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a b s t r a c t

We consider abstract second order evolution equations with unbounded feedback with delay. If the
delay term is small enough, we rigorously prove the fact that the system with delay has the same
decay rate than the one without delay. Some old and new results easily follow.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Time-delay appears in many applications (in biology, electri-
cal engineering and mechanics, . . . ) [1–3], and in many cases,
in particular for distributed parameter systems, even arbitrarily
small delays in the feedback may destabilize the system, see
for instance [4–12]. Therefore the stability issue of systems with
delay is of theoretical and practical importance.

Different ad-hoc techniques have been recently developed to
prove some exponential or polynomial decay of the energy of
wave type equations with delay, we refer to [9,10,13–16] and
the references citing them. In this paper, we rigorously prove the
fact, accepted by many authors but not proved up to now, that if
the delay term is small enough, then the system with delay has
the same decay rate than the one without delay. The main (and
simple) idea is to use a duality argument already used in [17, §2]
in a fully different context. To our best knowledge, this idea was
not used before in the context of problems with delay.

To be more precise, we first consider the abstract setting
from [13] since it allows to consider a quite large class of wave
type problems with time delay feedbacks. In this setting existence
results were obtained in [13] under realistic assumptions that we
keep. But stability results are proved in a fully different manner.
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E-mail addresses: bgilbert8@yahoo.fr (G. Bayili),

akram.benaissa@fsm.rnu.tn (A.B. Aissa), Serge.Nicaise@uphf.fr (S. Nicaise).

Before going on, let us present the abstract framework. Let H
be a complex Hilbert space with norm and inner product denoted
respectively by ∥.∥H and (., .)H . Let A : D(A) → H be a self-adjoint
positive operator with a compact inverse in H . Let V := D(A

1
2 ) be

the domain of A
1
2 . Denote by V ′ the dual space of V obtained by

means of the inner product in H .
Further, for i = 1, 2, let Ui be a complex Hilbert space (which

will be identified to its dual space) with norm and inner product
denoted respectively by ∥.∥Ui and (., .)Ui and let Bi ∈ L(Ui, V ′).

In this paper we analyze stability properties of the closed loop
system with a delay⎧⎨⎩

ü(t) + Au(t) + B1B∗

1u̇(t) + B2B∗

2u̇(t − τ ) = 0, t > 0,
u(0) = u0, u̇(0) = u1,

B∗

2u̇(t − τ ) = f 0(t − τ ), 0 < t < τ.

(1)

This system consists of adding an extra term B2B∗

2u̇(t − τ ) to the
stable system (without delay){

ω̈(t) + Aω(t) + B1B∗

1ω̇(t) = 0, t > 0,
ω(0) = ω0, ω̇(0) = ω1.

(2)

Existence results for both systems are well-known, we refer
to [16] for the details, see also Section 2 for some recalls. In [13],
it was shown that the assumption

∃ α ∈ (0, 1), ∀u ∈ V ,
B∗

2u
2
U2

≤ α
B∗

1u
2
U1

(3)

guarantees the existence of a unique solution to (1) and decay of
its energy. Recall that if (3) is not satisfied, dissipativeness may
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be lost and there exist cases where some unstable solutions to
(1) may appear (see [9,10,12] for the wave equation). Hence this
assumption seems realistic.

Our main result, proved in Section 3, concerns the relation
between the decay rate of the energy of (2) and of (1). Under
the additional assumption (3), in the case of exponential (resp.
polynomial) decay of the energy of (2), we prove the same decay
rate for the energy of (1). For less decay rate, we get almost the
same result by using the frequency domain approach from [18].
This result allows to recover several recent results concerning
exponential or polynomial decay of wave type equation with
delayed feedback, but several new ones can be deduced since
it mainly suffices to use the decay rate of the problem with-
out delay. This fact is illustrated by many concrete examples in
Section 4.

Let us finish this introduction with some notation used in the
paper. Recall that the inner product (resp. norm) of H is denoted
by (·, ·)H (resp. ∥ · ∥H ). Similarly the inner product (resp. norm)
of V will be denoted by (·, ·)V (resp. ∥ · ∥V ). By a ≲ b, we mean
that there exists a constant C > 0 independent of a, b, such that
a ≤ Cb. Finally a ∼ b means that both a ≲ b and b ≲ a hold.

2. Some recalls

Here we recall some results from [13] (see also [16]): By
introducing the auxiliary variable z(ρ, t) = B∗

2u̇(t − τρ) for ρ ∈

(0, 1) and t > 0, problem (1) admits the following equivalent
formulation⎧⎪⎪⎪⎨⎪⎪⎪⎩

ü(t) + Au(t) + B1B∗

1u̇(t) + B2z(1, t) = 0, t > 0

τ ∂z
∂t +

∂z
∂ρ

= 0, t > 0, 0 < ρ < 1

u(0) = u0, u̇(0) = u1, z(ρ, 0) = f 0(−τρ), 0 < ρ < 1
z(0, t) = B∗

2u̇(t), t > 0.

(4)

The Hilbert setting of this problem (or problem (1)) is the follow-
ing one: First we introduce the Hilbert space

H = V × H × L2((0, 1), U2),

equipped with the usual inner product(
(u, v, z)⊤ ,

(
ũ, ṽ, z̃

)⊤
)
H

=
(
u, ũ

)
V + (v, ṽ)H

+ τη

∫ 1

0

(
z(ρ), z̃(ρ)

)
U2

dρ, (5)

where η is a positive constant satisfying

1 < η <
2
α

− 1, (6)

that exists because 0 < α < 1
Then we define the operator A on H by

D(A) := {(u, v, z)⊤ ∈ V × V × H1((0, 1), U2); z(0) = B∗

2v,

Au + B1B∗

1v + B2z(1) ∈ H},

and

A (u, v, z)⊤ =

(
v, −Au − B1B∗

1v − B2z(1), −
1
τ

∂z
∂ρ

)⊤

,

∀(u, v, z)⊤ ∈ D(A).

For further purposes, let us also recall the Hilbert setting of
problem (2). Introduce the Hilbert space

H0 = V × H,

equipped with the usual inner product(
(u, v)⊤ ,

(
ũ, ṽ

)⊤
)
H0

=
(
u, ũ

)
V + (v, ṽ)H . (7)

Then we define the operator A0 on H0 by

D(A0) := {(u, v)⊤ ∈ V × V ; Au + B1B∗

1v ∈ H},

and

A0 (u, v)⊤ =
(
v, −Au − B1B∗

1v
)⊤

, ∀(u, v)⊤ ∈ D(A0).

It is shown in [13, Theorem 2.1] that system (1) is well-posed
under the (weaker) assumption

∃ α ∈ (0, 1], ∀u ∈ V ,
B∗

2u
2
U2

≤ α
B∗

1u
2
U1

. (8)

Now we define the energy associated with system (1) (which
corresponds to the inner product in H) by

E(t) :=
1
2

(
∥u(t)∥2

V + ∥u̇(t)∥2
H + τη

∫ 1

0

B∗

2u̇(t − τρ)
2
U2

dρ
)

.

It is shown in [13, Proposition 3.1] that under the assumption (3)
this energy is non-increasing. This proposition actually equiva-
lently proves that

ℜ(AU,U)H ≲ −(∥B∗

1v∥
2
U1

+ ∥z(1)∥2
U2
), ∀U ∈ D(A). (9)

Note that a similar property holds for A0, namely, one has

ℜ(A0(u, v)⊤, (u, v)⊤)H0 = −∥B∗

1v∥
2
U1

, ∀(u, v)⊤ ∈ D(A0). (10)

Under the assumption that V is compactly embedded into V ′,
it was shown in [13, Proposition 3.4] that iR ∩ σ (A0) = ∅ if and
only if iR ∩ σ (A) = ∅.

3. Energy decay

In the whole section, we assume that condition (3) holds and
that iR ∩ σ (A0) = ∅ (that guarantees that iR ∩ σ (A) = ∅).
Under these assumptions, our goal is to show that the decay of
the energy of problem (1) is the same as the one of system (2).
For that purpose, we use a duality argument used in [17, §2] in a
fully different context. Let us first start with a useful identity.

Lemma 3.1. For any ξ ∈ R and any (u, v, z)⊤ ∈ D(A), we consider
the solution (u∗, v∗)⊤ ∈ D(A0) of

(iξ − A0)(u∗, v∗)⊤ = (u, v)⊤. (11)

Then we have

∥(u, v)⊤∥
2
H0

= −
(
(iξ − A)(u, v, z)⊤, (u∗, v∗, 0)⊤

)
H (12)

+ 2(B∗

1v, B∗

1v
∗)U1 + (z(1), B∗

2v
∗)U2 .

Proof. By the definition of A, we directly check that(
(iξ − A)(u, v, z)⊤, (u∗, v∗, 0)⊤

)
H

= iξ (u, u∗)V − (v, u∗)V + iξ (v, v∗)H + (u, v∗)V
+ (B∗

1v, B∗

1v
∗)U1 + (z(1), B∗

2v
∗)U2 .

Similarly, we have(
(u, v)⊤, (iξ − A0)(u∗, v∗)⊤

)
H0

= −iξ (u, u∗)V − (u, v∗)V − iξ (v, v∗)H + (v, u∗)V
+ (B∗

1v, B∗

1v
∗)U1 .

Comparing these two identities, one directly obtains(
(u, v)⊤, (iξ − A0)(u∗, v∗)⊤

)
H0

= −
(
(iξ − A)(u, v, z)⊤, (u∗, v∗, 0)⊤

)
H

+ 2(B∗

1v, B∗

1v
∗)U1 + (z(1), B∗

2v
∗)U2 .

The conclusion follows from (11). ■
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We go on with two properties of the resolvent of A on the
imaginary axis.

Lemma 3.2. For any ξ ∈ R and any F = (f , g, h)⊤ ∈ H, let
U = (u, v, z)⊤ ∈ D(A) be the solution of

(iξ − A)U = F . (13)

Then one has

∥B∗

1v∥
2
U1

+ ∥z(1)∥2
U2

≲ ∥F∥H∥U∥H, (14)

as well as

∥U∥H ≲ ∥(u, v)⊤∥H0 + ∥F∥H. (15)

Proof. By (9), we have

ℜ((iξ − A)U,U)H ≳ ∥B∗

1v∥
2
U1

+ ∥z(1)∥2
U2

.

We deduce (14) by Cauchy–Schwarz’s inequality and (13).
For the second estimate we notice that (13) implies that z

satisfies the differential equation

iξz +
1
τ

∂z
∂ρ

= h on (0, 1),

hence z can be expressed as (compare with [13, page 424])

z(ρ) = e−iξτ (ρ−1)z(1) − τ

∫ 1

ρ

e−iξτ (ρ−ρ′)h(ρ ′) dρ ′, ∀ρ ∈ [0, 1].

Consequently, using the triangular and Cauchy–Schwarz’s in-
equalities, one has

∥z(ρ)∥2
U2

≤ 2∥z(1)∥2
U2

+ 2τ
∫ 1

ρ

∥h(ρ ′)∥2
U2

dρ ′, ∀ρ ∈ [0, 1].

Integrating this estimate in (0, 1), we deduce that

∥z∥2
L2(0,1;U2)

≤ 2∥z(1)∥2
U2

+ 2τ∥h∥2
L2(0,1;U2)

.

Using the estimate (14), we have found that

∥z∥2
L2(0,1;U2)

≲ ∥F∥H∥U∥H + ∥h∥2
L2(0,1;U2)

.

This estimate and the definition of the norm of H directly imply
that

∥U∥
2
H ≲ ∥(u, v)⊤∥

2
H0

+ ∥F∥H∥U∥H + ∥h∥2
L2(0,1;U2)

.

By Young’s inequality, we deduce that

∥U∥
2
H ≲ ∥(u, v)⊤∥

2
H0

+ ∥F∥
2
H,

which immediately leads to (15). ■

We are ready to prove our main result.

Theorem 3.3. Let the condition (3) be satisfied, that iR∩σ (A0) = ∅

and that the resolvent of A0 satisfies

∥(iξ − A0)−1
∥ ≲ M(|ξ |), ∀ξ ∈ R, (16)

where M is a continuous, positive, and non decreasing function from
[0, ∞) into itself. Then the resolvent of A satisfies

∥(iξ − A)−1
∥ ≲ M(|ξ |), ∀ξ ∈ R. (17)

Proof. Fix ξ ∈ R, F = (f , g, h)⊤ ∈ H, and let U = (u, v, z)⊤ ∈

D(A) be the solution of (13). Then we can consider (u∗, v∗)⊤ ∈

D(A0) solution of (11). We now notice that (10) implies

∥B∗

1v
∗
∥
2
U1

= ℜ((iξ − A0)(u∗, v∗)⊤, (u∗, v∗)⊤)H0

= ℜ((u, v)⊤, (u∗, v∗)⊤)H0 .

Cauchy–Schwarz’s inequality then yields

∥B∗

1v
∗
∥
2
U1

≤ ∥(u, v)⊤∥H0∥(u
∗, v∗)⊤∥H0 . (18)

Recalling the identity (12), we may write

∥(u, v)⊤∥
2
H0

= −
(
F , (u∗, v∗, 0)⊤

)
H

+ 2(B∗

1v, B∗

1v
∗)U1 + (z(1), B∗

2v
∗)U2 .

Now using again Cauchy–Schwarz’s inequality and the assump-
tion (3), we find

∥(u, v)⊤∥
2
H0

≲ ∥F∥H∥(u∗, v∗)⊤∥H0

+ (∥B∗

1v∥U1 + ∥z(1)∥U2 )∥B
∗

1v
∗
∥U1 .

Young’s inequality and the estimates (14) and (18) lead to

∥(u, v)⊤∥
2
H0

≲ ∥F∥H∥(u∗, v∗)⊤∥H

+
1
ε
∥F∥H∥U∥H + ε∥(u, v)⊤∥H0∥(u

∗, v∗)⊤∥H0 ,

for all ε > 0 (here and below, the involved constants are
independent of ε). With the help of (15), we get

∥(u, v)⊤∥
2
H0

≲
1
ε
∥F∥

2
H + ∥F∥H∥(u∗, v∗)⊤∥H

+
1
ε
∥F∥H∥(u, v)⊤∥H0 + ε∥(u, v)⊤∥H0∥(u

∗, v∗)⊤∥H0 .

We finally use the assumption (16) that yields (recalling (11))

∥(u∗, v∗)⊤∥H0 ≲ M(|ξ |)∥(u, v)⊤∥H0 ,

to conclude that

∥(u, v)⊤∥
2
H0

≤
C
ε

∥F∥
2
H + C∥F∥HM(|ξ |)∥(u, v)⊤∥H0

+
C
ε

∥F∥H∥(u, v)⊤∥H0 + CεM(|ξ |)∥(u, v)⊤∥
2
H0

,

for some positive constant C independent of ε. Choosing
CεM(|ξ |) =

1
2 , we find

∥(u, v)⊤∥
2
H0

≲ M(|ξ |)∥F∥
2
H + ∥F∥HM(|ξ |)∥(u, v)⊤∥H0 .

Again using Young’s inequality, we arrive at

∥(u, v)⊤∥
2
H0

≲ M(|ξ |)∥F∥
2
H + M(|ξ |)2∥F∥

2
H.

Since M(ξ ) ≤ (1 + M(|ξ |))2, we finally have found that

∥(u, v)⊤∥H0 ≲ (1 + M(|ξ |))∥F∥H,

and we conclude by (15) that

∥U∥H ≲ (1 + M(|ξ |))∥F∥H ≲ M(|ξ |)∥F∥H. ■

This result combined with the well-known frequency domain
approach yields the following decay rates of the semi-group
generated by A. We start with the exponential decay.

Corollary 3.4. Let the condition (3) be satisfied, and assume that
the semi-group (etA0 )t≥0 is exponentially stable in H0. Then the
semi-group (etA)t≥0 is exponentially stable in H.

Proof. By a well-known result due to Huang and Prüss [19,20],
(etA0 )t≥0 is exponentially stable inH0 if and only if iR∩σ (A0) = ∅

and (16) with M(x) = 1 holds. Hence by Theorem 3.3, (17) holds
with M(x) = 1, and again applying Huang/Prüss theorem to A,
we conclude. ■

For polynomial decays, we replace Huang/Prüss theorem by
Borichev–Tomilov theorem [21, Theorem 2.4] to obtain the next
result.
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Corollary 3.5. Let the condition (3) be satisfied, and assume
that the semi-group (etA0 )t≥0 is polynomially stable in H0, namely
iR∩ σ (A0) = ∅ and there exists a positive real number ℓ such that

∥etA0U0∥ ≲ t−
1
ℓ ∥U0∥D(A0), ∀U0 ∈ D(A0), ∀t > 1. (19)

Then the semi-group (etA)t≥0 is polynomially stable in H, i.e.,

∥etAU∥ ≲ t−
1
ℓ ∥U∥D(A), ∀U ∈ D(A), ∀t > 1. (20)

Proof. Assuming that iR ∩ σ (A0) = ∅, by [21, Theorem 2.4],
(19) holds if and only if (16) with M(x) = xℓ holds. As before
the conclusion follows with the help of Theorem 3.3, and again
applying [21, Theorem 2.4] to A. ■

For lower decay, the equivalence between the semi-group
decay rate and the asymptotic behavior of the resolvent on the
imaginary axis is not guaranteed, but by taking advantage of a
result due to Batty and Duyckaerts [18, Theorem 1.5] and our
Theorem 3.3, we get as before the next corollary.

Corollary 3.6. Let the condition (3) be satisfied, and assume that
iR ∩ σ (A0) = ∅ and that (16) holds with a continuous, positive,
and non decreasing function M from [0, ∞) into itself. Then the
semi-group (etA)t≥0 has the following asymptotic decay in H:

∥etAU∥ ≲
1

M−1
log

( t
C

)∥U∥D(A), ∀U ∈ D(A), ∀t > 1,

for some positive constant C, and Mlog is defined by

Mlog(x) = M(x) (log(1 + M(x)) + log(1 + x)) , ∀x ≥ 0.

4. Applications

In this section, we want to present some concrete examples
of evolution equations for which we can apply the results of
the previous section to obtain some decay rate of the associated
energy. We mainly focused on weaker decay than the exponential
one, because in most of the examples, if the system without delay
has an exponentially decaying energy, then the corresponding
system with a delay has also an exponentially decaying energy.

4.1. A 1 − d wave equation with interior damping

We here consider a 1−d wave equation with a delay feedback

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

(x, t) −
∂2u
∂x2

(x, t) + α1
∂u
∂t

(ξ, t)δξ + α2
∂u
∂t

(ξ, t − τ )δξ = 0

0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0

t > 0,

u(x, 0) = u0(x) and ut (x, 0) = u1(x)

0 < x < 1,
∂u
∂t

(ξ, t − τ ) = f0(t − τ )

0 < t < τ,

(21)

where ξ ∈ (0, 1), α1 > 0, α2 > 0, δξ is the Dirac mass
concentrated in the point ξ ∈ (0, 1) and τ > 0.

This system enters into our abstract framework, if we take
H = L2(0, 1), V = H1

0 (0, 1) and define the operator

A : D(A) → H : ϕ ↦−→ −
d2ϕ
dx2

,

where D(A) = H2(Ω)∩ V , which is self-adjoint and positive with
a compact inverse in H . For i = 1 or 2, we further define Ui = R
and the operators Bi as

Bi : R → V ′
; ϕ ↦−→

√
αiϕδξ , (22)

where

⟨δξ , v⟩V ′,V = v(ξ ), ∀v ∈ V . (23)

The system can then be rewritten in the form (1) and trivially the
relation (3) is equivalent to

α2 < α1.

In [10, §7.1.2], it was shown that the system (21) is well posed
when α2 ≤ α1, that the energy is non-increasing for α2 < α1
and that an energy decay rate of t−2 holds when ξ ∈ S , the
set of all irrational numbers ρ ∈ (0, 1) such that the sequence
(an)n≥1 of its expansion [0, a1, . . . , an, . . . ] as a continued frac-
tion is bounded (roughly speaking this is the set all irrational
numbers which are badly approximated by rational numbers, see
[16, p. 29]). By Theorem 5.1 of [22], the decay energy rate of (21)
when α2 = 0 (that is no delay occurs in the system) being in 1

t2
,

by Corollary 3.5 we recover the same decay rate as in [10, §7.1.2].
Let us finish this subsection by a result that to our best

knowledge is new.

Corollary 4.1. Under the assumptions of this subsection, if α2 < α1,
then for any ε > 0, there exists a set Nε ⊂ (0, 1) of measure 1, such
that for all ξ ∈ Nε the energy of the system (21) decays with decay
rate t−

1
1+ε , namely (20) holds with ℓ = 2(1 + ε).

Proof. For any ε > 0, [22, Theorem 5.1] yields a set Nε ⊂ (0, 1) of
measure 1, such that for all ξ ∈ Nε , (19) holds with ℓ = 2(1 + ε)
(A0 being the operator associated with (21) when α2 = 0).
Applying Corollary 3.5, we get the same decay rate for system
(21). ■

4.2. A 1 − d Euler–Bernoulli beam with interior damping

We now consider the following 1 − d Euler–Bernoulli beam
equation with a delay term at ξ ∈ (0, 1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

(x, t) +
∂4u
∂x4

(x, t) + α1
∂u
∂t

(ξ, t)δξ + α2
∂u
∂t

(ξ, t − τ )δξ = 0

0 < x < 1, t > 0,

u(0, t) = u(1, t) =
∂2u
∂x2

(0, t) =
∂2u
∂x2

(1, t) = 0

t > 0,

u(x, 0) = u0(x) and ut (x, 0) = u1(x)

0 < x < 1,
∂u
∂t

(ξ, t − τ ) = f0(t − τ )

0 < t < τ,

(24)

where u denotes the transverse displacement of the beam. As
before α1 > 0, α2 > 0, δξ is the Dirac mass concentrated at the
point ξ ∈ (0, 1) and τ > 0. For this problem, we need to introduce
H = L2(0, 1), V = H2(0, 1) ∩ H1

0 (0, 1) and the operator

A : D(A) → H : ϕ ↦−→
d4ϕ
dx4

,
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where D(A) = {ϕ ∈ H4(0, 1) ∩ H1
0 (0; 1),

∂2u
∂x2

(0) =
∂2u
∂x2

(1) = 0}.
Again this operator A is self-adjoint and positive with a compact
inverse in H . For i = 1 or 2, we still take Ui = R and define the
operator Bi by (22).

With these notations, the system (24) can be rewritten in the
form (1). Hence it is well posed when α2 ≤ α1 and the energy is
non-increasing for α2 < α1.

Without delay (i.e., α2 = 0), the problem was analyzed in
[22, Theorem 5.6], where it was shown that if ξ ∈ S , then the
energy of the system decays polynomially like t−2 and that for
all ε > 0, there exists a set Mε ⊂ (0, 1) of measure 1, such that
for all ξ ∈ Mε , the decay rate has the form t−

2
1+ε . If α2 < α1 and if

ξ ∈ S , by using the previous result and Corollary 3.5 we recover
the same decay rate as in [13, Proposition 7.8]. For all ε > 0 and
all ξ ∈ Mε , application of Corollary 3.5 gives the decay rate in the
form t−

2
1+ε , which seems to be a new result. More precisely, we

can state the

Corollary 4.2. Under the assumptions of this subsection, if α2 < α1,
then for any ε > 0, there exists a set Mε ⊂ (0, 1) of measure 1, such
that for all ξ ∈ Mε the energy of the system (24) decays with decay
rate t−

2
1+ε , namely

(20) holds with ℓ = 1 + ε.

4.3. The multi-dimensional wave equation with internal dampings

Let Ω be a bounded domain of Rn, n ≥ 1, with a sufficiently
smooth boundary Γ . On this domain, we consider the wave
equation with either two internal dampings or with boundary
dampings: a standard one and a delayed one.

4.3.1. Internal dampings
Here we consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

(x, t) − ∆u(x, t) + α1(x)
∂u
∂t

(x, t) + α2(x)
∂u
∂t

(x, t − τ ) = 0

in Ω × (0, +∞),

u = 0

on Γ × (0, +∞),

u(x, 0) = u0(x) and
∂u
∂t

(x, 0) = u1(x)

in Ω,

∂u
∂t

(x, t) = f (x, t)

in Ω × (−τ , 0),

(25)

where α1, α2 ∈ L∞(Ω) are non negative functions.
To enter into our abstract framework, we set H = L2(Ω), V =

H1
0 (Ω), D(A) = V ∩ H2(Ω), and

A : D(A) → H : ϕ ↦−→ −∆ϕ. (26)

This operator A is self-adjoint and positive with a compact inverse
in H . We further define Ui = L2(Ω), i = 1, 2 and introduce the
operators

Bi : L2(Ω) → V : ϕ ↦−→
√

αiϕ.

In this setting, system (25) can be rewritten in the form (1).
Furthermore a complete characterization of the condition (3) can
be given, as shown in the next lemma.

Lemma 4.3. In the setting of this subsection, (3) holds if and only
if

∃ α ∈ (0, 1), α2 ≤ αα1 a. e. in Ω. (27)

Proof. In our setting, as we have

∥B∗

i u∥
2
Ui

=

∫
Ω

αi(x)|u(x)|2 dx, ∀u ∈ H1
0 (Ω),

and since H1
0 (Ω) is dense in L2(Ω), (3) holds if and only if

∃ α ∈ (0, 1),
∫

Ω

(αα1(x) − α2(x))|u(x)|2 dx ≥ 0, ∀u ∈ L2(Ω). (28)

Obviously (27) guarantees that (28) holds, so let us concentrate
on the converse implication. First by setting

L1
+
(Ω) := {u ∈ L1(Ω) : u ≥ 0 a.e. in Ω},

we notice that

{|u|2 : u ∈ L2(Ω)} = L1
+
(Ω),

simply because v ∈ L1
+
(Ω) if and only if u =

√
v ∈ L2(Ω).

Therefore, by setting h = αα1 −α2, if the condition (28) holds,
then∫

Ω

h(x)v(x) dx ≥ 0, ∀v ∈ L1
+
(Ω).

By taking v = h− (h = α1 − αα2 being in L∞(Ω), it is also in
L1(Ω)) and using the splitting h = h+

− h−, we get

−

∫
Ω

|h−(x)|2 dx ≥ 0,

which yields h−
= 0 and proves that h = h+. ■

Altogether under the additional assumption (27), problem (25)
is well-posed and its energy is decaying.

According to Corollary 3.4, if (27) holds and if system (25) with
α2 = 0 is exponentially stable, then system (24) is exponentially
stable as well. In particular using the results from [23,24], we can
state the following results that cover the results from [9,14,15].

Corollary 4.4. In addition to the assumptions of this section, sup-
pose that (27) holds and that

α1 ≥ a0 > 0 a.e. in ω, (29)

for some non empty subset ω of Ω . If one of the following assump-
tions holds
1. the boundary of Ω is of class C∞ and ω satisfies the Geometric
Control Condition (GCC). Recall [25] that the GCC can be formulated
as follows: For a subset ω of Ω , we shall say that ω satisfies the
Geometric Control Condition if there exists T > 0 such that every
geodesic traveling at speed one issued from Ω at time t = 0
intersects ω before time T ,
2. the boundary of Ω is of class C2 and ω is a neighborhood of Γ (x0)
for some x0 ∈ Rn, where

Γ (x0) = {x ∈ Γ ;m(x) · ν(x) > 0}, (30)

where m(x) = (x − x0), and ν(x) is the unit outward normal vector
at x ∈ Γ ,
3. Ω is convex or the boundary of Ω is of class C1,1 and ω contains
G, where G satisfies the condition (g,G) from [24, p. 1583].

Then system (24) is exponentially stable.

Similarly weaker decay rate for system (25) with α2 = 0
gives rise to the same decay rate for system (24) if (27) holds.
Concerning polynomial decay rate, let us state the next results.
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Corollary 4.5. In addition to the assumptions of this subsection,
suppose that (27) and (29) hold. Then the following hold
1. If Ω is the unit square of R2 and

(a, b) × (0, 1) ⊂ ω,

for some 0 ≤ a < b < 1, then (20) holds with ℓ = 2 if a > 0, while
ℓ = 3/2 if a = 0.
2. If Ω is a partially rectangular domain and ω contains the non-
rectangular part of Ω , then (20) holds with ℓ = 2.
3. If Ω and ω satisfy the assumptions of [26, §1.1], then there exists
ℓ > 0 such that (20) holds.

Proof. Both cases follow from Corollary 3.5 and the decay rate of
system (25) with α2 = 0. For point 1, we use [27] for a > 0
and [28] for a = 0; for point 2, we take advantage of [29]
(combined with [21, Theorem 2.4]), and finally for point 3, we
use [26]. ■

Note that points 1 and 2 are new, while point 3 improves the
polynomial decay rate in t−ℓ/2 obtained in [30] (where the first
condition from (3.2) of [30] has to be replaced by (27)).

Logarithmic decay rate for system (25) can also be obtained.

Corollary 4.6. In addition to the assumptions of this subsection, we
suppose that (27) and (29) hold. If α1 is smooth and not identically
equal to zero and if the boundary of Ω is smooth, then

∥etAU∥ ≲
1

log t
∥U∥D(A), ∀U ∈ D(A), ∀t > 1. (31)

Proof. Under the above assumption on α1 and on the boundary
of Ω , it was shown in [31] that iR∩σ (A0) = ∅ and that (16) holds
with M(x) = eCx, for some positive constant C . Consequently by
Corollary 3.6, under the additional assumption (27), the semi-
group generated by A satisfies (31) since M−1

log (t) ∼ log t , for t
large (see [18, Example 1.6]). ■

Due to [32, Theorem 2.2], this last corollary remains valid if
α1 is only L∞(Ω), the boundary of Ω is only C2 and the Dirichlet
boundary conditions in (25) are replaced by the mixed boundary
conditions:

u = 0 in Γ0 × (0, +∞),
∂u
∂ν

+ pu = 0 in Γ1 × (0, +∞),

with p ∈ C1(Γ1), p ≥ 0, where Γ0 and Γ1 are two open sets of Γ

such that Γ = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = ∅, and either Γ0 is non empty
or p is positive on a non empty set of Γ1.

4.3.2. Boundary dampings
Here we consider the following wave equation with boundary

dampings:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

(x, t) − ∆u(x, t) = 0 in Ω × (0, +∞),

∂u
∂ν

+ α1(x)
∂u
∂t

(x, t) + α2(x)
∂u
∂t

(x, t − τ ) = 0 in Γ × (0, +∞),

u(x, 0) = u0(x) and
∂u
∂t

(x, 0) = u1(x) in Ω,

∂u
∂t

(x, t) = f (x, t) in Γ × (−τ , 0),

(32)

where for i = 1 or 2, αi ∈ L∞(Γ ) and is non negative.
First, we rewrite this system in the form (1). For this purpose,

we introduce H = L2(Ω), V = H1(Ω),

D(A) = {u ∈ H2(Ω) :
∂u
∂ν

= 0 on Γ },

and A defined by (26). As before the operator A is self-adjoint
and positive with a compact inverse in H . Moreover we define
U1 = U2 = L2(Γ ), and for i = 1 or 2, and introduce the operator

B∗

i : V → L2(Γ ) : ϕ ↦−→
√

αiγ0ϕ,

where γ0 is the trace operator from H1(Ω) to L2(Γ ). Consequently
Bi is given by

Bi : L2(Γ ) → V ′
: y ↦−→ Bi y

with

⟨Biy, ϕ⟩V ′,V =

∫
Γ

γ0ϕ
√

αiydσ , ∀ϕ ∈ V .

With these notations, system (32) can be rewritten in the form
(1). As in the previous subsection (see Lemma 4.3), for our system
the condition (3) holds if and only if

∃ α ∈ (0, 1), α2 ≤ αα1 a. e. on Γ . (33)

Therefore under this additional assumption, problem (32) is well-
posed and its energy is decaying.

First many papers are devoted to the exponential decay of (32)
with or without delay, using the results from [33–37] without
delay and using Corollary 3.4, we recover for instance the results
from [9,12,30]. On the other hand, to our best knowledge, there
is no result about the polynomial or logarithmic decay of system
(32). Let us then state some of them.

Corollary 4.7. In addition to the assumptions of this subsection,
suppose that (33) and that

α1 ≥ a0 > 0 a.e. in θ,

for some non empty subset θ of Γ . Assume that Ω is a partially
rectangular domain and θ contains ∂W ∩ Γ , where W is the
non-rectangular part of Ω , then (20) holds with ℓ = 4 but in

Ḣ = {(u, v, z) ∈ H1(Ω) × L2(Ω) × L2((0, 1), L2(Γ ));∫
Ω

v dx +

∫
Γ

α1u dσ (x) = 0}.

Proof. This follows from Corollary 3.5 and the decay rate (19)
with ℓ = 4 of system (32) with α2 = 0 obtained in [38]. ■

Corollary 4.8. In addition to the assumptions of this subsection, we
suppose that Ω has a smooth boundary, α1 is smooth and is not
identically equal to zero, and that (33) holds. Then (31) holds.

Proof. As Theorem 1 of [39] shows that (16) holds with M(x) =

eCx, for some positive constant C , we conclude by
Corollary 3.6. ■

Extension of this last result to second order operators with
variable coefficients instead of the Laplace operator can be ob-
tained with the help of the results from [32,40].

4.4. Weakly coupled and partially damped with boundary delay

Let Ω ⊂ Rn, n ≥ 1 be an open bounded set with a boundary
Γ of class C2. We assume that Γ is divided into two open parts
Γ0 and Γ1, i.e. Γ = Γ0 ∪Γ1 such that Γ0 ∩Γ1 = ∅. In this domain,
we consider the following weakly coupled and partially damped
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with boundary feedbacks⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2

(x, t) − a∆u(x, t) + by(x, t) = 0 in Ω × (0, +∞),

∂2y
∂t2

(x, t) − ∆y(x, t) + bu(x, t) = 0 in Ω × (0, +∞),

u = 0 on Γ0 × (0, +∞),

a
∂u
∂ν

+ γ u + α1
∂u
∂t

(x, t) + α2
∂u
∂t

(x, t − τ ) = 0 on Γ1 × (0, +∞),

y = 0 on Γ × (0, +∞),

u(x, 0) = u0(x) and
∂u
∂t

(x, 0) = u1(x) in Ω,

y(x, 0) = y0(x) and
∂y
∂t

(x, 0) = y1(x) in Ω,

∂u
∂t

(x, t) = f (x, t) in Γ1 × (−τ , 0),

(34)

where a, γ are positive constants, b is a real number different
from zero fixed small constant below and αi ∈ L∞(Γ1), for
i = 1 and 2. Note that the dampings are only applied on the
part Γ1 of the boundary Γ in the first equation. The second
equation is indirectly damped through the coupling between the
two equations.

First, we rewrite this system in the form (1). For this purpose,
we introduce H = L2(Ω) × L2(Ω),

V := H1
Γ0
(Ω) × H1

0 (Ω),

where

H1
Γ0
(Ω) = {ϕ ∈ H1(Ω) : ϕ = 0 in Γ0}.

We now introduce the following sesquilinear form a from V × V
into R by

a((u, y), (v, z)) =

∫
Ω

(a∇u · ∇v̄ + byv̄ + ∇y · ∇ z̄ + buz̄) dx

+ γ

∫
Γ1

uv̄ dσ (x), ∀(u, y), (v, z) ∈ V .

This sesquilinear form is actually an inner product in V if |b| <

min{λDir, λmixed), where λDir and λmixed are respectively the first
positive eigenvalues of the problems:{

−∆y = λDiry in Ω,

y = 0 on Γ ,

and⎧⎨⎩ −a∆u = λmixedu in Ω,

u = 0 on Γ0,

a ∂u
∂ν

+ γ u = 0 on Γ1.

Indeed this is a consequence of the fact that they correspond to
the minimum of the Rayleigh quotients:

λDir = min
y∈H1

0 (Ω),y̸=0

∫
Ω

|∇u|2 dx∫
Ω

|u|2 dx
,

λmixed = min
u∈H1

Γ0
(Ω),u̸=0

∫
Ω
a|∇u|2 dx + γ

∫
Γ1

|u|2 dσ (x)∫
Ω

|u|2 dx
.

Then one sets

D(A) = {(u, y) ∈ H2(Ω) ∩ H1
Γ0
(Ω)

× H2(Ω) ∩ H1
0 (Ω) | a

∂u
∂ν

+ γ u = 0 on Γ1},

and

A : D(A) → H : (u, y) → (−a∆u + by, −∆y + bu),

and easily sees that for all (u, y) ∈ D(A), one has∫
Ω

A(u, y) · (v̄, z̄) dx = a((u, y), (v, z)), ∀(v, z) ∈ V .

This guarantees that the operator A is self-adjoint and positive
with a compact inverse in H and that D(A

1
2 ) = V .

Moreover we define U1 = U2 = L2(Γ1), and for i = 1 or 2, the
operator

B∗

i : V → L2(Γ1) : (u, y) ↦−→
√

αiγΓ1u,

where γΓ1u is the restriction to Γ1 of the trace γ0u of u.
In conclusion, system (34) can be rewritten in the form (1) and

as before, it is well-posed and its energy is decaying, under the
additional assumption

∃ α ∈ (0, 1), α2 ≤ αα1 a. e. on Γ1. (35)

Since the system (34) with α2 = 0 is not exponentially stable
(see [41, Theorem 2.2]), we cannot expect the exponential decay
of (34). Let us now formulate some (new) results on polynomial
decay rates.

Corollary 4.9. In addition to the assumptions of this subsection,
suppose that Γ1 = Γ (x0), for some x0 ∈ Rn, and that (35) holds.
Then the following hold

1. If a = 1, then there exists b0 > 0 small enough such that if b
satisfies additionally |b| < b0, then (20) holds with ℓ = 2.

2. If Ω is a cube of Rn, n ≤ 3 and a =
1
k2

for some positive integer
k, then there exists b0 > 0 small enough such that if b satisfies
additionally |b| < b0, then (20) holds with ℓ = 2.

3. If Ω = (0, d) is a non empty interval of R, x0 = 0, and
a ̸= 1, then there exists b0 > 0 small enough such that if b satisfies
additionally |b| < b0, then (20) holds with ℓ given by

ℓ =

{ 6 if a ∈ Q+
\ Q+

s ,

10 if a ∈ Q+
s ,

6 + ε with ε > 0, for a.e. positive a ∈ R \ Q,

where Q+
= {q ∈ Q; q > 0} and Q+

s = {q ∈ Q+
; q =

p2

q2
for some

p, q ∈ N}.

Proof. Both cases follow from Corollary 3.5 and the decay rate
of (34) with α2 = 0. For point 1 (resp. 2 and 3), we use [42, The-
orems 3.1] (resp. [41, Theorem 4.3] and [42, Theorems 4.2]). ■

Similar new results can be obtained when the boundary damp-
ings are replaced by interior ones, using the results from [43–46]
without delay.
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