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Abstract

The use of dispersion surfaces to describe the wave propagation characteristics of a structure is motivated
using experimental data. A review of the different approaches allowing for a high-resolution estimation of
the wave parameters from a full-field measurement is given. The sensitivity of each method with regard to
measurement noise and model bias is compared throughout numerical examples.

1 Introduction

The development of dynamical full-field measurement techniques [1] opens the door for the formulation of
original structural identification procedures using the rich data available [2]. More precisely, these new wide-
band methods aim to bridge the gap between modal analysis [3] and ultrasound techniques [4], respectively
confined to the low and high ends of the frequency spectrum. In addition, a particular effort is dedicated to
inverse methods with formulations that are insensitive to boundary conditions and applied loads in order to
open the door to in-situ implementations. Indeed, such methods focus on the characterization of the transfer
mechanisms in the structure of interest, represented by its governing equations of motion, or, equivalently,
its wave propagation characteristics.

The linear equations of free harmonic motion of any macroscopically invariant structure can be expressed
in the form of a differential system of homogeneous equations .Z’ (g, {pz}) = 0, where u(z) is a kinematic
field (e.g generalized displacement or velocity), x the spatial coordinate and {p; } is a set of coefficients sam-
pling the structural viscoelastic behavior. The robust estimation {p;} from a partial and noisy measurement
u remains an active field of research in different communities ranging from (multidimensionnal) system
identification to (architectured) material characterization.

Two main approaches may be identified in the litterature: (i) direct minimization of the residual .¥ (@ , {ﬁi}),
using either finite difference schemes (e.g Force Analysis Technique [5, 6, 7]) or a weak formulation (e.g
Virtual Fields Method [8, 9]); (ii) decomposition of the measured field w on a set of elementary solutions
u,(x) of the operator .Z, using for example Green functions [10, 11] or plane waves [12, 13, 14, 15, 16, 17,
18].

The first approach provides a direct relation between the measured data and the parameters to be identified
and can be generally applied to a wide range of operators. However, the full kinematics of the structure
have to be measured, thus reducing the application to simple models (e.g thin plates or beams). In addition,
high-order derivatives have to be estimated (e.g fourth-order for the bending motion), leading to a relative
sensitivity of the identified parameters to measurement noise.

By contrast, the second approach using elementary solutions of the operator overcome the observability lim-
itation, as only the projection of these solutions on a partially observed kinematic field is needed. However,
the dependence of these solutions as a function of the parameters p is not direct, especially in the case of
Green functions that are known analytically in very few situations (e.g elliptical orthotropy for thin plates).
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Figure 1: Typical waveguides

Similarly, using plane waves u, = aexp(—tk - x) as the field approximation basis, the parameters p are
related to the wavevectors k via the dispersion relations associated to ., which analytical expressions are
only available for a very limited range of structures.

However, the approximation of a measured field with plane waves does not require a priori knowledge of the
underlying operator, thus providing a very general framework for the identification of the system dispersion
characteristics. This is of particular interest when the behavior of the structure of interest is not known, and
may be viewed as an intermediate step in the identification process.

2 Dispersion surfaces

Plane wave propagation is associated to the formalism of wave guides, that are characterized by a character-
istic microstructure ), that is tiled over a macroscopic domain €2, such that the full structural domain can
be expressed as {2 = 2, ® () (see the figure 1):

* Homogeneous waveguides with a charateristic section {1,

* Periodic waveguides with a unit cell €, tiled with periodicity vectors {v;} such that  and z denote
the separation of scales (resp. macroscopic and microscopic)

From the theoretical point of view, plane waves are generally expressed as:
u (z,2) = B(z) e “EE €]

where k is the so-called wavevector and ®(z) the corresponding wave mode. Injecting the equation (1) in
the differential operator . leads to a general expression of the dispersion equations:

D(k,w)®(z) = 0 2)
where the dependence on the frequency w have been explicitly written in order to show that the solutions
of the equation (2) form a discrete set of hypersurfaces in the (k,w) Fourier space: the so-called dispersion
surfaces.

Experimentally, the dispersion surfaces can be obtained by computing the frequency-wavevector spectrum
as the multidimensional Discrete Fourier Transform (DFT) of the structure response measured over spatio-
temporal grid of (N1, ..., Ng, N;) points with uniform spacings (Az1,...,Axy, At), so that L; = N; Ax;
and T = N; At.

In the figure 2, the experimental dispersion surfaces of a Sandwich plate made of an isotropic foam core
between two Carbon Fiber Reinforced Polymer (CFRP) skins are displayed. The theoretical dispersion sur-
faces, computed with the Spectral Finite Element Method [19], are superimposed. The different propagating
wave modes are well separated: out-of-plane bending, in-plane shear and traction. Surprisingly, the signature



traction

30 kHz

20 kHz

10 kHz

Figure 2: Dispersion surfaces associated to a sandwich CFRP plate.

of the fluid-structure interaction with the surrounding air also appears as an additional dispersion surface (see
[17] for more details).

In the figure 3, the experimental spatio-temporal response of a PVC beam (L x S = 1m x 152mm?,

E = 5GPa, G = 2GPa, p = 1380kg/m?) is displayed with its corresponding frequency-wavenumber
spectrum. For vizualization purposes, the bending and torsion have been separated by measuring the structure
response on several points over the beams width. The dispersion curves corresponding to the two motion
mechanisms are well captured on the frequency-wavenumber spectrum (as hypersurfaces in a 2D domain)
and show an excellent agreement with theoretical predictions (see [16] for more details).

Hence, dispersion surfaces appear as an excellent candidate for the characterization of the dynamical behav-
ior of structures: (i) they can easily be obtained as the Fourier transform of a full-field measurement of the
structure kinematics; (ii) few assumptions are involved (only the system linearity), making the approach rel-
atively general; (iii) they can be compared to theoretical predictions of the wave dispersion (Eq. (2)) without
taking into account boundary conditions or applied loads, thus providing a framework for in-situ identifica-
tion procedures. However, the use of the Fourier transform to obtain the frequency-wavenumber spectrum is
submitted to the uncertainty principle:

which applies also to the couple (w,t) and gives the maximum wavenumer k;"** = 27/Ax; and the
wavenumber resolution Ak; = 27/L;. While k"** can be increased by a refinement of the measurement
mesh, the wavenumber resolution Ak; is bounded by the size of the structure of interest. This strong con-
straint thus motivates the development of dispersion surface extraction methods that overcome the resolution
limitation.

3 Extraction methods

The development of alternatives to the Fourier transform for the extraction of dispersion surfaces is motivated
by two needs: (i) overcoming the wavenumber resolution limit; (ii) allowing the extraction of the imaginary
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Figure 3: Dispersion of torsion and bending waves in an homogeneous PVC beam

part of the wavenumber that describes the attenuation of waves thus samples the viscous part of the structure
behavior.

For the sake of readability, the following developments are given for the elementary case of a scalar field
u(z) € C measured along a unidimensional grid {z,, = v + nAz,n =0... N — 1} and corresponding to
the harmonic response of a structure, such that the frequency w is fixed and the waves are parameterized by a
scalar wavenumber k € C. The generalization of the reported methods to multidimensional waves and grids
is, in most of the case, relatively straightforward and is not developed here (the reader is thus referred to the
given references for implementation details).

Most method formulations start with a combination of plane waves s as signal model:

R
s({ar}, {kr},x) = Zarexp(’i k,x) )

where the signal order R and the sets of wave amplitudes {a,} € C® and wavenumbers {k,} € CF have
either to be estimated or assumed.

In the following, the review of available methods is separated into three approaches: (1) non-linear mini-
mization, (2) low-rank approximation and (3) kernel identification procedures.

3.1 Non-linear regression

Given a signal order R, the set of wavenumbers {k,} can be estimated from the measured field using the
following double minimization problem:

{%fr} = argmax {{a?}lie%R Z (3({%} Akr},xn) — qj(xn))2} (5)

{k,}eCE



which is solved as a two-step procedure: (i) for a given set of wavenumbers, determine {a,} using linear
least-squares; (ii) find the set {k, } that minimizes the error residual.

In order to reduce the complexity of this non-linear search, one can assume: (i) a unitary signal order (R =
1), as in the IWC [13, 14] (Inhomogeneous Wave Correlation) and the SLaTCoW [15] (Spatial LAplace
Transform for COmplex Wavenumber) methods; (ii) a relation between the wavenumbers, as in the McDaniel
method [20] where the four bending wavenumbers are searched simultaneously as {k, ¢ k, —k, — ¢ k}. While
the latter strategy is limited to simple structures where the wavewnumber relation is known a priori, it is
associated to an exact signal model thus is very robust to noise and overcome the wavenumber resolution
(see [16]). This is not the case of both IWC and SLaTCoW methods, that can be regarded as the maximization
of a normalized Laplace Transform and inherit its resolution limitations. Despite their respective limitations,
these approaches are relatively simple to implement and thus are a good candidate for a first extraction
of wave characteristics from a measured structure response before the application of more sophisticated
methods.

3.2 Low-rank approximation

The purpose of the following family of methods is to provide: (1) a criterion to estimate the signal order R;
(2) a direct (optimization-free) identification of the wavenumbers {k, }.

The vector s = T[s(xo) ... s(xn_1)] € CN representing the pure signal model (4) sampled along a uniform
grid of points can be rewritten as follows:
s=V-.a (6)

where V € CV*® is the so-called Vandermonde matrix with components Vo =exp(ik,xy,) and a € CR
contains the wave amplitudes {a, }.

The Vandermonde matrix exhibits a so-called rotational or shift invariance between two lines -or sampling
locations- such that V;, 11, =V}, rexp(¢ k, Az), or in matrix notation:

V=V, Z 7

where V4 and V| respectively contain the N — 1 last and first rows of V and Z = diag ({exp(i k, Ax)}) €
CEXR ig the pole matrix. Hence the wavenumbers k, = —tlog(Z,,) /Ax can be estimated once the
Vandermonde matrix is known; which is in practice impossible.

Assuming a low signal order such that R < N, the signal s is of low rank; in particular, one can define
a Hankel matrix H € CM*®? with components H,, ¢ = Sm4q that is rank-defficient so that the following
subspace decomposition applies:

C.o = "H-H=HW .diag(\)- W + "W -diag(A,) - W (8)

where W € C@* % is the signal subspace associated to non-zero eigenvalues A € C and W | € C¥¢* (Q-R)
is an arbitrary orthogonal associated to vanishing eigenvalues A | € C(@—%)_ While the signal order R can
be estimated by observing the number of non-zero eigenvalues, it can also be shown that W spans the same
subspace as the Vandermonde matrix so that W = V - T with T € C?®*¥ a transfer matrix. Thus the pole
matrix Z can be directly estimated from the signal subspace as the eigenvalues of the spectral matrix F':

F=W;/. W =17"1.2Z.T 9)

where W4 and W | also represent shifted versions of the signal subspace and of is the pseudo-inverse. An
important property of the signal subspace is that it is left unchanged by an additional white gaussian noise
applied to the signal. This gives the preceding approach a relative robustness with regard to experimental
noise and modeling error.

While the subspace decomposition was first used in the MUSIC algorithm (MUItiple SIgnal Classification)
[21] and the use of the shift invariance of the Vandermonde matrix proposed in the Matrix Pencil method
[22], the ESPRIT algorithm (Estimation of Signal Parameters via Rotationnal Invariance Techniques) [23]



was the first to make use of both techniques via the equation (9). It thus represents an excellent candidate
method for the direct estimation of a set of wavenumbers from a noisy measurement.

However, the ESPRIT algorithm, when applied to full-field measurement performed on a structure, suffers
from the limitations associated to the signal model (4): (i) if the rank R of the signal is high; (ii) if the signal-
to-noise is low; (iii) if the wavefront is not plane, for example in the case of a thin isotropic plate excited
by a point source. In these situations, the signal order R might be difficult to estimate even with the variety
of signal order estimation criteria that have been proposed in the literature: MDL (Minimum Description
Length) [24], ESTER (ESTimation of ERror) [25], SAMOS (Subspace-based Automatic Model Order Se-
lection) [26], among others. In addition, the non-plane wavefront geometry is associated to systematic errors
on the wavenumber estimation, that is mainly concentrated on the imaginary part of k, corresponding to the
wave decay. As a consequence, in practice the precise identification of wave characteristics with ESPRIT is
possible in situations where a signal model (4) with a low signal order R is a good approximation of the mea-
sured signal: (i) for structures with 1D propagation space -the macroscopic coordinate z- the signal model
is exact; (ii) when their is a few number of components in a multidimensional signal (e.g if the reflections
at the boundaries select particular wave propagation directions); (iii) in the far-field of a source, when the
observed signal is close to a plane wave.

3.3 Spectrum relocalization

One strategy to overcome the high rank estimation problem is to artificially reduce the signal rank by filtering
techniques. More precisely, a collection of M narrow-band-pass filters { f (m)} can be applied to the signal
in order to obtain a collection of reduced-order signals {E (m)} that can be later processed by an ESPRIT
algorithm with low order [27].

The new problem that arises is then the choice of the filter parameters: central wavenumber k,,, order ). A
systematic choice can be to choose the filter weights £(") € C¥ as a windowed complex exponential:

fq(m) = wq exp(t kmq) (10)

with w € R? the window function and k,,, = 27m/M. Then it is easy to see that the £ (m) — £0m) & s are
the rows of the weighted column-wise DFT of the Hankel matrix H:

x = [€D . gD = F [H-diag (w) (11)

which drastically reduces the computational complexity of the filtering step. Finally, the ESPRIT method
can be applied to the individual rows of x.

The equation (11) also shows that this particular choice of filters and the application of ESPRIT corresponds
to the identification of the variation of the signal phase associated to each DFT bands as a function of the
coordinate shift. This concept is at the basis of spectrogram reallocation methods [28], where the phase
derivative is associated to a local frequency. Equivalently, fixing R = 1 when applying ESPRIT corre-
sponds to the estimation of the dominant wavenumber associated to each DFT band; a kind of spectrum
relocalization technique.

While the spectrum relocalization technique provide a systematic method to get around the signal order
estimation problem, the bias associated to the approximation of non-planar wavefront geometries with plane
waves is still present, preventing a precise determination of the wave attenuation characteristics. In addition,
the choice of the window, necessary to lower border effects, has an effect on the signal model which is no
longer exact.

3.4 Kernel-based

Taking a step back to the Prony family of methods that resulted from its pioneering works [29], it is well
known that the 1D signal model in equation (4), when measured along a regular grid, satisfies a recurrence re-



lation of the form s sk g = 0, where g € C'**1 is the signal kernel which coefficients define a characteristic

polynomial P:
R R
P(z) = Zgrzr =gRr H(z — 2r) (12)
r=0 r=1

where the {z, = exp(¢ k,Ax)} are, as in equation (7), the signal poles. The two expressions below show
that these signal poles are the roots of the z-transform of g, or equivalently that the wavenumbers {k, } are
the roots of the Laplace transform of g. The vanishing convolution between s and g can be expressed as a
system of homogeneous equations using, once again, an Hankel matrix H of size M x R:

H-g=0 (13)

and provides a way to estimate g from a measured signal either by (i) Ordinary Least-Squares (OLS) as-
suming that gy = 0 or (ii) Total Least-Squares (TLS) that identify g as the eigenvector w associated to the
smaller eigenvalue A\ | of the covariance matrix C, in equation (8).

This signal deconvolution technique has been widely studied in the system identification community [30],
where it is applied to time data. In this 1D case, the equivalence between the plane wave decomposition
(4) and zero-convolution kernel (13) is well established; moreover, the roots {z, } of the 1D kernel g can be
estimated directly using the companion matrix of P(z) (12) [31].

Recently, the INCOME algorithm (INverse COrrelation MEthod) [18] proposed to apply this method to
multidimensional measurements using a TLS identification. In this case, the plane wave - zero kernel equiv-
alence breaks: for example, a circular wave signal (e.g ponctual bending source in an isotropic thin plate)
could fullfill the equation (13) with a small-order kernel g, while needing an infinite number of plane wave
components to be approximated by (4). As a consequence, the kernel identification method is able to give
an unbiased estimate of the wave attenuation part, even for multidimensional signals. Moreover, the corre-
sponding multivariate polynomial P(z1, ..., zp) (with D the kernel dimension) is still an implicit definition
of the structure’s dispersion surfaces, that are the affine varieties of P (locations of its zeros) in CP. While
the kernel estimation procedure is very simple to implement, determining the dispersion surfaces from g is
in fact the hardest part, and involve some multidimensional complex root-finding schemes (or affine variety
determination). In addition, the determination of g as the first eigenvector of the orthogonal subspace W |
makes it highly sensitive to noise.

4 Numerical comparison

4.1 Noise Sensitivity

The noise sensitivity of each aforementioned wavenumber estimation methods is investigated here using
an elementary uni-dimensional signal model (4) with a single component (R = 1) and a reduced number
of samples N = 10. The variance of the wavenumber estimations is computed using 1000 Monte-Carlo
random sampling of an additive noise corresponding to a signal to noise ratio (SNR) of 103. In order to
make the results more general, the obtained variances are compared to the Cramer-Rao Bound (CRB) of this
particular signal model [32]. In particular, when the wavenumber is purely real (zero wave attenuation), the
CRB is equal to:
12

SNR x N3

Which shows that the wavenumber estimation should not be sensitive to its real part. This can be clearly
observed in the figure 4a, where the normalized variance var(k) /CRBy is shown, for reach method, as a
contour plot in the z = exp(% k) plane, and demonstrates that the results are invariant with Re{k} = arg(z).
The figure 4b thus focuses on the line Re{k} = 0 to show the effect of wave attenuation in the estimation
variance. It can be observed that both Non-Linear Fit and ESPRIT methods are optimal in the sense that they
provide estimates with variances on the lower Cramer-Rao Bound. By contrast, the Kernel-based estimation

CRBy = (14)
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Figure 4: Variance of the wavenumber estimation normalized by the zero-attenuation Cramer-Rao Bound
CRBy (14), for a model (4) with R =1 and N = 10.

is characterized by a high variance (with a factor close to 2); this is due to the sensitivity of the least-
significant eigenvectors of the signal covariance matrix with regard to noise. The least optimal method
seems to be, in this particular situation, the spectrum relocalization method (RELOC); this can be related to
the loss of signal model accuracy and data length associated to the pre-filtering technique.

4.2 Bias

The application of wavevector extraction methods on a multidimensional signal is submitted to systematic
error, as the approximation of the measured kinematic response by a sum of waves (with a multidimensional
version of the signal model (4)) is not exact, by contrast to the 1D case.

To demonstrate the consequence of such a biased approximation, this second numerical study considers the
case of a free harmonic response corresponding to an isotropic Helholtz operator:
Ju(z) Ou(x)
= +
8371 8952

Z(u) + Eu(z) =0 (15)
which, associated to a point source at &, generate a response u(x) o Jo(k || — x| ), where Jy is the Bessel
function of the first kind.

The result of the analysis is shown on the figure 5, where the relative errors associated to the real part x
and the decay factor ~ in the estimation of the wavenumber k = x(1 — iv) = %F(1 — 0.05%) are given
as a function of the distance d to the source x,. It can be observed that all methods based on a plane wave
approximation (4) (NLFIT, ESRRIT and RELOC) provide poor estimates of the spatial decay v (dashed
lines), that is highly influenced by the geometrical decay and the cylindrical wavefront geometry. As the
distance to the source increase, the far-field wavefront straightens thus the estimation error decreases. This
model bias has a smaller influence on the real part of the wavenumber x, which corresponding estimation
error quickly decreases with the distance to the source.

By contrast to plane-wave expansion methods, the KERNEL-based identification provides extremely good
estimations of both real and imaginary parts of the wavenumber (purple curves in the figure 5). Indeed,
no plane wave assumption is involved in this method; instead, the equation (13) is used to estimate the
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coefficients (a, b, c¢) of a symmetric kernel G € C3*3 with the following shape:

G = (16)

QS0
>R o
o S0

that corresponds to a discrete version of the operator .Z in (15). The wavenumber is then estimated as
the root of the Fourier transform of G that is closest to the real plane. Even in the absence of noise, the
wavenumber estimation given by the KERNEL-based method is not exact; this can be related to two aspects:
(1) in the near-field regime (close distnace to the source), the intrinsic dispersion of the chosen kernel which
associated affine variety (locii of the roots of the Fourier transform) is not perfectly isotropic; (ii) in the far-
field regime, the signal invariance along the wavefront plane making the estimation (13) badly conditioned,
producing the error oscillations that can be observed on the figure 5.

5 Conclusions

In this communication, the use of dispersion surfaces as an intermediate step to structure identification is mo-
tivated throughout experimental examples. Then, a number of available approaches are presented, allowing
to increase the wavevector resolution when few wavelengths are contained in the signal and/or an estimation
the spatial wave decay is needed. Finally, the performance of all methods is compared with two numerical
examples, giving insights on the sensitivities of the estimates to noise and signal modeling errors.

Despite its rather simplicity of implementation, the non-linear fitting technique (NLFIT) is limited to ele-
mentary cases (e.g when only one wave is present in the signal or when the different wavenumbers are related
with in a known sequence). Thus the use of the more general ESPRIT method, that provides a closed-form
estimate of the wavevectors, is advised when the measured signal can be well approximated by a relatively re-
duced number of plane waves: in one-dimensional signals, or for multidimensional structures in the far-field
regime. In order to increase the maximum signal order that can be estimated with ESPRIT-type approaches, a
spectrum RELOCalization technique was presented. However, the influence of the chosen window function
on the obtained estimates is still to be investigated. Finally the KERNEL-based approach seems to be a very
good candidate for the identification of dispersion surfaces of multidimensional structures. However, its high
sensitivity to noise limits for now its application to experimental signals.
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