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Loss-driven sampling for online NN training
with large scale simulations

Sofya Dymchenko∗
Bruno Raffin

Context
We want to advance applications of DL to sciences by
improving online training techniques. DataMove team
contributed with DeepMelissa framework for large-scale
deep surrogate training on supercomputers.

Motivation
★ Avoidance of I/O bottleneck: with file-free processing

high-dimensional data is given "on-the-fly".
★ Infinite data stream: no limitations for generalization.
✩ Ability to control data stream: choice of data to sample

can be explicit rather than random. Training can bemore
data-efficient. But how to choose?
Problem statement

Simulation: program that returns outputs by given inputs,
e.g. initial state of water flow in tube and t-state.
Neural network: any NN that uses data from simulation,
e.g. a surrogate that imitates simulation.
Sampler: takes inputs from defined prior distribution,
e.g. uniform distribution. Can we do better?

Method
Hypothesis

High loss =⇒ difficult sample to learn
=⇒ region∗ needs to be fed to neural network

Adaptive sampling
First batch is sampled uniformly. Loop-process:
1)NN provides loss values statistic per batch-point
2) Select points w.r.t. distribution calculated as normalised loss
3)Next batch is sampled from their Gaussian neighbourhoods
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R-valueThe value R is a ratio
(percentage) of points to
be sampled for next epoch
in a loss-driven manner.
It is a trade-off between
"exploring hard points" and
"remembering/learning easy
points".
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Different scenarios for R values
Uniform
Linear + Const (0.15, 0.1, 0.4)
Const (0.3)
Poly (2, 0.2, 0.95)
Linear (0, 0.6)

Experiments
The simulation gives closest minima by running gradient descent
on the fixed surface. Current fixed surface is two imbalanced pits.

Input (x, y)y
NN

simOutput (x∗, y ∗)

∗We assume roughly that region of
inputs is close to region of outputs.
Formalization:
Let f be a simulation program.

f (θ) = yθ

where θ = {θ(0), . . . , θ(din−1)} ∈
Rm is a set of simulation input
parameters coming from prior, and
yθ = {y (0), . . . , y (t)} ∈ Rdout×t is a
simulation output sample, and t ∈
[0, T ], T ∈ R+.
Roughly, in toy example θ = y (0)
and f (θ) = y (1).
Surrogate fw is a neural network
which learns data generated by f .

fw(θ) = ŷθ

The goal is:
dist(fw(θ), f (θ))→w 0

Probability distributions:
Prior p(θ)
Likelihood p(y |θ)
Posterior p(θ|y)
Main struggle with simulations —
they are not probabilistic and there
is no direct access to its outputs.
Toy experiment variations
- predict trajectory: output is
{(x, y)}k- less surjective simulation
surface: different inputs give
different outputs (imagine long
pit)

- several extreme saddle points:
mimics molecular exploration
problem

Related works:
• RAR algorithm
• Evo algorithm
Future studies:
- trajectory prediction, t -> t+1
- experiments for not toy
examples (physics inspired, i.e.
room heat, turbulent flows,
lorenz system)

- Bayesian Experimental Optimal
Design for implicit models for
finding a sequence of new input
parameters to run simulation
with.

- Simulation Based Inference
techniques for learning
likelihood/posterior of
simulation data space.

- explore Reinforcement Learning
models for "exploring and
exploiting" data space.

DNN: linear 2x64, ReLU, linear
64x32, LeakyReLU, linear 32x16,
LeakyReLU, linear 16x8, ReLU,
linear 8x2 (2954 par-s).
Loss: HuberLoss (MSE+MAE)

Results Uniform Linear + Constant (0.15, 0.7, 0.4) Linear + Constant (0.15, 0.7, 0.1)
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Histogram of test loss
Epoch=41, loss=0.00842
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 Epoch=41 loss=0.1813

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Test predictions
big markers for high loss ( > 0.08)

predict pit [1.5 1.5]
predict pit [-0.5 -0.5]
pit center

4 3 2 1 0 1 2 3 4
x + y

100

101

102

103

104

lo
g(

co
un

t)

Histogram of test predictions
 presented as x + y

predict
true

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Test input points
colored as loss value

0.0 0.5 1.0 1.5 2.0 2.5 3.0
loss

100

101

102

103

104

lo
g(

co
un

t)

Histogram of test loss
Epoch=44, loss=0.00303

1.0 1.2 1.4 1.6 1.8 2.0
x

1.0

1.2

1.4

1.6

1.8

2.0

y

Hard test input ( < 4 × 10 3)
colored as loss value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
loss

100

101

102

103

104

lo
g(

co
un

t)

Histogram of hard test loss
 Epoch=44 loss=0.0957
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Conclusion
★ Overall speed-up

in convergence
★ Significantly increased

prediction accuracy
for "hard area"

★


