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Using Spectral Submanifolds for Nonlinear Periodic Control

Florian Mahlknecht1, John Irvin Alora1, Shobhit Jain2,
Edward Schmerling1, Riccardo Bonalli3, George Haller2, Marco Pavone1

Abstract— Very high dimensional nonlinear systems arise
in many engineering problems due to semi-discretization of
the governing partial differential equations, e.g. through finite
element methods. The complexity of these systems present
computational challenges for direct application to automatic
control. While model reduction has seen ubiquitous applications
in control, the use of nonlinear model reduction methods in
this setting remains difficult. The problem lies in preserving
the structure of the nonlinear dynamics in the reduced order
model for high-fidelity control. In this work, we leverage
recent advances in Spectral Submanifold (SSM) theory to
enable model reduction under well-defined assumptions for the
purpose of efficiently synthesizing feedback controllers.

I. INTRODUCTION

Automatic control of complex, infinite-dimensional sys-
tems (i.e., dynamically evolving continua) such as soft robots
as well as aircraft and underwater vehicles with coupled
fluid-structure interactions remains challenging. Model re-
duction provides a principled approach to reduce model
complexity while capturing the essential physics required
for controller synthesis. In optimal control, we are inter-
ested in optimizing over a set of control inputs to track a
desired trajectory or stabilize around an operating point. In
these settings, working with the full-order model (FOM) is
computationally intractable. The need to utilize high-fidelity
models to control these challenging systems has resulted in
significant research efforts towards application of reduced-
order models (ROM) for controller design.

In this work we explore recent developments in Spectral
Submanifold (SSM) theory [1] for nonlinear model reduction
and control. SSMs are the smoothest invariant manifolds
that act as nonlinear continuations of the eigenspaces from
linearization of a system at a fixed point. This nonlinear
continuation is tangent to a corresponding spectral subspace
of the linearized system. The additional structure given by
this continuation allows us to capture highly-nonlinear be-
havior outside the vicinity of the linear approximation. Under
certain conditions, these nonlinearities can be approximated
arbitrarily well without ever increasing the size of the ROM.

Contributions: Motivated by the established theory on
SSMs and their successful application to model reduction
[2], we propose the adaptation of SSM theory to automatic
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control. In particular, we aim to synthesize optimal, non-
linear, periodic, feedback controllers on the reduced-order
SSM to exploit the computational speed-up while retaining
the fidelity of the high-order model.

Our contributions are threefold:

(i) We present, for the first time, this novel model reduction
technique in the context of control, enabling us to
track (quasi-)periodic trajectories. In this setting we
restrict ourselves to a special case of trajectory tracking
and synthesize optimal control laws that guarantee the
existence and persistence of lower-dimensional SSMs
on which the true system trajectory lies.

(ii) We demonstrate the utility of SSMs in accurately cap-
turing the nonlinear “slow dynamics” of a system while
neglecting its “fast dynamics”. This gives a natural
setting in which our control effort is focused on the
dynamics that persist.

(iii) We illustrate our approach on a pedagogical example,
highlight its advantages and disadvantages, and motivate
its application to high-dimensional models.

Related work: Most of the applications of model re-
duction for control exploit projection-based methods. They
involve a data-driven procedure to identify a linear subspace
from simulation rollouts of the FOM. This approach has been
successfully leveraged in literature for real-time control of
infinite-dimensional systems using Model Predictive Control
(MPC). The work in [3] considers the effect of proper
orthogonal decomposition (POD) on the closed-loop error
dynamics and the authors develop a constraint-tightening
scheme to ensure satisfaction of safety constraints in an MPC
framework. While similar works [4]–[6] adopt POD-based
MPC schemes for the control of certain PDE-classes, others
explore different combinations of subspace identification and
optimal control schemes. In [7], the authors investigate the
sub-optimality of LQR due to the projection error introduced
by POD, while [8] considers linear quadratic optimal control
using balanced truncation.

Direct application of projection-based methods for nonlin-
ear systems is difficult since evaluation of the nonlinear terms
results in a more expensive procedure than evaluating the full
model directly, as the change of reference frame involves
high-dimensional matrix multiplications [9]. To overcome
this limitation, much of the literature involves construction
of locally approximating linear ROMs for which standard
linear control techniques can be applied. In [10], the authors
propose an iterative LQR scheme combined with balanced
truncation to control the 1D Burger’s Equation. The authors

ar
X

iv
:2

20
9.

06
57

3v
1 

 [
m

at
h.

O
C

] 
 1

4 
Se

p 
20

22



in [11] apply POD in a piecewise-affine fashion by reducing
linear approximations of the high-fidelity model. They then
evaluate the nonlinearities through interpolation of the linear
approximations and apply an MPC framework to control a
soft robot.

While these approaches have been demonstrated to work
well on various real-world systems, their performance and
theoretical guarantees are limited to linear ROMs [3].
For highly nonlinear systems operating in less constrained
workspaces, linear ROMs can result in low-fidelity surro-
gates that exhibit poor closed-loop performance and even
instability. This necessitates the need to capture the structure
of the nonlinearities in a more direct way and we propose a
new direction for addressing nonlinear model reduction for
control.

Organization: In Section II we introduce our notation and
definitions used in this work. Section III defines the optimal
control problem where we introduce the tracking error in the
periodic orbit of the FOM. In the methodology in Section IV,
we describe how we achieve model reduction using SSM in
our setting and how we leverage the reduced representation
of the dynamics to optimize the tracking error previously
introduced in the full-order state-space. Section V showcases
the application of the theory on an illustrative example and
provides the insights needed for tackling higher-dimensional
examples. We conclude this work in Section VI, highlighting
the most promising future avenues.

II. PRELIMINARIES

This section provides the preliminaries that contextualize
our approach. We first describe the system dynamics model
in Section II-B and then define necessary notions in Sec-
tion II-C to lay the groundwork for SSM theory.

A. Notation

The set of integers and reals are denoted by Z and R,
with their non-negative counterparts denoted by Z+ and R+.
The complex numbers are denoted by C. S1 = R1/

(
2πZ1

)
represents the circle on the real line. Ck represents the space
of k continuously-differentiable functions and Ca represents
the space of analytic functions. L2(V,W ) is the space of
square integrable functions from a complete vector space V
to W . O(·) represents the standard big-O notation. ⊗ is the
tensor product, where z⊗3 = z⊗ z⊗ z.

B. System Model

1) Full Order Model: Consider the following continuous-
time, control-affine, nonlinear dynamics with equilibrium
point at the originẋ(t) = Ax(t)+ f0(x(t))+

m

∑
i=1

fi(x(t))ui(t),

y(t) = Hx(t),
(1)

where the state x(t)∈RN is high-dimensional, i.e. N is large;
A ∈RN×N is the stability matrix; f0(x) are the nonlinearities
of the uncontrolled system; fi : RN →RN for i = 1, ...,m are
nonlinear functions that describe the state-dependence of the

control effort via an m-dimensional control input u(t) ∈Rm;
the observed output of the system is denoted as y(t) ∈ Ro;
and H ∈ Ro×N is the selection matrix of output variables,
where o� N. In this work, we assume that the performance
and output variables are the same and that they are perfectly
observable. We introduce the following assumption on the
form of A.

Assumption 1: A is negative definite, i.e. A≺ 0.
In other words, we assume that the origin x̄ = 0 is a locally
asymptotically stable equilibrium point. Many physical sys-
tems and phenomena of interest such as soft robots and fluid
structure interactions satisfy this assumption (possibly up to
a shift in origin).

In addition, we introduce the following assumption on the
form of fi.

Assumption 2: The functions f0, . . . , fm ∈Ca. 1

We remark that this assumption is not particularly limiting
since many physical systems (e.g. soft robots) generically
satisfy this assumption and we are only interested in con-
trolling smooth behavior.

C. Spectral Subspace

Consider the uncontrolled part of System (1)

ẋ(t) = Ax(t)+ f0(x(t)), (2)

whose linearization around the origin is given by

ẋ(t) = Ax(t). (3)

For any eigenvalue λ j of A, there exists an eigenspace
E j ⊂ RN spanned by the (generalized) eigenvectors of A.
These eigenspaces are invariant subspaces of the linearized
system (3).

Definition 3: A spectral subspace E j1,..., jn of System (1)
is defined as the direct sum of an arbitrary collection of
eigenspaces of A i.e.

E := E j1,..., jn = E j1 ⊕E j2 ⊕ ...⊕E jn .

By linearity of System (3), any spectral subspace is an
invariant subspace of A. In projection-based methods, ROMs
are constructed by projecting the dynamics onto a nested
hierarchy of the slowest k spectral subspaces i.e. Ek =E1,...,k
where E1 ⊂ E2 ⊂ E3 ⊂ ·· · ⊂ Ek and k� N.

However, such projections of the governing equations to
spectral subspaces can be guaranteed to work only for linear
systems and do not capture the effects of the nonlinear terms
and control inputs of the FOM. To find a faithful reduction of
System (1), it is necessary to reason about how the additional
nonlinear terms and time dependent forcing influence the
structure of the spectral subspace. To this end, we propose
using SSMs and their reduced dynamics for reducing the
following nonlinear control problem.

1We make this assumption for ease of exposition. In general, the right-
hand side of System (1) can have finite smoothness, infinite smoothness, or
be analytic; correspondingly the spectral submanifold defined in Section IV-
A is as smooth as the right-hand side.



III. PROBLEM STATEMENT

In this section we provide a formal problem definition of
the full-order, periodic optimal control problem in Section
III-A.

A. Periodic Optimal Control Problem

In this work we design periodic orbits, minimizing the
mean distance to some desired trajectory z?(ω t)∈Ro, where
ω ∈R+ is the frequency of the reference trajectory. Our ap-
proach is to formulate the following optimal control problem

min
u(·)

1
T

∫ T

0
‖z?(ω t)− y(t)‖2 dt

subj. to System (1) (4)
x(0) = x(T ).

In Equation (4), we minimize over a class of periodic
feedback control laws of the form

u(t) = κ(y(t),ωt), (5)

where κ ∈ L2(Ro×S1,Rm). For ease of notation, throughout
the rest of the paper we denote ϕ = ωt.

Informally, we minimize the mean-squared trajectory error
between our system’s periodic orbit and the desired trajec-
tory, after its fast dynamics have sufficiently decayed. We
emphasize that in this work, we are interested in synthesizing
control laws that neglect transients and control for a periodic
orbit.

We remark that while we consider the case of periodic
control laws in this paper, our approach generalizes to the
quasi-periodic setting.

IV. METHODOLOGY

A. Spectral Submanifold Preliminaries

An SSM serves as the unique nonlinear continuation of a
nonresonant spectral subspace E for the nonlinear system (2)
and is defined as follows [1].

Definition 4: An autonomous SSM W (E), corresponding
to a spectral subspace E of the operator A is an invariant
manifold of the nonlinear system (2) such that

1) W (E) is tangent to E at the origin and has the same
dimension as E,

2) W (E) is strictly smoother than any other invariant
manifold satisfying condition 1 above.

A slow SSM is associated to a spectral subspace containing
the slowest decaying eigenvectors of the linearized system.
Slow SSMs are ideal candidates for model reduction as
typical nearby full system trajectories are exponentially at-
tracted towards these manifolds and synchronize with the
slow dynamics on such SSMs.

We synthesize such a controller by focusing on controlling
the reduced dynamics along a slow SSM. As the full system
trajectories quickly and automatically synchronize with the
dynamics on the slow SSM, we envision a minimal control
effort arising from our synthesized controller on the slow
SSM. Hence, we assume a small control input by rescaling

the control terms in system 1 by a small scalar parameter
ε > 0 as


ẋ(t) = Ax(t)+ f0(x(t))+ εg(x(t),ωt),

g(x(t),ωt) =
m

∑
i

fi(x(t))κi(Hx(t),ωt), (6)

where the control input κi(y(t),ωt) has periodic time-
dependence with frequency ω for all i = 1, . . . ,m.

In this non-autonomous setting of periodic control, SSMs
are envisioned similarly to the autonomous setting and the
role of the fixed point is taken over by the periodic orbit
γε created by the small-amplitude control force. A nonau-
tonomous, time-periodic SSM W (E,γε) is then a fibre bundle
that perturbs smoothly from the vector bundle γε ×E under
the addition of the nonlinear and control terms in System (6).
Hence, W (E,γε) is 2π

ω
-periodic in time.

Definition 5: A time-periodic SSM W (E,γε), correspond-
ing to a spectral subspace E of the operator A is an invariant
manifold of the nonlinear system (6) such that

1) W (E,γε) is a subbundle of the normal bundle Nγε of the
periodic orbit γε , satisfying dimW (E,γε) = dimE+1,

2) W (E) perturbs smoothly from the spectral subspace E
of the linearized system under the addition of nonlinear
and control terms in System 6.

3) W (E,γε) has strictly more continuous derivatives along
γε than any other invariant manifold satisfying condi-
tions 1 and 2 above.

For any spectral subspace E, the absolute spectral quo-
tient [1] is defined as

Σ(E) = Int

[
minλ∈Spect(A) Reλ

maxλ∈Spect(A|E) Reλ

]
. (7)

This spectral quotient measures the fastest decay exponent
outside the spectral subspace E relative to the slowest decay
exponent within E. It is crucial for determining the smooth-
ness class of invariant manifolds in which the SSM uniquely
exists. A high-value of the spectral quotient indicates a high-
degree of overlap between invariant manifolds tangent to E
at the origin, which is desirable for model reduction over
slow SSMs.

For a small-enough control effort, the following theorem
guarantees the existence of a time-periodic SSM, whose
reduced dynamics provides us an exact nonlinear reduced-
order model for control synthesis.

Theorem 6: Consider a spectral subspace E with dimE=
n and its associated eigenvalues (counting multiplicities)
listed as λ1, . . . ,λn. Assume that the low-order nonresonance
conditions

n

∑
j=1

m jReλ j 6= Reλl , λl 6∈ Spect(A|E), 2≤
n

∑
j=1

m j ≤ Σ(E),

(8)
hold for all eigenvalues λl of A that lie outside the spectrum
of A|E with m j ∈ N and that Assumptions (2) and (1) are
satisfied.

Then the following holds:



1) There exists a time-periodic SSM, W (E,γε) for sys-
tem (6) that depends smoothly on the parameter ε and
is unique in the class of CΣ(E)+1 invariant manifolds.

2) W (E,γε) can be viewed as an embedding of an open
set U into the state space of System (6) via the map

Wε(p,ϕ) : U ⊂ Cn×S1→ RN , (9)

with the periodic phase variable ϕ ∈ S1.

3) There exists a polynomial function with respect to p,
Rε(p,ϕ) : U → Cn satisfying the invariance equation

AWε(p,ϕ)+ f0(Wε(p,ϕ))+ εg(Wε(p,ϕ),ϕ) =

DpWε(p,ϕ)Rε(p,ϕ)+DϕWε(p,ϕ)ω, (10)

such that the reduced dynamics on the SSM is given by

ṗ = Rε(p,ϕ). (11)

Proof: This is a restatement of Theorem 4 in [1] in
our setting, which is deduced from the abstract results on
whiskers of invariant tori in [12].

B. Model reduction using SSM

Theorem 6 allows us to approximate Wε(p,ϕ),Rε(p,ϕ)
in a neighbourhood of the origin as a Taylor expansion
in the parametrization coordinates p with coefficients that
depend periodically on the phase variable ϕ . These peri-
odic cofficients can be further Fourier-expanded resulting in
Taylor-Fourier series for Wε(p,ϕ),Rε(p,ϕ). This means that
the SSM and its reduced dynamics can be approximated
arbitrarily well without ever increasing the dimension of
E. This is a highly desirable property for control since it
enables one to faithfully capture the essential nonlinearities
in the dynamics without increasing the dimensionality of the
model.

As detailed in [2], the solution of the invariance Equa-
tion (10) can be efficiently accomplished by solving the
mappings Wε and Rε with the ansatz

Wε(p,ϕ) =W0(p)+ εW1(p,ϕ)+O(ε2), (12)

Rε(p,ϕ) = R0(p)+ εR1(p,ϕ)+O(ε2), (13)

where the autonomous terms with ε = 0 are expressed as
multivariate Taylor expansions:

W0(p) = ∑
j≥0

W0, j p⊗ j, (14)

R0(p) = ∑
j≥0

R0, j p⊗ j, (15)

with the unknown coefficients W0, j, R0, j being ( j + 1)-
tensors. The O(ε) terms are expanded via a Taylor-Fourier

series as

W1(p,ϕ) = ∑
j≥0

W1, j(ϕ)p⊗ j, W1, j(ϕ) = ∑
h∈Z1

W1, j,hei〈h,ϕ〉

(16)

R1(p,ϕ) = ∑
j≥0

R1, j(ϕ)p⊗ j, R1, j(ϕ) = ∑
h∈Z1

R1, j,hei〈h,ϕ〉,

(17)

with W1, j,h,R1, j,h denoting unknown Taylor-Fourier coeffi-
cients at degree j and harmonic h ∈ N. As detailed in [2],
these unknown coefficients are determined by solving the
invariance equation (10) in a recursive manner, where each
recursion involves the solution of a linear system. These
computations have been automated and demonstrated on
nonlinear finite-element based applications featuring more
than 100,000 degrees of freedom [2]. SSMTool, an open-
source implementation of this procedure is available at [13].

C. Exploiting the ROM for offline optimization

We consider a generic periodic feedback control law,
expressible through a truncated Taylor-Fourier series:

κ(y,ϕ) =
ϒ

∑
j=0

D j(ϕ)y⊗ j, (18)

where ϒ ∈ N is the finite truncation order of the Taylor
series. D j(ϕ) is a tensor of order j+1 and dimension m, i.e.
D0(ϕ)∈Rm. The coefficients are individually determined by
the following (truncated) Fourier series:

D j(ϕ) = ∑
h∈H⊂Z1

D j,hei〈h,ϕ〉, (19)

where Γ = |H| is the finite truncation order of the Fourier
series. This allows us to consider the controller family
κD j,h generated by all possible realizations of the parameters
D j,h ∈ RΓ×m×o j

, j ∈ {0, . . . ,ϒ}. The number of parameters
to optimize is therefore np = ∑

ϒ
j=0 Γmo j.

As a consequence, the previously derived mappings of the
O(ε)-perturbed SSM and its reduced dynamics in eqs. (16)
and (17) are now dependent on the control parameters, i.e.
Wε(p,ϕ,D j,h), Rε(p,ϕ,D j,h).

We exploit this reduced order presentation, to find the
optimal parameters D?

j,h in an offline optimization procedure.
The ROM optimization formulation reads:

min
y(·),D j,h

1
T

∫ T

0
‖z?(ω t)− y(t)‖dt (20)

subj. ṗ = Rε(p,ϕ,D j,h)

y = H Wε(p,ϕ,D j,h)

y(0) = y(T ).

We remark that p ∈ Rn, n� N. Hence, this optimization
problem is much more tractable than Problem 4, motivating
the construction of the reduced model.



D. Summary

We summarize our method in Algorithm 1. As an input
we process the system matrices of System (1) with the
asymptotically stable fixed point shifted to the origin. fi(x)
are defined by supplying the coefficients of their respective
multivariate Taylor expansions.

Algorithm 1 Periodic control with SSM
Require:

• System (1): A ∈ RN×N , fi : RN → RN , H ∈ Ro×N

• z?(ϕ)

Ensure: Ax(0)+ f0(x(0))+∑
m
i fi(0)u(0) = 0

1: λi,vi← SPECTRALDECOMPOSITION(A)

2: En ←⊕
k∈{ j1... jn} vk . Pick the n slowest dynamics

3: Define form of κD j,h(y,ϕ) . dependent on D j,h

4: Wε,D j,h ,Rε,D j,h ← COMPUTESSMCOEFFS(A, fi,En,D j,h)

5: D?
j,h← OPTIMIZE(eq. (20))

6: Apply feedback law u(t) = κD?
j,h
(y(t),ϕ) to System 1

The control law is defined by picking the expansion order
ϒ and the Γ integer combinations of desired frequency
components, which determines the number of parameters np
that we optimize over.

Once optimal parameters for following the trajectory z?(ϕ)
are found, we apply our optimal feedback periodic control
law to the FOM in System 1. Assuming the designed periodic
orbits are stable, this control strategy guarantees that our
system trajectories will asymptotically converge to the ε-
perturbed SSM containing this orbit.

V. VALIDATION

A. Overdamped Pendulum Dynamics

To illustrate the principles of SSM theory for control, we
consider the simple example of an overdamped pendulum
providing a two-dimensional spectral subspace associated
with two distinct stable eigenvalues. We denote the state
space variables with x1 = θ , x2 = θ̇ . The dynamics of the
system are then given as{

ẋ1(t) = x2(t),
ẋ2(t) =− b

m`2 x2(t)− g
` sinx1(t)+ ε

1
m`2 u(t).

(21)

Considering the fixed point to be at the origin (corre-
sponding to the pendulum in the downward position with
no motion), we convert the system to the form denoted in
Equation (1) by splitting it into a linear part A, the nonlinear
part f0(x), and control-affine part:

ẋ(t)=
[

0 1
− g

` − b
m`2

]
︸ ︷︷ ︸

A

x(t)+
[

0
g
` x1(t)− g

` sinx1(t)

]
︸ ︷︷ ︸

f0(x(t))

+ε

[
0
1

m`2

]
u(t).

(22)

Fig. 1. Pendulum illustration

TABLE I
PENDULUM PARAMETERS

Parameter Value Unit

m 1 kg
` 1 m
g 9.81 m/s2

b 35 Nms/rad

-3 -2 -1 0 1 2 3

[rad]

-2

-1

0

1

2

[r
a

d
/s

]

E
1

E
2

Fig. 2. Overdamped pendulum phase portrait with SSM. E1 represents the
slow spectral subspace to which we attach our SSM (depicted in green)
while E2 represents the fast spectral subspace commensurate with the
dynamics that converge quickly to the SSM.

Note that ε makes explicit that the magnitude of u(t) should
be moderate; we provide more insight on this later in this
section. In our experiments, we set ε = 1.

The stability matrix A has two eigenvalues 0 > λ1 > λ2
with corresponding eigenvectors v1 and v2. We pick the
spectral subspace spanned by v1 (i.e. E1 = lin(v1)) which
corresponds to the slowest converging mode in A. The slow
and fast spectral subspaces E1 and E2, respectively, and
the attached SSM to E1 are shown in Figure 2. Lastly,
using Equation (7), we compute the spectral quotient to be
σ(E1) = Int

[
λ2
λ1

]
= 122. Recalling Theorem (6), we verify

that the non-resonance conditions are met.
We consider periodic state feedback controllers for the

pendulum of the following form, defined in terms of coeffi-
cients up :=

[
up1 . . .up6

]
κup(x, ϕ) :=up1 +up2 cosϕ +up3 sinϕ (23)

+ x1
(
up4 +up5 cosϕ +up6 sinϕ

)
B. SSM Derivation

To compute an analytic expression of the SSM, we use
graph-style parametrization. Therefore, we first perform a
change of basis into the spectral coordinates, i.e.

x = T ξ =
[
v1 v2

][ξ1
ξ2

]
.

We express the SSM as a function over E1, i.e. ξ2 =
h(ξ1,ϕ). Hence, the mapping back to the FOM state space,
is given by:

x =W (ξ1) = T
[

ξ1
h(ξ1,ϕ)

]
(24)
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Using the transformation ξ̇ = T−1 f (T ξ ) and taylor ex-
panding the non-polynomial, nonlinear terms (denoted f̃nl)
around the origin, we obtain the following dynamics

ξ̇ = Λξ + f̃nl(ξ1,ξ2)+ εT−1
[

0
1

m`2

]
κup(ϕ,W (ξ1)).

Denoting the dynamics for ξ̇1 as g1(ξ ,ϕ) and ξ̇2 as
g2(ξ ,ϕ), we state the invariance equation as

g2|ξ2=h(ξ1,ϕ)
= Dξ1

h(ξ1,ϕ)g1
∣∣
ξ2=h(ξ1,ϕ)

+Dϕ h(ξ1,ϕ)ω.

(25)

The right hand side is given by the derivative in time of our
SSM parametrization h(ξ1,ϕ), similarly to Equation (10).

We solve this invariance equation with the ansatz:

h(ξ1) = c1 ξ
2
1 + c2 ξ

3
1 + εh1(ξ1,ϕ),

h1(ξ1,ϕ) = c3 + c4 cosϕ + c5 sinϕ + c6 ξ1 cosϕ + c7 ξ1 sinϕ,

By coefficient comparison we determine
[
c1 . . .c7

]
as a

function of up. In this way we obtain hup(ξ1,ϕ), representing
the perturbed SSM due to the parametric forcing by the
periodic feedback controller.

Let us define p := ξ1. Then, the reduced dynamics of the
full system in Equation (21) is represented on the SSM as

ṗ = g1(p,hup(p,ϕ)) (26)

C. Controller Performance

In this section we hope to showcase the predictive capabil-
ity of SSMs for control synthesis as well as give insights on
the limitations of our approach. We motivate the extension
of this work to higher-dimensional problems which satisfy
the conditions set forth in our pedagogical experiment.
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Fig. 4. Convergence to the periodic orbit from θ0 = -180 deg. The ROM
on the SSM perfectly captures the nonlinearities even when far away from
the linearization point, i.e. the origin.

As shown in Algorithm 1, we first compute the reduced-
order representation in Equation (26). Our desire is to track
the trajectory θ ?(ωt) = 30+ 60sin(ωt) (in degrees), where
ω = π (rad/s). We simulate the trajectory and dynamics for
five time periods, ensuring that the dynamics in Equation (21)
achieves its periodic orbit. We then compute the optimal
parameters of our periodic feedback control law u(t) in
Equation (23) by solving Problem 20. We use the CMA-
ES optimization algorithm [14] implemented in the KO-
RALI framework [15]. After two time-periods, System (21)
achieves its periodic orbit, hence we set t1 = 2T .

Figure 3 shows the closed-loop tracking performance for
both the reduced model trajectory and the full order trajectory
with the optimal coefficients from the ROM optimization. In
other words, we compare the full system’s evolution x(t)
with the reduced system’s evolution W (p(t)). As expected,
after the small initial transient, the full system trajectory
is quickly attracted to the periodic orbit induced by our
controller. There is no noticeable difference between FOM
and ROM trajectories, meaning that the FOM trajectory lies
as expected on the SSM and its ε-perturbation captures the
periodic motion well.

In Figure 4 we perform the same experiment, but we
initialize the pendulum at θ = −180 deg. Despite the large
distance to the origin and the significant nonlinearities, the
ROM still evolves in the same manner as the full-order
model. Furthermore, the system converges to the periodic
reference trajectory, as desired.

Figures 5 and 6 highlight the relationship between the
spectral quotient and the robustness of the manifold under
forcing. These figures show that the small-ε assumption on
the applied input discussed in Section IV-A is nuanced and
depends on the dynamics of the system – specifically the
spectral quotient. Notice that in Figure 5, increasing the
spectral quotient allows us to increase the allowed forcing
amplitude without significant change in error. This would
correspond to a preservation of the periodic orbit in Figure 6
as we increase control effort to even larger amplitudes.

As shown in Figure 6, for systems with low spectral
quotient, the SSM quickly disassembles as we increase the
amplitude of the input. We stress that while in this example
the spectral quotient and damping are directly related, it is



Fig. 5. Error comparison between FOM and ROM for different spectral
quotients and forcing amplitudes. As expected, a higher forcing amplitude
leads to destruction of the manifold, since the ε-order perturbation is not
small anymore. The allowed scale of O(ε) is driven by the spectral quotient,
and in particular for our pendulum example, the damping coefficient.

important to distinguish between the two when considering
the previous discussion. Most structural dynamics appli-
cations feature small damping, but high spectral quotients
because higher frequency modes exhibit higher damping
ratios in comparison to low-frequency modes (see [16] for
an analytic calculation of spectral quotients in a beam, for
instance).

The results presented here show promise for apply-
ing SSM-based control strategies to robotic systems with
continuum-based models such as soft robots. In these sys-
tems the spectral quotients are expected to be high and are
in fact, infinite in the continuum limit of structural finite-
element models. Indeed, in our recent work we show the
applicability to higher-dimensional models with a data-driven
SSM approach, as we discuss in Section VI-A.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the first application of SSM
theory for control. In particular, we investigated the periodic
setting and extended existing theoretical guarantees to syn-
thesize optimal control policies for the purpose of periodic
trajectory tracking. All existing ROM-based optimal control
algorithms project the dynamics onto a linear subspace,
resulting in the need to increase the dimension of the ROM
to improve predictive capability for closed-loop control. In
contrast, we reason directly about the nonlinearities during
the reduction process using the powerful existence and
uniqueness guarantees provided by the SSM. We validated
our approach on an illustrative example and provided insights
on the persistence of the SSM under control inputs.

A. Future Works

There are numerous extensions and applications of this
work. Direct applications to robotic platforms are appealing,
such as highly-nonlinear soft robots or robotic fish with
periodic tail actuation and/or undulation due to periodic
muscle contraction [17]. Similar to the pendulum example,
we expect the ROM behavior to be coherent with the
FOM dynamics even far away from the static equilibrium,
enabling larger controllable workspaces, which are difficult
to address with current piecewise-linear reduction techniques
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Fig. 6. Periodic orbits of a pendulum (b = 7) with relatively low spectral
quotient (σ(E) = 2) versus increasing torque amplitude. This explicitly
shows that the SSM is less robust to large forcing when the spectral quotient
is low, resulting in a disassembling of the SSM.

that have been investigated so far. It would be interesting
to apply more sophisticated control schemes which exploit
the embodied intelligence of continuum robots and their in-
resonant dynamics to produce hyper-efficient motions.

Our most recent work on applying data-driven Spectral
Submanifold Reduction (SSMR) for nonlinear optimal con-
trol of a soft robot [18] shows the predictive capability of
SSMs for real-world, high-dimensional robotic systems. By
learning control-oriented models on low-dimensional SSMs,
the proposed SSMR-based MPC approach outperforms both
model-based and learning-based state-of-the-art methods in
tracking performance and computational efficiency. Further
experimental and data-driven validation remains of great
value to emphasize the applicability of the SSM-based ap-
proaches. Open questions on generic time-dependent control
inputs causing the SSM to lose its invariance provide future
avenues of research. For instance, characterizing model un-
certainties can be useful for constraint-tightening schemes in
safety-critical applications.

While data-driven SSMR shows significant promise, re-
liance on experimental data makes it difficult to apply
these approaches in the design process. Thus, it remains
worthwhile extending the model-based approach highlighted
in this work for the design and control of high-dimensional,
exotic robotic systems.
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decomposition and spectral submanifolds,” Journal of
Sound and Vibration, vol. 423, pp. 195–211, 2018,
ISSN: 0022-460X.

[17] J. Wang and X. Tan, “Averaging tail-actuated robotic
fish dynamics through force and moment scaling,”
IEEE Transactions on Robotics, vol. 31, no. 4,
pp. 906–917, 2015.

[18] J. I. Alora, M. Cenedese, E. Schmerling, G. Haller,
and M. Pavone, Data-driven spectral submanifold
reduction for nonlinear optimal control of soft robots,
2022. arXiv: 2209.05712 [cs.RO].

https://arxiv.org/abs/2209.05712

	I INTRODUCTION
	II PRELIMINARIES
	II-A Notation
	II-B System Model
	II-B.1 Full Order Model

	II-C Spectral Subspace

	III PROBLEM STATEMENT
	III-A Periodic Optimal Control Problem

	IV METHODOLOGY
	IV-A Spectral Submanifold Preliminaries
	IV-B Model reduction using SSM
	IV-C Exploiting the ROM for offline optimization
	IV-D Summary

	V VALIDATION
	V-A Overdamped Pendulum Dynamics
	V-B SSM Derivation
	V-C Controller Performance

	VI CONCLUSIONS AND FUTURE WORKS
	VI-A Future Works


