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Abstract

This paper focuses on active learning methods for training neural networks from
synthetic input samples that can be generated on-demand. This includes Physics In-
formed Neural Networks (PINNs), simulation-based inference, deep surrogates and
deep reinforcement learning. An adaptive process observes the training progress
and steers the data generation with the goal of speeding up and increasing the
quality of training. We propose a novel adaptive sampling method that concentrates
samples close to the areas showing high loss values. Compared to the state-of-
the-art R3 sampling our algorithm converges to a validation loss of 0.5 in 6000
iterations, while it takes 25000 iterations to reach a loss of 0.7 for the R3 algorithm
when training a PINN with the Allen Cahn equation.

1 Introduction

The machine learning community has recently shown a growing interest in applying deep neu-
ral networks (DNN) to physical science [Lavin et al., 2021]. The novel approaches take different
perspectives on the subject [Das and Tesfamariam, 2022]. Some design specific types of neural
models and loss functions, such as graph-based networks [Meyer et al., 2021], physics-informed
neural networks (PINNs) [Raissi et al., 2019]. Others use DNNs to learn probability distributions
for experimental design [Foster et al., 2021], probabilistic programming [Baydin et al., 2019], and
simulation-based inference [Cranmer et al., 2022]. Deep surrogates are combined with traditional nu-
merical solvers and trained through different modalities on supercomputers as in [Meyer et al., 2022],
[Brace et al., 2021] and [Ward et al., 2021]. In this paper we focus on adaptive sampling methods to
optimize DNN training in the case where samples can be generated on-demand, usually through a
solver code.

Classical DNN training methods work with fixed datasets that are repeatedly presented during training
across multiple epochs. The ability to perform training using synthetic data, which can be generated
on-demand, opens the way to different strategies to improve the training process. Synthetic data is
generated from a set of input parameters sampled within a given bounded domain. The inputs can
be directly used for DNN training without transformation as in data-free PINNs training, or be the
initial conditions for autoregressive solvers, which produce data series. Adaptive sampling monitors
training progress to guide the sampling process towards selecting the inputs that provide the most
effective data. The associated computing cost should also be reduced so as not to slow down training.

The question of data selection and sample similarity originated in the context of training DNN with a
finite dataset. It is tackled in various ways: measuring samples uncertainty by approximating training
dynamics [Kye et al., 2022, Wang et al., 2022], calculating samples influence [K and Søgaard, 2021],
selecting representative subset with use of gradients [Killamsetty et al., 2022, Fayyaz et al., 2022,
Katharopoulos and Fleuret, 2019].
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For PINN’s collocation set [Yang et al., 2022, Nabian et al., 2021] proposes re-weighting samples
importance, [Wu et al., 2022] creates a training subset based on a distribution calculated as a nor-
malized loss. However, these methods usually require additional computations or are not applicable
to non-finite data. The recently published R3 sampling [Daw et al., 2023] advances the baseline by
retaining points whose loss is higher than average and resampling the remaining ones uniformly for
each iteration. This way the DNN is able to learn better the points with high loss while exploring new
ones. Relying on the per-sample loss to quantify the data training effectiveness has the benefit of
being a lightweight single value, which requires no extra computation or excessive memory.

In this paper, we propose a method where the main objective is to increase the sampling density in
areas with high loss over the lifetime of the training process. Instead of retaining high-loss points,
we sample new points in their Gaussian neighbourhoods according to loss. To avoid overfitting in
these areas, we introduce a balance control value that evolves across iterations. It defines a ratio
between the proposed loss-driven sampling and uniform sampling, which enables the exploration of
new high-informative areas and the repetition of already learned examples. The main contributions of
the paper are:

• a loss-driven sampling method called Breed (Balance Ratio and EnhancE Density);
• a concept of exploration-concentration balance control with ratio value;
• a novel benchmark designed for evaluating sampling strategies for simulation-based training;
• a comparison with the state-of-the-art R3 sampling on two tasks, which shows a significant

performance improvement on both, the convergence speed and validation loss.

2 Proposed method

Let’s first introduce notations. The sampling selects input points x ∈ X ⊆ Rd. x can be used directly
as a collocation point as for PINNs training, or go through a function f(x) = y, where y ∈ Y ⊆ Rd

is the output, the tuple (x,y) being used for training. The trained neural network is denoted fθ(x),
where θ are neural network parameters. In the case of surrogate training, the goal is to have fθ
approximate f .

2.1 The exploration-concentration balance control value

To balance a training set, we introduce a concentrate-explore value r(i) ∈ [0, 1] as a ratio of points
to sample non-uniformly by concentrating in areas of high loss. The remaining points are sampled
uniformly in the domain for (1) having examples for the network to remember what was learned and
(2) exploring areas with samples that might show high losses. The value r(i) changes over iterations
i of the neural network, growing linearly from the starting value sr to the ending value er for cr
iterations and then is constant at value er. The configuration of r value is called scenario and denoted
as a triplet (sr, er, cr).

2.2 Gaussian neighbourhood sampling method

The sampling strategy is based on loss statistics from the neural network similar to [Wu et al., 2022].
The loss is normalized to construct a distribution that will provide a number of points to sample
within sample neighbourhoods.

The algorithm is repeated for N iterations. i.e. i = [N ], where we denote [N ] = 0, . . . , N − 1.
The covariance Σ = Id · σ defines the radius of the spherical neighbourhood (fixed). The values
r(i) ∈ [0, 1] to control concentrate-explore trade-off ratio are predefined (subsection 2.1). The initial
training set S(0) is sampled uniformly and the number of samples |S(i)| = Ns is fixed.

At each iteration i, the neural network fθ(i)(x) provides a loss value L(x(i)
j ; θ(i)) = l

(i)
j ≥ 0 per sam-

ple x
(i)
j ∈ S(i) for j = [Ns]. The values of vector l(i) then are sum normalized to have distribution

properties. The categorical distribution over the samples of S(i) is constructed proportionally to the
loss, i.e. P (x

(i)
j ) = l

′(i)
j . This distribution trialed n times is a multinomial distribution P (n, l′(i)) .

It models the number of points, called children, in the next training set to be sampled around each
point, called parent, of the current training set. The sampling is run with replacements, so a parent
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with high loss will have several children while a parent with low loss might not have any. It allows
us to adaptively refine sampling density in areas with high loss. The name of the algorithm, Breed,
self-explains this mechanic of breeding the most interesting points from the point of view of the
training process.

The next training set S(i+1) consists of two sets. The concentration set S(i+1)
c is a set of points

sampled in a loss-driven manner. Its size depends on r(i) value, i.e. |S(i+1)
c | = N

(i)
c = ⌊Ns × r(i)⌋.

To construct it, the number of children for each parent is sampled as {mj}j=[Ns] ∼ P (N
(i)
c , l′(i)).

Note that
∑

j=[Ns]
mj = N

(i)
c . A parent point acts as the centre of a Gaussian with Σ width, which

we call a neighbourhood. We sample the children set from each neighbourhood, i.e.:

S(i+1)
c =

⋃
j=[Ns]

CΣ(x(i)
j ) =

⋃
j=[Ns]

{
x
(i+1)
k ∼ N (x

(i)
j ,Σ), k = [mj ]

}
. (1)

The uniform set S(i+1)
u is a remaining portion of points, i.e. |S(i+1)

u | = N
(i)
u = Ns −N

(i)
c , sampled

uniformly to explore new data and to keep the presence of points with low loss as well, i.e.:

S(i+1)
u =

{
x
(i+1)
k ∼ U(X ), k = [N (i)

u ]
}
. (2)

Finally, the composed training set is S(i+1) := S(i+1)
c ∪ S(i+1)

u .

3 Experiments

We compare1 Breed sampling to the baseline uniform dynamic sampling, which creates a train-
ing set for each iteration by selecting Ns uniformly distributed points in X , and the R3 sam-
pling [Daw et al., 2023] on two benchmark problems.

Figure 1: IPGD surface

Benchmarks. The first problem is a new simulation-based benchmark
called pits gradient descent (PGD). The simulation is a gradient de-
scent on a surface made of "bell pits" configured by the number, centres,
weights, and widths of the bells (negative Gaussians curves). The in-
put is a point x0 ∈ X ⊂ R2 and the output is the local minimum
xf ∈ Y = X ⊂ R2 corresponding to the starting point of the gradient
descent. The task can be extended to a time-dependent variant and/or
3-dimensional variant with boundary conditions being a surface equation.
The motivation to create this benchmark was to have flexibility in config-
uring different cases and an obvious visual clue about hard-to-learn areas,
which are those with near-zero gradients.

The case we consider in experiments is a surface with two pits located at points (−0.5,−0.5) and
(1.5, 1.5) in the domain X × Y = [−2, 2]2, with corresponding weights (0.895, 0.005), and widths
(0.4, 0.008). Because the widths and weights are extremely different, this configuration is referred
to as two imbalanced pits (IPGD), see Figure 1. The validation is done on two sets: the first one
consists of 10k points uniformly sampled in the domain, and the second, hard validation set, consists
of 10k points whose gradients are less than 4 · 10−3. For a fair comparison, we designed a neural
network with hyperparameters optimized for the best results with uniform sampling. The model is a
4-layered perceptron, Adam optimizer with a learning rate 10−3 scheduled by plateau scheduler with
patience 5, weight decay 5 · 10−5, and a Huber loss function. The maximum number of iterations is
N = 100 and the number of samples is Ns = 1000. The r scenario is (0.15, 0.7, 25), the width of
neighborhoods is σ = 0.005.

The second benchmark is a PINN trained to solve the classical Allen Cahn partial differential
equation. This benchmark is used in [Daw et al., 2023]. The model we use here has the exact same
architecture and hyperparameters, and others are as follows: N = 60k, Ns = 1000, r scenario is
(0.15, 0.7, 5000), σ = 0.001.

1https://gitlab.inria.fr/breed/breed/
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(a) Imbalanced pits GD
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(b) Allen Cahn equation (averaged)
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(c) Allen Cahn equation (not averaged)

Figure 2: Comparison of validation errors over training iterations for Breed, R3 and uniform sampling
for (a) Imbalanced Pits Gradient Descent and (b-c) Allen Cahn PINN. The plots (a-b) are presented
as mean and standard deviation computed over 5 random seeds, whereas in the plot (c) each line
represents one run.

Results analysis. Results are presented in Figure 2 as errors over training iterations. For all
experiments, Breed shows both faster convergence and lower errors compared to Uniform and
R3 sampling. Notice that for Breed the error decrease happens near the cr iteration, showing the
importance of the exploration-concentration r scheme. In Figure 2a, R3 sampling performs worse
than the baseline for both validation sets, while Breed reaches twice lower error than the baseline even
for the hard validation set. In Figure 2b, the variation of error for R3 is explained by the instability of
the method visible in Figure 2c. R3 converged for 3 out of the 5 trainings to the same error value. In
opposite, Breed shows a stable convergence for all runs, while the uniform sampling converges only
for 1 run.

4 Conclusion

We presented Breed, a novel adaptive sampling algorithm for training DNNs with synthetic data.
Breed relies on the per-sample loss value to identify hard-to-train areas and combines a dual
exploration-concentration scheme with Uniform sampling to discover potential hard areas and
to remember trivial ones and Gaussian multinomial sampling to focus on hard areas. The experiments
demonstrate overall better performance in quality, convergence speed, and stability compared to the
baseline uniform and the state-of-the-art R3 sampling. Future work will focus on validating Breed
with more benchmarks, including higher dimension problems and simulation-based scenarios with
functions generating time series.
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