stochastic domain [25]–[28]. Robust methods
for formal verification assume that uncertain disturbances lack
probabilistic descriptions, live in bounded sets, and exhibit
adversarial behavior. These assumptions are appropriate if
probabilistic information about disturbances is not available,
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and if the conservative policy or safety specification that
results from a pessimistic world view is useful in practice.
However, when one considers formal verification as a design
tool for safety-critical systems in the digital world today, it
is reasonable to assume that simulation tools or sensor data
are available to estimate probabilistic descriptions for distur-
bances. Moreover, it is reasonable to consider the following
world view: disturbances need not be adversarial, but rare
harmful outcomes are still possible.

Control-theoretic stochastic formal verification methods do
assume that disturbances are probabilistic and can be non-
adversarial [25], [26] or adversarial [27], [28] in nature. These
methods compute the probability of safety or performance
by using expected indicator cost functions. The expectation,
however, is not designed to quantify the features in the tails of
a distribution, and the probability of a harmful outcome need
not indicate its severity. Thus, formal verification methods
at the intersection of the robust and stochastic domains are
emerging. A method for distributionally robust safety analysis
has been proposed [29], and methods that use risk measures
to assess harmful tail costs, e.g., [30] and our prior work [38],
have been introduced.1

While the notion of risk-sensitive formal verification is
recent, it is related to the notion of risk-sensitive Markov
decision processes (MDPs), which dates back to the early
1970s. In 1972, Howard and Matheson studied risk-sensitive
MDPs on finite state spaces, where the cost is evaluated in
terms of exponential utility [1]. This idea was transferred to
linear control systems by Jacobson in 1973 [2] and was further
developed in later decades. For example, see the seminal
works by Whittle [4], [35] and di Masi and Stettner [3].
The exponential utility of a non-negative random cost Y
Jθ(Y ) := −2

θ log(E(e
−θ
2 Y )) assesses the risk of Y in terms of

the moments of Y and is parametrized by a non-zero scalar θ.
Under appropriate conditions, Jθ(Y ) tends to E(Y ) as θ → 0
and Jθ(Y ) ≈ E(Y )− θ

4 Variance(Y ) if |θ| is sufficiently small
[4]. The risk-averse setting corresponds to θ < 0. However, if
θ is too negative, the controller can suffer from a phenomenon
called “neurotic breakdown” in the linear-quadratic-Gaussian
setting [4].

Hence, the notion of risk-sensitive MDPs has been general-
ized beyond exponential utility. Kreps used the expectation of
a utility function as a risk-sensitive performance criterion for
MDPs [7]. Ruszczyński defined a risk-sensitive performance
criterion for MDPs in terms of a composition of risk measures
[47]. State-space augmentation has been used to optimize the
cumulative cost of a MDP, where the cost is assessed via CVaR
[16] or a certainty equivalent risk measure [17]. The former
problem is called a CVaR-MDP. Convex analytic methods
have been used to solve MDPs with expected utility or CVaR
criteria via state-space augmentation and infinite-dimensional
linear programming [34]. A temporal decomposition for CVaR
[40], [41] has been used to propose a dynamic programming
(DP) algorithm on an augmented state space to solve a CVaR-

1A risk measure (risk functional) is a map from a set of random variables
to the extended real line. Exponential utility, Value-at-Risk, CVaR, and Mean-
Deviation are examples [37]. The terms risk measure and risk functional are
interchangeable.

MDP problem approximately [31]. Analysis at the intersection
of mean field games, linear systems, and risk measures with
connections to CVaR is provided by [32].

Ruszczyński’s approach [47] and MDPs that assess cumu-
lative costs via expectation or exponential utility are time-
consistent problems. That is, these problems satisfy Bellman’s
Principle of Optimality on the original state space.2 However, a
CVaR-MDP is time-inconsistent. Several solution concepts for
time-inconsistent problems have been proposed. For example,
a game-theoretic solution concept is studied in [8], which con-
siders the problem as a game against one’s future self. Another
popular approach is to focus on pre-commitment strategies that
cannot be revised at later stages. Optimal or nearly optimal
pre-commitment strategies can be obtained using the structure
of CVaR; see [16], [34], [39], for example. Although an
optimal pre-commitment strategy is globally optimal only at
the initial stage, maintaining suitable empirical performance
at later stages is possible, particularly when the time horizon
is not too long [18]. In mean-CVaR asset allocation problems,
optimal pre-commitment strategies are shown to be effective
even with long time horizons [19].

A line of research that falls between risk-sensitive MDPs
and standard risk-neutral MDPs is risk-constrained MDPs [30],
[33], [34], [42]. Here, the goal is to minimize an expected
cumulative cost subject to a risk constraint that limits the
extent of a cost. Refs. [30], [33], [42], for example, express
this constraint in terms of CVaR.

The additional effort required to solve time-inconsistent
problems, including CVaR-MDPs, may be justified for safety-
critical applications. A strong theoretical basis for using CVaR
to assess harmful tail costs has been in development since
the early 2000s, e.g., see [36] and the references therein.
Informally, CVaR represents the expected cost in the α ·100%
worst cases, where α ∈ (0, 1] (Fig. 1). CVaR quantifies the
more harmful tail of a distribution, and managing this tail is
paramount in safety-critical applications.

This paper proposes a method to assess how well a stochas-
tic system can remain within a desired operating region with
respect to a range of worst-case perspectives. We call this
method risk-sensitive safety analysis (Fig. 2). Its foundation
is a non-standard optimal control problem that evaluates a
random maximum cost via CVaR. The objective function
represents the maximum extent of constraint violation of the
state trajectory, averaged over the α ·100% worst cases, where
α ∈ (0, 1] is a risk-sensitivity level. This problem is difficult
to solve tractably because the temporal decomposition for
CVaR is history-dependent [40], [41]. We define risk-sensitive
safe sets as sub-level sets of the solution to this non-standard
problem. These sets are powerful tools for safety analysis.
Indeed, they assess system behavior on a spectrum of worst
cases, while being sensitive to the possibility and severity of
rare harmful outcomes.

Our primary theoretical contribution is to derive computa-
tionally tractable under-approximations to risk-sensitive safe
sets. We derive these under-approximations by proving the

2Different meanings for time consistency have been proposed, e.g., see [5],
[6], [47]. We refer to the meaning for time consistency from [6].



following: for any control policy and any initial state, the
CVaR of a maximum cost is upper bounded by a scaled
logarithm of an expected cumulative cost, where the stage cost
has a specific analytical form. For this proof, we use various
properties of CVaR and the log-sum-exponential approxima-
tion to the maximum. The latter approximation depends on
a parameter, γ ∈ R. For a fixed γ, the solution to one MDP
problem is required to obtain the under-approximations for any
family of risk-sensitivity levels. We provide practical insights
on how to choose such a parameter in the experimental section.

Our method provides a novel, theoretically guaranteed upper
bound to the CVaR of a maximum cost for the purpose of
safety analysis without the need to augment the state space.
(Augmenting the state space may be less tractable in some
settings, e.g., when the range of the augmented state is large.)
In contrast, existing methods aim to compute the CVaR of
a cumulative cost via state-space augmentation. By taking
different approaches to augment the state space, Refs. [16]
and [34] minimize the CVaR of a cumulative cost, and Ref.
[31] minimizes the CVaR of a cumulative cost approximately.
These related works are focused on controller synthesis but
are not focused on safety analysis.

Our secondary theoretical contribution is to propose a
second definition for risk-sensitive safe sets and provide
a tractable method for their estimation without using a
parameter-dependent upper bound. The second definition is
expressed in terms of a new risk functional, which is inspired
by CVaR and has certain desirable properties. In particular,
we prove that this risk functional admits an upper bound
that can be computed via DP (on the original state space
and without an additional parameter that requires tuning).
This result forges a new path to estimate risk-sensitive safety
criteria with desirable computational attributes.

Organization. We present notation and background on CVaR
in Sec. II. Our primary and secondary theoretical contribu-
tions are provided in Sec. III and Sec. IV, respectively. We
develop computational examples of a temperature system and
a stormwater system to demonstrate our primary theoretical
contribution in Sec. V. Sec. VI presents conclusions and
directions for future work.

II. BACKGROUND ON CONDITIONAL VALUE-AT-RISK

We use the following notation. If S is a metrizable space,
B(S) is the Borel sigma algebra on S. If (Ω,F , µ) is a prob-
ability space and 1 ≤ p ≤ ∞, Lp(Ω,F , µ) is the associated
Lp space, and || · ||p is the associated norm. Typically, we use
upper-case letters to denote random variables or sets, whereas
lower-case letters denote deterministic quantities, including
parameters. Exceptions are the length of a time horizon is
expressed in terms of T ∈ N and E(·) denotes expectation.

Next, we present a standard definition for CVaR and facts
about CVaR that are relevant to this work.3 Let Y be a random
variable with finite first moment, representing a cost, defined
on a probability space (Ω,F , µ). That is, let Y ∈ L1(Ω,F , µ),

3Additional names for CVaR include Average Value-at-Risk, Expected
Shortfall, and Expected Tail Loss. We present the definition for CVaR that is
used by Shapiro and colleagues, e.g., [9], [10], [37].

where smaller realizations of Y are preferred. The Conditional
Value-at-Risk of Y ∈ L1(Ω,F , µ) at the risk-sensitivity level
α ∈ (0, 1] is defined by

CVaRα(Y ) := inf
s∈R

(
s+ 1

αE(max(Y − s, 0))
)
, (1)

where E(·) is the expectation with respect to (w.r.t.) µ. We
note the following consequences of the Definition (1):

1) CVaR1(Y ) = E(Y ).
2) If 0 < α1 ≤ α2 ≤ 1, then CVaRα1

(Y ) ≥ CVaRα2
(Y )

and CVaRαi(Y ) ∈ R for i = 1, 2.
Definition (1) is not the most intuitive, so we present an al-
ternative definition that explains the names Conditional Value-
at-Risk and Average Value-at-Risk. The alternative definition
is written in terms of the Value-at-Risk of Y ∈ L1(Ω,F , µ)
at level α ∈ (0, 1), which is given by

VaRα(Y ) := inf
{
y ∈ R : µ({Y ≤ y}) ≥ 1− α

}
, (2)

where µ({Y ≤ y}) is the probability of the event {Y ≤ y} :=
{ω ∈ Ω : Y (ω) ≤ y} ∈ F . In other words, VaRα(Y ) is the
generalized inverse cumulative distribution function of Y at
level 1 − α, or equivalently, the left-side (1 − α)-quantile of
the distribution of Y [10]. The CVaR of Y ∈ L1(Ω,F , µ) at
level α ∈ (0, 1) is equivalent to an average of the Value-at-
Risk [37, Thm. 6.2]:

CVaRα(Y ) =
1

α

∫ 1

1−α
VaR1−p(Y ) dp. (3)

The above equation explains the commonly used name Av-
erage Value-at-Risk. Now, to explain the name Conditional
Value-at-Risk, suppose that the cumulative distribution func-
tion FY (y) := µ({Y ≤ y}) is continuous at y = VaRα(Y ).
Continue to assume that Y ∈ L1(Ω,F , µ) and α ∈ (0, 1).
Then, CVaRα(Y ) is a conditional expectation that is expressed
in terms of the Value-at-Risk [37, Thm. 6.2]:

CVaRα(Y ) = E(Y |Y ≥ VaRα(Y )). (4)

Equation (4) means that CVaRα(Y ) represents the expected
value of Y in the α · 100% worst cases.

CVaR is a commonly cited example of a coherent risk
functional [10], [37]. Coherent risk functionals are a class
of risk functionals, first proposed by Artzner et al. [11], that
satisfy four properties, which are particularly meaningful in
applications where sensitivity to risk is critical. We present
these properties in the context of CVaR at level α ∈ (0, 1],
where Yi ∈ L1(Ω,F , µ) below.

1) Monotonicity. If Y1(ω) ≤ Y2(ω) for almost every (a.e.)
ω ∈ Ω, then CVaRα(Y1) ≤ CVaRα(Y2). That is, a ran-
dom cost that is larger than another almost everywhere
incurs a larger risk.

2) Subadditivity. CVaRα(Y1 + Y2) ≤ CVaRα(Y1) +
CVaRα(Y2). If Yi is the (random) stage cost of a control
system at time i, then the risk of the cumulative cost over
a finite horizon is at most the sum of the risks of the
stage costs.

3) Translation equivariance. If a ∈ R, then CVaRα(Y1 +
a) = CVaRα(Y1) + a.



4) Positive homogeneity. If 0 ≤ λ < ∞, then
CVaRα(λY1) = λCVaRα(Y1).

The last two properties ensure that shifting or scaling a random
variable provides an analogous transformation to the risk of
the random variable. In particular, the expectation operator
satisfies the four properties above and thus is a coherent risk
functional. We use some of these properties in our proofs. We
also use the fact that a real-valued coherent risk functional
can be represented in terms of a supremum over a family of
expectations.4 This representation takes the following form for
CVaR at level α ∈ (0, 1] [10]: for any Y ∈ L1(Ω,F , µ),

CVaRα(Y ) = sup
Q∈Qα

∫
Ω

Y dQ = sup
ξ∈Aα

∫
Ω

Y ξ dµ, (5a)

where the definitions of Qα and Aα follow. Q ∈ Qα if and
only if Q is a probability measure that is absolutely continuous
with respect to µ, i.e., of the form Q(B) =

∫
B
ξdµ, where

B ∈ F and ξ ∈ Aα. Aα is a set of densities defined by

Aα :=

{
ξ ∈ L∞(Ω,F , µ) : 0 ≤ ξ ≤ 1

α
a.e.,

∫
Ω

ξ dµ = 1

}
.

(5b)

III. CVAR-BASED RISK-SENSITIVE SAFETY ANALYSIS

We use the CVaR functional to pose a safety analysis
problem. We consider a stochastic system evolving on a
discrete, finite-time horizon and start with the standard set-up
for this setting. Let S and A be Borel spaces, representing the
set of states and the set of controls of the system, respectively.
Define the sample space Ω := (S × A)T × S, where ω :=
(x0, u0, . . . , xT−1, uT−1, xT ) ∈ Ω is a finite sequence of
states and controls that may be realized on a time horizon of
length T+1 and T ∈ N is given. The random state Xt : Ω→ S
and the random control Ut : Ω → A are projections. That
is, for any ω ∈ Ω of the form above, define Xt(ω) := xt
and Ut(ω) := ut, where the coordinates of ω have casual
dependencies, to be described. The initial state X0 is fixed
arbitrarily at x ∈ S. The system’s evolution is affected by
W -valued random disturbances (D0, D1, . . . , DT−1) with a
common distribution PD, where W is a Borel space. Dt is
independent of the states, controls, and Ds for any s 6= t. The
distribution of Xt+1 conditioned on (Xt, Ut) = (xt, ut) ∈
S ×A is defined as follows: for any B ∈ B(S),

Q(B|xt, ut) := PD
(
{dt ∈W : f(xt, ut, dt) ∈ B}

)
, (6)

where f : S × A × W → S is a Borel-measurable map
that models the system dynamics. We use the typical class
of random, history-dependent policies Π. Each π ∈ Π takes
the form π = (π0, π1, . . . , πT−1), where each πt is a Borel-
measurable stochastic kernel on A given Ht := (S×A)t×S.

The above set-up is standard in discrete-time stochastic
control. One reason is that, given x ∈ S and π ∈ Π, the
set-up allows the construction of a unique probability measure
Pπx that characterizes the system’s evolution, provided that the
system is initialized at x and uses the policy π (Ionescu-Tulcea

4The family of expectations has specific properties that are out of the scope
of this paper. The representation was developed over several years, e.g., see
[10], [11], [13], [14].

Theorem). The measure Pπx permits the prediction of the
system’s performance over time under uncertainty. Random
costs incurred by the system are defined on (Ω,B(Ω), Pπx ), a
probability space parametrized by x and π. The notation Eπx (·)
is the expectation operator with respect to Pπx .

A. On Evaluating a Random Cost via CVaR
We use (Ω,B(Ω), Pπx ) to define a random cost for the

system and to evaluate this cost via CVaR. Suppose that there
is a constraint set K ∈ B(S), where the state trajectory
(X0, X1, . . . , XT ) of the system should remain inside. It may
be impossible for the system to remain inside K always due to
random disturbances in the environment. Let gK : S → R be
a bounded Borel-measurable function that represents a notion
of distance between a state realization and the boundary of K.
Specifically, gK(xt) is the extent of constraint violation of xt,
a realization of the random state Xt. More specifically, if xt
is outside of K and far from the boundary of K, then gK(xt)
has a large positive value. However, if xt is inside of K, then
gK(xt) may be

1) zero, if one does not favor certain trajectories inside of
K, or

2) a more negative value when xt is more deeply inside of
K, if one favors trajectories that remain deeply inside
of K.

Using gK , we define a random R-valued cost that quantifies
the maximum extent of constraint violation of the state trajec-
tory: for any ω = (x0, u0, . . . , xT−1, uT−1, xT ) ∈ Ω,

G(ω) := max
t=0,1,...,T

gK(Xt(ω)) = max
t=0,1,...,T

gK(xt). (7)

In other words, G quantifies how well the random state
trajectory satisfies the safety criterion to remain inside of K.
Hence, G quantifies the safety of the random state trajectory,
which is defined with respect to the constraint set K via the
function gK . A deterministic (and continuous-time) version of
(7) is used in Hamilton-Jacobi reachability analysis, a robust
safety analysis method for (non-stochastic) uncertain systems,
which has been established over the past 15 years; e.g., see
[21], [24], [43], and the references therein. A standard choice
for gK is a clipped signed distance function with respect to
K [43, p. 8]. In our numerical example of a thermostatically
controlled load, we use gK(xt) = max(xt − 21, 20 − xt) to
quantify how far a state realization xt can be inside or outside
of K = [20, 21] ◦C (Sec. V-A).

It holds that G ∈ L∞ := L∞(Ω,B(Ω), Pπx ) and G ∈ L1 :=
L1(Ω,B(Ω), Pπx ). The function gK composed with Xt is an
element of L∞ because gK : S → R is bounded and Borel
measurable and Xt : Ω → S is Borel measurable. Thus, G
is a point-wise maximum of finitely many functions in L∞.
Therefore, G inherits the measurability properties of these
functions and is essentially bounded. Since (Ω,B(Ω), Pπx ) is
a probability space, L∞ is a subset of L1, and it follows that
G ∈ L1 as well.

Now, we express the CVaR of G. The CVaR of G ∈
L1(Ω,B(Ω), Pπx ) at level α ∈ (0, 1] is given by

CVaRπα,x(G) := inf
s∈R

(
s+ 1

αE
π
x (max(G− s, 0))

)
. (8a)



By using (5), it holds that

CVaRπα,x(G) = sup
ξ∈Aπα,x

∫
Ω

Gξ dPπx , (8b)

where Aπα,x is a set of densities defined by

Aπα,x:=
{
ξ ∈ L∞(Ω,B(Ω), Pπx ) : 0 ≤ ξ ≤ 1

α a.e., Eπx (ξ) = 1
}
.

(8c)
We use (7) and (8) to define risk-sensitive safe sets next.

B. Risk-Sensitive Safe Sets
Definition 1 (Risk-Sensitive Safe Sets): Let α ∈ (0, 1] and

r ∈ R be given. The (α, r)-risk-sensitive safe set for a given
policy π ∈ Π is defined by

Sr,πα :=

{
x ∈ S : CVaRπα,x

(
max

t=0,1,...,T
gK(Xt)

)
≤ r
}
.

(9)
The (α, r)-risk-sensitive safe set is defined by

Srα :=

{
x ∈ S : inf

π∈Π
CVaRπα,x

(
max

t=0,1,...,T
gK(Xt)

)
≤ r
}
.

(10)
We denote the infimum in (10) by W ∗α(x). Risk-sensitive safe
sets are well-motivated. These sets represent the sets of initial
states from which the maximum extent of constraint violation
of the state trajectory, averaged over the α · 100% worst
cases, can be made sufficiently small. The maximum extent
of constraint violation of the state trajectory is the real-valued
random variable G := maxt=0,1,...,T gK(Xt). We allow gK
to be negative so that decision-makers can encode preferences
for trajectories remaining deeper inside of K over trajectories
near the boundary of K, if desired. In our numerical example
of a thermostatically controlled load, we allow gK to take on
both negative and non-negative values to express a preference
for trajectories that remain closer to 20.5 ◦C (Sec. V-A). In
our numerical example of a stormwater system, however, we
choose a non-negative gK to utilize all capacity in the water
storage tanks without penalty (Sec. V-B).

Using CVaR to define risk-sensitive safe sets is well-justified
from a decision-theoretic point of view because CVaR is a
coherent risk measure. That is, CVaR satisfies the axioms of
monotonicity, subadditivity, positive homogeneity, and trans-
lation equivariance. Sec. II provides intuitive interpretations
for these axioms. Besides having an axiomatic justification,
CVaR has the useful interpretation of quantifying the upper
tail of a distribution. Indeed, CVaR provides a quantitative
characterization of risk aversion by representing the expected
cost in the α·100% worst cases, where α ∈ (0, 1] is selected by
the decision-maker. This interpretation is exact if continuous
random variables in L1 are evaluated.

Risk-sensitive safe sets generalize probabilistic safe sets
[25] by quantifying the maximal extent of constraint violation
at a given risk-sensitivity level rather than the probability
of constraint violation. Risk-sensitive safe sets quantify how
much constraint violation occurs on average in the α · 100%
worst cases, whereas probabilistic safe sets [25] quantify
whether or not constraint violation occurs with some probabil-
ity. Indeed, let ε ∈ [0, 1] be a maximum tolerable probability

of constraint violation. Choose α = 1, r = ε, and gK = IK̄ ,
where IK̄(x) = 1 if x /∈ K and IK̄(x) = 0 if x ∈ K. Then,
the (1, ε)-risk-sensitive safe set is

Sε1 =

{
x ∈ S : inf

π∈Π
Eπx

(
max

t=0,1,...,T
IK̄ (Xt)

)
≤ ε
}
, (11)

which is the maximal probabilistic safe set at the ε-safety level
[25] for the system of Sec. III. (Ref. [25] considers discrete-
time stochastic hybrid systems that evolve under Markov
policies.)

Risk-sensitive safe sets indicate higher degrees of safety as
α decreases and r decreases. We state this fact formally next.

Lemma 1: Suppose that 1 ≥ α1 ≥ α2 > 0 and r1 ≥ r2.
Then, Sr2α2

⊆ Sr1α1
. If π ∈ Π, then Sr2,πα2

⊆ Sr1,πα1
.

Proof: Let x ∈ S and π ∈ Π. Since 1 ≥ α1 ≥
α2 > 0 and G ∈ L1(Ω,B(Ω), Pπx ), CVaRπα2,x(G) ≥
CVaRπα1,x(G). Since G = maxt=0,1,...,T gK(Xt) and gK is
bounded, there exists a b ∈ R such that G(ω) ≥ b for
almost every ω ∈ Ω. Since CVaR is monotonic and b ∈
R, CVaRπα1,x(G) ≥ b. Take the infimum over π ∈ Π to
obtain infπ∈Π CVaRπα2,x(G) ≥ infπ∈Π CVaRπα1,x(G) ≥ b,
which holds for any x ∈ S. Now, suppose x ∈ Sr2α2

. Then,
r2 ≥ infπ∈Π CVaRπα2,x(G) ≥ infπ∈Π CVaRπα1,x(G). Since
r1 ≥ r2, we have r1 ≥ infπ∈Π CVaRπα1,x(G), which shows
that x ∈ Sr1α1

. The proof for the last statement is similar.
The risk-sensitive safe set Srα specifies that the CVaRα

of the worst constraint violation of the state trajectory must
be below a given threshold. In contrast, the safe set in [30]
specifies that for each t the CVaRα of the constraint violation
of the state at time t must be below a given threshold. Hence,
Srα assesses the risk of the entire trajectory, whereas the safe
set in [30] is concerned with the risk of each state in the
trajectory separately. A specification that assesses the risk of
the entire trajectory may be preferable in certain applications
because this approach treats the trajectory as a unified entity
representing the behavior of a control system.

C. Under-Approximation Method

Risk-sensitive safe sets are well-motivated but difficult to
compute due to the presence of the CVaR and the maximum.
Before presenting our approach to estimate risk-sensitive safe
sets, we describe related methods in further detail.

Several methods in the literature apply state-space augmen-
tation techniques to estimate the risk of a random cost incurred
by a MDP.5 Bäuerle and Ott use dynamic programming (DP)
to minimize the CVaR of a sum of stage costs by defining an
augmented state space [16]. The range of the second state is
[0, ess sup

∑T
t=0 Ct], where Ct is the stage cost at time t [16,

Remark 5.1]. This state-space augmentation approach has been
extended to optimize certainty equivalent risk functionals for
MDPs [17]. A certainty equivalent approximates the sum of
the expectation and a function of the variance under particular
conditions [17], and more generally, characterizes risk aversion
in terms of functions of moments. However, CVaR provides a

5An approach that does not require state-space augmentation is to evaluate a
cumulative cost via a composition of risk functionals [47]. We take inspiration
from this idea in Sec. IV.



quantitative characterization of risk aversion by penalizing a
random cost in a given fraction of the worst cases.

Chow et al. proposed a DP algorithm to minimize ap-
proximately the CVaR of a cumulative cost via state-space
augmentation, where the additional state ranges from 0 to 1
[31]. This approach is expected to be more tractable than the
approach in [16]; compare the ranges of the additional states.
However, it is not known if the algorithm in [31] provides
an upper bound or a lower bound to the solution to a CVaR-
MDP problem. The algorithm in [31] is based on a CVaR
Decomposition Theorem [40, Thm. 6] [41, Thm. 21, Lemma
22], which requires knowledge of the history of a stochastic
process. How to remove the history dependence and apply the
Decomposition Theorem to derive the algorithm in [31] is still
an open research question.

The algorithms invented by [16], [31] aim to minimize
the CVaR of a cumulative cost subject to the dynamics of
a MDP. The algorithm proposed by [40] aims to minimize the
CVaR of a more general cost (not necessarily a sum) but is
history-dependent, which limits its computational tractability.
The proof of the DP algorithm in [40] requires an exchange
between an essential supremum and an expectation, whose
validity in multi-stage settings for MDPs with Borel state and
control spaces is not known.

Here, we propose a method to provide tractable, theoreti-
cally guaranteed under-approximations to risk-sensitive safe
sets, which we define via CVaR. We focus on CVaR due
to its quantitative characterization of risk aversion and since
we aim to assess the degree of safety of a control system
in terms of rarer, higher-consequence outcomes. In contrast,
a certainty equivalent assesses risk in terms of functions of
variance and other moments. In particular, variance does not
distinguish between rarer, higher-consequence outcomes in the
upper tail and rarer, lower-consequence outcomes in the lower
tail. Unlike the methods [16], [17], [31], our method does not
use state-space augmentation because this technique typically
reduces computational tractability. For this reason, we do not
augment the state space with the running maximum over each
time period Zt := maxi=0,1,...,t gK(Xi). The range of Zt may
be large since the bounds of gK may be large. Instead of
using state-space augmentation to handle the CVaR and the
maximum, we use a scaled expectation to upper bound the
CVaR and a log-sum-exponential function to upper bound the
maximum, G := maxt=0,1,...,T gK(Xt). Our first main result
is below.

Theorem 1 (Upper Bound for CVaR of G): For any π ∈
Π, x ∈ S, α ∈ (0, 1], and γ ≥ 1, it holds that

Wα(x, π) := CVaRπα,x(G)≤ 1
γ log

(
1
αE

π
x

(∑T
t=0 e

γgK(Xt)
))
.

(12)
The quantity Wα(x, π) represents the maximum extent of
constraint violation of the state trajectory, averaged over the
α · 100% worst cases, when the system uses the policy
π and starts from the state x. The right-hand-side of (12)
can be estimated more readily than Wα(x, π) for small α
and provides a conservative approximation to Wα(x, π). If
α is small, more samples of G are required to estimate
Wα(x, π) = CVaRπα,x(G) since small α corresponds to rarer

larger realizations of G. (We are more interested in using
small α for safety-critical applications.) Theorem 1 is powerful
because it can be used to estimate the performance of any
control policy π ∈ Π with respect to Wα(x, π). Policies
may be designed for different objectives, e.g., efficiency in
power or fuel consumption, robustness to bounded adversarial
disturbances, robustness to bounded non-linearities, etc. It may
be beneficial to estimate their performance with respect to a
risk-sensitive safety criterion, such as Wα(x, π), efficiently.
The proof of Theorem 1 requires two lemmas.

Lemma 2 (CVaR-Expectation Inequality): Let (Ω,F , µ) be
a probability space, Y ∈ L1(Ω,F , µ) such that Y ≥ 0 a.e.
w.r.t. µ, and α ∈ (0, 1]. Then, CVaRα(Y ) ≤ 1

αE(Y ).
A version of the inequality is stated without proof in [10].

We provide a short proof below.
Proof: Start from the CVaR definition (1), and select

s = 0. Then, CVaRα(Y ) ≤ 1
αE(max(Y, 0)). Since Y ≥ 0

a.e., max(Y, 0) = Y a.e., so CVaRα(Y ) ≤ 1
αE(Y ).

Lemma 2 provides an upper bound for CVaR in terms of the
expectation and the risk-sensitivity level α when non-negative
random variables are evaluated. In addition to Lemma 2, the
proof of Theorem 1 requires the following result, which relates
the CVaR of the logarithm to the logarithm of the CVaR.

Lemma 3 (CVaR-Log Inequality): Let α ∈ (0, 1] and Y ∈
L∞(Ω,F , µ). Suppose that there are real numbers b̄ ≥ b >
0 such that b̄ ≥ Y (ω) ≥ b for every ω ∈ Ω. Then,
CVaRα(log(Y )) ≤ log(CVaRα(Y )).

Proof: Let α ∈ (0, 1] and ξ ∈ Aα (5b). Define
µξ(B) :=

∫
B
ξdµ, where B ∈ F . (Ω,F , µξ) is a probability

space, and
∫

Ω
Y dµξ is finite. View Y as a random variable

on (Ω,F , µξ). It holds that Y (ω) ∈ (0,∞) for all ω ∈ Ω, and
− log is a convex function from (0,∞) to R. Thus, by Jensen’s
Inequality,

∫
Ω
− log(Y ) dµξ ≥ − log

(∫
Ω
Y dµξ

)
. Moreover,

since Y is non-negative and bounded everywhere, ξ is non-
negative and bounded a.e., and by using the definition of µξ,
it follows that

log
(∫

Ω
Y ξ dµ

)
≥
∫

Ω
log(Y )ξ dµ. (13)

Since ξ ∈ Aα is arbitrary in the analysis above, the inequality
(13) holds for all ξ ∈ Aα. In addition, we have CVaRα(Y ) =
supξ∈Aα

∫
Ω
Y ξdµ by (5), CVaRα(Y ) ∈ R because Y ∈

L1(Ω,F , µ), and
∫

Ω
Y dµξ =

∫
Ω
Y ξdµ ≥ b > 0 for all ξ ∈

Aα. Thus, log
(
CVaRα(Y )

)
= log

(
supξ∈Aα

∫
Ω
Y ξdµ

)
∈ R.

Since the natural logarithm is increasing,

log
(
CVaRα(Y )

)
≥ log

(∫
Ω
Y ξ dµ

)
∀ξ ∈ Aα. (14)

By (13) and (14), it holds that log
(
CVaRα(Y )

)
≥∫

Ω
log(Y )ξdµ for all ξ ∈ Aα. Since the supremum is the

least upper bound, we conclude that log
(
CVaRα(Y )

)
≥

supξ∈Aα
∫

Ω
log(Y )ξdµ = CVaRα

(
log(Y )

)
.

We use Lemma 2 and Lemma 3 to prove Theorem 1.
Proof: [Theorem 1] Note the log-sum-exp approximation for

the maximum [44, Sec. 3.1.5, p. 72]: If y ∈ Rp and γ ≥ 1,
then

max
i=1,...,p

yi
(a)

≤ 1
γ log (

∑p
i=1 e

γyi) ≤ max
i=1,...,p

yi + log(p)
γ . (15)



Let π ∈ Π, x ∈ S, α ∈ (0, 1], and γ ≥ 1. Recall that
G = max

t=0,1,...,T
gK(Xt) ∈ L∞(Ω,B(Ω), Pπx ), where we have

presented Ω and Pπx at the start of Sec. III. Since gK is R-
valued,

Y (ω) :=
∑T
t=0 e

γgK(Xt(ω)) > 0 ∀ω ∈ Ω. (16)

Since gK is bounded and Y is a sum of finitely many
exponential functions of gK , there exist real numbers b̄ ≥ b >
0 such that b̄ ≥ Y (ω) ≥ b for every ω ∈ Ω. It follows that
Y ∈ L∞(Ω,B(Ω), Pπx ) satisfies the assumptions of Lemma 3,
and thus,

CVaRπα,x(log(Y )) ≤ log(CVaRπα,x(Y )). (17)

By the inequality (a) in (15) and by the definitions of G and
Y , the inequality G ≤ 1

γ log
(∑T

t=0 e
γgK(Xt)

)
= 1

γ log(Y )

holds a.e. w.r.t. Pπx . Since CVaR is monotonic and positively
homogeneous, and since 1

γ > 0,

CVaRπα,x(G) ≤ CVaRπα,x
(

1
γ log(Y )

)
= 1

γCVaRπα,x(log(Y )).
(18)

We use (17) and (18) to find that

CVaRπα,x(G) ≤ 1
γ log(CVaRπα,x(Y )). (19)

Note that CVaRπα,x(Y ) ∈ R such that CVaRπα,x(Y ) > 0.
Indeed, Y ∈ L∞(Ω,B(Ω), Pπx ) and so is also an element
of L1(Ω,B(Ω), Pπx ), hence CVaRπα,x(Y ) ∈ R. Y is bounded
everywhere, and in particular, from below by a real number
b > 0. Therefore, CVaRπα,x(Y ) ≥ CVaRπα,x(b) = b >
0. Consequently, log(CVaRπα,x(Y )) ∈ R. In addition, the
assumptions of Lemma 2 are satisfied, and therefore,

CVaRπα,x(Y ) ≤ 1
αE

π
x (Y ). (20)

Use (19), (20), and log being increasing to derive that
CVaRπα,x(G) ≤ 1

γ log(CVaRπα,x(Y )) ≤ 1
γ log

(
1
αE

π
x (Y )

)
.

We use the conclusion of Theorem 1 to define particular
subsets of the state space. First, we call these sets approxima-
tions, and then, we prove that they are under-approximations
to risk-sensitive safe sets in Theorem 2.

Definition 2 (Approximations to Risk-Sensitive Safe Sets):
Let α ∈ (0, 1], r ∈ R, and γ ≥ 1 be given. The (α, r, γ)-
approximation set for a given policy π ∈ Π is defined
by

Ur,πα,γ :=
{
x ∈ S : 1

αE
π
x

(∑T
t=0 e

γgK(Xt)
)
≤ eγr

}
. (21)

The (α, r, γ)-approximation set is defined by

Urα,γ :=

{
x ∈ S : inf

π∈Π

1
αE

π
x

(∑T
t=0 e

γgK(Xt)
)
≤ eγr

}
.

(22)
We denote the infimum in (22) by

J∗α,γ(x) := inf
π∈Π

Jα,γ(x, π) := inf
π∈Π

1
αE

π
x

(∑T
t=0 e

γgK(Xt)
)
,

(23)
where Π is the set of randomized history-dependent policies,
which also includes deterministic Markov policies. Estimating
J∗α,γ is the critical step for estimating the sets Urα,γ . The prob-
lem of estimating J∗α,γ is a Markov decision process problem.

Thus, J∗α,γ and a deterministic Markov policy πγ ∈ Π such
that Jα,γ(x, πγ) = J∗α,γ(x) for all x ∈ S can be computed via
dynamic programming, in principle, if a measurable selection
condition holds.6 Therefore, for a fixed γ ≥ 1, an algorithm
to estimate {J∗α,γ : α ∈ Λ}, where Λ ⊆ (0, 1] is a family of
risk-sensitivity levels, exists and is tractable. The next theorem
shows that the sets in Definition 2 are under-approximations
to risk-sensitive safe sets (Definition 1).

Theorem 2: (Under-Approximations to Risk-Sensitive Safe
Sets) Let α ∈ (0, 1], r ∈ R, and γ ≥ 1. For any policy π ∈ Π,
it holds that

Ur,πα,γ ⊆ Sr,πα , (24)

where Ur,πα,γ is defined by (21) and Sr,πα is defined by (9).
Moreover, the (α, r, γ)-approximation set is a subset of the
(α, r)-risk-sensitive safe set, i.e.,

Urα,γ ⊆ Srα, (25)

where Urα,γ is defined by (22) and Srα is defined by (10).
Proof: Eq. (24) follows from Theorem 1. Let α ∈ (0, 1],

r ∈ R, γ ≥ 1, and π ∈ Π be given. Let x ∈ Ur,πα,γ . Then,

1
αE

π
x

(∑T
t=0 e

γgK(Xt)
)
≤ eγr, (26)

where the left-hand-side is bounded below by a positive real
number since Y :=

∑T
t=0 e

γgK(Xt) is as well. It follows
that log

(
1
αE

π
x

(∑T
t=0 e

γgK(Xt)
))

is finite. Since the natural
logarithm is increasing and γ ≥ 1, we have

1
γ log

(
1
αE

π
x

(∑T
t=0 e

γgK(Xt)
))
≤ r. (27)

By Theorem 1, it holds that

CVaRπα,x(G) ≤ 1
γ log

(
1
αE

π
x

(∑T
t=0 e

γgK(Xt)
))

. (28)

Combine (27) and (28) to find that CVaRπα,x(G) ≤ r, which
shows that x ∈ Sr,πα and proves (24). Now, to prove (25), let
x ∈ Urα,γ , which implies that

inf
π∈Π

1
αE

π
x

(∑T
t=0 e

γgK(Xt)
)
≤ eγr. (29)

Let ε > 0 be given. Since the left-hand-side of (29) is finite,
there is a πε ∈ Π such that

1
αE

πε

x

(∑T
t=0e

γgK(Xt)
)
≤ ε+ inf

π∈Π

1
αE

π
x

(∑T
t=0 e

γgK(Xt)
)

≤ ε+ eγr,
(30)

where the second line holds by (29). Note that the quantity
log
(

1
αE

πε

x

(∑T
t=0e

γgK(Xt)
))

is finite. Take the logarithm of
(30) and then divide by γ ≥ 1 to obtain

1
γ log

(
1
αE

πε

x

(∑T
t=0e

γgK(Xt)
))
≤ 1

γ log (ε+ eγr) . (31)

By Theorem 1, it holds that

CVaRπ
ε

α,x(G) ≤ 1
γ log

(
1
αE

πε

x

(∑T
t=0 e

γgK(Xt)
))

. (32)

6Measurable selection conditions, e.g., see [45, Chapter 3.3] or [15], are
commonly invoked to guarantee the existence of a policy that optimizes or
nearly optimizes an expected cumulative cost subject to a MDP.



Therefore, CVaRπ
ε

α,x(G) ≤ 1
γ log (ε+ eγr). Since πε ∈ Π, it

follows that

W ∗α(x) := inf
π∈Π

CVaRπα,x(G) ≤ CVaRπ
ε

α,x(G). (33)

Consequently, we have

W ∗α(x) ≤ 1
γ log (ε+ eγr) . (34)

This analysis holds for any ε > 0. Let ε → 0, and use the
continuity of the logarithm to obtain

W ∗α(x) ≤ lim
ε→0

1
γ log (ε+ eγr) = 1

γ log
(

lim
ε→0

ε+ eγr
)

= r.

(35)
Since W ∗α(x) ≤ r, we conclude that x ∈ Srα. Since any x ∈
Urα,γ is also an element of Srα, it holds that Urα,γ ⊆ Srα.

Since we have shown that Ur,πα,γ and Urα,γ are subsets of
the risk-sensitive safe sets, Sr,πα and Srα, respectively, we now
refer to Ur,πα,γ and Urα,γ as under-approximations.

Remark 1 (Assessment of Approximation Errors): Three
approximations are required for the proof above. First, we
use a soft-maximum, under which we have

0 ≤ 1
γCVaRπα,x(log(Y ))− CVaRπα,x(G) ≤ log(T+1)

γ , (36)

where Y =
∑T
t=0 e

γgK(Xt), and there are positive constants
b and b̄ (which depend on T , γ, and the bounds of gK) such
that Y ∈ [b, b̄] everywhere. The inequality (36) implies an
improved approximation with larger values of γ or smaller
values of T . However, since it is not feasible to optimize
1
γCVaRπα,x(log(Y )) directly, our next step is to leverage the
CVaR-log inequality provided by Lemma 3. The associated
error is given by

ηπ,γα,x := 1
γ log(CVaRπα,x(Y ))− 1

γCVaRπα,x(log(Y )) ≥ 0. (37)

Since the range of Y is [b, b̄], it follows that ηπ,γα,x ≤ 1
γ log(b̄/b).

Therefore, we anticipate a smaller error ηπ,γα,x when Y has a
smaller range, which occurs when T is smaller, for example.

The last approximation is log(CVaRπα,x(Y )) ≤
log
(

1
αE

π
x (Y )

)
, which of course is poor as α → 0.

However, for a fixed α ∈ (0, 1), we anticipate that this
approximation performs well when Pπx has a fat (upper) tail,
which we state formally in the following lemma.

Lemma 4 (Tightness of log(CVaRα(Y )) ≤ log( 1
αE(Y ))):

Assume the conditions of Lemma 3, and let α ∈ (0, 1).
Suppose that for some finite m > 0, it holds that

0 < m

∫ 1−α

0

VaR1−p(Y ) dp ≤
∫ 1

1−α
VaR1−p(Y ) dp. (38)

Then, 0 ≤ log
(

1
αE(Y )

)
− log(CVaRα(Y )) ≤ log

(
1
m + 1

)
.

Remark 2 (Fat tail condition (38)): The second inequality
in (38) means that the cumulative VaR in the upper α-
fraction of the distribution of Y ,

∫ 1

1−α VaR1−p(Y )dp, is at
least m times greater than the cumulative VaR in the lower
(1−α)-fraction of the distribution of Y ,

∫ 1−α
0

VaR1−p(Y )dp.
The maximum value of m that satisfies (38) is m̂ =∫ 1

1−α VaR1−p(Y )dp∫ 1−α
0

VaR1−p(Y )dp
, which gives a measure of tail “fatness.” For

example, if the distribution of Y is a standard log-normal with
parameters µ = 0 and σ = 1, and if α = 0.05, then numerical

integration yields m̂ ≈ 0.42
1.2 ≈ 0.35. If σ is increased to 2

under the same conditions, then m̂ ≈ 4.7
2.7 ≈ 1.7.

Next, we prove Lemma 4.
Proof: [Lemma 4] The representation of CVaR in (3) and the
inequality (38) imply that

1

α

∫ 1−α

0

VaR1−p(Y )dp ≤ CVaRα(Y )

m
. (39)

The expectation and the VaR are related by E(Y ) =

CVaR1(Y ) =
∫ 1

0
VaR1−p(Y )dp. It follows that 1

αE(Y ) ≤(
1
m + 1

)
CVaRα(Y ). From this and Lemma 2, we have

CVaRα(Y ) ≤ 1
αE(Y ) ≤

(
1
m + 1

)
CVaRα(Y ). (40)

Then, take the logarithm of (40) and subtract
log(CVaRα(Y )) ∈ R to complete the derivation.

From Theorem 2, we obtain tractable under-approximations
to risk-sensitive safe sets. In practice, one selects γ ≥ 1
manually and then estimates J∗α,γ (23) for a family of risk-
sensitivity levels. For a fixed γ, only one MDP problem on
the original state space needs to be solved for any family
of risk-sensitivity levels because J∗α,γ is a standard MDP
problem scaled by α. In Sec. V, which presents numerical
examples, we take one approach to choose a suitable value
of γ manually by visual inspection. Before proceeding to
the numerical examples, we present one additional theoretical
contribution.

IV. TOWARD A PARAMETER-INDEPENDENT SAFETY
ANALYSIS FRAMEWORK

Previously, we have defined risk-sensitive safe sets in terms
of the CVaR of a maximum random cost. However, this risk-
sensitive safety criterion is difficult to optimize exactly without
using state-space augmentation, which motivated us to derive a
parameter-dependent upper bound. One may wonder whether
there is another coherent risk functional (ideally related to
CVaR) that admits an upper bound, which can be computed
via DP on the original state space without an additional
parameter that requires tuning. The answer is indeed positive,
as presented below.

Definition 3 (Proposed Risk Functional): Let α ∈ (0, 1],
x ∈ S, π ∈ Π, and Y ∈ L∞(Ω,B(Ω), Pπx ) be given. Let
Dα be a set of tuples of densities. Each tuple ζ ∈ Dα takes
the form ζ = (ξ0, ξ1, . . . , ξT−1), where the properties of the
densities follow. For each t, ξt(·|·, ·) : S × S × A → R is
Borel measurable, and for every (x, u) ∈ S ×A, it holds that
ξt(·|x, u) ∈ Rα(x, u). Here, Rα(x, u) is the set of Borel-
measurable functions of the form ν : S → R such that
ν ∈ [0, α−1/T ] a.e. w.r.t. Q(·|x, u) and

∫
S
ν dQ(·|x, u) = 1.

We define ρπα,x(Y ) by

ρπα,x(Y ) := sup
(ξ0,ξ1,...,ξT−1)∈Dα

∫
Ω

Y

T−1∏
t=0

ξt(xt+1|xt, ut) dPπx .

(41)
Remark 3 (Interpretation for Rα(x, u)): Rα(x, u) is re-

lated to the set of densities in the CVaR representation given
by (5). If the probability space is (S,B(S), Q(·|x, u)), then
Aα′ = Rα(x, u), where α′ = α1/T .



Remark 4 (Interpretation for ρπα,x): Although we do not
yet have an exact interpretation for ρπα,x, we provide a pre-
liminary interpretation here. The quantity ρπα,x(Y ) is a distri-
butionally robust expectation of Y , such that an uncertainty
ξt perturbs the system’s nominal transition law Q at each
time t. ξt may depend on the current time, state, and control.
Moreover, ρπα,x(Y ) strikes a balance between the expectation
and CVaR, as formalized below.

Lemma 5 (Coherence of ρπα,x, relation to CVaR): The risk
functional ρπα,x : L∞(Ω,B(Ω), Pπx ) → R is coherent. In
addition, for any Y ∈ L∞(Ω,B(Ω), Pπx ), the inequality
Eπx (Y ) ≤ ρπα,x(Y ) ≤ CVaRπα,x(Y ) holds.

Proof: The first step is to verify the properties of mono-
tonicity, subadditivity, translation equivariance, and positive
homogeneity, which we omit in the interest of space. To show
that Eπx (Y ) ≤ ρπα,x(Y ), note that ζ = (ξ0, ξ1, . . . , ξT−1) such
that ξt equals 1 for each t is an element of Dα. The inequality
ρπα,x(Y ) ≤ CVaRπα,x(Y ) follows from (8b)–(8c).

We use the risk functional (41) to define a safe set.
Definition 4 (S̄rα-Risk-Sensitive Safe Set): For any α ∈

(0, 1] and r ∈ R, define S̄rα := {x ∈ S : infπ∈Π ρ
π
α,x(Y ) ≤ r}.

Definition 4 is inspired by Definition 1, and the form of ρπα,x
(41) is inspired by the representation for CVaR in (8b)–(8c).
We emphasize a key distinction. In (41), there is a function
ξt for each t that depends on the current state and control.
In (8b)–(8c), however, each function in Aπα,x depends on the
entire history. The “separable” structure of (41) allows us to
derive a DP algorithm on the original state space to upper
bound infπ∈Π ρ

π
α,x(Y ) without using a parameter that requires

tuning. In this section, we make two assumptions.
Assumption 1 (Properties of Y ): We consider the case

when Y := cT (XT ) +
∑T−1
t=0 ct(Xt, Ut) is cumulative. The

functions ct : S × A → R for all t ∈ {0, 1, . . . , T − 1} and
cT : S → R are bounded and upper semi-continuous (usc).

Assumption 2 (Continuity property of Q): The transition
kernel Q (6) is continuous in total variation; that is, if
(xn, un)→ (x, u), then |Q(·|xn, un)−Q(·|x, u)|(S)→ 0.

Remark 5 (Example that satisfies Assumption 2): Suppose
that PD has a continuous non-negative density and f in (6)
has the form f(x, u, d) = f1(x, u) + d · f2(x, u), where
W = S is a vector space with field R, f1 : S × A → S and
f2 : S × A → R are continuous, and f2 is non-zero. Then,
by Scheffé’s Lemma, Assumption 2 is satisfied. We note that
continuity of f is a typical condition in stochastic control,
e.g., see [15, p. 209], and requiring additional structure on
the dynamics to achieve tractable algorithms is standard.
For example, under some assumptions the dynamics may be
decomposed into overlapping systems, to obtain conservative
under-approximations to reachable sets for continuous-time,
non-stochastic systems [23], [55]. A mixed monotone
structure has been assumed to approximate reachable sets
for discrete-time non-stochastic systems, with applications to
traffic safety [56], [57]. More broadly, additive continuous
noise is a realistic assumption in many domains, e.g., additive
Gaussian noise in information theory and control (classical
references include [4], [58]) and additive Brownian motion in
continuous-time epidemiological modeling [59], [60].

Boundedness and upper semi-continuity of ct for all t

ensures that Y ∈ L∞(Ω,B(Ω), Pπx ) for any x ∈ S and
π ∈ Π. Also, boundedness of ct ensures that the iterates
of a DP recursion are bounded, which we use to show
that a supremum over Rα(x, u) of the form φ(x, u) :=
supξ∈Rα(x,u)

∫
S
Jξ dQ(·|x, u) is attained (Lemma 6, Ap-

pendix). This attainment and Assumption 2 together guarantee
that the supremum is usc in (x, u) (Lemma 8, Appendix). The
upper semi-continuity of the supremum permits the derivation
of an upper bound for infπ∈Π ρ

π
α,x(Y ) via DP.

Theorem 3 (DP to Upper Bound infπ∈Π ρ
π
α,x(Y )): Let

Assumptions 1–2 hold, and let α ∈ (0, 1] be given. Define

JαT := cT , (42a)

and for t = T − 1, . . . , 1, 0, define

Jαt (x) := inf
u∈A

vαt (x, u) ∀x ∈ S, (42b)

where vαt := ct + ϕαt and

ϕαt (x, u) := sup
ξ∈Rα(x,u)

∫
S

Jαt+1ξ dQ(·|x, u) (42c)

for all (x, u) ∈ S × A. Then, Jαt is usc and bounded for all
t = 0, 1, . . . , T . For all ε > 0, there is a deterministic Markov
policy π∗ε ∈ Π such that ρπ

∗
ε
α,x(Y ) ≤ Jα0 (x) + ε for all x ∈ S.

In particular, infπ∈Π ρπα,x(Y ) ≤ Jα0 (x) for all x ∈ S.
A proof for Theorem 3 is in the Appendix, where we include

supporting results as well.
Theorem 3 is exciting for two main reasons: 1) it provides a

more numerically tractable way to estimate safe sets (the upper
bound does not have a parameter that requires tuning, and the
algorithm does not require an augmented state space); and 2)
more broadly, the result initiates new avenues for tractable
solutions to risk-sensitive safety analysis problems.

V. NUMERICAL EXAMPLES

Here, we present examples of risk-sensitive safe sets and
their under-approximations as in Definition 1 for a temperature
system and a stormwater system.7 For each example, we have
chosen a value of γ by exploring increasing integer values
and then stopping the exploration when improvements in the
estimates of Urα,γ were no longer apparent.

A. Temperature System

Consider a thermostatically controlled load evolving on a
finite-time horizon t = 0, 1, . . . , T − 1 via a deterministic
Markov policy π = (π0, π1, . . . , πT−1),

Xt+1 = aXt + (1− a)(b− ηr̄p̄πt(Xt)) +Dt.

This model is from [29], [48]. Xt is the R-valued random
temperature (◦C) of a thermal mass at time t. πt(Xt) is the
[0, 1]-valued control at time t. The amount of power supplied
to the system decreases as the value of the control increases
from 0 to 1. (D0, D1, . . . , DT−1) is a R-valued, iid stochastic

7We used the Tufts Linux Research Cluster (Medford, MA) with MATLAB
(The Mathworks, Inc.). Our code is available from https://github.
com/risk-sensitive-reachability/IEEE-TAC-2021.

https://github.com/risk-sensitive-reachability/IEEE-TAC-2021
https://github.com/risk-sensitive-reachability/IEEE-TAC-2021


process that arises due to environmental uncertainties. We con-
sider three discrete distributions for the disturbance process,
where each distribution has a distinct skew (left skew, no skew,
or right skew). In each distribution, the minimum disturbance
value is −0.5 ◦C, and the maximum disturbance value is 0.5
◦C. Table I provides the model parameters.

TABLE I
TEMPERATURE SYSTEM PARAMETERS

Symbol Description Value

a time delay e
−4τ
c̄r̄ (no units)

b temperature shift 32 ◦C
c̄ thermal capacitance 2 kWh

◦C
η control efficiency 0.7 (no units)
K constraint set [20, 21] ◦C
p̄ range of energy transfer to/from thermal

mass
14 kW

r̄ thermal resistance 2
◦C
kW

4τ duration of [t, t+ 1) 5
60

h
T length of discrete time horizon 12 (= 1 h)
A control space [0, 1] (no units)
S state space [18, 23] ◦C
h = hours, kW = kilowatts, ◦C = degrees Celsius.

We have chosen gK(Xt) = max(Xt − 21, 20 − Xt) to
quantify the extent of constraint violation of the state Xt

with respect to the constraint set K = [20, 21] ◦C. K is a
temperature range, where the state trajectory should remain
inside whenever possible. For different values of γ (see next
paragraph), we have implemented classical DP with linear
interpolation to estimate

J∗γ (x) := inf
π∈Π

Jγ(x, π) := inf
π∈Π

Eπx

(∑T
t=0 e

γgK(Xt)
)

(43)

and a deterministic Markov policy πγ ∈ Π such that J∗γ (x) =
Jγ(x, πγ) for all x ∈ S. DP on continuous state and con-
trol spaces is implemented typically via discretization and
interpolation. In particular, we have discretized the set of
controls A = [0, 1] and the set of states S = [18, 23] ◦C
uniformly at a resolution of 0.1. To improve efficiency of
DP, approximate DP methods are being developed, e.g., see
[49], [50], and the references therein. While these methods
are exciting, we leave investigations of their applicability to
risk-sensitive safety analysis for future work.

We have used γ ∈ Γ := {3, 4, . . . , 20} because for all
y ∈ S and γ ∈ Γ, the stage cost eγgK(y) is at most e20·2,
a large number that a personal computer can handle. We
have considered risk-sensitivity levels from nearly risk-neutral
(α = 0.99) to more risk-averse (α near 0). Specifically, we
have chosen α ∈ Λ := {0.99, 0.05, 0.01, 0.005, 0.001}. A
typical risk-sensitivity level is α = 0.05 or α = 0.01, and we
have considered smaller values of α as well. For γ ∈ Γ and
α ∈ Λ, we have estimated J∗α,γ (23) by dividing our estimate
of J∗γ (43) by α. Let Ŝ denote the state space grid. By using our
estimate of πγ , we have simulated 100,000 trajectories from
each initial state x ∈ Ŝ to generate an empirical distribution
of G := maxt=0,1,...,T gK(Xt). Then, for each α ∈ Λ, we
have used a consistent CVaR estimator [37, p. 300] to estimate
CVaRπγα,x(G).

Fig. 3 provides a visual summary of the inequality that we

have proved in Theorem 1:

CVaRπγα,x
(

max
t=0,1,...,T

gK(Xt)
)
≤ 1
γ log

(
1
αE

πγ
x

(∑T
t=0 e

γgK(Xt)
))
.

(44)
Each plot in Fig. 3 shows estimates of the right-hand-side of
(44) on the vertical axis versus estimates of the left-hand-side
of (44) on the horizontal axis for the 5 values of α in Λ. In
each plot, each solid colored line consists of 5 points, one
for each α ∈ Λ. Points associated with smaller values of α
(more risk-averse) are positioned farther away from the origin.
In each plot, there are three solid colored lines, one for each
distribution of the disturbance process. In each plot, γ ∈ Γ and
an initial state x ∈ Ŝ are fixed. We have chosen initial states
inside or on the boundary of the constraint set K = [20, 21]
◦C. Fig. 3 is consistent with the inequality that we have proved
in Theorem 1 since the solid colored lines are located above
the gray line of slope 1. Fig. 3 suggests that there is no unique
value of γ that provides the best approximation for all initial
states x, risk-sensitivity levels α, and disturbance distributions.

However, by Theorem 2, we have flexibility in choosing
the value of γ. In particular, we favor the quality of the
approximations for small values of α due to our focus on
safety and present sets using γ = 14 as an example of a value
that reflects this preference (Fig. 4).8 Fig. 4 provides estimates
of the (α, r)-risk-sensitive safe set for πγ ∈ Π (9)

Sr,πγα :=

{
x ∈ S : CVaRπγα,x

(
max

t=0,1,...,T
gK(Xt)

)
≤ r
}

and the (α, r, γ)-under-approximation set (22)

Urα,γ =
{
x ∈ S : 1

αE
πγ
x

(∑T
t=0 e

γgK(Xt)
)
≤ eγr

}
=
{
x ∈ S : 1

γ log
(

1
αE

πγ
x

(∑T
t=0 e

γgK(Xt)
))
≤ r
}
.

Note that Urα,γ = Ur,πγα,γ .9 In Fig. 4, estimates of Ur,πγα,γ (solid
red) and Sr,πγα (white circles with blue boundary) are shown
for the risk-sensitivity levels α ∈ Λ and various r ∈ R with
γ = 14. The estimates of Ur,πγα,γ are subsets of the estimates
of Sr,πγα , which we expect by Theorem 2. The estimates of
Sr,πγα form an increasing sequence of subsets as α increases
and r increases, which is consistent with Lemma 1.

B. Stormwater System

Next, we illustrate risk-sensitive safety analysis using a
gravity-driven stormwater system with an automated valve.
Consider a two-tank stormwater system evolving on a finite-
time horizon t = 0, 1, . . . , T − 1 using a deterministic
Markov policy π = (π0, π1, . . . , πT−1), Xt+1 = Xt +
f̄(Xt, πt(Xt), Dt) · 4τ . Let Rn+ := {y = (y1, . . . , yn)T ∈
Rn : yi ≥ 0 ∀i}. The state Xt is the R2

+-valued random
water elevations in the tanks at time t (ft, ft). πt(Xt) is
the [0, 1]-valued valve setting at time t (closed to open).

8Higher-quality approximations are those in which the estimates of the
under-approximations are generally closer to the estimates of the risk-sensitive
safe sets when considering all three disturbance distributions. We suggest an
approach to quantify the quality of the approximations in Fig. 4.

9Recall that πγ ∈ Π is a policy that satisfies J∗γ (x) = Jγ(x, πγ) ∀x ∈ S.
That is, πγ is an optimal policy for the MDP problem that defines Urα,γ .



Fig. 3. Computations of the inequality that we have proved in Theorem 1 are shown for the temperature system. In each plot, the horizontal axis
provides estimates of CVaRπγα,x(maxt=0,1,...,T gK(Xt)), and the vertical axis provides estimates of 1

γ
log
(

1
α
E
πγ
x

(∑T
t=0 e

γgK(Xt)
))

for 5
different risk-sensitivity levels α ∈ Λ := {0.99, 0.05, 0.01, 0.005, 0.001}. Points associated with smaller values of α (more risk-averse) are
positioned farther away from the origin. For a fixed γ, πγ is an optimal (deterministic, Markov) policy for the MDP problem (23). In each plot, there
are three solid colored lines, one for each distribution of the disturbance process (green = no skew, yellow = left skew, blue = right skew). In each
plot, γ ∈ {10, 14, 18} and an initial state x ∈ {20, 20.2, . . . , 21} are fixed. The value of γ varies along the rows, and the value of x varies
along the columns. A dotted gray line of slope 1 is shown for visual comparison.

(D0, D1, . . . , DT−1) is a R+-valued, iid stochastic process of
surface runoff. 4τ is the duration of [t, t + 1). The function
f̄ : R2

+ × [0, 1]× R+ → R2
+ is given by

f̄(x, u, d) :=

[
d− qvalve(x, u)

a1
,
d+ qvalve(x, u)− qdrain(x)

a2

]T

qvalve(x, u) := u · π̄r2
v · sgnh(x) ·

√
2ḡ|h(x)|

h(x) := max(x1 − z1, 0)−max(x2 − z1,in, 0)

qdrain(x) :=

{
cdπ̄r

2
d

√
2ḡ(x2 − z2) if x2 ≥ z2

0 otherwise.

Model parameters are in Table II. The constraint set K =
[0, k1] × [0, k2] specifies the maximum water elevations that
the tanks can hold without surcharge. The stage cost gK(x) =
max(x1 − k1, x2 − k2, 0) is the maximum surcharged water
level when the system occupies the state x ∈ R2

+.
We have identified a discrete distribution for the disturbance

process with the approximate statistics, mean (12.2 cfs),
variance (9.9 cfs2), and skew (0.74), where cfs is cubic feet
per second. In previous work, we obtained runoff samples
by simulating a design storm in PCSWMM (Computational
Hydraulics International), which extends the US Environmen-
tal Protection Agency’s Stormwater Management Model [52],
[53]. In this previous work, the empirical distribution had
positive skew, and the mean was about 12.2 cfs [52], which are
reflected in the current distribution (not shown in the interest
of space).

In Fig. 5, we show estimates of risk-sensitive safe sets
and their under-approximations using γ = 22 for 5 risk-

sensitivity levels (see also Table III). The shape of the contour
of Sr,πγα indicates a critical trade-off between the maximum
initial water elevations in the two tanks from which the system
meets a desired degree of safety. The similarity in the shapes
of Sr,πγα and Urα,γ is notable, suggesting that Urα,γ may be a
useful tool for inferring these critical trade-offs in networked
water systems.

TABLE II
STORMWATER SYSTEM PARAMETERS

Symbol Description Value
a1 surface area of tank 1 28292 ft2

a2 surface area of tank 2 25965 ft2
cd discharge coefficient 0.61 (no units)
ḡ acceleration due to gravity 32.2 ft

s2
k1 maximum water level in tank 1 3.5 ft
k2 maximum water level in tank 2 5 ft
π̄ circle circumference-to-diameter ratio ≈ 3.14
rd radius of drain 2/3 ft
rv radius of valve 1/3 ft
4τ duration of [t, t+ 1) 5 min
T length of discrete time horizon 24 (= 2 h)
A control space [0, 1] (no units)
S state space [0, 5] ft× [0, 6.5] ft
z1 invert elevation of pipe from base of

tank 1
1 ft

z1,in invert elevation of pipe from base of
tank 2

2.5 ft

z2 elevation from base of tank 2 to orifice 1 ft
ft = feet, s = seconds, min = minutes, h = hours.



Fig. 4. For the temperature system with γ = 14, estimates of the (α, r, γ)-under-approximation set Urα,γ = Ur,πγα,γ are shown (solid red
circles). Estimates of the (α, r)-risk-sensitive safe set for the control policy πγ ∈ Π, Sr,πγα , are shown (white circles with blue boundary). Each
plot presents the estimated sets for the different disturbance distributions (top interval: right skew (RS), middle interval: left skew (LS), and bottom
interval: no skew (NS); see the labels in the first plot). Each percentage

Number of states in estimate of Urα,γ
Number of states in estimate of Sr,πγα

·100% indicates the estimated quality of the

under-approximation. These percentages are shown whenever the estimate of Sr,πγα is not empty. The risk-sensitivity level α varies from nearly
risk-neutral (α = 0.99, left-most column) to more risk-averse (α = 0.001, right-most column).

Fig. 5. For the stormwater system with γ = 22, estimates of the boundary of the (α, r, γ)-under-approximation set Urα,γ = Ur,πγα,γ are shown
(solid pink). Estimates of the boundary of the (α, r)-risk-sensitive safe set for the control policy πγ ∈ Π, Sr,πγα , are shown (dotted blue). We

present r ∈ {0.5, 1, 1.5} and α ∈ {0.99, 0.05, 0.01, 0.005, 0.001}. The percentages
Number of states in estimate of Urα,γ

Number of states in estimate of Sr,πγα
· 100% indicate the

estimated quality of the under-approximations. We list these percentages for the plots in this figure in Table III.

VI. CONCLUDING REMARKS

This paper develops trajectory-wise safety specifications for
control systems that quantify the severity of random harmful
outcomes and thereby generalize classical stochastic safety
analysis. Our primary contribution is to develop a tractable,

interpretable safety analysis method with theoretical guaran-
tees that assesses the upper tail of a cost distribution by using
CVaR. It is notable that our method provides a parameter-
dependent upper bound to the CVaR of a maximum cost
without augmenting the state space. We have developed com-



pelling numerical examples, which demonstrate the utility and
tractability of our under-approximation approach. Moreover,
we have proposed a risk-sensitive safe set definition in terms
of a new coherent risk functional, inspired by CVaR, that
admits a parameter-independent upper bound. We show that
this upper bound can be computed via DP on the original state
space by proving the regularity of a supremum over a function
space for a class of transition kernels. Numerical investiga-
tions of leveraging our approximation to provide an efficient
preliminary estimate to the exact CVaR is an exciting future
direction. For instance, we have recently demonstrated the
usefulness of efficient approximate “warm-start” computations
to examine the effect of different design changes to stormwater
infrastructure [61]. More broadly, combining techniques from
approximate dynamic programming, stochastic rollout, and
risk-sensitive safety analysis could lead to novel controller
synthesis algorithms for higher-dimensional systems.

TABLE III

r = 0.5 α = 0.99 α = 0.05 α = 0.01 α = 0.005 α = 0.001
r = 0.5 ft 74.3 % 77.3 % 76.6 % 76.0 % 72.5 %
r = 1 ft 82.9 % 84.2 % 83.1 % 83.0 % 81.2 %
r = 1.5 ft 84.4 % 75.6 % 71.2 % 69.9 % 66.0 %

This table provides the percentages
Number of states in estimate of Urα,γ

Number of states in estimate of Sr,πγα
·100%

for the sets in Fig. 5 (stormwater system, γ = 22).

APPENDIX

Lemma 6 (Attainment of Supremum): Let J : S → R be
Borel measurable and bounded, and let α ∈ (0, 1]. Define the
function φ : S ×A→ R by

φ(x, u) := sup

{∫
S

Jξ dQ(·|x, u) : ξ ∈ Rα(x, u)

}
. (45)

Then, for any (x, u) ∈ S×A, there is a ξ∗(·|x, u) ∈ Rα(x, u)
such that

φ(x, u) =

∫
S

Jξ∗(·|x, u) dQ(·|x, u). (46)

Proof: Let (x, u) ∈ S×A, and fix the probability space
(S,B(S), Q(·|x, u)). Denote Lpx,u := Lp(S,B(S), Q(·|x, u))
for brevity, and view Rα(x, u) as a subset of L2

x,u with the
weak topology. Define the functional ψ : L2

x,u → R by

ψ(ξ) :=

∫
S

Jξ dQ(·|x, u). (47)

It suffices to show that ψ is weakly continuous and Rα(x, u)
is weakly compact. Weak continuity follows from two well-
known facts: 1) a linear functional on a normed vector space
is weakly continuous if and only if it is strongly continuous
[54, Prop. 2.5.3], and 2) a linear functional on a normed vector
space is strongly continuous if and only if it is bounded [12,
Prop. 5.2]. By applying standard techniques, it follows that ψ
is a bounded linear functional on a normed vector space, and
thus, ψ is weakly continuous. As Rα(x, u) is a bounded and
weakly closed subset of L2

x,u, Rα(x, u) is weakly compact
by the Banach-Alaoglu Theorem [37, p. 401]. Here, we use
the fact that L2

x,u is reflexive, and hence, the weak and weak*

topologies of L2
x,u are the same. We provide details about

weak closedness in a footnote.10

We use similar techniques to prove Lemma 7. Lemma 7 is
needed to guarantee that a supremum over Rα(x, u) (45) is
upper semi-continuous in (x, u).

Lemma 7 (Existence of weakly convergent subsequence):
Let µ be a probability measure on (S,B(S)), Gα(µ) the set of
functions ξ ∈ L2

µ := L2(S,B(S), µ) such that ξ ∈ [0, α−1/T ]
a.e. w.r.t. µ, and (ξn)n∈N ⊆ Gα(µ). Then, there exist
(ξnk)k∈N ⊆ (ξn)n∈N and ξ∗ ∈ Gα(µ) such that (ξnk)k∈N
converges to ξ∗ in the weak topology of L2

µ.
Proof: The proof requires two facts. The first fact is

[51, Thm. 3.18]: Assume that E is a reflexive Banach space,
and let (xn) be a (uniformly) bounded sequence in E. Then,
there is a subsequence (xnk) ⊆ (xn) that converges in the
weak topology. L2

µ is a reflexive Banach space, and ||ξn||L2
µ
≤

α−1/T for all n ∈ N. Thus, there exist (ξnk)k∈N ⊆ (ξn)n∈N
and ξ∗ ∈ L2

µ such that (ξnk)k∈N converges weakly to ξ∗.
Moreover, it holds that ξ∗ ∈ Gα(µ) using [51, Thm. 3.7]
(Footnote 10). Indeed, Gα(µ) is a convex subset of L2

µ, and
Gα(µ) is strongly closed in L2

µ. Thus, Gα(µ) is weakly closed
in L2

µ, which implies that ξ∗ ∈ Gα(µ).
We use Lemma 7 to prove the next supporting result.
Lemma 8 (Properties of φ): Let J : S → R be Borel

measurable and bounded and α ∈ (0, 1]. Under Assumption
2, φ (45) is upper semi-continuous (usc) and bounded.

Proof: Boundedness of φ follows from Q(·|x, u)-a.e.-
boundedness of Jξ for any ξ ∈ Rα(x, u). Now, φ is usc if
and only if

Ca :=
{

(x, u) ∈ S ×A : φ(x, u) ≥ a
}

is closed for every a ∈ R. Let a ∈ R and (xn, un)n∈N ⊆
Ca converging to (x, u) ∈ S × A be given, and we shall
show that (x, u) ∈ Ca. It suffices to show that there exist
(xnk , unk)k∈N ⊆ (xn, un)n∈N and (ck)k∈N ⊆ R with ck → 0
such that

φ(xnk , unk) ≤ ck + φ(x, u) ∀k ∈ N.

Indeed, if so, then

a ≤ lim sup
k→∞

φ(xnk , unk) ≤ lim sup
k→∞

ck + φ(x, u) = φ(x, u).

Denote zn := (xn, un) and z := (x, u) for brevity. By Lemma
6, for every n ∈ N,

∃ξn := ξ∗(·|zn) ∈ Rα(zn) s.t. φ(zn) =

∫
S

Jξn dQ(·|zn).

Since ξn ∈ [0, α−1/T ] a.e. w.r.t. Q(·|zn),

∃B(zn) ∈ B(S) s.t. ξn(y) ∈ [0, α−1/T ] ∀y ∈ B(zn),

10For weak closedness, recall the fact [51, Thm. 3.7]: Let E be a Banach
space, and let C be a convex subset of E. Then, C is closed in the weak
topology if and only if it is closed in the strong topology. Since Rα(x, u) ⊆
L2
x,u is convex, to show that Rα(x, u) is weakly closed, it suffices to show

thatRα(x, u) is strongly closed. Strong closedness ofRα(x, u) follows from
1) strong convergence implying weak convergence and 2) strong convergence
implying the existence of a subsequence that converges a.e. to the same limit
function [46, Thms. 2.5.1 & 2.5.3]. Let (ξn)n∈N ∈ Rα(x, u) converge
strongly to ξ∗ ∈ L2

x,u. The first fact ensures that
∫
S ξ
∗dQ(·|x, u) = 1, and

the second fact ensures that 0 ≤ ξ∗ ≤ α−1/T a.e., and thus, ξ∗ ∈ Rα(x, u).



where Q(S \B(zn)|zn) = 0. Define

ξ̃n := IB(zn)ξn.

It follows that ξ̃n ∈ Rα(zn) with ξ̃n ∈ [0, α−1/T ] everywhere.
Also, it holds that (ξ̃n)n∈N ⊆ Gα(Q(·|z)), where

Gα(Q(·|z)) :=
{
ξ ∈ L2

z : ξ ∈ [0, α−1/T ] a.e. w.r.t. Q(·|z)
}

and L2
z := L2(S,B(S), Q(·|z)). By Lemma 7, there exist

(ξ̃nk)k∈N ⊆ (ξ̃n)n∈N and ξ† ∈ Gα(Q(·|z)) such that (ξ̃nk)k∈N
converges to ξ† in the weak topology of L2

z . It holds that
ξ† ∈ Rα(z), and we explain why

∫
S
ξ†dQ(·|z) = 1 next. For

any k ∈ N, it holds that |ξ̃nk | ≤ α−1/T everywhere, and it
follows that∣∣∣∣∫

S

ξ†dQ(·|z)− 1

∣∣∣∣ ≤ Term1(k) + Term2(k),

where

Term1(k) :=

∣∣∣∣∫
S

ξ†dQ(·|z)−
∫
S

ξ̃nkdQ(·|z)
∣∣∣∣

Term2(k) := α−1/T
∣∣Q(·|z)−Q(·|znk)

∣∣(S).

The quantity |Q(·|z)−Q(·|znk)|(S) is the total variation of the
signed measure Q(·|z)−Q(·|znk) evaluated at the set S. By
the weak convergence of (ξ̃nk)k∈N to ξ† in L2

z , Term1(k)→ 0
as k →∞. By Assumption 2, Term2(k)→ 0 as k →∞.

Now, for every k ∈ N, we use the triangle inequality and
everywhere boundedness of Jξ̃nk to find that

φ(znk)− φ(z) ≤ Term3(k) + Term4(k),

where

Term3(k) :=
b

α1/T

∣∣Q(·|znk)−Q(·|z)
∣∣(S),

b ∈ R satisfies |J(y)| ≤ b for all y ∈ S, and

Term4(k) :=

∣∣∣∣∫
S

Jξ̃nkdQ(·|z)−
∫
S

Jξ†dQ(·|z)
∣∣∣∣ .

By the weak convergence of (ξ̃nk)k∈N to ξ† in L2
z ,

Term4(k)→ 0 as k →∞, and by Assumption 2, Term3(k)→
0 as k →∞. We choose

ck := Term3(k) + Term4(k) ∀k ∈ N,

and it follows that φ is usc.
We use the upper semi-continuity of φ to prove Theorem 3.

Proof: [Theorem 3] Proceed by induction. JαT = cT is usc
and bounded. Now, assume that for some t = T − 1, . . . , 1, 0,
Jαt+1 is usc and bounded. Then, Jαt+1 is Borel measurable
and bounded, which implies that ϕαt is usc and bounded by
Lemma 8. Since vαt = ct + ϕαt is a sum of usc and bounded
functions, vαt is usc and bounded. By [15, Prop. 7.34], we
conclude that Jαt is usc and bounded, and for every ε > 0,
there is a Borel-measurable function κα,εt : S → A such that
Jαt (x) ≤ vαt (x, κα,εt (x)) ≤ Jαt (x) + ε for all x ∈ S.

A DP argument completes the proof, which we outline
below.11 Let Π′ be the set of randomized Markov policies.

11A conditional expectation is not unique everywhere in general [46, Th.
6.3.3]. However, for the sake of simplicity, we write that a relation with a
conditional expectation holds everywhere, following the proof of [45, Th.
3.2.1].

For t = 0, 1, . . . , T , define the random cost-to-go by

Yt :=

{
cT (XT ) +

∑T−1
i=t ci(Xi, Ui) if t < T

cT (XT ) if t = T,

and note that Y = Y0. For any π ∈ Π′ and ζ ∈ Dα, we
denote the (π, ζ)-conditional expectation of Yt given Xt by
Wπ,ζ
t (xt) := Eπ,ζ(Yt|Xt = xt), where xt ∈ S. For any π =

(π0, π1, . . . , πT−1) ∈ Π′ and ζ = (ξ0, ξ1, . . . , ξT−1) ∈ Dα,
the following recursion (“law of iterated expectations”) holds:
for t = 0, 1, . . . , T − 1 and x ∈ S,

Wπ,ζ
t (x) =

∫
A

(
ct(x, u) + ψπ,ζt (x, u)

)
πt(du|x), (48a)

where ψπ,ζt is defined by

ψπ,ζt (x, u) :=

∫
S

Wπ,ζ
t+1(y) ξt(y|x, u) Q(dy|x, u) (48b)

with ξt(·|x, u) ∈ Rα(x, u) for each (x, u) ∈ S × A. For any
policy π ∈ Π′, we have

ρπα,x(Y ) = sup
ζ∈Dα

Wπ,ζ
0 (x) ∀x ∈ S. (49)

Let ε > 0 be given. Then, for each t = 0, 1, . . . , T − 1, there
exists a Borel-measurable function µα,εt : S → A such that

Jαt (x) ≤ vαt (x, µα,εt (x)) ≤ Jαt (x) +
ε

T
∀x ∈ S. (50)

Define π∗ε := (µα,ε0 , . . . , µα,εT−1) ∈ Π′, which is a deterministic
Markov policy and thus is an element of Π (the class of
randomized history-dependent policies) as well. Hence,

inf
π∈Π

ρπα,x(Y ) ≤ ρπ
∗
ε
α,x(Y )

(49)
= sup

ζ∈Dα
W

π∗ε ,ζ
0 (x) ∀x ∈ S.

It suffices to prove that

W
π∗ε ,ζ
t (x) ≤ Jαt (x) +

(T − t)ε
T

(51)

for all x ∈ S, ζ ∈ Dα, and t ∈ {0, 1, . . . , T}. Indeed, by
setting t = 0 in (51) and taking the supremum over Dα, we
would derive ρπ

∗
ε
α,x(Y ) ≤ Jα0 (x) + ε ∀x ∈ S. Since ε > 0 is

arbitrary, the desired statement would be shown. The sufficient
condition (51) holds by an inductive argument.12

12The base case holds because Wπ∗ε ,ζ
T = cT = JαT for all ζ ∈ Dα. Now,

assume that for some t ∈ {0, 1, . . . , T − 1}, it holds that Wπ∗ε ,ζ
t+1 (x) ≤

Jαt+1(x) +
(T−t−1)ε

T
for all x ∈ S and ζ ∈ Dα. Let x ∈ S and ζ =

(ξ0, ξ1, . . . , ξT−1) ∈ Dα be given. Since π∗ε is a deterministic Markov
policy, we have

W
π∗ε ,ζ
t (x)

(48)
= ct(x, µ

α,ε
t (x)) + ψ

π∗ε ,ζ
t (x, µα,εt (x)).

By the induction hypothesis and ξt(·|x, µα,εt (x)) ∈ Rα(x, µα,εt (x)) from
the definition of Dα, it follows that

ψ
π∗ε ,ζ
t (x, µα,εt (x)) ≤ ϕαt (x, µα,εt (x)) +

(T − t− 1)ε

T
.

Since vαt = ct+ϕαt , we derive Wπ∗ε ,ζ
t (x) ≤ vαt (x, µα,εt (x)) +

(T−t−1)ε
T

.
Then, we complete the induction using the second inequality in (50), namely
vαt (x, µα,εt (x)) ≤ Jαt (x) + ε

T
.
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