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Abstract 

The temporal structure of sensory inputs contains essential information for their interpretation 
by the brain1–9. Sensory systems represent these temporal cues through two codes: the temporal 
sequences of neuronal activity and the spatial patterns of neuronal firing rate3,7,10–20. However, 
it is still unknown which of these two coexisting codes causally drives sensory 
decisions3,10,20,21. To separate their contributions, we designed an optogenetic stimulation 
paradigm in the mouse auditory cortex to generate neuronal activity patterns differing 
exclusively along their temporal or spatial dimensions. Training mice to discriminate these 
patterns shows that they efficiently learn to discriminate spatial but not temporal patterns, 
indicating that spatial representations are necessary for sensory learning. In line with this result, 
we observed, based on large-scale neuronal recordings of the auditory system, that the auditory 
cortex is the first region in which spatial patterns efficiently represent temporal auditory cues 
varying over several hundred milliseconds. This feature is shared by the deep layers of neural 
networks trained to categorise time-varying sounds. Therefore, the emergence of a spatial code 
for temporal sensory cues is a necessary condition to associate temporally structured stimuli to 
decisions. We expect this constraint to be crucial for re-engineering perception by cortical 
stimulation.    
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Main text  

Many stimuli which drive selective behavioural decisions, such as phonemes and 
vocalisations5,10, tactile textures and shapes7,20 or the coherent motion of a moving animal4 
result from temporally evolving sensory inputs. In the brain, this temporal structure is 
associated with changes both in when neurons fire and which neurons fire. On the one hand, 
temporal stimuli drive neuronal activity sequences, observed throughout the visual3,11, 
auditory12,13,22, tactile14,15 and olfactory6,16 systems, including sensory cortex. In single cortical 
neurons, these activity sequences carry information which is not available in the neuron’s mean 
firing rate7,11,13,15,16. On the other hand, several studies have established that the time-averaged 
firing rate of many neurons is tuned to specific temporal cues, such as the speed or direction of 
motion in visual stimuli9,23, the dynamics of tactile contacts14,19 or amplitude and frequency 
modulations in sounds17,18,22,24,25. This tuning generates a spatial representation of the temporal 
structure of sensory inputs10,20 based on the identity of the set of activated neurons. Although 
these spatial representations do not necessarily form anatomical maps and can be widely 
distributed across a sensory area, they constitute a code for temporal sensory cues that depend 
on the neuronal space rather than on time. The functional importance of these spatial and 
temporal codes for behaviour is a long standing issue in sensory neuroscience given that they 
coexist at all levels of sensory systems including the cortex10,11,15–17,19,20,22,26. Therefore, direct 
manipulation of neural activity patterns in space and time is necessary to evaluate which code 
is actually deciphered by downstream areas to drive perceptual decisions and behavioural 
output. While activation of spatial patterns in sensory cortex has been shown to drive 
discriminative behaviour27–30, the role of temporal cues has so far only been causally addressed 
at the level of sensory receptor neurons26,31 or of peripheral sensory networks32. It is therefore 
unknown whether, at the cortical stage, temporal codes are exploited by the downstream motor 
centres within which associations between stimuli and behavioural decisions are learnt33. 

Engineering spatial and temporal codes 

To address this question, we engineered optogenetically-driven activity patterns in the auditory 
cortex (AC) that can be distinguished either specifically from their spatial structure or from 
their temporal structure. We focused on the auditory system because natural sounds contain 
rich temporal information2 that is at the basis of speech recognition5 and influence several 
perceptual properties important for sound identification and characterization such as timber or 
loudness1,34. We used Emx1-Cre x flex-ChR2 mice expressing channelrhodopsin in a large 
population of pyramidal neurons and optogenetically activated a low (A spot) and a high (B 
spot) frequency region of primary AC using light spots delivered with a video-projector 
through a chronic cranial window27,29 (Fig. 1a, Extended Data Fig. 1a-d). To generate 
spatially distinct but temporally identical neural patterns, we stimulated either the A or B spot 
with the same train of ten pulses at 20 Hz (Fig. 1b). Generating spatially identical but 
temporally distinct patterns is more challenging due to two confounding phenomena. First, 
cortical neurons adapt their firing rate to stimulation frequency35 and adaptation varies across 
neurons. This leads to different firing rates for different neurons, thus generating spurious 
spatial patterns. We therefore excluded temporal stimulations differing by stimulation 
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frequency and focused on temporal cues based on the relative timing of the stimulation of the 
two spots36 (Fig. 1b). However, based on earlier observations26,31,37 and neuronal simulations 
(Extended DataFig. 2a-c), we reasoned that a recurrent circuit, like the cortex, can convert 
relative timing cues in the stimulation into spatial patterns in the neuronal population (Fig. 1c), 
which would prevent us from generating purely temporal activity patterns in the network. To 
quantify these effects, we used silicon probes in awake mice to record the light-evoked activity 
during optogenetic stimulation of the A and B spots, while shifting the delay between each spot 
stimulation (Fig. 1d-f). Stimulation of A or B alone elevated the time-averaged firing rate in 
different sets of neurons (Fig. 1e), hence producing distinct spatial patterns. Optogenetically 
driven firing rates were in the same range as those naturally evoked by sound presentation 
(Extended Data Fig. 2d). Stimulating the A and B spots successively in the two possible orders 
(A-B or B-A) elevated time-averaged firing rates similarly, suggesting much weaker spatial 
information (Fig. 1e). To verify this, we used a population decoder measuring if it is possible 
to discriminate on a trial-by-trial basis between A-B and B-A sequences only based on the 
time-averaged firing rate of recorded neurons. We found that this spatial decoder could 
discriminate temporal stimulation order above chance if the interval between A and B 
stimulations was lower or equal to 13 ms, but could not for an interval of 25 ms (Fig. 1f). 
Hence, consistent with synaptic interactions integrating over the short membrane time constant 
of cortical neurons in vivo38,39, only stimulus sequences separated by a sufficiently long time 
interval generate cortical network patterns that contain robust temporal information (quantified 
in Extended Data Fig. 2e) but lack spatial information (Fig. 1f). We therefore selected the 
successive activations of A and B separated by 25ms and in opposite orders as a protocol to 
assess discriminability of purely temporal patterns in a behavioural task.  

A spatial code is necessary for learning 

Mice were trained to discriminate the spatial (A vs B) and the temporal (A-B vs B-A) pairs of 
patterns in two Go/Nogo tasks. The tasks consisted in licking within a 1.5s opportunity window 
after the Go pattern onset to get a reward provided by medial forebrain bundle stimulation, 
which leads to identical learning rates as water rewards40. Licking for the NoGo pattern was 
punished by a timeout (Fig. 1g). Mice were trained on both tasks, counterbalancing task order. 
Consistent with previous results29, mice rapidly learned to discriminate in the spatial task, 
reaching 70% accuracy within 69+/-385 trials (Fig. 1g-i, Extended Data Fig. 1b). By contrast, 
learning was extremely slow and inefficient for the temporal task. After 3000 training trials, 
none of the mice could discriminate the temporal patterns, while most of them could 
discriminate the spatial patterns (Fig. 1g-i). Pushing training to even higher trial numbers, only 
two of seven mice reached slightly above chance levels for the temporal task (Extended 
DataFig. 1e). This shows that activity patterns of cortical activity which contain temporal but 
no spatial information are hard to access for downstream learning processes for sensory-motor 
associations, while spatial patterns are easily exploited.    

Cortex elaborates a spatial code 

We reasoned that this important constraint on AC output activity must have consequences for 
sound encoding across the auditory system. Many sounds differ only by temporal cues. For 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2022.12.14.520391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520391
http://creativecommons.org/licenses/by-nc/4.0/


4 

example a word and its time-reversed rendition are perceptually distinct in humans5. Rodents, 
including mice, are also able to discriminate between two sounds which mirror each other in 
time, an ability that depends on AC41,42. We therefore hypothesised that the inefficiency of 
circuits downstream of the cortex in learning only from temporal patterns constrains the 
auditory system to re-encode auditory temporal cues as spatial activity patterns. To test this 
hypothesis, we performed large-scale recordings in the awake mouse in three successive 
regions of the auditory system: the inferior colliculus (IC), the auditory thalamus (TH) and the 
AC (Fig. 2a, Extended Data Table 1), combined with auditory nerve (AN) responses 
simulated with a detailed biophysical model. In each region, we measured the responses to a 
set of 140 sounds, mainly of 500 ms duration, which covered simple, spectral and temporal 
features (Fig. 2b, Extended Data Table 2). In the IC, we  used silicon probe electrophysiology 
to record 563 single units in the primary IC (central nucleus of IC) and 2-photon calcium 
imaging to record 13.132 ROIs from the more superficial secondary IC (dorsal cortex of IC). 
We also imaged 39.191 TH axonal boutons spread throughout AC and recorded 498 single 
units directly in TH. Finally, we imaged 60.822 ROIS throughout all subregions of the AC 
down to layer V. Calcium signals were linearly deconvolved 24, providing a temporal resolution 
of ~150 ms sufficient to follow slow temporal patterns produced by our 500ms sounds. Full 
details of the dataset are provided in the Supplementary Information and Extended Data 
Figs. 3 and 4.  
 
Contrasting neural responses to a frequency sweep and its time-reversed rendition (Fig. 2c) 
provides qualitative insight into the transformation of temporal cue representations that we 
observed throughout the auditory system. In the IC, the two sounds are represented by spatio-
temporal activity patterns that involve the same neurons and mirror each other in time (Fig. 
2c). In the AC, the temporal symmetry is no longer apparent and each sound is instead encoded 
by spatio-temporal activity patterns involving different neurons. This suggests that in AC but 
not in IC, sounds that differ only temporally are encoded by activity patterns that also differ in 
the spatial domain (Fig. 2c). This would make temporal information necessary in IC but 
dispensable in AC to discriminate between these sounds. We quantified this using two types of 
population activity decoders. To exhaustively extract the information contained in activity 
patterns, we used a spatio-temporal decoder that classifies sound responses with the full 
temporal sequence of population vectors (Fig. 2d). To extract information contained 
exclusively in spatial patterns, we used a spatial decoder that classifies sound responses with 
the population vectors obtained after time-averaging neuronal activity over the sound response 
(Fig. 2d). In subcortical areas, the spatio-temporal decoder clearly outperformed the spatial 
decoder. By contrast, in the cortex, the spatio-temporal and spatial decoder accuracies reached 
almost the same level (Fig. 2e-f). This result holds when the numbers of neurons are matched 
across datasets (Extended Data Fig 5a). Improved spatial decoding accuracy in AC could 
either result from a change of the representation as suggested in Fig. 2c, or from a change in 
the signal-to-noise ratio which varies across datasets (Extended Data Fig. 5b). To rule out the 
latter possibility, we quantified the similarity between population vectors evoked by a given 
sound pair. We used a numerically and analytically validated noise-corrected version of the 
Pearson correlation43 (Extended Data Fig. 5c, see Supplementary Information for 
mathematical derivations) to estimate similarity across representations in absence of noise. 
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Resulting representational similarity analysis (RSA) matrices summarise the relations between 
sound representations based either on the spatial or on the spatio-temporal information (Fig. 
2g, Extended Data Fig. 6a). We first observed that, subcortically, the mean similarity between 
representations of different sounds (mean of RSA matrix) is higher for the spatio-temporal than 
for the spatial code, indicating that temporal patterns help segregating sounds in distinct 
representations. However, this difference is very small in AC contrary to subcortical structures 
(Fig. 2h,i). In addition RSA matrices for spatial and spatio-temporal representations were very 
similar in AC, while they were much dissimilar subcortically (Fig. 2j). These results hold in 
all subfields of AC (Fig. 2h) and are robust to the number of neurons included in the analysis 
(Extended Data Fig. 5d). This together demonstrates that spatio-temporal and spatial 
representations of sounds in AC are very similar, explaining why decoders perform almost 
equally with both representations. Together, these results show that time-varying sounds are 
accurately represented by purely spatial patterns in the AC but not in subcortical structures. 
Interestingly, this transformation makes temporal sensory information available to learning 
mechanisms requiring a spatial representation, reconciling our optogenetic results with the 
ability to discriminate temporal cues in sounds.  
 
Spatial and temporal codes co-exist 

We then tested if the convergence between spatio-temporal and spatial representations in AC 
is the consequence of a decrease in temporal resolution in the cortex22,44 or occurs without loss 
of temporal information. We decomposed neural population activity using Fourier analysis and 
measured classifier accuracy at each specific timescale (Fig. 2k, Extended Data Fig. 5e). This 
analysis showed that relevant temporal resolution is preserved on the time scales considered in 
our study. In all datasets, classifier accuracy is maximal at ~1.5 Hz resolution (Extended Data 
Fig. 5e). Thus all datasets contain temporally structured neural activity that is sufficient to 
identify the relevant temporal cues in our sounds. Moreover, accumulating information from 
low to high temporal resolutions shows a saturation of classifier accuracy at around 3 Hz for 
all datasets (Fig. 2k). Therefore all temporal information needed to discriminate our sounds is 
available below 3 Hz, which is much lower than the putative 30 Hz cutoff for temporal 
resolution in AC 22. We observed sound-related information at fast timescales, in particular in 
electrophysiological recordings (Extended Data Fig. 5e) but it was redundant to information 
at slower time scales (Fig. 2k). Corroborating the spatial and spatio-temporal decoders (Fig. 
2e,f), the time-averaged activity of neurons (0 Hz) reached a level similar to that of the full 
cumulative spatio-temporal information in AC but not subcortically (Fig. 2k). Therefore, in 
AC, almost all information, including that present in neural temporal patterns, is also accessible 
from the identity of active neurons, i.e. from a purely spatial code. Accordingly, each sound is 
represented by small sets of highly active, and highly specific neurons in AC as shown by the 
high population and lifetime sparseness (Extended Data Fig. 5f,g)45. Notably, this property 
evolved non-monotonically along the auditory system, with much less sparse representations 
in TH (Extended Data Fig. 5f,g), paralleling the increase in representation similarity in this 
area (Fig. 2h). In contrast to sparseness measures, the level of tuning to simple, individual 
temporal features (e.g. frequency modulation direction) was stable from IC to AC (Extended 
Data Fig. 7), consistent with previous reports46,47. This suggests that the cortical transformation 
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of sound representations does not correspond to a sharpening of particular tuning properties 
but to the emergence of more complex tuning properties48. 
 
The spatial code sets learning speed 

We next investigated in a computational model if known learning mechanisms downstream of 
cortex can capture the advantages of the cortical elaboration of a spatial code for temporal 
information. We used a feedforward neural network model which simulates discrimination 
learning in an auditory Go/NoGo task based on reinforcement learning principles49 (Fig. 3a). 
We upgraded this model by complementing its Hebbian synaptic learning rule with an 
eligibility trace mechanism50,51 parameterized with data from the striatum52, a structure 
receiving AC projections and implicated in sound discrimination learning33. The eligibility 
trace flags active synapses with a signal that decays over ~1-3s. This mechanism allows even 
delayed post-synaptic activity driven by the reward to gate plasticity based on presynaptic input 
(Fig. 3a). However, when associated with Hebbian plasticity, the long decay of the eligibility 
trace averages out the precise timing of pre- and postsynaptic activity coincidences. Thus, when 
we trained the model to discriminate between the population responses to pairs of sounds taken 
from the AC, TH or IC datasets, we observed that the model learned from the spatial patterns 
but ignored the temporal patterns. This can be evidenced by plotting learning duration as a 
function of the noise-corrected similarity (correlation in RSA matrix) between discriminated 
representations, which shows that learning duration is much more correlated to the spatial than 
to the spatio-temporal similarity (Fig. 3b). Moreover, learning duration rises in a steep and 
non-linear manner for high spatial representation similarity (Fig. 3c). This non-linear 
relationship matches the result of our optogenetic experiments (Fig. 1), in which temporal 
sequences with maximal spatial representation similarity yielded extremely slow learning. The 
model also provides an explanation for the long standing observation that discrimination of 
pure tones does not require AC and can be performed via subcortical sensory-motor 
projections, whereas discrimination of temporal cues requires AC29,41,42,53 (Fig. 3d). Simple 
sound pairs, such as pure tones differing enough in frequency (e.g. > 0.33 octave), have low 
spatial representation similarity at all stages of the auditory (e.g. correlation < 0.75, Fig. 3e, 
Extended Data Fig. 6b-d). For this range of low correlation values, our model shows that 
learning occurs quickly and the impact of representation similarity on learning speed is 
marginal (Fig. 3c). Hence, the model predicts similar learning speeds whether it is based on 
thalamic or cortical representations (Fig. 3e), as observed for pure tone discriminations with 
intact or ablated AC41. Contrariwise, sounds that differ only in their temporal structure, such 
as time-symmetric frequency modulations, have spatial representations that are highly 
correlated subcortically (>0.9, Fig. 3f) and clearly less in the cortex (0.74, Fig. 3f, similar 
results for other temporal cues, Extended Data Fig. 6e-g). Based on these values, our model 
predicts a ~3-fold decrease in learning duration with cortical compared to thalamic 
representations (Fig. 3f). This is in line with the observation that pre-training AC ablation 
severely prolongs discrimination learning for time-reversed frequency sweeps41. Also, if one 
postulates that learning speed determines which auditory system stage is recruited for solving 
a sound discrimination task, the relationship between spatial representation and learning 
duration in our model can explain the strong impact of post-training AC inactivation for 
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discrimination of temporal cues, but not for pure tones29,42,53. This together indicates that the 
properties of learning rules in the striatum can quantitatively explain the necessity of an 
upstream spatial code for sensory-motor learning and recapitulate effects of causal 
manipulations of AC on auditory discrimination learning. 
 
Spatial codes emerge from categorisation 

The emergence of a spatial code for temporal information in the cortex may more generally 
reflect computations related to the resolution of common perceptual tasks such as stimulus 
identification and categorization. To explore this theoretically, we analysed representations in 
convolutional neural networks (CNNs) trained for different sound processing tasks (Fig. 4).  A 
first network was trained at categorising key features of the stimuli presented to our mice: the 
frequency and intensity range, and the type of frequency and amplitude modulations present in 
the sounds (Fig. 4a, Extended Data Fig. 8a). This network generated a spatial code for 
temporal cues in its deep layers after training, as shown by the convergence of spatial and 
spatio-temporal similarity (Fig. 4a, Extended Data Fig. 8b). Like typical CNNs, our network 
implemented pooling mechanisms which increase the size of sensory receptive fields and 
shrink the temporal and spatial dimensions in deeper layers54. To rule out that the convergence 
between spatio-temporal and spatial codes is due to this temporal shrinking, we trained a 
second CNN without pooling over the temporal dimension (Fig. 4b). We observed that 
temporal shrinking accelerates learning but is not necessary for the emergence of a spatial code 
for temporal cues in the CNNs (Fig. 4b, Extended Data Fig. 8a). This network displayed 
properties similar to the auditory system (compare Fig. 4c,d and Fig. 2f,j) and in particular the 
spatial code for temporal cues in deep CNN layers did not involve a decreased temporal 
resolution of the representation (compare Fig. 4e, Extended Data Fig. 8c and Fig. 2k, 
Extended Data Fig. 5e). These results extended to a previously published CNN trained to 
classify words and musical styles55 (Extended DataFig. 8d) and to networks trained to perform 
single sound identification in noise (Extended DataFig. 8e). However, when we trained 
another CNN network, with an auto-encoder architecture, to compress and denoise sound 
representations without assigning specific labels to sounds, we did not observe the emergence 
of a spatial code for temporal cues (Fig. 4f, Extended Data Fig. 8f,g). Therefore, CNN models 
support the view that the emergence of spatial representations for temporal cues in the cortex 
is driven by the computational constraints of classifying sounds into perceptual objects 
assigned with meaning.  
 
Discussion 

Our results highlight the spatial encoding of temporal sound cues as an important function of 
the sensory cortical network. This is in line with the proposed role of AC in the encoding of 
auditory objects56 such as phonemes, vocalisations or musical notes and previous observations 
of spatial representations for speech or natural sounds in the AC of humans and animals10,55,57. 
Our results demonstrate that this spatial encoding is necessary for rapid learning of sensory-
motor associations. Based on a reduced model of sensory discrimination learning, we propose 
that this constraint arises from time-averaging properties of plasticity rules implemented in 
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associative centres such as the striatum or the amygdala. These brain regions link information 
from a wide range of sensory areas to behavioural responses and environmental outcomes that 
have their own, unrelated temporal structure. Our results suggest that the challenge of 
associating the distinct temporalities of sensory signals and motor responses is resolved via the 
use of spatial representations for temporal cues.   

 
Several computational models58–60 and experimental findings61,62 have identified plasticity 
mechanisms by which temporal sequences can be associated to a specific neuronal output, by 
combining spike-timing-dependent synaptic plasticity (STDP)63 and neuronal integration 
mechanisms. Several factors could explain why such mechanisms are not efficiently recruited 
in auditory sensory-motor learning. First, many auditory objects, like our optogenetic stimuli, 
evolve on timescales of hundreds of milliseconds that are not suited for the short timescales of 
STDP64. Second, different models indicate that under irregular spike train statistics as observed 
in vivo, STDP rules behave as standard Hebbian rules60,65,66. While temporally precise sound 
responses in AC were often reported under anaesthesia, more irregular spike trains are observed 
in the awake state67. Likewise, our mild optogenetic stimulations calibrated to yield realistic 
firing rates (Extended Data Fig. 1d) are likely too weak to overcome cortical noise39 and 
generate high temporal precision (Fig. 1e). Finally, eligibility traces gate plasticity based on 
neuromodulatory feedback which, in the case of striatal dopamine, can occur up to 3s after 
synaptic activity. This slow timescale of integration averages out the precise timing of pre- and 
postsynaptic activity coincidences and could explain why fine temporal information is 
inaccessible to plasticity mechanisms that are driven by delayed environmental feedback.  
 
A previous study showed that rats can discriminate short time intervals between two electrical 
stimulations at two different AC locations36. We expect these results to reflect both the acute 
precision of electrical stimulation and the conversion of fast temporal information into a spatial 
code via synaptic interactions in the cortical networks (Extended Data Fig. 2), as we observed 
when decreasing the time interval in our paradigm (Fig. 1f). Network interactions in AC may 
underlie the transfer of  temporal information received from thalamus into the spatial domain 
(Fig. 2). CNNs are also based on local computations that iteratively detect spectrotemporal 
features and recapitulate the emergence of the spatial code (Fig. 4). Hence, simple local 
computations whose implementation in the local circuit motifs of the auditory system remain 
to be defined, are sufficient to make temporal information accessible through a spatial code in 
AC. Our study also revealed two intriguing aspects of sound information processing in the 
auditory system. First, contrary to what is observed in CNNs (Fig. 4), representations from IC 
to AC are transformed non-monotonically with denser, more correlated representations in TH 
compared to AC and IC (Fig. 2). Second, it is remarkable that neural temporal information is 
largely preserved in the AC despite the accessibility of temporal information through a spatial 
code (Fig. 2). This coexistence of temporal and spatial coding schemes could serve to combine 
object-like representations, useful for categorical decisions, with an explicit representation of 
the temporal details that are also perceived together with the object.  
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Figure legends  
 

 

Fig. 1. Sensory-motor learning requires spatial representations. a. Sketch of patterned 
optogenetic experiment in AC (MFB: medial forebrain bundle) and cranial window from an 
example mouse showing the location of the stimulation spots in the tonotopic axis of the 
primary auditory field. b. Sketch of the optogenetic stimulation time courses for each 
discrimination task. c. Sketch illustrating the conversion of a temporal code into a spatial code 
in the cortical network. d. AC window with 64 channel silicone probe inserted via a hole in the 
coverglass (top right) to record single unit responses to light patterns used in the behavioural 
task and illustrative data from 3 channels. e. Z-scored responses of 321 neurons to A, B, AB 
and BA stimulations, ordered by preference for A vs B stimulation and difference in average 
firing rate between A and B and between AB and BA stimulations. f. Accuracy of a neural 
decoder trained to discriminate the temporal and spatial optogenetic patterns  based only on 
spatial information, i.e. time-averaged firing rates of each neuron (n=321 units, bootstrap over 
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units, p-value of accuracy vs chance level of 0.5: 0.01, 0.01, 0.01, 0.43). g. Sample lick traces 
(top) and mean lick signal (bottom) for Go and NoGo trials in the rate-coded (left) and 
temporal-coded (right) discrimination tasks. h. Learning curves for all mice performing each 
task (n=7, error bars are sem). i. Accuracy at 3000 trials for all mice. (paired Wilcoxon test, p 
= 0.032, signed rank value = 27, n=7).  
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Fig. 2. A spatial code for temporal cues emerges in the auditory cortex. a. Sketch of the 
auditory system and sample sizes at each level. b. Spectrograms of the sound set. c. Sample 
responses to up and down frequency sweeps from IC and AC neurons ordered by response 
amplitude. d. Responses of 4 AC neurons to different up and down frequency sweeps 
illustrating how spatio-temporal and spatial codes are extracted. e-f. Mean sound decoding 
accuracy for spatial-temporal and spatial codes in each area (e) and normalised difference 
between the two (f). (p-value for 100 bootstraps, error bars are S.D). g. Noise-corrected RSA 
matrices for all sound pairs for spatio-temporal (left) or spatial (right) codes in IC and AC. h. 
Mean noise-corrected correlation by area. (p-value for 100 bootstraps comparing rate 
correlation of each region to AC, error bars are bootstrapped S.D). i. Normalised difference 
between mean noise-corrected correlation for spatio-temporal and spatial codes. (p-value for 
100 bootstraps, error bars are S.D). j. Noise-corrected dissimilarity between RSA matrix 
structure of spatio-temporal and spatial codes. (p-value for 100 bootstraps, error bars are S.D). 
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k. (top) Sketch illustrating the decomposition of population responses by timescale and the 
concatenation of successive Fourier coefficients to accumulate increasingly fine timescales. 
(bottom) Mean decoding accuracy based on cumulative Fourier coefficients of neural 
responses. Full statistics are reported in Extended Data Table 3. 
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Fig. 3. A spatial code is necessary for reinforcement learning with a bio-inspired eligibility 
trace mechanism. a. Sketch of the reinforcement learning model (bottom left), eligibility trace 
dynamics (top left) and example learning curves for two recorded representations that have 
similar spatio-temporal correlations but different spatial correlations. b. Heatmap of the 
number of trials needed to reach 80% accuracy at discriminating between a pair of sounds as a 
function of the correlations of their  spatio-temporal and spatial representations. The colour 
map indicates learning duration averaged over all pairs of representations for all brain regions. 
c. Number of trials to 80% accuracy as a function of the correlations of their spatial 
representations. Large square dots show the mean correlation and learning time for time-
symmetric frequency sweeps in IC, TH and AC and the black line shows the fit to data. d. 
Sketch showing the thalamic and cortical pathways for auditory learning. e. Mean noise-
corrected correlation between representations of sound pairs differing only by frequency (0.33 
octave difference) and predicted duration for learning a pure tone discrimination task based on 
thalamic (average of THe and TH2P) and cortical representations. f. Mean noise-corrected 
correlation between representations of sound pairs differing only by the direction of the 
frequency sweep and predicted duration for learning to discriminate the two frequency sweep 
directions based on thalamic (average of THe and TH2P) and cortical representations. Full 
statistics are reported in Extended Data Table 3. 
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Fig. 4. Categorization deep networks implement a spatial code for temporal cues in 
deeper layers. a-b. (Left) Schematic of CNN architectures and target categories. (Right) Mean 
response correlations for the spatial and spatio-temporal codes from RSA matrices constructed 
with the set of 140 sounds presented to mice (line) and difference between the two codes (bars). 
a. Multi-category CNN (n=8 networks). b. Multi-category CNN without shrinking of the 
temporal dimension (n=8 networks). Inset shows learning curves from training epochs for 
networks in A and B. c-e. All graphs refer to the categorization CNN without temporal pooling 
and reproduce analysis shown in Fig. 2 for neural data. c. Normalised difference between mean 
sound decoding accuracy for spatio-temporal and spatial codes. (error bars are sem over trained 
networks). d. Noise-corrected dissimilarity between RSA matrix structure of spatial and spatio-
temporal codes. e. Mean decoding accuracy based on cumulative Fourier coefficients of neural 
responses. f. Autoencoder CNN performing sound compression and denoising through a 20-
unit bottleneck. (cv : convolution block, d-cv : deconvolution block - see methods for 
architecture details). 
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Methods 

Subjects and authorizations. All mice used for imaging and electrophysiology were 6 to 14 
weeks old male and female C57Bl6J mice that had not undergone any other procedures. For 
optogenetic stimulation, we used Emx1-IRES-Cre (Jax #005628) crossed with Ai27 (Jax 
#012567) mice. Mice were group-housed (2–6 per cage) before and after surgery, had ad 
libitum access to food and water and enrichment (running wheel, cotton bedding and wooden 
logs) and were maintained on a 12-hour light-dark cycle in controlled humidity and temperature 
conditions (21-23°C, 45-55% humidity). All experiments were performed during the light 
phase. All experimental and surgical procedures were carried out in accordance with the French 
Ethical Committee the French Ethical Committees #59 and #89 (authorizations APAFIS#9714-
2018011108392486 v2 and APAFIS#27040-2020090316536717 v1). 

Surgery. Mice were injected with buprenorphine (Vétergesic, 0,05-0,1 mg/kg) 30 min prior to 
surgery. Surgical procedures were carried out using either intraperitoneal ketamine (Ketasol) 
and medetomidine (Domitor) which was antagonised with atipamezole (Antisedan, Orion 
pharma) at the end of the surgery) or 3% isoflurane delivered via a mask. After induction, mice 
were kept on a thermal blanket during the whole procedure and their eyes were protected with 
Ocrygel (TVM Lab). Lidocaine was injected under the skin of the skull 5 minutes prior to 
incision.  

For calcium imaging, craniotomies of 3 (IC) or 5 (AC) mm were performed above the IC or 
the AC. Injections of 150nL of AAV1.Syn.GCaMP6s.WPRE (Vector Core, Philadelphia, PA; 
10^13 viral particles per ml; used pure for TH and diluted 30x for AC and IC) were made at 30 
nL/min with pulled glass pipettes at a depth of 500µm and spaced every 500 µm to cover the a 
large surface of the IC or AC. The craniotomy was sealed with a circular glass coverslip. The 
coverslip and head post were fixed to the skull using cyanolit glue and dental cement (Ortho-
Jet, Lang).  

For electrophysiology recordings, the skull above the IC or above the cortex dorsal to the TH 
was exposed for ulterior craniotomy. A well was formed around it using dental cement in order 
to retain saline solution during recordings and the head post was fixed to the skull using cyanolit 
glue and dental cement. To protect the skull, the well was filled with a waterproof silicone 
elastomer (Kwikcast, WPI) that could be removed prior to recording. The head post was fixed 
to the skull using cyanolit glue and dental cement (Ortho-Jet, Lang).  

For patterned optogenetic stimulation of the cortex, a cranial window was placed above the AC 
as for calcium imaging but without viral injection. For MFB stimulation, a bipolar stimulation 
electrode (60-µm-diameter twisted stainless steel, PlasticsOne) was implanted using 
stereotaxic coordinates (AP -1.4, ML +1.2, DV +4.8). It was then fixed along with the headplate 
to the skull using dental cement (Ortho-Jet, Lang). 

After surgery, mice received a subcutaneous injection of 30% glucose and metacam (1 mg/kg). 
Mice were subsequently housed for one week with metacam delivered via drinking water or 
dietgel (ClearH20). Mice were given one week to recover from surgery without any 
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manipulation. Then, for four days before recording, mice were habituated to head restraint for 
increasing periods of time (30 min - 2 hours). For electrophysiological experiments, the day 
before recording animals were briefly anaesthetised using isoflurane anaesthesia (2%) in order 
to perform craniotomy and durectomy for electrode descent. 

Two photon calcium imaging in the awake mouse. Imaging was performed using a two-
photon microscope (Femtonics, Budapest, Hungary) equipped with an 8kHz resonant scanner 
combined with a pulsed laser (MaiTai-DS, SpectraPhysics, Santa Clara, CA) set at 900 nm. 
We used a 10x Olympus objective (XLPLN10XSVMP), which provided a field of view of up 
to 1x1 mm. For AC, a 1x1mm field of view was used. For IC, the field of view was adjusted 
to the size of the structure (~0.5x0.5 mm). For thalamic axons, the field of view was reduced 
to 0.22x0.22 mm. Images were acquired at 31.5 Hz. 

Electrophysiology in the awake mouse. Electrophysiology was performed using Neuronexus 
probes : (1x32 linear probe for IC and 4*8 comb for TH). For track reconstruction, the 
electrodes were dipped in diI, diO or diD (Vybrant™ Multicolor Cell-Labelling Kit, 
Thermofisher) prior to recording and allowed to dry at least 15 min before insertion. 
Recordings were performed using warmed saline filling the cyanolit glue well and in contact 
with the reference electrode. After each recording the well was amply flushed and then refilled 
with Kwickast. A maximum of three recordings were performed per site. Data was sampled at 
20kHz using an Intan RHD2000 amplifier board. 

For recordings during optogenetic stimulation, a small hole was drilled in the coverglass and a 
1x64 linear probe was inserted into the stimulated region. During these recordings, optogenetic 
stimuli and sounds were presented randomly. Recordings were performed using warmed saline 
filling the cyanolit glue well and with a reference electrode chronically implanted into the brain. 
After each recording the well was amply flushed and then refilled with Kwickast.  

Sound delivery. Sounds were generated with Matlab (The Mathworks, Natick, MA) and were 
delivered at 192 kHz with a NI-PCI-6221 card (National Instruments) driven by the software 
Elphy (G. Sadoc, UNIC, France) and feeding an amplified free-field loudspeaker (SA1 and 
MF1-S, Tucker-Davis Technologies, Alachua, FL) positioned 15 to 20 cm from the mouse ear. 
Sound intensity was cosine-ramped over 10 ms at the onset and offset to avoid spectral splatter. 
The head fixed mouse was isolated from external noise sources by sound-proof boxes (custom-
made by Femtonics, Budapest, Hungary or Decibel France, Miribel, France) providing 30 dB 
attenuation above 1 kHz. Sounds were calibrated in intensity at the location of the mouse ear 
using a probe microphone (Bruel & Kjaer, type 4939-L-002). For two-photon calcium imaging, 
the resonant scanner generated a harmonic background noise at 8 kHz (intensity at the mouse 
ear, 45 dB SPL). 

During a recording session, each of the 140 sounds (sketched in Fig. 2b) was presented 15 
times in random order. In order to be compatible with 2-photon image acquisition, sounds were 
presented in 120 blocks of 32s each, interleaved by a 15s pause in a 94 min protocol. The list 
of all sound parameters can be found in Extended Data Table 2.  
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Intrinsic optical imaging recordings in anaesthetised mice. Intrinsic imaging was performed 
to localise AC in mice under light isoflurane anaesthesia (1% delivered with SomnoSuite, Kent 
Scientific) on a thermal blanket. Images were acquired at 20Hz using a 50mm objective (1.2 
NA, NIKKOR, Nikon) with a CCDcamera (GC651MP, Smartek Vision) equipped with a 50 
mm objective (Fujinon, HF50HA-1B, Fujifilm) through the cranial window implanted 1-2 
weeks before the experiment (4-pixel binning, field of view between 3.7 x 2.8 mm or 164 x 
124 pixels at 5.58 mm/pixel). Signals were obtained under 780 nm LED illumination 
(M780D2, Thorlabs). Images of the vasculature over the same field of view were taken under 
530 nm LED illumination (NSPG310B, Conrad). Sequences of short pure tones at 80 dB SPL 
were repeated for 2 s every 30 s with 10 trials per sound. Acquisition was triggered and 
synchronised using a custom-made GUI in MATLAB. For each sound, we computed baseline 
and response images, 3 s before and 3 s after sound onset, respectively. The change in light 
reflectance ∆R/R was calculated for each repetition of each sound frequency (4, 8, 16, 32 kHz, 
white noise) as the difference between the baseline and response image and was then averaged 
across all repetitions of a given tone frequency. Response images were smoothed applying a 
2D Gaussian filter (sd = 3 pixels). Auditory cortex activity appeared as regions with reduced 
light reflectance changing with frequency, revealing the tonotopic maps of its different 
subfields. To align intrinsic imaging responses across different animals, the 4 kHz response 
was used as a functional landmark. The spatial locations of maximal amplitude responses in 
the 4 kHz response map for the A1, A2 and AAF (three points) was extracted for each mouse 
and a Euclidean transformation matrix was calculated by minimising the sum of squared 
deviations (RMSD) for the distance between the three landmarks across mice. This procedure 
yielded a matrix of rotation and translation for each mouse that was applied to compute intrinsic 
imaging responses averaged across a population of mice. 

Histology and immunostainings. In order to extract the brain for histology, mice were deeply 
anaesthetised using a ketamine- medetomidine mixture and perfused intracardially with 4% 
buffered paraformaldehyde fixative. The brains were dissected and left in paraformaldehyde 
overnight and then sliced into fifty micrometre sections using a vibratome. Slices were either 
stained with cytochrome oxidase or directly mounted using a mounting medium with DAPI. 
Analysis of the fluorescence band diI, diO or diD allowed isolating up to 3 tracks per mouse 
for electrophysiological experiments.  

For Vglut2 immunostainings, after fixation, tissues were rinsed in PBS and blocked in Tris-
Buffered Saline (TBS) supplemented with 5 % (vol/vol) Normal Donkey Serum (Jackson 
Immunoresearch) and 0.3 % (wg/vol) Triton X-100. Then, sections were incubated for 48h at 
4°C while rocking with a primary antibody: guinea pig anti-Vglut2 (1:500, Synaptic Systems 
#135404), followed by a 4 h incubation with a secondary donkey anti-guinea pig IgG 
[F(ab’)2fragments] (1:500, Jackson ImmunoResearch #706606148). Tissues were rinsed and 
mounted using Prolong diamond antifade (Life Technologies). Pictures of the brain sections 
were taken with LSM 900 confocal microscope (Zeiss Microsystems) using 20x objective, 
whereas the magnified view of the thalamocortical boutons was obtained with Airyscan 
acquisition and 63x objective. 
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The labelled boutons (GCaMP alone in green; GCaMP with Vglut2 in yellow) were counted 
manually using ZEISS ZEN 2 microscope software in 12 sample regions selected within layer 
1 AC in 3 different Airyscan images. The number of boutons was then calculated per volume 
tissue. 

Behavioural discrimination of patterned optogenetic stimuli. For patterned optogenetic 
activation in the mouse AC, we used a video projector (DLP LightCrafter, Texas Instruments) 
powered by a blue LED (centre wavelength 460 nm). To project a two-dimensional image onto 
the AC surface. The image of the micromirror chip was collimated through a 150 mm 
cylindrical lens (Thorlabs, diameter: 2 inches) and focused through a 50 mm objective 
(NIKKOR, Nikon). Light collected by the objective passes through a dichroic beam splitter 
(long pass, > 640nm, FF640-FDi01, Semrock) and is collected by a CCD camera (GC651MP, 
Smartek Vision) equipped with a 50 mm objective (Fujinon, HF50HA-1B, Fujifilm).  

The behavioural task aimed to teach mice to discriminate between two optogenetically induced 
patterns of activity in AC. The reinforcement used for the task used medial forebrain bundle 
(MFB) stimulation in non-deprived mice. This protocol leads to similar learning speed, motor 
response timing and psychometric measurements as water rewards in deprived animals40. In 
the “spatial discrimination task”, the two stimuli were composed of 500 ms illumination of 300 
µm diameter spots placed at two different locations of AC. In the “temporal discrimination 
task”, the two stimuli were composed of a succession of two 250 ms illuminations of 300 µm 
diameter spots at different locations in the cortex in one order (AB) or in the reversed order 
(BA). All light stimuli were temporally modulated at 20 Hz (25 ms ON, 25 ms OFF). To 
prevent visual perception of the optogenetic stimuli a constant and strong background 
illumination provided by a white LED lamp was used and a cache was placed in front and close 
to the eyes to limit visual inputs. Mice were trained on both tasks. 4 mice were first trained on 
the temporal, and then on the spatial task. 3 mice were first trained on the spatial and then on 
the temporal task. The spots used in the task they first learnt were positioned at the two 
extremes of the tonotopic axis of A1. In order to minimise interference between the two 
subsequent tasks, the spots in the second task were positioned at two different locations, on the 
axis orthogonal to the tonotopic axis of A1 keeping the inter-spot distance equal. In both cases, 
spot position was adjusted to avoid placing them above major vessels which could lead to 
reduced illumination of neurons (Extended Data Fig. 1a,b). Alignment of optogenetic 
stimulus locations across days was done using blood vessel patterns at the surface of the brain 
manually aligned to a reference blood vessel image taken at the beginning of the experiment.  

Behavioural experiments were monitored and controlled using a custom Matlab software 
controlling an input-output board (PCIe-6351, National Instruments) and the images delivered 
by the video projector. Mice performed behaviour for one hour per day. During the entire 
behavioural training period, food and water were available ad libitum as rewards were provided 
through the stimulation of the medial forebrain bundle (MFB). 
 
MFB stimulation was delivered via a pulse train generator (PulsePal V2, Sanworks) that 
produced 2ms biphasic pulses at 50Hz for 100ms at a voltage calibrated for each individual 
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mouse to the minimal level that evoked sustained responding, using the protocol in 40. The 
stimulation was controlled with a solenoid valve (LVM10R1-6B-1-Q, SMC). A voltage of 5V 
was applied through an electric circuit joining the lick tube and an aluminium foil on which the 
mouse was sitting. Lick events could be monitored by measuring the voltage across a series 
resistor in this circuit. 
 
Training was broken down into three phases. (i) Lick training: On the first day, mice were 
presented with the lick tube and any licking was rewarded with immediate MFB stimulation. 
Mice generally began licking at high rates after 1-2 minutes and the session was continued until 
mice reliably collected around 300 rewards. (ii) Go training: On the following day, Go trials 
were presented with 80% probability, while the remaining trials were blank trials (no stimulus). 
A trial consisted of a random inter-trial interval (ITI : 0.5 to 1 s), a random ‘no lick’ period 
(duration adjusted, see below) and a fixed response window of 1.5 s. The first lick occuring 
during the response window on a Go trial was scored as a ‘hit’ and triggered immediate MFB 
stimulation. During initial go training the ‘no lick’ period was between 2 and 5 s in order to 
discourage non-specific licking. When mice achieved >80% accuracy for the Go stimulus, a 
final Go session was performed during which a cache was placed over the window to verify 
that animals were not licking to remnant visual cues from the video projector (Extended Data 
Fig. 1c,d). On this day and for subsequent Go/NoGo sessions, the no lick period was shortened 
to 1.5 to 3 s in order to obtain more trials per session. (iii) Go/NoGo training: After Go training, 
the second stimulus (NoGo) was introduced. During presentation of the NoGo sound, the 
absence of licking for the full response window was scored as a ‘correct rejection’ (CR) and 
the next trial immediately followed. Any licking during NoGo trials was scored as a ‘false 
alarm’ (FA), no stimulation was given, and the animal was punished with a random time-out 
period between 5 and 7 s. Each session contained 45% Go stimuli, 45% NoGo stimuli and 10% 
blank stimuli. Note that the Go training was used to ensure high motivation of the animal during 
the Go/Nogo training by establishing an association between the optogenetic stimulus and the 
reward. For the time-independent task, this association was generalised to the NoGo stimulus, 
as seen through very high false alarm rates at the beginning of the Go/NoGo training (e.g. 
Extended Data Fig. 1b). This indicates that faster learning for the time-independent task is 
not due to an absence of generalisation between the Go and NoGo stimulus when transitioning 
from the Go to the Go/NoGo training phases. 
 
Learning curves were obtained by calculating the fraction of correct responses over blocks of 
150 trials. Discrimination performance over one session was calculated as (hits + correct 
rejections)/total trials.  
 
 

Data pre-processing. For calcium imaging, regions of interest corresponding to putative 
neurons (AC and IC) or axons and boutons (TH) were identified by using Autocell 24 
(https://github.com/thomasdeneux/Autocell). Briefly, each frame of the recording was 
corrected for horizontal motion using rigid body registration.This step was visually controlled 
and all sessions with visible z motion were eliminated. A hierarchical clustering algorithm, 
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based on pixel covariance over time, agglomerated pixels up to a user-selected number of 
clusters corresponding to regions of the size of neurons of axons. Clusters were automatically 
filtered according to size and shape criteria. This step was controlled by a detailed visual 
inspection of selected regions of interest (ROIs) during which ROIs without visually 
identifiable cell body shape were discarded. 

For each region of interest, the mean fluorescence signal F(t) was extracted together with the 
local neuropil signal Fnp(t). Then 70% of the neuropil signal was subtracted from the neuron 
signal to limit neuropil contamination. Baseline fluorescence F0 was calculated with a sliding 
window computing the 3rd percentile of a Gaussian-filtered trace over the imaging blocks. 
Fluorescence variations were then computed as f(t) = ΔF/F = (F(t) - F0 )/F0 . An estimate of 
firing rate variations r(t) was then obtained by linear temporal deconvolution of f(t): r(t) = f'(t) 
+ f(t)/τ, f'(t) being the first derivative of f(t) and τ = 2s, the estimated decay of the GCAMP6s 
fluorescent transients. This simple method efficiently corrects the strong discrepancy between 
fluorescence and firing rate time courses due to the slow decay of spike-triggered calcium 
transients. It does not correct for the rise time of GCAMP6s, leading to remnant low pass 
filtering of the firing rate estimate and a delay of ~100ms between the firing rate peaks and the 
peaks of the deconvolved signal. Finally, response traces were smoothed with a Gaussian filter 
(σ = 31ms). 

Electrophysiological signals were high-pass filtered and spike sorting was performed using the 
CortexLab suite (https://github.com/cortex-lab, UCL, London, England). Single unit clusters 
were identified using kilosort 2.5 followed by manual corrections based on the interspike-
interval histogram and the inspection of the spike waveform using Phy 
(https://github.com/cortex-lab/phy).  

Both for imaging and electrophysiology data, single trial sound responses were extracted (0.5s 
before and 1s after sound onset) and the average activity over the prestimulus period (0.5s - 0s 
before sound onset) was subtracted for each trial. 

 

Reproducibility index and cell selection. To quantify the noise levels in the data, we 
calculated the mean inter-trial correlation across all pairs of trials. The single neuron 
reproducibility is then defined for each neuron as the average of the inter-trial correlation for 
that neuron’s response to all 140 sounds. The population response reproducibility for each 
sound is defined as the average of the inter-trial correlations of the full sequence of response 
of the whole neural population to that sound. Region of interests (ROIs) or single units with 
reproducibility below 0.12 were classified as non-responsive and were excluded from all 
analyses except population sparseness. As detailed in the Extended Data Table 1, the number 
of responsive units and the corresponding fraction of the total number of units/ROIs recorded 
are: AC, 19414 (32%), TH, 3969 (12%), THE, 484 (97%), 5936 (39%), 442 (78%).  

 

Noise-corrected correlation. For each dataset, population representations were estimated after 
pooling all recording sessions in a virtual population. We used the correlation between 
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population vectors as a metric of similarity between representations. The areas and techniques 
used to estimate neuronal ensemble representations yielded different levels of trial-to-trial 
variability due to intrinsic neuronal response variability and measurement noise. Most 
representation metrics are biassed by variability, even after trial averaging, due to variability 
residues. For example, the correlation between two population representations (population 
vectors) will tend to decrease with respect to a variability-free estimate 43. When multiple 
observations of the same representations are available, it is possible to account for the impact 
of variability, by using specific estimators 43. Here we showed analytically (see 
Supplementary Information) that the value of the Pearson correlation coefficient  
between population vectors for two sounds  and  in absence of variability can be exactly 
estimated from noise-corrupted single-trial observations  and  of  and  when their 
dimension N approaches infinity, based on the formula: 

 

 
 

in which r and r’ are single trial indices and R is the total number of trials. This analytical result 
is confirmed by simulations for finite N, indicating that our estimator converges to the 
correlation value of the noise-free vectors (Extended Data Fig. 5c). Code for calculating this 
estimator is provided with the online data set. 
 
Simulations for finite N show as expected that the estimator displays substantial deviations 
around the true correlation which however average to zero. This leads to values of the estimator 
that can be outside [-1,1] in some cases. Our estimator displays extremely large deviations 

when  approaches 0, i.e. for representations that are dominated by noise. This 
occurred more often in datasets obtained by imaging, in particular in the thalamic axonal 
boutons dataset (TH). To limit imprecisions from these extreme values we excluded from all 

datasets sounds for which  . In typical neural data, there are significant 
noise correlations across simultaneously recorded neurons within a trial. Therefore, the 
effective N can be much lower than the number of neurons. We minimised this contribution by 
shuffling trial identity for each neuron independently. 
 
To evaluate the significance of mean correlation differences across all sound pairs for temporal 
and rate representations, we used a bootstrap procedure over the independently recorded 
sessions. This procedure had the advantage of providing a statistical assessment for biological 
replicability based on strictly independent measurements (neurons of the same recording are 
not fully independent statistically). The noise-corrected correlation measure was estimated 100 
times after a random resampling of sessions with replacement. Based on this distribution, we 
measured the standard deviation and calculated p-values down to 0.01. 
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Sequence correlation was measured on vectors formed by concatenating the responses of all 
neurons throughout time (vector dimension = NNeurons x NTimeBins). Rate correlation was 
measured first by time-averaging the responses of each neuron and then concatenating these 
values for all neurons (vector dimension = NNeurons). In both cases, we used data from the sound 
onset to 250ms after the sound offset. To normalise the difference between temporal and rate 
correlation when comparing between areas we use the formula :  

 

 

Noise-corrected sparseness measure. There exist several sparseness measures which are all 
biassed by variability in neuronal activity measurements 45,68–70. The most classical measure as 
defined in 68 is not appropriate for baseline-corrected, linearly deconvolved calcium data 
because it requires positive response values. We show in the Supplementary Information that 
kurtosis, the 4th order moment of a distribution, is a sparseness measure which can be corrected 
for variability-related biases and is appropriate for all our datasets. This metric quantifies the 
“long-tailedness” of the distribution. Sparse response properties correspond to rare and strong 
responses which generate long-tailed response distributions as opposed to dense response 
properties which correspond to more compact response distributions. For lifetime sparseness, 
measured for each neuron separately, Kurtosis is defined as:  

 

in which <>s indicates averaging over sounds and  is the noise-free response of neuron n to 
sound s. In the case of population sparseness, which is measured for each sound separately, <>s 
should be replaced by <>n which indicates averaging over neurons. The Kurtosis formula can 
be developed into the moments of order 1 to 4 of . 

 

  

Starting from the second order, estimates of these moments based on trial-averaged response 
include noise-related bias terms, which skew the kurtosis estimates for limited trial counts. We 
analytically demonstrated and numerically verified that these biases can be suppressed using 
noise corrected formulae of all moments that are detailed in the Supplementary Information. 
Code for these calculations is provided with the online data set. 

When calculating population sparseness, we analysed all neurons including non-responsive 
neurons. Non-responsive neurons with aberrant response levels (>5 times the maximal value 
of responsive neurons) were excluded. Based on this, the percentages of units used were : ICE 
: 92%, IC: 80%, TH: 61%, THE: 97%, AC:92%). 
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Population activity classifiers. To evaluate the accuracy of sound identification based on 
single-trial population responses, we trained a nearest-neighbour classifier on a subset of trials 
and cross-validated it on a distinct subset of trials. Training and testing sets were constructed 
by randomly selecting half of the trials for each unit. For each sound, we correlated the 
population response averaged over the training trials for this sound with the population 
response averaged over the testing trials for all the other sounds. The sound with the highest 
correlation was assigned as the prediction. Decoding accuracy is defined as the proportion of 
correctly assigned sounds. 

Spatial and spatio-temporal were defined as for the correlation measures. Statistical 
significance was evaluated using the same bootstrap procedure as for the correlation measures. 
Importantly, decoding depends inherently on trial-to-trial noise which limits the possibility of 
comparing between areas. This analysis serves to contrast spatial and spatio-temporal codes 
within an area. 

To measure the information contained at different timescales, the temporal sequence of 
population activity was decomposed into its Fourier coefficients corresponding to a discrete set 
of timescales ranging from T, the 750 ms sound response duration, down to 2∆t, where ∆t is 
the discretization time of the dataset (1/2∆t = f  the Nyquist frequency ; ∆t = T/24 
= 31.25 ms for 2P-imaging data and ∆t = T/96 = 7.81 ms for electrophysiology 
data).  

The Fourier coefficient Cn,r for frequency n/T and neuron r is defined as  

  

where νr(k) is the activity of neuron r at timestep k, i = √−1 and K = Tf. Each coefficient is a 
complex number or, equivalently, a two-dimensional vector. Hence the activity sequence for a 
given neuron is either represented by a vector of 2K data points or of 2K Fourier coefficients. 

To measure the information present at a given time scale, we applied the population activity 
classifier on the population vector containing the 2N Fourier coefficients for this time scale for 
the N neurons of the dataset (Extended Data Fig. 5e). To measure information present above 
a particular time scale Tmax, we used the Fourier coefficients from 1 to Tmax for each neuron 
and concatenated them into a 2NTmax population vector (Fig. 2k). Of note, when evaluating 
information at particular time scales, we did not apply any temporal filtering steps to avoid 
artefacts due to the finite size of the filter and preserve the full bandwidth of the data. 

 

Tuning analysis. To quantify the number of neurons significantly tuned to a specific property, 
we first performed a parametric ANOVA test to identify the neurons which respond 
significantly more to one of the sounds of interest (e.g. 60, 70 or 80 dB levels across all pure 
tones for intensity tuning, up vs down modulations in a given frequency range for frequency 
modulation). We used a threshold of p=0.05. We do not compare the absolute number of 
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neurons tuned to a given property between areas since this will largely reflect the different 
levels of noise in the data sets and we focus on the properties of significantly tuned neurons. 

To measure the tuning of individual units to classes of stimuli (for example up chirps vs down 
chirps) we used the following modulation index:  

 

 

Reinforcement learning model. We adjusted a previously published reinforcement learning 
model 27,49, to learn discriminations between pairs of temporal inputs. The model receives as 
inputs the temporal responses for two sounds: ( ) for the rewarded sound and (
) for the non-rewarded sound. The model learns the synaptic weights between these input 
representations and a downstream decision circuit (Fig. 3a). This circuit is composed of a Go-
unit which outputs the decision (synaptic weights : ) and an inhibitory neuron that provides 
immediate linear inhibition to the reward neuron (synaptic weights : ). The temporal output, 
y(t), of the model can therefore be described as :  

 where  is the Heaviside step function, 𝜉𝜉 is a time -
independent Gaussian random noise process that models stochasticity of behavioural choices. 
The decision to go is made if the mean activity of the Go-unit within the response window  

 is larger than 0.2 (  denotes time averaging over 0.5s).  

The synaptic weights are updated according to a learning rule which compares the reward 
prediction to the actual reward, assuming that reward prediction corresponds to the mean input 
received by the Go-unit. The learning rule has three particularities that have been previously 
shown to be important to account for mouse behaviour 49 and compatible with our knowledge 
of synaptic plasticity rules. First, it is asymmetric : the learning rate is larger when an 
unexpected reward occurs than when an expected reward does not. Second, it is multiplicative 
: the learning rate at a given synapse depends on the current weight of that synapse. Finally, it 
takes into account the known dynamics of the eligibility trace in the striatum 52 which is a key 
target of both AC and TH in discrimination learning 33. The eligibility trace is a key mechanism 
in the “neo-hebbian framework” that aims to explain how synaptic plasticity can accommodate 
delays between action initiation and environmental feedback. This theory proposes that 
synapses that undergo pre-post coincidence prior to feedback are tagged via a long-lasting (~ 
few seconds) eligibility trace. Weight changes will only occur at these tagged synapses if they 
are subsequently exposed to neuromodulatory feedback before this eligibility trace decays. In 
line with this, in the striatum, potentiation of synapses is conditioned on dopamine release 
within a ~3s time window following coincidence of pre- and post-synaptic activity 52. To 
implement this in our model, the temporal signal for the model input is convolved with a kernel 
corresponding to the temporal profile of dopaminergic plasticity gating taken from Yagishita 
et al 52 before calculation of the weight update.  

The learning rule is implemented as :  
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where  the learning rate,  is the action outcome (  = 1 for reward,  = -1 for no 
reward,  is the behavioural noise level parameter that sets the models peak performance,  
is the function that implements asymmetric learning such that  

  

  

 is the learning rate asymmetry ratio,  

  

where  is the temporal function shown in Fig. 3a and taken from Yagishita et al 52 and 
 = 0.5s. 

In order to estimate the speed at which the model learns to discriminate between different 
neural representations, we used as input the population vector time series for two different 
sounds from a given area. For calcium imaging, we first performed clustering of the response 
to reduce dimensionality. The model was then run for three independent simulations to average 
out the stochastic contribution and we evaluated the number of trials to reach 80% based on 
the average learning curve over these three repeats.  

For dimensionality reduction of the population vector, we performed agglomerative 
hierarchical clustering based on the euclidean distance between each neuron’s full temporal 
response to all stimuli. The number of clusters was established by increasing the number of 
clusters until the sound-pair RSA matrix constructed from the clusters explained 95% of the 
variance of the matrix constructed from the full neural population. Clustering was performed 
independently for each data set and yielded approximately 150 clusters in all areas. AC data 
displayed in Fig. 2c represents clusters rather than single neurons. 

Convolutional neural networks  

Augmented sound set. In order to train deep neural networks, we created an augmented sound 
set that covered all the basic parameters explored by the original 140 sound set used in 
experiments. We first augmented the basic sounds composing the sound set from 140 to 2169. 
This first step generated the sounds by independently varying all features defining the sounds 
(frequency, intensity, amplitude modulation direction or period, frequency modulation 
direction, chord composition). Thereby, a given feature cannot be predicted based on other 
features as in the experimental sound set. We further augmented the sound set using the 
approach from 55. Each 500ms sound is embedded at a random time in a randomly chosen 1.5 
s snippet taken from an auditory scene (bus station, park, street…) with a random intensity 
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(average : 53db, std : 7dB). We thus generated a total of 150.000 sounds for the test (6.000), 
train (110.000) and validation (34.000) sets respectively.  

Task definitions. The multi-category task required the network to output a 14-element binary 
category vector in which 1 indicates that the sound presented belongs to one of 14 categories, 
divided into 4 groups within which categories are mutually exclusive: frequency range, 
intensity range, frequency modulation type, and amplitude modulation type. However, all 
sounds had to receive one label from each group. The group structure was not provided to the 
network which therefore had to learn that a sound could not be simultaneously high and mid 
frequency for example. The categories were defined as follows:  
- Frequency range group: high frequency (4-8 kHz) / mid frequency (9-17 kHz) / low frequency 
18-38 kHz) / broadband (white noise only). For chords and frequency modulated chirps, the 
frequency value used for categorization was the average of all frequencies (i.e. middle of the 
chirp).  
- Intensity range group: high time-averaged intensity (80dB) / mid time-averaged intensity 
(70dB) / and low time averaged intensity (60 dB). Amplitude modulated sounds were assigned 
to their closest time-averaged range group. We obtained different overall intensities by ramping 
sounds sublinearly, linearly or supralinearly.  
- Amplitude-modulation group: Up-ramping/ down-ramping / sinusoidal modulation / no 
modulation.  
- Frequency-modulation group: Up chirp / Down chirp / no modulation. 

The sound identification task required the network to output the identity of each of the 2169 
different sounds without any category. 

The convolutional autoencoder is a network trained to reproduce with minimal loss its input 
with the constraint of passing all information through a small, central bottleneck layer. It is 
composed of an encoder sub-network that processes the input to allow for compression in the 
bottleneck layer and a decoder sub-network that reconstructs the output from the low-
dimensional bottleneck representation.  

Architecture definition and training All networks take as input a 2D (time x frequency) matrix 
of the log-scaled spectrogram of the sound and must produce as output the labels described 
above. In order to achieve this, a series of convolutional blocks is applied to transform the 
input. All classification networks were built from a series of 6 blocks composed of the same 
layers :  

- convolution : the input is convolved by a filter whose weights the network must learn, 
each layer applies multiple filters, generating a 3D matrix (time x frequency channel) 
from the initial 2D input (free parameters : kernel size, kernel stride, channel number) 

- activation : the output of the convolution is passed through a Relu non-linear activation 
function 

- maxpooling : the output of activation is downsampled by taking the maximal value of 
neighbouring values (free parameters : pool size, pool stride) 
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- dropout : in order to improve the robustness of training, during each training batch a 
random 50% selection of connections are eliminated. During testing and validation, all 
connections are active. 

After these convolutional blocks, a final 64-node fully connected layer with a Relu non-
linearity allows to aggregate information across time, frequency and channel dimensions. The 
output layer is obtained for the multilabel task by applying a sigmoid function to the fully 
connected output and for the identification task by applying a softmax function.  

The output of the last layer allowed us to calculate the value of the loss function that comprises 
the error the network makes (categorical cross entropy loss function) and a L1 regularisation 
term in order to improve network robustness. This loss was then back-propagated during 
training in order to optimise the weights of the connections using the Adam optimizer.  

Any given architecture requires arbitration across a wide range of free parameters, most notably 
the kernel and max pooling size and stride as well as the number of channels in each block. 
One approach to this problem is to perform a search across architectures to obtain optimal 
performance on the task. This has allowed optimization on ecologically-relevant tasks to be 
proposed as a criteria for building deep networks that function like the brain. However we 
focused on general properties of CNNs and were using a simple task without natural sounds. 
We therefore chose to assess the generality of our results on various architectures instead of 
performing an exhaustive search. We also verified the reliability of our results for a given 
architecture by using 2 different initialization weights per architecture. The four architectures 
we evaluated are defined as follows (CV : convolution layer, MP : max pooling layer, FC : 
fully connected layer, Ker : kernel size) : 
(1) Input : 109 x 150; Cv1 : 109 x 150 x 18, Ker(3,3); MP; CV2 : 55 x 75 x 20, Ker(5,5); CV3 
: 55 x 75 x 24, Ker(6,6) ; MP; CV4 : 28 x 38x 28, Ker(7,7) ; CV5 : 28 x 38 x 32, Ker(8,8); MP; 
CV6 : 14 x 19 x 32, Ker(9,9); FC : 64 
(2) Input : 109 x 150; Cv1 : 55 x 75 x 18, Ker(3,3); CV2 : 55 x 75 x 20, Ker(5,5); CV3 : 28 x 
38 x 24, Ker(6,6); CV4 : 28 x 38x 28, Ker(7,7); CV5 : 14 x 19 x 32, Ker(8,8); CV6 : 14 x 19 x 
32, Ker(9,9); FC : 64 
(3) Input : 109 x 150; Cv1 : 55 x 75 x 1, Ker(7,7)8; CV2 : 55 x 75 x 20, Ker(7,7); CV3 : 28 x 
38 x 24, Ker(7,7); CV4 : 28 x 38x 28, Ker(7,7); CV5 : 14 x 19 x 32, Ker(7,7); CV6 : 14 x 19 x 
32, Ker(7,7); FC : 64 
(4) Input : 109 x 150; Cv1 : 55 x 75 x 24, Ker(3,3); CV2 : 55 x 75 x 24, Ker(5,5); CV3 : 28 x 
38 x 24, Ker(6,6); CV4 : 28 x 38x 24, Ker(7,7); CV5 : 14 x 19 x 24, Ker(8,8); CV6 : 14 x 19 x 
24, Ker(9,9); FC : 64 

One prominent consequence of the choice of CNN architecture is the way in which the input 
volume evolves throughout the network. Choosing a large stride in the convolutional or a large 
window size in the max pooling layer will lead to a shrinkage of the input dimensions (time 
and frequency). Given that the temporal dimension is preserved in the brain, we examined an 
architecture in which there is no shrinkage at all of the temporal dimension. To do this, we used 
the 4 same architectures described above, with the temporal dimension kept constant by setting 
all strides to 1 and eliminating max pooling. This results in a large expansion of the parameters 
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in the network and affects training speed although asymptotic performance remains the same 
(Fig. 4b).  

The convolutional autoencoder receives as input the 2D spectrogram and must output a 
denoised spectrogram (spectrogram of the central sound without the background noise). The 
autoencoder was composed of 4 convolutional blocks as previously described in the encoding 
part and decoding networks, the bottleneck is a fully-connected, 20 node layer. Training was 
performed with an Adam optimizer, L1 and L2 regularisation and MSE as a loss function.  

The convolutional neural network trained on word and musical genre recognition was 
previously published55 and parameters have been made available at 
(https://github.com/mcdermottLab/kelletal2018). This network is composed of a central branch 
that splits into two branches, with one branch trained to identify musical genres and the other 
branch trained to identify words. In the original paper, the network was shown to achieve 
human-like performance and to qualitatively reproduce psychophysical measures during these 
tasks. 

Analysis of CNN activations Once the networks had been trained, we analysed the responses 
of all nodes in each activation layer to the 140 sounds that were presented during experimental 
sessions. Each sound generates at a given layer a 3D matrix (time x frequency x channels). By 
considering the temporal response of each frequency x channel combination we obtained 
analogs to the temporal response of individual neurons. We then applied the same analysis 
techniques to these artificial responses as described above for neural recordings. In order to 
perform decoding which requires multiple presentations of the same sound, we presented to 
the network multiple copies of each sound embedded in different noise backgrounds.  

 

Cochlear model. A computational model was implemented by adapting the seminal model of 
Meddis 71,72 to the mouse cochlea and validating it with mouse auditory nerve recordings 73. 
The model consists of a cascade of six stages recapitulating stapes velocity, basilar membrane 
velocity, inner hair cell (IHC) receptor potential, IHC presynaptic calcium currents, transmitter 
release events at the ribbon synapse, and firing response in auditory nerve fibres (ANFs) 
including refractory effects. The input model is a sound stimulus (in Pascals). The output is a 
train of spiking events (in spikes/s) in 590 ANFs innervating 40 IHCs with a characteristic 
frequency (CF) distributed at regular intervals along the cochlear tonotopic from 5 to 50 kHz, 
12 IHCs per octave. This distribution covered 82.8% of the basilar membrane length from 1.2% 
(apex) to 83.9% (base) in 2.07% increments. According to experimental data, the number of 
ANFs per IHC (N) was controlled by the relationship N=-0.0038x^2+0.375x+7.9 where x is 
the IHC location along the basilar membrane such that x=-56.5+82.5 log⁡(CF), with x in 
percent from the apex and CF in kHz. By adjusting the time constant of the calcium clearance 
τ_Ca within each IHC synapse, ANFs with different spontaneous discharge rate (SR=91.1 
τCa

2.66, with τCa in ms and SR in spikes/s) were simulated from 0.5 to 95 spikes/s (21 ± 19.8 
spikes/s, mean ± SD) to match the SR distribution reported in mouse auditory nerve. 
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Fast time-scale temporal to rate conversion in an excitation / inhibition model  We 
modeled the response of two integrate-and-fire neurons connected by a single inhibitory 
synapse that receive inputs A (InA) and B (InB) respectively. These inputs represent the A and 
B driven populations in the optogenetics experiment of Fig 1. The A and B inputs exactly 
reproduced our temporal-coded stimulation (225ms duration, 20Hz stimulation, 25ms between 
flashes) but we systematically varied the interval between A and B which in the experiment 
was set to 250ms. The excitatory neuron received excitatory input A input of synaptic strength 
(JA=0.09) and inhibitory input from the inhibitory neuron (InI) of synaptic strength (JI=0.04), 
delayed relative to inhibitory spiking (τI=2ms). The inhibitory neuron received excitatory input 
B of synaptic strength (JB=0.09). Both neurons decayed to their resting membrane voltage 
(Vm=-65mV) with membrane constant (τM=10ms), consistent with in vivo findings 38 and 
contained a white noise term (Innoise). They emitted a single spike when they reached the 
threshold voltage (VT=-50mV) and their voltage was then reset to (VR=-70mV). 

The equation of the voltage for each neuron is given by :  

 

 
 

 

Statistical analysis. Statistical results (degrees of freedom, p-values and statistical values) are 
reported in figure legends or in Extended Data Table 3. For statistical analysis of neural data, 
we performed a bootstrap analysis as detailed above. For statistical analysis of behavioural data 
provided in the manuscript, the Kolmogorov–Smirnov normality test was first performed on 
the data. If the data failed to meet the normality criterion, statistics relied on non-parametric 
tests. We therefore represent the median and quartiles of data in boxplots in all figures, in 
accordance with the use of non-parametric tests. Ranksum and signed rank: we report the 
signed rank statistic if the number of replicates is too weak to provide the normal Z statistic. 
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Supplementary Information  

Supplementary information about the auditory system dataset 

To rapidly obtain large datasets from these structures, we used GCAMP6s-based two-photon 
calcium imaging of either cell bodies (AC and IC, Extended Data Fig. 3a & d) or axonal 
projections (TH, imaged in AC) (Extended Data Fig. 3b). Collecting data simultaneously from 
around 1000 AC neurons or TH axonal boutons and from 100 to 200 neurons in IC, we could 
extensively sample representations in each region. In AC, all 60.822 ROIs were mapped to 
functional subfields based on tonotopic gradients 74 and to the cortical layer from imaging depth 
(Extended Data Fig. 4a-f). 70% of ROIs were in primary auditory cortex (A1), the largest 
subfield of AC, but the anterior, suprarhinal and dorsal posterior auditory fields were also 
covered (Extended Data Fig. 3a & 4e). Moreover, with recording depth reaching up to 600 
µm, we sampled neurons from layers 1 to 5 with an emphasis on layers 2 and 3 (Extended 
Data Fig. 4f). Therefore, with the exception of layer 6 and of the small ventro-posterior 
subfield, the whole of primary and secondary AC was extensively covered. Inputs from TH 
were sampled with 39.191 putative TH axonal boutons spread across AC (75% of ROIs in A1) 
(Extended Data Fig. 3b) and validated post-hoc with the thalamic marker VGLUt2 (Extended 
Data Fig. 4g,h)75. In addition, we recorded 15.132 ROIs in the dorsal IC down to 250µm depth 
(Extended Data Fig. 3d).  
 
Since calcium imaging and deconvolution has not been verified for TH axons, we performed 
electrophysiological recording in primary and secondary auditory TH (498 single units, 
Extended Data Fig. 3c). Electrophysiology was also used to cover the central inferior 
colliculus (563 single units), the main primary subregion of this structure (Extended Data Fig. 
3e). Electrode locations were identified with post-hoc histology and short-latency responses 
(Extended Data Fig. 3c,e). Finally, we used a detailed biophysical model of the cochlea 
calibrated against auditory nerve recordings 73 (AN), to provide insight into the information 
entering the auditory system (Extended Data Fig. 3f, 4i,j).  
 
Calcium signals were temporally deconvolved using a linear algorithm to retrieve estimates of 
neuronal firing rate variations that are robust to parametrization errors 76. This allowed us to 
reach a ~150 ms temporal precision as estimated from responses to amplitude modulated 
sounds (Extended Data Fig. 3a,b,d). The temporal modulations of our sounds were chosen to 
evolve at timescales compatible with this resolution of calcium imaging. This was confirmed 
by our decomposition of neural population activity into specific timescales using Fourier 
analysis (Extended Data Fig. 5e). This revealed that even with electrophysiology, in which 
activity contained information at fast timescales up to 30Hz, information nonetheless saturated 
at around 3Hz. Therefore all information needed to discriminate our sounds is available below 
3Hz, which matches calcium imaging resolution, with information at faster timescales being 
redundant.
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Extended Data Figures and Tables  

Extended Data Fig. 1. Details of behavioural learning in optogenetic cortical stimulation 
protocol. a. Population average intrinsic imaging map of tonotopic areas in AC showing the 
localization of all spots used for optogenetic stimulation (n=7 mice). b. Intrinsic maps and spots 
used for stimulation with learning curves from two example mice in both tasks. c-d. Control 
experiment showing that response to optogenetic stimulation is specific to cortical activation : 
mice ceased responding to light stimulation when the cranial was blocked by a small cache that 
left all other light cues intact. Note also that the lick probability for temporal and rate patterns 
is identical during this initial phase. (paired Wilcoxon test, p = 0.0156, signed rank value = 28, 
n=7) e. Accuracy over the last 300 trials for all mice. (paired Wilcoxon test, p = 0.015, signed 
rank value = 28, n=7). 
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Extended Data Fig. 2. Synaptic integration converts temporal information into firing 
rates at short time scales. Neurons integrate synaptic inputs over the timescale of their 
membrane time constant. Hence the number of output spikes depends not only on the number 
and size of synaptic inputs but also on their relative timing. This property is reinforced by 
synaptic connectivity such that simple circuits can detect time shifts between incoming inputs 
and thereby transform temporal information into firing rate information. a.b To illustrate this 
point and evaluate in which conditions temporal information injected in the AC may give rise 
to salient firing rate representations, we simulated the activity of an integrate-and-fire neuron 
E connected to a neuron I by an inhibitory synapse. The inputs received by E and I are trains 
of 5 current pulses at 20Hz (pulse duration 25ms, total duration 225ms) simulating Chr2 
activations by light as in Fig. 1. Input onsets to neurons E and I are shifted by a time ∆t to 
generate temporal information. Exemple simulations indicate that when the time shift is small 
and the inputs to E and I overlap in time (middle panels), neuron E emits fewer action potentials 
than when the inputs are well separated in time (right panels). c. Quantification of the effect 
exemplified in panels a and b, showing the firing rate of neuron E for a range of time shifts ∆t. 
For |∆t| < 250ms, neuron E emits fewer action potentials than for |∆t| > 250ms and the number 
of action potentials depends on ∆t. Hence, temporal information is converted partially to rate 
information for |∆t| < 250ms but not for |∆t| > 250ms. The boundary value for |∆t| (here 
~250ms) depends on the membrane time constant of the neurons (here set to 10ms, similar to 
values reported in vivo 38). In general, this simulation indicates that in order to avoid the 
conversion of temporal information into rate information, the temporal sequences injected in 
cortex must avoid temporal contiguities over the time scale of the membrane time constant. 
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Moreover, the use of time-reversed sequences tends to ensure smaller firing rate differences 
across sequences, compared to time sequences that are not symmetric of each other.  d. Mean 
firing rate during the optogenetic stimulation and sound stimulus that evoked the highest firing 
rate in each neuron (n=321 units). e.  Accuracy of neural decoder trained to discriminate the 
patterns used in the task with all spatial and temporal information available in the population 
vectors. (n=321 units, bootstrap over units, p-value of accuracy vs chance level of 0.5: 0.01, 
0.01)  
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Extended Data Fig. 3. Extensive neural recordings throughout the auditory system. a. (i) 
Schematic of imaging strategy, (ii) sample field of view, and (iii) raw (black) or deconvolved 
(blue) calcium traces (grey bar: sound presentation) for a sample neuron in AC. (iv) Location 
of all recorded neurons, colour-coded according to their preferred frequency at 60dB, overlayed 
with the tonotopic gradients obtained from intrinsic imaging. (v) Response of 3 neurons to 3Hz 
amplitude modulated white noise. b. Same as in a for thalamic axon imaging. c. (i) Schematic 
of recording strategy, (ii) sample histology with di-I strained electrode track, (iii) average 
waveforms and auto-correlograms of three single units, (iv) response latencies of all single 
units, (v) raster plot of 5 trials from 3 sample units in response to 3Hz modulated white noise. 
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d. Same as a for dorsal IC except for (iv): view of the cranial window and intrinsic imaging 
response to white noise. Inset histogram shows distribution recording depths. e. Same as c for 
central IC, except for (iv): reconstructed of IC tonotopy from single units. Ff (i) Schematic of 
the cochlea and (ii) of the biophysical model taking a sound as input and providing the 
responses of auditory nerve fibres. (iii) Response to 3Hz amplitude-modulated white noise. A1 
: primary auditory cortex, DP: dorsal posterior field, AAF: anterior auditory field, VPAF : 
ventral posterior auditory field, SRAF : suprarhinal auditory field. 
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Extended Data Fig. 4. Details of auditory system sampling. a. Mean intrinsic imaging 
responses (n=32 mice) for 4, 16 and 32 kHz sounds (black) and the subtraction of 32kHz and 
4kHz maps (colour). This extended data set allowed us to construct a consensus map to align 
mice included in the study. b. Illustration of method used to identify AC subregions based on 
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the tonotopic gradients established in 74. c. Localization of all recorded ROIs on the consensus 
tonotopic map with AC subregions. d. Localization of responsive neurons to increasing 
frequency and intensity. Note the larger recruitment with stronger intensity and the spatial shift 
with frequency. e. Proportion of units per subarea. f. Depth distribution of units per subarea. g. 
Example thalamocortical axon expressing GCaMP6s merged with Vglut2. Thalamic axonal 
boutons expressing Vglut2 appear yellow as shown in the magnified region (right). h. Density 
of labelled boutons (Vglut2+;GCaMP6s-expressing in yellow; GCaMP6s alone in green) in 
layer 1 of the AC (12 sample regions; 4 regions per confocal image; means and STD: 
0.0122±0.0052, 0.0005±0.0008, density of co-labelled and green only boutons, respectively). 
i. Peristimulus time histogram of an auditory nerve fibre (ANF) with a characteristic frequency 
equal to that of the presented 12-kHz tone burst (10-ms rise/fall, 500-ms duration) with 
increasing level from 60, 70 and 80 dB SPL. Note the rapid adaptation of the firing. j. Basilar 
membrane velocity and sound-activated auditory nerve fibres per inner hair cell (IHC) along 
the tonotopic axis. Note the reduced frequency selectivity with the increasing intensity. Gray 
dashed line shows the mouse synaptic cochleogram. The criterion for sound-activated auditory 
nerve fibres was 10 spikes/s above the spontaneous rate. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2023. ; https://doi.org/10.1101/2022.12.14.520391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520391
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

 

Extended Data Fig. 5. Robustness of accuracy and similarity measures. a. Decoding 
accuracy for spatio-temporal and spatial codes in each area with varying numbers of sub-
selected neurons. b. Reproducibility of single neuron (left) or population (right) responses 
measured as the mean inter-trial correlation between responses across sounds (left : n=number 
of neurons per area, right : n=140 sounds, error bars are quantiles). c. Measured correlation of 
simulated data with low to high response reproducibility before (orange) or after (blue) noise-
correction. d. Noise-corrected correlation for spatio-temporal and spatial code in each area with 
varying numbers of sub-selected neurons. e. Sketch illustrating the decomposition of 
population responses by timescale and mean decoding accuracy based on successive Fourier 
coefficients of neural responses. 0 Hz = spatial code. As expected, 2-photon data only contained 
information up to  whereas electrophysiology data was informative even up to 30 Hz. f-g. 
Noise-corrected sparseness measured using kurtosis. n = 140 sounds for population kurtosis (f) 
and n = ’all neurons’ for lifetime kurtosis (g).  
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Extended Data Fig. 6: Time-independent rate representations of time-symmetric sounds 
decorrelate in AC. a. Noise-corrected RSA matrices for all sound pairs for temporal (left) or 
rate (right) codes. b. Illustration of method to calculate population tuning curves shown in B 
from RSA matrix. c. Mean noise-corrected correlation between pure tones as a function of their 
frequency separation. d–g. Mean noise-corrected correlation between sound pairs differing by 
only one acoustic property. d. Pure tones at the same frequency differing by intensity, e. 
amplitude ramps at same frequency differing by direction. f. frequency sweeps with identical 
frequency content and duration at 60dB vs 80dB, g. frequency sweeps with identical frequency 
content of different duration, For sounds without temporal structure, correlation of 
representations are similar in AC and IC, whereas for time-symmetric sounds, all brain areas 
show larger rate correlations than in the cortex, except for TH2P in e likely due to the high 
variability of thalamic responses. p-value for 100 bootstraps comparing rate correlation of each 
region to AC, error bars are S.D. Statistical test details are given in the Extended Data Table 
3.  
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Extended Data Fig. 7. Single cell tuning to diverse acoustic features from cochlea to 
auditory cortex. a-e. Right: For each tuning property we show the responses of example 
neurons from the IC, TH and AC to sounds that differ according to that property and provide 
the tuning strength (TS) and best frequency (BF) for that neuron. Asterisks indicate significant 
tuning of the neuron to a specific value, for example the leftmost neuron in a is an IC neuron 
that is significantly tuned to frequency modulation speed with a maximum response for 
decreasing frequency at 3oct/s. (left) Boxplot giving the distribution of tuning strengths across 
the whole population and pie charts showing the proportion of neurons maximally tuned to 
each parameter value for significantly tuned neurons. 

 

 
Extended Data Fig. 8. Extended range of CNN networks and details of performance. a. 
Category by category performance of CNNs trained without shrinking of the temporal 
dimension (left) or with (right) (n=8, error bars are sem). b. Mean response correlations from 
RSA matrices from untrained networks with the same architecture as those trained on the multi-
category task (n=8, error bars are sem). c. Mean decoding accuracy based on successive Fourier 
coefficients of CNN responses. 0Hz = spatial code (n=8, shaded areas are sem). d. Mean 
correlations from the network trained on natural sounds from Kell et al 55 for musical snippets 
(left) or words (centre). e. Mean correlations from CNNs trained to identify all 2169 sounds 
individually (left, n=8)  and accuracy for each sound (right). f. Example sounds provided as 
input to the autoencoder and their reconstructions at the output. g. Representation Similarity 
Analysis matrix of original sounds and reconstructed sounds showing that the autoencoder fully 
preserved the relations between all the sounds.  
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Extended Data Table 1. Details of dataset 

Brain 
region 

Recording method Units 
recorded 

Responsive 
units 

Animal 
number 

Session 
number 

Units per 
animal (min, 
mean, max) 

Units per 
session (min, 
mean, max) 

Auditory 
cortex 

Cell body 2 photon 
calcium imaging 

60822 19414 (32%) 7 60 2164 / 8688 / 
20631 

57 / 1013 / 
1782 

Auditory 
thalamus 

Axonal bouton 2 
photon calcium 
imaging 

39191 3969 (12%) 4 24 1280 / 9287 / 
19870 

477 / 1632 / 
3120 

Single unit 
electrophysiology 

498 484 (97%) 10 33 4 / 49 / 113 2 / 15 / 32 

Inferior 
colliculus 

Cell body 2 photon 
calcium imaging 

15312 5936 (39%) 30 101 25 / 510 / 
2975 

25 / 151 / 495 

Single unit 
electrophysiology 

563 442 (78%) 11 30 10 / 56 / 119 4 / 18 / 54 
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Extended Data Table 2. Sound parameters 

   Start freq. 
(kHz) 

Stop freq. 
(kHz) 

Start int. 
(dB) 

Stop int. 
(dB) 

Dur. 
(ms) 

1  blank NaN NaN NaN NaN 500 
2 

Pure 
tones 

tono60dB_4kHz 4 4 60 60 500 

3 tono60dB_5kHz 5 5 60 60 500 

4 tono60dB_6kHz 6 6 60 60 500 

5 tono60dB_7kHz 7 7 60 60 500 

6 tono60dB_9kHz 9 9 60 60 500 

7 tono60dB_12kHz 12 12 60 60 500 

8 tono60dB_15kHz 15 15 60 60 500 

9 tono60dB_19kHz 19 19 60 60 500 

10 tono60dB_24kHz 24 24 60 60 500 

11 tono60dB_29kHz 29 29 60 60 500 

12 tono60dB_37kHz 37 37 60 60 500 

13 tono70dB_4kHz 4 4 70 70 500 

14 tono70dB_5kHz 5 5 70 70 500 

15 tono70dB_6kHz 6 6 70 70 500 

16 tono70dB_7kHz 7 7 70 70 500 

17 tono70dB_9kHz 9 9 70 70 500 

18 tono70dB_12kHz 12 12 70 70 500 

19 tono70dB_15kHz 15 15 70 70 500 

20 tono70dB_19kHz 19 19 70 70 500 

21 tono70dB_24kHz 24 24 70 70 500 

22 tono70dB_29kHz 29 29 70 70 500 

23 tono70dB_37kHz 37 37 70 70 500 

24 tono80dB_4kHz 4 4 80 80 500 

25 tono80dB_5kHz 5 5 80 80 500 

26 tono80dB_6kHz 6 6 80 80 500 

27 tono80dB_7kHz 7 7 80 80 500 

28 tono80dB_9kHz 9 9 80 80 500 

29 tono80dB_12kHz 12 12 80 80 500 
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30 tono80dB_15kHz 15 15 80 80 500 

31 tono80dB_19kHz 19 19 80 80 500 

32 tono80dB_24kHz 24 24 80 80 500 

33 tono80dB_29kHz 29 29 80 80 500 

34 tono80dB_37kHz 37 37 80 80 500 

35 

Pure up 
ramps 

Up4kHz 4 4 60 80 500 

36 Up6kHz 6 6 60 80 500 

37 Up9kHz 9 9 60 80 500 

38 Up15kHz 15 15 60 80 500 

39 Up24kHz 24 24 60 80 500 

40 

Chord 
up 

ramps 

Up4+6kHz 4, 6 4, 6 60 80 500 

41 Up4+9kHz 4, 9 4, 9 60 80 500 

42 Up4+15kHz 4, 15 4, 15 60 80 500 

43 Up4+24kHz 4, 24 4, 24 60 80 500 

44 Up6+9kHz 6, 9 6, 9 60 80 500 

45 Up6+15kHz 6, 15 6, 15 60 80 500 

46 Up6+24kHz 6, 24 6, 24 60 80 500 

47 Up9+15kHz 9, 15 9, 15 60 80 500 

48 Up9+24kHz 9, 24 9, 24 60 80 500 

49 Up15+24kHz 15, 24 15, 24 60 80 500 

50 Up4+6+9+15kHz 4, 6, 9, 15 4, 6, 9, 15 60 80 500 

51 Up4+6+9+24kHz 4, 6, 9, 15, 
24 

4, 6, 9, 15, 
24 60 80 500 

52 Up4+6+15+24kHz 4, 6, 15, 24 4, 6, 15, 24 60 80 500 

53 Up4+9+15+24kHz 4, 9, 15, 24 4, 9, 15, 24 60 80 500 

54 Up6+9+15+24kHz 6, 9, 15, 24 6, 9, 15, 24 60 80 500 

55 UpmultiHz 4, 6, 9, 15, 
24 

4, 6, 9, 15, 
24 60 80 500 

56 

Pure 
down 
ramps 

Down4kHz 4 4 80 60 500 

57 Down6kHz 6 6 80 60 500 

58 Down9kHz 9 9 80 60 500 

59 Down15kHz 15 15 80 60 500 

60 Down24kHz 24 24 80 60 500 
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61 

Chord 
down 
ramps 

Down4+6kHz 4, 6 4, 6 80 60 500 

62 Down4+9kHz 4, 9 4, 9 80 60 500 

63 Down4+15kHz 4, 15 4, 15 80 60 500 

64 Down4+24kHz 4, 24 4, 24 80 60 500 

65 Down6+9kHz 6, 9 6, 9 80 60 500 

66 Down6+15kHz 6, 15 6, 15 80 60 500 

67 Down6+24kHz 6, 24 6, 24 80 60 500 

68 Down9+15kHz 9, 15 9, 15 80 60 500 

69 Down9+24kHz 9, 24 9, 24 80 60 500 

70 Down15+24kHz 15, 24 15, 24 80 60 500 

71 Down4+6+9+15kHz 4, 6, 9, 15 4, 6, 9, 15 80 60 500 

72 Down4+6+9+24kHz 4, 6, 9, 15, 
24 

4, 6, 9, 15, 
24 80 60 500 

73 Down4+6+15+24kHz 4, 6, 15, 24 4, 6, 15, 24 80 60 500 

74 Down4+9+15+24kHz 4, 9, 15, 24 4, 9, 15, 24 80 60 500 

75 Down6+9+15+24kHz 6, 9, 15, 24 6, 9, 15, 24 80 60 500 

76 DownmultiHz 4, 6, 9, 15, 
24 

4, 6, 9, 15, 
24 80 60 500 

77 

Sinusoi
d AM 

modulat
ion 

Sin1Hz9kHz 9 9 60 - 80 60 - 80 500 

78 Sin3Hz9kHz 9 9 60 - 80 60 - 80 500 

79 Sin7Hz9kHz 9 9 60 - 80 60 - 80 500 

80 Sin20Hz9kHz 9 9 60 - 80 60 - 80 500 

81 Sin1Hz24kHz 24 24 60 - 80 60 - 80 500 

82 Sin3Hz24kHz 24 24 60 - 80 60 - 80 500 

83 Sin7Hz24kHz 24 24 60 - 80 60 - 80 500 

84 Sin20Hz24kHz 24 24 60 - 80 60 - 80 500 

85 Sin1HzWhitenoise WN WN 60 - 80 60 - 80 500 

86 Sin3HzWhitenoise WN WN 60 - 80 60 - 80 500 

87 Sin7HzWhitenoise WN WN 60 - 80 60 - 80 500 

88 Sin20HzWhitenoise WN WN 60 - 80 60 - 80 500 

89 Up 
chirp 

varying 
speed 

ChirpUp4kHz60dB100ms 4 9 60 60 100 

90 ChirpUp4kHz60dB250ms 4 9 60 60 250 

91 ChirpUp4kHz60dB500ms 4 9 60 60 500 
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92 ChirpUp24kHz60dB100ms 9 24 60 60 100 

93 ChirpUp24kHz60dB250ms 9 24 60 60 250 

94 ChirpUp24kHz60dB500ms 9 24 60 60 500 

95 

Down 
chirp 

varying 
speed 

ChirpDown4kHz60dB100ms 9 4 60 60 100 

96 ChirpDown4kHz60dB250ms 9 4 60 60 250 

97 ChirpDown4kHz60dB500ms 9 4 60 60 500 

98 ChirpDown24kHz60dB100ms 24 9 60 60 100 

99 ChirpDown24kHz60dB250ms 24 9 60 60 250 

100 ChirpDown24kHz60dB500ms 24 9 60 60 500 

101 

Up 
chirp - 
60 dB 

ChirpUpclose4kHz60dB 4 6 60 60 500 

102 ChirpUpclose4to9kHz60dB 4 9 60 60 500 

103 ChirpUpclose4to15kHz60dB 4 15 60 60 500 

104 ChirpUpclose4to24kHz60dB 4 24 60 60 500 

105 ChirpUpclose6kHz60dB 6 9 60 60 500 

106 ChirpUpclose6to15kHz60dB 6 15 60 60 500 

107 ChirpUpclose6to24kHz60dB 6 24 60 60 500 

108 ChirpUpclose9kHz60dB 9 15 60 60 500 

109 ChirpUpclose9to24kHz60dB 9 24 60 60 500 

110 ChirpUpclose15kHz60dB 15 24 60 60 500 

111 

Down 
chirp - 
60 dB 

ChirpDownclose6kHz60dB 6 4 60 60 500 

112 ChirpDownclose9to4kHz60dB 9 4 60 60 500 

113 ChirpDownclose15to4kHz60dB 15 4 60 60 500 

114 ChirpDownclose24to4kHz60dB 24 4 60 60 500 

115 ChirpDownclose9kHz60dB 9 6 60 60 500 

116 ChirpDownclose15to6kHz60dB 15 6 60 60 500 

117 ChirpDownclose24to6kHz60dB 24 6 60 60 500 

118 ChirpDownclose15kHz60dB 15 9 60 60 500 

119 ChirpDownclose24to9kHz60dB 24 9 60 60 500 

120 ChirpDownclose24kHz60dB 24 15 60 60 500 

121 
Up 

chirp - 
80 dB 

ChirpUpclose4kHz80dB 4 6 80 80 500 

122 ChirpUpclose4to9kHz80dB 4 9 80 80 500 

123 ChirpUpclose4to15kHz80dB 4 15 80 80 500 
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124 ChirpUpclose4to24kHz80dB 4 24 80 80 500 

125 ChirpUpclose6kHz80dB 6 9 80 80 500 

126 ChirpUpclose6to15kHz80dB 6 15 80 80 500 

127 ChirpUpclose6to24kHz80dB 6 24 80 80 500 

128 ChirpUpclose9kHz80dB 9 15 80 80 500 

129 ChirpUpclose9to24kHz80dB 9 24 80 80 500 

130 ChirpUpclose15kHz80dB 15 24 80 80 500 

131 

Down 
chirp - 
80 dB 

ChirpDownclose6kHz80dB 6 4 80 80 500 

132 ChirpDownclose9to4kHz80dB 9 4 80 80 500 

133 ChirpDownclose15to4kHz80dB 15 4 80 80 500 

134 ChirpDownclose24to4kHz80dB 24 4 80 80 500 

135 ChirpDownclose9kHz80dB 9 6 80 80 500 

136 ChirpDownclose15to6kHz80dB 15 6 80 80 500 

137 ChirpDownclose24to6kHz80dB 24 6 80 80 500 

138 ChirpDownclose15kHz80dB 15 9 80 80 500 

139 ChirpDownclose24to9kHz80dB 24 9 80 80 500 

140 ChirpDownclose24kHz80dB 24 15 80 80 500 
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Extended Data Table 3. Detail of statistical comparisons 

Fig. 2f. Bootstrap comparison of difference between temporal and rate accuracy in structure X vs in AC 

 AN ICE IC THE TH  

(Temp-Rate) 
norm 

<0.01 <0.01 0.01 0.04 0.15  

 

 

Fig. 2h,i. Bootstrap comparison of temporal and rate mean correlations in structure X vs in AC 

 AN ICE IC THE TH  

Temporal <0.01 0.43 0.12 0.01 <0.01  

Rate <0.01 <0.01 <0.01 <0.01 <0.01  

(Temp-Rate) 
norm 

<0.01 <0.01 0.032 0.01 0.086  

       

Fig. 2j. Bootstrap comparison of RSA matrix similarity in structure X vs in AC 

 AN ICE IC THE TH  

Temp vs Rate <0.01 <0.01 0.01 <0.01 0.01  

       

Fig. 3. Bootstrap comparison of rate mean correlations in structure X vs in AC 

 AN ICE IC THE TH  

3e - freq <0.01 0.25 0.61 <0.01 0.27  

3f - FM 
direction 

 <0.01 
 

<0.01 <0.01 <0.01 0.04  

       

Fig. 3. Bootstrap comparison of learning rates with TH vs AC representations 

3e - freq 0.31      

3f - FM 
direction 

<0.01      

       

Extended Data Fig. 6 d-g Bootstrap comparison of rate correlations in structure X vs AC 

ED6d-int PT <0.01 0.27 0.71 0.03 0.52  

ED6e-AM 
direction 

 <0.01 
 

<0.01 <0.01 <0.01 0.1  

ED6f-int FM <0.01 <0.01 <0.01 <0.01 <0.01  

ED6g-FM 
speed 

<0.01 0.04 <0.01 0.12 0.22  
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