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Abstract
In this work, we analyze an efficient sampling-based algorithm for general-purpose reachability
analysis, which remains a notoriously challenging problem with applications ranging from neural
network verification to safety analysis of dynamical systems. By sampling inputs, evaluating their
images in the true reachable set, and taking their ε-padded convex hull as a set estimator, this
algorithm applies to general problem settings and is simple to implement. Our main contribution is
the derivation of asymptotic and finite-sample accuracy guarantees using random set theory. This
analysis informs algorithmic design to obtain an ε-close reachable set approximation with high
probability, provides insights into which reachability problems are most challenging, and motivates
safety-critical applications of the technique. On a neural network verification task, we show that
this approach is more accurate and significantly faster than prior work. Informed by our analysis,
we also design a robust model predictive controller that we demonstrate in hardware experiments.
Keywords: reachability analysis, random set theory, robust control, neural network verification.
Appendix: https://arxiv.org/abs/2112.05745

1. Introduction

Figure 1: ε-RANDUP consists of three simple
steps: 1) samplingM inputs xi inX , 2) prop-
agating these inputs through the reachability
map f , and 3) taking the ε-padded convex hull
ŶMε to approximate the reachable set Y .

Forward reachability analysis entails characterizing
the reachable set of outputs of a given function corre-
sponding to a set of inputs. This type of analysis un-
derpins a plethora of applications in model predictive
control, neural network verification, and safety analy-
sis of dynamical systems. Sampling-based reachabil-
ity analysis techniques are a particularly simple class
of methods to implement; however, conventional wis-
dom suggests that if insufficient representative sam-
ples are considered, these methods may not be robust
in that they cannot rule out edge cases missed by the sampling procedure. Alternatively, by leverag-
ing structure in specific problem formulations or computational methods designed for exhaustivity
(e.g., branch and bound), a large range of algorithms with deterministic accuracy and performance
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SAMPLING-BASED REACHABILITY ANALYSIS

guarantees have been developed. However, these methods often sacrifice simplicity and generality
for their power, motivating the development of algorithms that avoid such restrictions.

In this work, we analyze a simple yet efficient sampling-based algorithm for general-purpose
reachability analysis. As depicted in Figure 1, it consists of 1) sampling inputs, 2) propagating these
inputs, and 3) taking the padded convex hull of these output samples. We refer to this RANDomized
Uncertainty Propagation algorithm as ε-RANDUP: it is simple to implement, benefits from statisti-
cal accuracy guarantees, and applies to a wide range of problems including reachability analysis of
uncertain dynamical systems with neural network controllers. Importantly, ε-RANDUP fulfills key
desiderata that a general-purpose reachability analysis algorithm should satisfy:

• it works with any choice of possibly nonlinear reachability maps and non-convex input sets,

• its estimate of the reachable set is conservative with high probability and tighter than prior work,

• it is efficient and does not require precomputations, which is a key advantage for learning-based
control applications where uncertainty bounds and models are updated in real-time.

Our main contribution is a thorough analysis of the statistical properties of ε-RANDUP. Specifically:

1. We prove that the set estimator converges to the ε-padded convex hull of the true reachable set
as the number of samples increases. Our assumption about the sampling distribution is weaker
than in related work and implies that sampling the boundary of the input set is sufficient. This
asymptotic result justifies using ε-RANDUP as a thrustworthy baseline for offline validation
whenever the reachability map and the input set are complex and no tractable algorithm exists.

2. We derive a finite-sample bound for the Hausdorff distance between the output of ε-RANDUP
and the convex hull of the true reachable set, assuming that the reachability map is Lipschitz
continuous. This result informs algorithmic design (e.g., how to choose the number of samples
to obtain an ε-accurate approximation with high probability), sheds insights into which problems
are most challenging, and motivates using this simple algorithm in safety-critical applications.

We demonstrate ε-RANDUP on a neural network controller verification task and show that it is
highly competitive with prior work. We also embed this algorithm within a robust model predictive
controller and present hardware results demonstrating the reliability of the approach.

2. Related work

Reachability analysis has found a wide range of applications ranging from model predictive control
(Schürmann et al., 2018), robotics (Shao et al., 2021; Lew et al., 2022), neural network verifica-
tion (Tran et al., 2019; Hu et al., 2020), to orbital mechanics (Wittig et al., 2015). Reachability
analysis is particularly relevant in safety-critical applications which require the strict satisfaction of
specifications. For instance, a drone transporting a package should never collide with obstacles and
respect velocity bounds for any payload mass in a bounded input set. In contrast to stochastic prob-
lem formulations which typically consider the inputs as random variables with known probability
distributions (Webb et al., 2019; Sinha et al., 2020; Devonport and Arcak, 2020), we consider robust
formulations which are of interest whenever minimal information about the inputs is available.

Deterministic algorithms are often tailored to the particular parameterization of the reachability
map and to the shape of the input set. For instance, one finds methods that are particularly designed
for neural networks (Tran et al., 2019; Ivanov et al., 2019; Hu et al., 2020), nonlinear hybrid systems
(Chen et al., 2013; Kong et al., 2015), linear dynamical systems with zonotopic (Girard, 2005) and
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ellipsoidal (Kurzhanski and Varaiya, 2000) parameter sets, etc. We refer to (Liu et al., 2021) and
(Althoff et al., 2021) for recent comprehensive surveys. Such algorithms have deterministic accu-
racy guarantees but require problem-specific structure that restricts the class of systems they apply
to. Given the wide range of applications of reachability analysis, there is a pressing need for the
development and analysis of simple algorithms that can be applied to general problem formulations.

On the other hand, sampling-based algorithms reconstruct the reachable set from sampled out-
puts. The stochasticity is typically controlled by the engineer, who selects the number of samples
and their distribution. A key strength of this methodology is the possible use of black-box models
with arbitrary input sets, which allows using complex simulators of the system. For instance, kernel-
based methods (De Vito et al., 2014; Rudi et al., 2017; Thorpe et al., 2021) have been proposed as a
strong approach for data-driven reachability analysis. Kernel-based methods are highly expressive,
as selecting a completely separating kernel (De Vito et al., 2014) enables reconstructing any closed
set to arbitrary precision given enough samples. Their main drawback is the potentially expensive
evaluation of the estimator for a large number of samples. Its implicit representation as a level set
is also not particularly convenient for downstream applications.

Sampling-based reachable set estimators with pre-specified shapes have been proposed to sim-
plify computations and downstream applications. Recently, (Lew and Pavone, 2020) proposed to
approximate reachable sets with the convex hull of the samples, but this approach is not guaranteed
to return a conservative approximation. Ellipsoidal and rectangular sets are computed in (Devonport
and Arcak, 2020) using the scenario approach, but this work tackles a different problem formulation
with inputs that are random variables with known distribution. To tackle the robust reachability ana-
lyis problem setting, (Gruenbacher et al., 2022) use a ball estimator that bounds the samples. The
statistical analysis is restricted to ball-parameterized input sets, uniform sampling distributions, and
smooth diffeomorphic reachability maps that represent the solution of a neural ordinary differential
equation (Chen et al., 2018) from the input set. In practice, using an outer-bounding ball is more
conservative than taking the convex hull of the samples, see Section 6.

In this work, we slightly modify RANDUP (Lew and Pavone, 2020) with an additional ε-padding
step to yield finite-sample outer-approximation guarantees, Our analysis leverages random set the-
ory (Matheron, 1975; Molchanov, 2017), which provides a natural mathematical framework to an-
alyze the reachable set estimator. We characterize its accuracy using the Hausdorff distance to the
convex hull of the true reachable set, which provides an intuitive error measure that can be directly
used for downstream control applications. Our analysis draws inspiration from the vast literature on
statistical geometric inference, which proposes different set estimators including union of balls (De-
vroye and Wise, 1980; Baillo and Cuevas, 2001), convex hulls (Ripley and Rasson, 1977; Schnei-
der, 1988; Dumbgen and Walther, 1996), r-convex hulls (Rodriguez-Casal and Saavedra-Nieves,
2016, 2019; Arias-Castro et al., 2019), Delaunay complexes (Boissonnat and Ghosh, 2013; Aamari,
2017; Aamari and Levrard, 2018), and kernel-based estimators (De Vito et al., 2014; Rudi et al.,
2017). This research typically makes assumptions about the set to be reconstructed (e.g., it is con-
vex (Dumbgen and Walther, 1996) or has bounded reach (Cuevas, 2009)) and considers points that
are directly sampled from this set. In this work, we derive similar results for reachable sets given
known properties of the input set, reachability map, and chosen input sampling distribution.

3. Problem definition
In this section, we introduce our notations and problem formulation. Due to space constraints, we
leave measure-theoretic details to Appendix A. We denote λ(·) for the Lebesgue measure over Rp,
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Γ(·) for the gamma function, H(A) for the convex hull of a subset A ⊂ Rn, Ac = Rn \ A for its
complement, ∂A for its boundary, ⊕ for the Minkowski sum, B(x, r) := {y ∈Rn: ‖y−x‖≤ r} for
the closed ball of center x ∈ Rn and radius r ≥ 0, and B̊(x, r) for the open ball. The family of
nonempty compact subsets of Rn is denoted asK. For anyA ∈ K and d > 0,D(A, d) := min{n∈N :
∃{a1, . . ., an}⊂Rn, A⊂B(a1, d)∪ . . .∪B(an, d)} denotes the d-covering number of A.

Let X ⊂ Rp be a compact nonempty set of inputs and f : Rp → Rn be a continuous function.
In this work, we tackle the general problem of reachability analysis, i.e., characterizing the set of
reachable outputs y = f(x) for all possible inputs x ∈ X . This problem is also often referred to as
uncertainty propagation. Mathematically, the objective consists of efficiently computing an accurate
approximation of the reachable set Y ⊂ Rn, which is defined as

Y = f(X ) = {f(x) : x ∈ X}. (1)

To tackle this problem, ε-RANDUP relies on the choice of three parameters: a number of samples
M ∈ N, a padding constant ε > 0, and a sampling distribution PX on measurable subsets of Rp. As
depicted in Figure 1, ε-RANDUP consists of samplingM independent identically-distributed inputs
xi in X according to PX , of evaluating each output yi = f(xi), and of computing the ε-padded
convex hull

ŶMε := H
(
{yi}Mi=1

)
⊕B(0, ε). (2)

Our analysis hinges on the observation that the reachable set estimator ŶMε is a random compact
set, i.e., ŶMε is a random variable taking values in the family of nonempty compact sets K. We refer
to Appendix A for rigorous definitions using random set theory. Intuitively, different input samples
xi in X induce different output samples yi in Y , resulting in different approximated reachable sets
ŶMε . To characterize the accuracy of the estimator, we use the Hausdorff metric, which is defined
as

dH(A,B) := max
(

sup
x∈B

inf
y∈A
‖x− y‖, sup

x∈A
inf
y∈B
‖x− y‖

)
for any A,B ∈ K. (3)

This metric induces a topology and an associated σ-algebra, which enables rigorously defining
random compact sets as random variables and describing their convergence; see Appendix A. Inter-
estingly, the distribution of a random compact set is characterized by the probability that it intersects
any given compact set. We use this fact in Sections 4 and 5, where we characterize the probability
that the set estimator ŶMε intersects well-chosen sets along the boundary of the true reachable set.
By analyzing the distribution of ŶMε , this approach allows bounding the Hausdorff distance between
ŶMε and the convex hull of the true reachable set H(Y) with high probability.

4. Asymptotic analysis

In this section, we provide an asymptotic analysis under minimal assumptions about the input set and
the reachability map (namely, that X is compact and f is continuous). To enable the reconstruction
of the true convex hull H(Y) using the sampling-based set estimator ŶMε , we make one assumption
about the sampling distribution PX for the inputs xi. Note that by definition, PX (X ) = 1.

Assumption 1 PX ({x ∈ X : f(x) ∈ B̊(y, r)}) > 0 for all y ∈ ∂Y and all r > 0.

This assumption states that the probability of sampling an output arbitrarily close to any point on the
boundary of the true reachable set is strictly positive. In other words, the boundary of the reachable
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set should be contained in the support of the distribution of the output samples yi. Assumption 1
is weaker than the associated assumption in (Lew and Pavone, 2020, Theorem 2), which can be
restated as “PX (f−1(A)) > 0 for any open set A ⊂ Rn such that Y ∩A 6= ∅”. Indeed, Assumption
1 only considers open neighborhoods of the boundary ∂Y , as opposed to all open sets intersecting
Y . Selecting a sampling distribution PX that satisfies Assumption 1 is easy. For instance, if X has a
smooth boundary (see Assumption 4), then the uniform distribution over X satisfies Assumption 1.

Assumption 1 is sufficient to prove that the random set estimator ŶMε converges to the ε-padded
convex hull of Y as the number of samples M increases. Below, we prove a more general result
which allows for variations of the padding radius ε as the number of samples increases.

Theorem 1 (Asymptotic Convergence) Let ε̄ ≥ 0 and (εM )M∈N be a sequence of padding radii
such that εM ≥ 0 for all M ∈ N and εM → ε̄ as M → ∞. For any ε ≥ 0, define the estimator
ŶMε = H

(
{yi}Mi=1

)
⊕B(0, ε). Then, under Assumption 1, almost surely, as M →∞,

dH(ŶMεM ,H(Y)⊕B(0, ε̄))−→ 0.

Proof We refer to Appendix B.1. We leverage (Molchanov, 2017, Proposition 1.7.23) which states
sufficient conditions for the convergence of random compact sets and use properties of the convex
hull to relax the corresponding assumption in (Lew and Pavone, 2020) with Assumption 1.

Practically, Theorem 1 justifies using ε-RANDUP for general continuous maps f and compact
setsX . This consistency result implies that choosing any converging sequence of padding radii (e.g.,
εM = 1/M ) guarantees the convergence of the random set estimator ŶMεM to the ε̄-padded convex
hull of the true reachable set. As a particular case, selecting a constant padding radius ε (which
yields ε-RANDUP) guarantees that YMε converges to the ε-padded convex hull H(Y)⊕B(0, ε).

Compared to (Lew and Pavone, 2020, Theorem 2), which only treats the case with constant zero
padding radii εM = ε̄ = 0 (i.e., without ε-padding the convex hull of the output samples), Theorem
1 allows for variations of the padding radii εM and is proved under weaker assumptions. Instead
of relying on ε-covering arguments (e.g., see Corollary 1 in (Dumbgen and Walther, 1996) which
assumes that Y is convex), we use (Molchanov, 2017, Proposition 1.7.23) to conclude asymptotic
convergence. This proof technique allows deriving a general result that does not depend on the
exact sampling density along the boundary ∂Y and uses a sequence of padding radii εM converging
arbitrarily slowly to some constant ε̄ ≥ 0.

5. Finite-sample analysis

Theorem 1 provides asymptotic convergence guarantees that support the application of ε-RANDUP
in general scenarios (e.g., as a baseline for offline validation in complex problem settings), but does
not provide finite-sample guarantees which are of practical interest in safety-critical applications.
Deriving stronger statistical guarantees requires leveraging more information about the structure of
the problem. We derive finite-sample rates under general assumptions in Section 5.1 and analyze a
particular case in Section 5.2. We discuss practical implications of our results in Section 5.3.

5.1. General finite-sample statistical guarantees

To derive convergence rates and outer-approximation guarantees given a finite number of samples
M , we first make an assumption about the smoothness of the reachability map f .
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Assumption 2 The reachability map f : Rp → Rn is L-Lipschitz: for some constant L ≥ 0,
‖f(x1)− f(x2)‖ ≤ L ‖x1 − x2‖ for all x1, x2 ∈ X .

Next, we make an assumption about the sampling distribution PX along the input set boundary ∂X .

Assumption 3 Given ε, L> 0, there exists ΛLε > 0 such that PX
(
B
(
x, ε

2L

))
≥ΛLε for all x ∈ ∂X .

Given any boundary input x ∈ ∂X , the constant ΛLε characterizes the probability of sampling an
input xi that is ε/(2L)-close to x. Selecting a sampling distribution that satisfies Assumption 3 is
simple; we provide examples in Sections 5.2 and 6. As we show next, these two assumptions are
sufficient to derive finite-sample convergence rates for ε-RANDUP. Recall that D(∂X , d) denotes
the d-packing number of ∂X , which is necessarily finite by the compactness of X .

Theorem 2 (Finite-Sample Bound) Define the estimator ŶM = H
(
{yi}Mi=1

)
and the probability

threshold δM = D(∂X , ε/(2L))(1 − ΛLε )M . Then, under Assumptions 2 and 3 and assuming that
∂Y ⊆ f(∂X ), with probability at least 1− δM ,

dH(ŶM ,H(Y)) ≤ ε and Y ⊆ ŶMε .

Proof We refer to Appendix B.2 for a complete proof.

Using a similar analysis, one could derive convergence rates for the ε-padded union of balls estima-
tor (Devroye and Wise, 1980; Baillo and Cuevas, 2001) that would depend on the ε-covering number
of the entire input set D(X , ε). In the general case, D(∂X , ε) ≤ D(X , ε): Theorem 2 indicates that
using a convex hull is more sample-efficient than a union of balls, assuming that ∂Y ⊆ f(∂X ) (see
Appendix B.2 for further details). It is better suited if Y is convex or if an approximation of H(Y)
is sufficient for the downstream application, as is usual in control applications which typically use
convex reachable set approximations, see (Lew and Pavone, 2020).

5.2. Analysis of a particular setting: smooth input set and continuous distribution

Figure 2: Top: sets X satisfying
Assumption 4 can be non-convex,
have holes, and be disconnected.
Bottom: ifX c is not r-convex, it is
still possible to find a conservative
approximation that is r-convex.

In many applications, the boundary of the input set is smooth
(e.g., X is a 2-norm ball). In this setting, we can apply Theorem
2 to derive finite-sample guarantees for general continuous sam-
pling distributions. We state this smoothness assumption below.

Assumption 4 X c is r-convex for some r > 0. Equivalently,
for any x ∈ ∂X , there exists x̃ ∈ X such that x ∈ B(x̃, r) ⊆ X .

Assumption 4 guarantees that for any parameter x on the bound-
ary ∂X , one can find a ball of radius r contained in X that also
contains x, see Figure 2. This assumption corresponds to a gen-
eral inwards-curvature condition of the boundary ∂X . It is a
common assumption in the literature (Walther, 1997; Rodriguez-
Casal and Saavedra-Nieves, 2016, 2019; Arias-Castro et al.,
2019) and is related to the notion of reach (Federer, 1959;
Cuevas, 2009; Aamari, 2017) that bounds the curvature of the
boundary ∂X . To guarantee its satisfaction, one can replace X
with X ⊕ B(0, r) (Walther, 1997) before performing reachability analysis, which would yield a
more conservative estimate of Y . Next, we state an assumption about the sampling distribution PX .
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Assumption 5 PX (A) ≥ p0λ(A) for all measurable sets A ⊂ X for some constant p0 > 0.

This assumption states that the sampling distribution admits a lower-bounded continuous density.
Specifically, there exists a density function pX : Rp → R+ such that PX (A) =

∫
A pX (x)dx ≥

p0

∫
A dx = p0λ(A) for any measurable subset A ⊂ X . For instance, the uniform distribution over

X satisfies this assumption. Similarly to Assumption 3, this density assumption can be relaxed to
neighborhoods of ∂X ; we leave this extension for future work. We obtain the following corollary.

Corollary 1 Define the estimator ŶM = H
(
{yi}Mi=1

)
, the offset vector r = (r, 0, . . . , 0) ∈ Rp, the

volume Λr,Lε = λ
(
B(0, ε/(2L))∩B(r, r)

)
, and the threshold δM = D(∂X , ε/(2L))(1− p0Λr,Lε )M .

Then, under Assumptions 2, 4 and 5 and assuming that ∂Y ⊆ f(∂X ), with probability at least
1− δM ,

dH(ŶM ,H(Y)) ≤ ε and Y ⊆ ŶMε .

Proof We refer to Appendix B.3. We first prove that Assumptions 4 and 5 imply that Assumption
3 holds with ΛLε = p0Λr,Lε . The finite-sample bound then follows by applying Theorem 2.

The constant Λr,Lε corresponds to the p-dimensional Lebesgue volume of two hyperspherical
caps and can be computed analytically, see (Li, 2011; Petitjean, 2013) and Appendix C.

5.3. Insights: the difficulty of reachability analysis and algorithmic design

Theorem 2 reveals which characteristics of the problem make reachability analysis challenging:

• Assuming the smoothness of f is necessary: given an input set X and a sampling distribution
PX , one can construct problems for which sampling-based reachability analysis algorithms re-
quire arbitrarily many samples to compute an ε-accurate approximation of Y , see Section 6.1. To
derive finite-sample rates, assuming that the reachability map f is L-Lipschitz (Assumption 2) is
necessary if only assumptions on input coverage density (Assumption 3) are available.

• The smoother the easier: a smaller Lipschitz constant L and a larger radius parameter r induce
tighter bounds in Theorem 2, requiring a smaller number of samples M to obtain a desired
accuracy with high probability 1− δM . Indeed, such conditions guarantee a lower bound on the
probability of sampling outputs yi = f(xi) ∈ Y that are close to the boundary ∂Y , which is
necessary to accurately reconstruct the true convex hull of the reachable set from samples.

• Scalability: by Theorem 2, the number of required samples to reach a desired ε-accuracy with
high probability depends on the covering number. This constant characterizes the size of the pa-
rameter space in terms of dimensionality (the number of different parameters) and volume (vari-
ations of each parameter). Given any X ∈K and d= supx∈∂X ‖x‖, a simple and general bound
for the covering number is D(∂X , ε)≤ (2d

√
n/ε)

n (Shalev-Shwartz and Ben-David, 2009).

6. Results and applications

We perform a sensitivity analysis in Section 6.1 to illustrate the insights from Theorem 2. In Section
6.2, we compute the reachable sets of a dynamical system with a simple neural network policy and
compare with prior work. Finally, in Section 6.3, we embed ε-RANDUP in a model predictive
control (MPC) framework to reliably control a robotic platform. Our code and hardware results
are available at https://github.com/StanfordASL/RandUP and https://youtu.be/sDkblTwPuEg. All
computation times are measured on a computer with a 3.70GHz Intel Core i7-8700K CPU.
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6.1. Sensitivity analysis

Figure 3: Results for the sensitivity anal-
ysis in Section 6.1. Experimental results
are shown with continuous lines, theori-
cal upper bounds with dashed lines.

We analyze the sensitivity of ε-RANDUP to the sampling
distribution and the smoothness of the reachability map.
We consider a 2-dimensional input ball X = B(0, 1) and
the map f(x) = (Lx1, x2) with L ≥ 1. Clearly, X c

is 1-convex and f is L-Lipschitz continuous, so Corol-
lary 1 applies for any sampling distribution satisfying
Assumption 5. We consider a distribution PαX that de-
pends on a parameter α ≥ 1, such that PαX varies from
a uniform distribution over X for α = 1 to a uniform
distribution over the boundary ∂X as α → ∞. Given
δM = 10−3, we determine the minimum padding ε guar-
anteeing P(dH(ŶM ,Y) ≤ ε) ≥ 1 − δM using Corollary
1, see Appendix E.1. We take M = 1000 samples and
present results in Figure 3. We observe better performance than the predicted finite-sample bounds
and that distributions with a higher probability of sampling close to the boundary (i.e., larger values
of α) perform better, corresponding to lower Hausdorff distance errors. Also, ε-RANDUP performs
better on problems with smoother reachability maps, as is visible from our empirical evaluation and
theoretical bounds on the Hausdorff distance. This validates the discussion in Section 5.3.

6.2. Verification of neural network controllers

Figure 4: Reachable sets computed in Section 6.2 for a total prediction horizon N = 9. Sets from the formal
method REACHLP are shown in green, dashed sets correspond to no input splitting, straight-lines correspond
to splitting X0 into 16 components. We use M = 103 samples for all sampling-based methods and ε = 0.02.

Next, we consider the verification of a neural network controller ut = πnn(xt) for a known
linear dynamical system xt+1 = Axt + But, where t ∈ N denotes a time index, and xt ∈ R2 and
ut ∈ R denote the state and control input. Given a rectangular set of initial states X0 ⊂ R2, the
problem consists of estimating the reachable set at time t ∈ N defined as Xt = {(A(·) +Bπnn(·)) ◦
· · · ◦ (Ax0 + Bπnn(x0)) : x0 ∈ X0}. Defining (X ,Y) = (X0,Xt) and f(x) = (A(·) + Bπnn(·)) ◦
· · · ◦ (Ax + Bπnn(x)), we see that this problem fits the mathematical form described in Section
1. We use a ReLU network πnn from (Everett et al., 2021) with two layers of 5 neurons each.
We compare ε-RANDUP with the formal method REACHLP (Everett et al., 2021)1 and with two
recently-derived sampling-based approaches: the kernel method proposed in (Thorpe et al., 2021)

1. Comparisons with REACHSDP (Hu et al., 2020), which is more conservative than REACHLP, show a similar trend.
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and GOTUBE (Gruenbacher et al., 2022). We implement GOTUBE using the ε-RANDUP algorithm
where we replace the last convex hull bounding step with an outer-bounding ball. As ground-truth,
we use the reachable sets from ε-RANDUP with ε= 0 and M = 106, which is motivated by the
asymptotic results from Theorem 1 and was previously done in (Everett et al., 2021). We refer to
Appendix E.2 for details and present results in Figures 4 and 5.

Figure 5: Neural network verification
analysis in Section 6.2: we report the
computation time of each algorithm and
their averaged Hausdorff distance error
(with ε=0 for ε-RANDUP and GOTUBE)
over 100 tries when estimating Y = X4.

Formal methods that explicitly bound the output of
each layer of the neural network can guarantee that their
reachable set approximations are always conservative.
However, obtaining tight approximations with REACHLP
requires splitting the input set: a computationally expen-
sive procedure (Fig. 5, bottom). Figures 4 and 5 show that
REACHLP is more conservative than ε-RANDUP even
when considering polytopic outputs with eight facets. As
shown in Figure 4 (right), the conservatism of these meth-
ods increases over time. This shows that even when con-
sidering small neural networks, verifying safety specifi-
cations over long horizons remains an open challenge.

Sampling-based approaches do not suffer from the
long-horizon conservatism of formal methods. This
comes at the expense of probabilistic guarantees (that rely
on knowledge of the Lipschitz constant of the model),
as opposed to deterministic conservatism guarantees. ε-
RANDUP and GOTUBE have comparable computation
time2 and are significantly faster than other approaches.
ε-RANDUP is significantly more accurate than prior
work, especially for larger values of M . Also, the results
from Theorem 2 allow for principled hyperparameter selection for ε-RANDUP: given ε = 0.02,
sampling 1400 uniformly-distributed inputs on ∂X is sufficient for the output sets to be conserva-
tive with probability at least 1− 10−4 (for L = 1, see Section E.2).

These experiments show that for short-horizon problems (5 steps) with relatively simple net-
work architectures, both REACHLP and ε-RANDUP return accurate reachable set approximations.
For longer-horizon problems (9 steps) with networks of moderate dimensions (which allows us-
ing existing methods to pre-compute a Lipschitz constant, see (Fazlyab et al., 2019) and Section
D), ε-RANDUP is guaranteed to efficiently return non-overly-conservative reachable set approxi-
mations with high probability. Finally, though we do not present such results here, the generality of
ε-RANDUP allows it to tackle complex model architectures (see (Lew et al., 2022) for experiments
with longer horizons and more complex networks with uncertain weights) for which no alternative
methods exist, albeit without finite-sample accuracy guarantees.

6.3. Application to robust model predictive control

Finally, we show that ε-RANDUP can be embedded in a robust MPC formulation to reliably control
a planar spacecraft system actuated by cold-gas thrusters. Its state at time t ≥ 0 is denoted as xt ∈

2. Plotting the kernel-based level set estimator in (Thorpe et al., 2021) fromM samples requires classifying a dense grid
of points. To evaluate the computation time of this method, we only account for the time to classify M new samples.
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Figure 6: Application of ε-RANDUP to safely control a free-flyer robot in a cluttered environment (left).
Using a model predictive controller that does not account for the uncertain dynamics (middle) leads to unsafe
behavior, colliding with an obstacle and causing the optimization problem to be infeasible at run-time (right).

R6 and its control inputs are given as ut ∈ R3. We use an auxiliary linear feedback controller (Lew
et al., 2022) and an uncertain linear model xt+1 = f(xt, ut,m, F ) that depends on an uncertain
mass m ∈ [10, 18] kg (depending on the payload transported by the robot and the current weight
of the gas tanks) and an unknown force F = (Fx, Fy) ∈ [−0.015, 0.015]2 N that accounts for the
tilt of the table. To control the system from an initial state x0 ∈ Rn to a goal region Xgoal ⊂ Rn
while minimizing fuel consumption and remaining in a feasible set Xfree (i.e., avoiding obstacles
and respecting velocity bounds), we consider the following MPC formulation:

min
(µ,ν)

∑N
t=1(µt − xgoal)

>Q(µt − xgoal) +
∑N

t=1ν
>
t Rνt, s.t. µ0 = x0, (4a)

µt+1 = f(µt, νt, m̄, F̄ ), νt ∈ U , Xt(ν) ⊂ Xfree, XN (ν) ⊂ Xgoal, t= 0, . . ., N − 1. (4b)

where µ = (µ0, . . . , µN ) and ν = (ν0, . . . , νN−1) are optimization variables representing the
nominal state and control trajectories, (m̄, F̄x, F̄y) = (14, 0, 0) are nominal parameter values,
xgoal ∈ Xgoal is the center of the goal set, and the reachable sets Xt(ν) ⊂ Rn are defined as
Xt(ν) = {xt = f(·, νt−1,m, F )◦· · ·◦f(x0, ν0,m, F ) : (m,F ) ∈ [10, 18]×[−0.015, 0.015]}. The
numerical implementation is described in (Lew and Pavone, 2020). With a Python implementation,
ε = 0.03, and M = 103, our MPC controller runs at 10Hz which is sufficient for this platform and
could be improved, e.g., by parallelizing computations on a GPU. We compare with a MPC baseline
that does not consider uncertainty over the parameters (i.e., assumes (m,F ) ∈ {14}×{(0, 0)}). As
shown in Figure 6 and in the attached video, this baseline is unsafe and collides with an obstacle.
In contrast, our reachability-aware controller is recursively feasible, satisfies all constraints, and al-
lows safely reaching the goal. These experiments motivate the development of efficient reachability
algorithms that can be embedded in generic control frameworks to account for uncertain parameters.

7. Conclusion

We derived new asymptotic and finite-sample statistical guarantees for ε-RANDUP, a simple yet
efficient algorithm for reachability analysis of general systems. We demonstrated its efficacy for a
neural network verification task and its applicability to robust model predictive control. In future
work, we will investigate tighter finite-sample bounds by leveraging further information about the
smoothness of the input set boundary ∂X . Of practical interest is investigating which sampling
distributions enable better sample efficiency, interfacing ε-RANDUP with Lipschitz constant com-
putation methods (e.g., (Fazlyab et al., 2019) for neural networks), exploring methods to scale to
high-dimensional input spaces, and applying the technique to safety-aware reinforcement learning.
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