Sofya Dymchenko

Bruno Raffin

Loss-driven sampling for online NN training with large scale simulations

We want to advance applications of DL to sciences by improving online training techniques. DataMove team contributed with DeepMelissa framework for large-scale deep surrogate training on supercomputers. Motivation ★ Avoidance of I/O bottleneck: with file-free processing high-dimensional data is given "on-the-fly". ★ Infinite data stream: no limitations for generalization. ✩ Ability to control data stream: choice of data to sample can be explicit rather than random. Training can be more data-efficient. But how to choose? Problem statement Simulation: program that returns outputs by given inputs, e.g. initial state of water flow in tube and t-state. Neural network: any NN that uses data from simulation, e.g. a surrogate that imitates simulation. Sampler: takes inputs from defined prior distribution, e.g. uniform distribution. Can we do better?

Method Hypothesis

High loss =⇒ difficult sample to learn =⇒ region * needs to be fed to neural network

Adaptive sampling

First batch is sampled uniformly. Loop-process:

L 1 = 2.47 p 1 = 0.2 L 2 = 1.24 p 2 = 0.1 L 3 = 1.24 p 3 = 0.1 R = 0.4 previous non-uniform next p i = 0 uniform next

R-value

The value R is a ratio

Experiments

The simulation gives closest minima by running gradient descent on the fixed surface. Current fixed surface is two imbalanced pits.

Input (x, y)     NN sim
Output (x * , y *) * We assume roughly that region of inputs is close to region of outputs.

Formalization:

Let f be a simulation program.

f (θ) = y θ
where θ = {θ (0) , . . . , θ (d i n -1) } ∈ R m is a set of simulation input parameters coming from prior, and y θ = {y (0) , . . . , y (t) } ∈ R d out ×t is a simulation output sample, and t ∈ [0, T], T ∈ R + . Roughly, in toy example θ = y (0) and f (θ) = y (1) . Surrogate f w is a neural network which learns data generated by f .

f w (θ) = ŷθ
The goal is:

dist(f w (θ), f (θ)) → w 0 Probability distributions: Prior p(θ) Likelihood p(y |θ)
Posterior p(θ|y) Main struggle with simulationsthey are not probabilistic and there is no direct access to its outputs.

Results

Uniform Linear + Constant (0.15, 0.7, 0.4) Linear + Constant (0.15, 0.7, 0.1)

 1) NN provides loss values statistic per batch-point 2) Select points w.r.t. distribution calculated as normalised loss 3) Next batch is sampled from their Gaussian neighbourhoods