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Abstract

This article is a follow up to Crépey, Frikha, and Louzi (2023), where we introduced a
nested stochastic approximation algorithm and its multilevel acceleration for computing the
value-at-risk and expected shortfall of a random financial loss. We establish central limit
theorems for the renormalized errors associated with both algorithms and their averaged
variations. Our findings are substantiated through numerical examples.
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1 Introduction

Stochastic approximation (SA) methods aim at finding a root of a given function for which
only noisy observations are available. When only approximate samples of the innovation can be
generated, multilevel stochastic approximation (MLSA) accelerates the latter by first producing
a rough estimate of the root and then adding a series of refinements referred to as levels (Frikha,
2016). They often score a significantly lower complexity than their naive counterparts when
used to achieve a given prescribed error (Dereich & Müller-Gronbach, 2019; Frikha, 2016; Giles
& Haji-Ali, 2019).

An MLSA scheme was introduced in Crépey, Frikha, and Louzi (2023) for the estimation
of the value-at-risk (VaR) and expected shortfall (ES) of a random loss that writes as a con-
ditional expectation, where the multilevel feature deals with the number of inner Monte Carlo
samplings for the loss (assumed not available in closed form). VaR and ES currently stand as
the most widely used risk metrics in the fields of finance (Basel Committee on Banking Supervi-
sion, 2013) and insurance (European Parliament and the Council, 2009; Swiss Federal Office of
Private Insurance, 2004). A theoretical analysis of the L2 error and computational complexity,
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along with numerical case studies, have demonstrated the superior effectiveness of the MLSA
algorithm when compared to the naively nested approach. However, Crépey, Frikha, and Louzi
(2023) does not delve into the joint asymptotic distribution of the renormalized VaR and ES
estimation errors. Such asymptotics allow deriving trust regions and confidence intervals for
the proposed algorithms. A generic central limit theorem (CLT) for MLSA is already available
in Frikha (2016, Theorem 2.11). However, unlike Frikha (2016), our objective function is not
strongly convex, rendering the analysis of the convergence rate more delicate. Furthermore,
unlike Barrera, Crépey, Diallo, Fort, Gobet, and Stazhynski (2019, Theorems 3.2 and 3.3) (re-
lying on Fort (2015, Theorems 2.1 and 3.2)) and Crépey, Frikha, and Louzi (2023), our MLSA
method employs a two-time-scale scheme for the VaR and ES computation. In line with Konda
and Tsitsiklis (2004) and Mokkadem and Pelletier (2006), our two-time-scale SA scheme uses a
slower learning rate sequence (γn)n≥1 for the VaR estimation, which requires more accuracy and
is independent of the ES estimation, and a faster learning rate for the ES estimation to speed it
up. But due to the nested nature of our framework, the results of the two aforementioned papers
are not directly applicable to our scheme. A thorough analysis is thus necessary to derive the
asymptotic joint distribution of our renormalized nested SA (NSA) and MLSA estimators for the
(VaR,ES) pair. The optimal rate of convergence is attained by selecting the VaR learning rate as
γn = γ1n

−1 with a constraint on γ1 that involves the density of the financial loss evaluated at the
VaR itself which is generally unknown in practice. The Ruppert & Polyak averaging principle as
introduced in Polyak and Juditsky (1992) and Ruppert (1991) addresses this classical limitation.
In the quest of optimal complexity, we also provide central limit theorems (CLT) associated with
the averaged variants of our algorithms.

The paper is structured as follows. After a concise overview of the VaR and ES estimation
problem as per Crépey, Frikha, and Louzi (2023), Section 2 establishes a CLT for the renormalized
error associated with the nested SA algorithm. The CLT for the averaged version is introduced
in Section 3. Section 4 addresses the asymptotic distribution of the renormalized error linked to
the MLSA algorithm, which averaged counterpart is dealt with in Section 5. Section 6 discusses
the optimal complexities of the various SA schemes. Section 7 presents a numerical case study
supporting the theoretical properties established in the paper.

2 A Nested Stochastic Approximation for the Value-at-Risk and
Expected Shortfall

2.1 Approximating the Value-at-Risk and Expected Shortfall

We consider a probability space (Ω,F ,P) rich enough to support all the random variables defined
below. The VaR and ES of a random loss represented by an L1(P) real-valued random variable
X0, at a given confidence level α ∈ (0, 1), can be retrieved as solutions to the problem

min
ξ∈R

V0(ξ), where V0(ξ) := ξ +
1

1− α
E[(X0 − ξ)+]. (2.1)

More precisely, if the cdf FX0 of X0 is continuous, then, according to Rockafellar and Uryasev
(2000), V ′

0(ξ) = (1− α)−1(FX0(ξ)− α), ξ ∈ R, and

ξ⋆ := VaRα(X0) = minArgminV0, χ⋆ := ESα(X0) = minV0. (2.2)

if X0 admits a continuous pdf fX0 , then V0 is twice continuously differentiable on R with V ′′
0 (ξ) =

(1− α)−1fX0(ξ), ξ ∈ R.
Hereafter, we assume that

X0 = E[φ(Y,Z)|Y ], (2.3)

where Y and Z are independent Rd valued random variables and φ : Rd×Rd ! R is a measurable
function such that φ(Y,Z) ∈ L1(P). In financial applications, φ(Y, Z) would model the future
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cash flows of a portfolio, Y the underlying risk factors at a certain point in time, and X0 the
value of the portfolio at that time.

Under the approach initiated by Bardou, Frikha, and Pagès (2009a) (see also Bardou, Frikha,
and Pagès (2009b, 2016), as well as Frikha (2014) for similar analysis on shortfall risk measures),
assuming that exact iid samples of X0 are available, one may compute the couple (ξ⋆, χ⋆) using
a two-time-scale stochastic approximation algorithm. However, we do not assume a known
distribution of φ(Y,Z) conditionally on Y , hence the conditional expectation is not computable
in closed form, and no iid exact simulation of X0 is available. The brute force, naively nested
SA algorithm introduced in Crépey, Frikha, and Louzi (2023) for solving (2.1)–(2.3) is based on
the following natural approximation to the problem:

min
ξ∈R

Vh(ξ), where Vh(ξ) := ξ +
1

1− α
E[(Xh − ξ)+]. (2.4)

Here Xh is the empirical mean approximation of X0, for some bias parameter h = 1
K ∈ H ={

1
K′ ,K ′ ∈ N∗}, defined by

Xh :=
1

K

K∑
k=1

φ(Y,Z(k)), (2.5)

where {Z(k), 1 ≤ k ≤ K} iid∼ Z are independent from Y . If the cdf of Xh is continuous and
increasing, solutions

ξh⋆ = argminVh and χh
⋆ = minVh (2.6)

provide biased estimates of (ξ⋆, χ⋆). For h ∈ H, if the cdf FXh
of Xh is continuous, then

V ′
h = (1− α)−1(FXh

− α) (and V ′′
h = (1− α)−1fXh

if Xh admits a continuous pdf fXh
).

Defining

H1(ξ, x) = 1− 1

1− α
1x≥ξ and H2(ξ, χ, x) = χ−

(
ξ +

1

1− α
(x− ξ)+

)
(2.7)

for ξ, χ, x ∈ R, the couple (ξh⋆ , χ
h
⋆) can be approximated by the following nested SA scheme

driven by an innovation sequence {X(n)
h , n ≥ 1} iid∼ Xh:

ξhn+1 = ξhn − γn+1H1(ξ
h
n, X

(n+1)
h ), (2.8)

χh
n+1 = χh

n − 1

n+ 1
H2(ξ

h
n, χ

h
n, X

(n+1)
h ), (2.9)

n ∈ N, starting from real valued random variables ξh0 and χh
0 = 0, ξh0 being independent from

{X(n)
h , n ≥ 1} and such that E[|ξh0 |2] < ∞, for a positive deterministic sequence of step sizes

{γn, n ≥ 1} satisfying
∑∞

n=1 γn = ∞ and
∑∞

n=1 γ
2
n < ∞.

2.2 Convergence Rate Analysis

Lemma 2.1 (Giorgi, Lemaire, and Pagès (2020, Lemma 3.2 and Proposition 5.2)).

(i) If E[|φ(Y, Z)− E[φ(Y,Z)|Y ]|p] < ∞ holds for some p > 1, then

E[|Xh −Xh′ |p] ≤ C|h− h′|
p
2 , h, h′ ∈ H.

(ii) If the Xh admit densities fXh
, bounded uniformly in h ∈ H, and E[|φ(Y,Z)−E[φ(Y, Z)|Y ]|p] <

∞ for some p > 1, then, for any ξ ∈ R,

E
[∣∣1Xh>ξ − 1Xh′>ξ

∣∣] ≤ C(h ∨ h′)
p

2(1+p) , h, h′ ∈ H.

We now put forward some important assumptions concerning the sequence {Xh, h ∈ H}.
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Assumption 1. (i) For any h ∈ H ∪ {0}, the cdf FXh
of Xh admits the first order Taylor

expansion
FXh

(ξ)− FX0(ξ) = v(ξ)h+ ϵ(ξ, h)h, ξ ∈ R,

for some functions v, ϵ(., h) : R ! R satisfying
∫∞
ξ⋆

v(ξ) dξ < ∞ and limH∋h#0 ϵ(ξ⋆, h) =

limH∋h#0
∫∞
ξ⋆

|ϵ(ξ, h)|dξ = 0 for any ξ⋆ ∈ ArgminV0.

(ii) For any h ∈ H ∪ {0}, the law of Xh admits a continuous density fXh
with respect to the

Lebesgue measure. Moreover, the sequence of functions {fXh
, h ∈ H} converges locally

uniformly towards fX0.

(iii) For any R > 0, the sequence of functions {fXh
, h ∈ H} satisfies

inf
h∈H

ξ∈B(ξ⋆,R)

fXh
(ξ) > 0.

(iv) The density functions {fXh
, h ∈ H} are uniformly bounded and uniformly Lipschitz:

sup
h∈H

{∥fXh
∥∞ + [fXh

]Lip} < ∞,

where [fXh
]Lip denotes the Lipschitz constant of fXh

.

Remark 2.1. Assumptions 1(ii) and (iii) imply that, for any ξ⋆ ∈ ArgminV0, fX0(ξ⋆) > 0,
hence V ′′

0 (ξ⋆) > 0 and ArgminV0 is reduced to a singleton {ξ⋆}.

We recall the following results concerning the weak error and statistical error of the nested
SA scheme (2.8)-(2.9).

Lemma 2.2 (Crépey, Frikha, and Louzi (2023, Proposition 3.1 and Theorem 3.1)).

(i) Suppose that Assumption 1 is satisfied and that the density function fX0 is positive. Then,
as H ∋ h # 0, for any ξh⋆ ∈ ArgminVh,

ξh⋆ − ξ⋆ = − v(ξ⋆)

fX0(ξ⋆)
h+ o(h), χh

⋆ − χ⋆ = −h

∫ ∞

ξ⋆

v(ξ)

1− α
dξ + o(h).

(ii) Suppose that Assumption 1 is satisfied, that the random variable φ(Y,Z) is in L2(P), that

sup
h∈H

E
[
|ξh0 |2 exp

( 4

1− α
cα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

< ∞

holds for cα = 1 ∨ α
1−α , and that γn = γ1n

−β, γ1 > 0 and β ∈
(
1
2 , 1
]
. Setting

λ = inf
h∈H

λh with λh =
3

8
V ′′
h (ξ

h
⋆ ) ∧ ∥V ′′

h ∥∞
V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip

(2.10)

and assuming that λγ1 > 1 if β = 1, there exists a constant C < ∞ such that, for any
positive integer n,

sup
h∈H

E[(ξhn − ξh⋆ )
2] ≤ Cγn.

We can now state the main result of this part.
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Theorem 2.1. Suppose that Assumption 1 is satisfied, that

sup
h∈H

E
[
|ξh0 |2 exp

( 4

1− α
cα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

< ∞, (2.11)

that E[|X0|2+δ] < ∞ and E[|φ(Y,Z) − E[φ(Y,Z)|Y ]|2+δ] < ∞ hold for some δ > 0, and that
γn = γ1n

−β, β ∈
(
1
2 , 1
]
, with λγ1 > 1 if β = 1. Thenh−β

(
ξh⌈h−2⌉ − ξh⋆

)
h−1

(
χh
⌈h−2⌉ − χh

⋆

)
 L

−! N (0,Σβ) as H ∋ h # 0,

where

Σβ =

 αγ1
2fX0

(ξ⋆)−γ−1
1 (1−α)1β=1

α χ⋆−ξ⋆
fX0

(ξ⋆)
1β=1

α χ⋆−ξ⋆
fX0

(ξ⋆)
1β=1

Var((X0−ξ⋆)+)
(1−α)2

 . (2.12)

Proof. We denote by C a finite positive constant that may change from line to line and does
not depend upon h or n. We follow a strategy similar to the one used for proving Frikha (2016,
Theorem 2.7). For any h ∈ H, let {Fh

n , n ≥ 0} be the filtration defined by Fh
0 = σ(ξh0 , χ

h
0) and,

for n ≥ 1, Fh
n = σ(ξh0 , χ

h
0 , X

(1)
h , . . . , X

(n)
h ). Let

ghn =
(
V ′′
0 (ξ⋆)− V ′′

h (ξ
h
⋆ )
)
(ξhn−1 − ξh⋆ ), (2.13)

rhn = V ′′
h (ξ

h
⋆ )(ξ

h
n−1 − ξh⋆ )− V ′

h(ξ
h
n−1), (2.14)

ρhn = V ′
h(ξ

h
n−1)− V ′

h(ξ
h
⋆ )−

(
H1(ξ

h
n−1, X

(n)
h )−H1(ξ

h
⋆ , X

(n)
h )

)
, (2.15)

ehn = V ′
h(ξ

h
⋆ )−H1(ξ

h
⋆ , X

(n)
h ) = −H1(ξ

h
⋆ , X

(n)
h ). (2.16)

The sequence {ξhn, n ≥ 0} with dynamics (2.8) can be decomposed as

ξhn − ξh⋆ =
(
1− γnV

′′
0 (ξ⋆)

)
(ξhn−1 − ξh⋆ ) + γng

h
n + γnr

h
n + γnρ

h
n + γne

h
n, (2.17)

hence

ξhn − ξh⋆ = (ξh0 − ξh⋆ )Π1:n +
n∑

k=1

γkΠk+1:ng
h
k

+
n∑

k=1

γkΠk+1:nr
h
k +

n∑
k=1

γkΠk+1:nρ
h
k +

n∑
k=1

γkΠk+1:ne
h
k ,

(2.18)

where

Πk:n =

n∏
j=k

(
1− γjV

′′
0 (ξ⋆)

)
(2.19)

(with the convention
∏

∅ = 1). Also, the sequence {χh
n, n ≥ 0} with dynamics (2.9) satisfies

χh
n − χh

⋆ =
1

n

n∑
k=1

(
ξhk−1 +

1

1− α
(X

(k)
h − ξhk−1)

+
)
− Vh(ξ

h
⋆ )

=
1

n

n∑
k=1

θhk +
1

n

n∑
k=1

ζhk +
1

n

n∑
k=1

ηhk ,

(2.20)

where

θhk = ξhk−1 − ξh⋆ +
1

1− α

(
(X

(k)
h − ξhk−1)

+ − (X
(k)
h − ξh⋆ )

+
)
−
(
Vh(ξ

h
k−1)− Vh(ξ

h
⋆ )
)
, (2.21)

ζhk = Vh(ξ
h
k−1)− Vh(ξ

h
⋆ ), (2.22)

ηhk =
1

1− α

(
(X

(k)
h − ξh⋆ )

+ − E[(X(k)
h − ξh⋆ )

+]
)
. (2.23)
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Before studying each term appearing in (2.18)-(2.20), we provide a useful upper bound on
Πk:n. Since limk!∞ γk = 0, there exists k0 ≥ 0 such that for j ≥ k0, (1− γjV

′′
0 (ξ⋆)) > 0. Thus,

using the inequality 1 + x ≤ exp(x), for x ∈ R, we obtain

|Πk:n| = |Πk:k0−1|
n∏

j=k0∨k

(
1− γjV

′′
0 (ξ⋆)

)
≤ |Πk:k0−1| exp

(
− V ′′

0 (ξ⋆)

n∑
j=k0∨k

γj

)
≤ K exp

(
− V ′′

0 (ξ⋆)

n∑
j=k

γj

) (2.24)

for n large enough, where K = 1 ∨max1≤k≤k0 |Πk:k0−1| exp
(
V ′′
0 (ξ⋆)

∑k−1
j=k0∧k γj

)
(with the con-

vention
∑

∅ = 0).
We now let n = ⌈h−2⌉ and deal with each term appearing in (2.18)-(2.20).

Step 1. Study of
{
h−β(ξh0 − ξh⋆ )Π1:⌈h−2⌉, h ∈ H

}
.

Since, by Assumption 1(ii), the sequence of functions
{
V ′′
h = (1 − α)−1fXh

, h ∈ H
}

converges
locally uniformly to V ′′

0 as H ∋ h # 0, and/, by Lemma 2.2(i), limH∋h#0 ξ
h
⋆ = ξ⋆, we obtain

limH∋h#0 V
′′
h (ξ

h
⋆ ) = V ′′

0 (ξ⋆). In particular, via Lemma 2.2(ii),

2γ1V
′′
0 (ξ⋆) ≥ 2γ1 inf

h∈H
V ′′
h (ξ

h
⋆ ) ≥

16

3
γ1 inf

h∈H
λh ≥ γ1λ > 1 if β = 1. (2.25)

We then deduce, using (2.24), the inequality γ
1
2
1 γ

− 1
2

⌈h−2⌉ ≥ h−β and Lemma A.1(ii), that

lim sup
H∋h#0

h−β|Π1:⌈h−2⌉| ≤ Cγ
1
2
1 lim sup

n"∞
γ
− 1

2
n e−V ′′

0 (ξ⋆)
∑n

j=1 γj = 0.

Owing to Lemma 2.2(i), limH∋h#0 ξ
h
⋆ = ξ⋆, so that {ξh⋆ , h ∈ H} is bounded which, combined with

(2.11), gives suph∈H E[|ξh0 − ξh⋆ |] ≤ suph∈H E[|ξh0 |] + suph∈H |ξh⋆ | < ∞. We thus conclude

h−β(ξh0 − ξh⋆ )Π1:⌈h−2⌉
L1(P)
−! 0 as H ∋ h # 0.

Step 2. Study of
{
h−β

∑⌈h−2⌉
k=1 γkΠk+1:⌈h−2⌉g

h
k , h ∈ H

}
.

It follows from Lemma 2.2(ii) and (2.24) that

E
[∣∣∣∣ n∑

k=1

γkΠk+1:ng
h
k

∣∣∣∣] ≤ C|V ′′
0 (ξ⋆)− V ′′

h (ξ
h
⋆ )|

n∑
k=1

γ
3
2
k e

−V ′′
0 (ξ⋆)

∑n
j=k+1 γj .

Since 2γ1V
′′
0 (ξ⋆) > 1 if β = 1, recalling (2.25), one can thus apply Lemma A.1(i), so that

lim sup
H∋h#0

h−β

⌈h−2⌉∑
k=1

γ
3
2
k e

−V ′′
0 (ξ⋆)

∑⌈h−2⌉
j=k+1 γj ≤ Cγ

1
2
1 lim sup

n"∞
γ
− 1

2
n

n∑
k=1

γ
3
2
k e

−V ′′
0 (ξ⋆)

∑n
j=k+1 γj ≤ C.

Now, using the fact that limH∋h#0 |V ′′
0 (ξ⋆)− V ′′

h (ξ
h
⋆ )| = 0, we conclude

h−β

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉g
h
k

L1(P)
−! 0 as H ∋ h # 0.
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Step 3. Study of
{
h−β

∑⌈h−2⌉
k=1 γkΠk+1:⌈h−2⌉r

h
k , h ∈ H

}
.

Using the fact that V ′
h(ξ

h
⋆ ) = 0, a first order Taylor expansion gives

V ′
h(ξ) = V ′′

h (ξ
h
⋆ )(ξ − ξh⋆ ) + (ξ − ξh⋆ )

∫ 1

0

(
V ′′
h

(
ξh⋆ + t(ξ − ξh⋆ )

)
− V ′′

h (ξ
h
⋆ )
)
dt, (2.26)

so that the uniform Lipschitz regularity of {V ′′
h = (1− α)−1fXh

, h ∈ H} yields

E[|rhk |] ≤
suph′∈H[fXh′ ]Lip

2(1− α)
E[(ξhk−1 − ξh⋆ )

2]. (2.27)

Hence, by Lemma 2.2(ii), for k ≥ 2, E[|rhk |] ≤ Cγk. Recalling (2.25) if β = 1, using the
inequality (2.24) and Lemma A.1(i) gives

lim sup
H∋h#0

E
[∣∣∣∣h−β

⌈h−2⌉∑
k=2

γkΠk+1:⌈h−2⌉r
h
k

∣∣∣∣] ≤ C lim sup
n"∞

γ
− 1

2
n

n∑
k=2

γ2ke
−V ′′

0 (ξ⋆)
∑n

j=k+1 γj = 0.

Notice that (2.11) gives suph∈H E[(ξh0 − ξh⋆ )
2] ≤ 2(suph∈H E[|ξh0 |2] + suph∈H |ξh⋆ |2) < ∞. Hence,

the inequalities (2.27) and (2.24) and Lemma A.1(ii) guarantee that

lim sup
H∋h#0

E
[∣∣h−βγ1Π1:⌈h−2⌉r

h
1

∣∣] ≤ C sup
h∈H

E[(ξh0 − ξh⋆ )
2] lim sup

n"∞
γ
− 1

2
n e−V ′′

0 (ξ⋆)
∑n

j=1 γj = 0.

Putting together the two previous limits

h−β

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉r
h
k

L1(P)
−! 0 as H ∋ h # 0.

Step 4. Study of
{
h−β

∑⌈h−2⌉
k=1 γkΠk+1:⌈h−2⌉ρ

h
k , h ∈ H

}
.

As V ′
h(ξ) = E[H1(ξ,Xh)], we note that (2.15) implies that E[ρhk |Fh

k−1] = 0. Hence, {ρhk , k ≥ 1} is
a sequence of {Fh

k , k ≥ 1}-martingale increments. We thus obtain

E
[( n∑

k=1

γkΠk+1:nρ
h
k

)2]
=

n∑
k=1

γ2k |Πk+1:n|2 E[|ρhk |2]

≤
n∑

k=1

γ2k |Πk+1:n|2 E
[(
H1(ξ

h
k−1, X

(k)
h )−H1(ξ

h
⋆ , X

(k)
h )
)2]

.

Recalling the definition (2.7), by the uniform boundedness of {fXh
, h ∈ H},

E
[(
H1(ξ

h
k−1, X

(k)
h )−H1(ξ

h
⋆ , X

(k)
h )
)2]

=
1

(1− α)2
E
[∣∣∣1

X
(k)
h ≥ξhk−1

− 1
X

(k)
h ≥ξh⋆

∣∣∣]
=

1

(1− α)2
E
[
E
[
1
ξhk−1≤X

(k)
h <ξh⋆

+ 1
ξh⋆≤X

(k)
h <ξhk−1

∣∣∣Fh
k−1

]]
=

1

(1− α)2
E
[∣∣FXh

(ξhk−1)− FXh
(ξh⋆ )

∣∣]
≤

suph′∈H ∥fXh′∥∞
(1− α)2

E[(ξhk−1 − ξh⋆ )
2]

1
2 .

(2.28)
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Thus, recalling that suph∈H E[(ξh0 − ξh⋆ )
2] < ∞ and using Lemma 2.2(ii), we obtain E

[(
H1(ξ

h
k−1, X

(k)
h )−

H1(ξ
h
⋆ , X

(k)
h )
)2] ≤ Cγ

1
2
k , for k ≥ 1. Since γ

1
2
1 γ

− 1
2

⌈h−2⌉ ≥ h−β and 2γ1V
′′
0 (ξ⋆) > 1 if β = 1, recalling

(2.25), by combining (2.24) with Lemma A.1(i), we obtain

lim sup
H∋h#0

E
[(

h−β

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉ρ
h
k

)2]
≤ C lim sup

n"∞
γ−1
n

n∑
k=1

γ
5
2
k e

−2V ′′
0 (ξ⋆)

∑n
j=1 γj = 0,

which eventually yields

h−β

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉ρ
h
k

L2(P)
−! 0 as H ∋ h # 0.

Step 5 Study of
{

h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 θhk , h ∈ H
}
.

Observe that from the very definition (2.4) of Vh, (2.21) gives E[θhk |Fh
k−1] = 0, i.e. {θhk , k ≥ 1} is

a sequence of {Fh
k , k ≥ 1}-martingale increments. Hence, using Lemma 2.2(ii), we obtain

E
[(

1√
n

n∑
k=1

θhk

)2]
=

1

n

n∑
k=1

E[|θhk |2]

≤ 1

n

n∑
k=1

E
[∣∣∣ξhk−1 − ξh⋆ +

1

1− α

(
(X

(k)
h − ξhk−1)

+ − (X
(k)
h − ξh⋆ )

+
)∣∣∣2]

≤ C

n

n−1∑
k=0

E[(ξhk − ξh⋆ )
2]

≤ C

(
1

n
E[(ξh0 − ξh⋆ )

2] +
1

n

n−1∑
k=1

γk

)
.

(2.29)

A comparison between series and integrals together with the fact that suph∈H E[(ξh0 − ξh⋆ )
2] < ∞

yield

h−1

⌈h−2⌉

⌈h−2⌉∑
k=1

θhk
L2(P)
−! 0 as H ∋ h # 0.

Step 6. Study of
{

h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 ζhk , h ∈ H
}
.

Using a second order Taylor expansion, the uniform boundedness of {V ′′
h = (1−α)−1fXh

, h ∈ H}
and Lemma 2.2(ii), we obtain

E
[∣∣∣∣ 1√

n

n∑
k=1

ζhk

∣∣∣∣] ≤ suph′∈H ∥fXh′∥∞
2(1− α)

(
1√
n
E[(ξh0 − ξh⋆ )

2] +
1√
n

n∑
k=2

E[(ξhk−1 − ξh⋆ )
2]

)

≤ C

(
1√
n
E[(ξh0 − ξh⋆ )

2] +
1√
n

n−1∑
k=1

γk

)
.

(2.30)

A comparison between series and integrals gives limn"∞
1√
n

∑n−1
k=1 γk = 0. Since, in addition,

suph∈H E[(ξh0 − ξh⋆ )
2] < ∞, we conclude that

h−1

⌈h−2⌉

⌈h−2⌉∑
k=1

ζhk
L1(P)
−! 0 as H ∋ h # 0.
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Step 7. Study of
{(

h−β
∑⌈h−2⌉

k=1 γkΠk+1:⌈h−2⌉e
h
k ,

h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 ηhk

)
, h ∈ H

}
.

The purpose here is to apply the central limit theorem (Hall & Heyde, 1980, Corollary 3.1,
page 58) to the martingale array

{(
h−β

∑⌈h−2⌉
k=1 γkΠk+1:⌈h−2⌉e

h
k ,

h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 ηhk
)
, h ∈ H

}
. We

first check the conditional Lindeberg condition. By the assumption on the random variables
{Xh, h ∈ H}, there exists δ > 0 such that

sup
h∈H

E[|Xh − ξh⋆ |2+δ] ≤ 21+δ
(
sup
h∈H

E[|Xh|2+δ] + sup
h∈H

|ξh⋆ |2+δ
)
< ∞.

From the definition (2.7) of H1, applying (2.24) and then Lemma A.1(i) (note in particular that
(2 + δ)V ′′

0 (ξ⋆)γ1 > 1 + δ/2 if β = 1, recalling (2.25)) gives

lim sup
H∋h#0

⌈h−2⌉∑
k=1

E
[∣∣h−βγkΠk+1:⌈h−2⌉H1(ξ

h
⋆ , X

(k)
h )
∣∣2+δ]

≤ γ
1+ δ

2
1 c2+δ

α lim sup
n"∞

γ
−(1+ δ

2
)

n

n∑
k=1

γ2+δ
k e−(2+δ)V ′′

0 (ξ⋆)
∑n

j=k+1 γj = 0,

where cα = 1 ∨ α/(1− α). Moreover, it holds

⌈h−2⌉∑
k=1

E
[∣∣∣ h−1

⌈h−2⌉
ηhk

∣∣∣2+δ]
≤ C h2+δ

⌈h−2⌉∑
k=1

E
[∣∣Xh − ξh⋆

∣∣2+δ] ≤ C sup
h∈H

E
[∣∣Xh − ξh⋆

∣∣2+δ]
hδ,

so that lim supH∋h#0
∑⌈h−2⌉

k=1 E
[∣∣ h−1

⌈h−2⌉η
h
k

∣∣2+δ]
= 0. Hence, the conditional Lindeberg condition is

satisfied.
We now prove the convergence, as H ∋ h # 0, of the conditional covariance matrices sequence{

Sh = (Si,j
h )1≤i,j≤2, h ∈ H

}
defined by

S1,1
h :=

⌈h−2⌉∑
k=1

h−2βγ2kΠ
2
k+1:⌈h−2⌉E[H1(ξ

h
⋆ , Xh)

2] =
α

1− α
h−2βγ⌈h−2⌉Σ⌈h−2⌉,

S2,2
h :=

⌈h−2⌉∑
k=1

E
[( h−1

⌈h−2⌉
ηhk

)2∣∣∣∣Fh
k−1

]
=

h−2

⌈h−2⌉
Var

(
(Xh − ξh⋆ )

+
)

(1− α)2
,

S1,2
h = S2,1

h :=
h−(1+β)

⌈h−2⌉

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉ E
[
ehkη

h
k

∣∣Fh
k−1

]
,

with

Σn =
1

γn

n∑
k=1

γ2kΠ
2
k+1:n. (2.31)

We first study the convergence of
{
S1,1
h , h ∈ H

}
. We first remark that limH∋h#0 h

−2βγ⌈h−2⌉ =

γ1, limH∋h#0 S
1,1
h = γ1α

1−α limn"∞Σn, provided that the latter limit exists. Now observe that

Σn+1 = γn+1 +
γn
γn+1

(
1− γn+1V

′′
0 (ξ⋆)

)2
Σn

= Σn +
γn − γn+1

γn+1
Σn + γnγn+1V

′′
0 (ξ⋆)

2Σn + (γn+1 − γn) + γn
(
1− 2V ′′

0 (ξ⋆)Σn

)
.

Asymptotically,

γn − γn+1

γn+1
=
1β=1

γ1
γn + o(γn), γn+1 − γn = o(γn) and γnγn+1 = o(γn).
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Hence
Σn+1 = Σn +

(
1−

(
2V ′′

0 (ξ⋆)−
1β=1

γ1

)
Σn

)
γn + (Σn + 1)o(γn).

The best candidate limit for {Σn, n ≥ 1} is

Σ⋆ :=
1

2V ′′
0 (ξ⋆)−

1β=1

γ1

. (2.32)

Let ∆Σn := Σn − Σ⋆. One computes

∆Σn+1 = ∆Σn +
(γn − γn+1

γn+1
−
1β=1

γ1
γn

)
∆Σn + γnγn+1∆Σn − γn

(
2V ′′

0 (ξ⋆)−
1β=1

γ1

)
∆Σn

+
(γn − γn+1

γn+1
−
1β=1

γ1
γn

)
Σ⋆ + γnγn+1Σ⋆ + (γn+1 − γn)

=
(
1− µγn + o(γn)

)
∆Σn + o(γn),

where µ := 2V ′′
0 (ξ⋆) −

1β=1

γ1
> 0. Let ε > 0. There exists n0 ≥ 0 such that, for n ≥ n0,

1− (µ+ ε)γn > 0 and
|∆Σn+1| ≤

(
1− (µ+ ε)γn

)
|∆Σn|+ εγn. (2.33)

Thus, for n ≥ n0,

|∆Σn| ≤ |∆Σn0 | exp
(
− (µ+ ε)

n∑
k=n0

γk

)
+ ε

n∑
k=n0

γk exp

(
− (µ+ ε)

n∑
j=k

γj

)
.

By Lemma 2.1(i), lim supn"∞ |∆Σn| ≤ Cε, so that

lim
n"∞

Σn = Σ⋆. (2.34)

Hence
S1,1
h

P-as
−!

α

1− α

γ1

2V ′′
0 (ξ⋆)−

1β=1

γ1

as H ∋ h # 0.

We then study the convergence of
{
S2,2
h , h ∈ H

}
. Given that

E
[∣∣(Xh − ξh⋆ )

+ − (X0 − ξ⋆)
+
∣∣2] ≤ 2

(
E[(Xh −X0)

2] + (ξh⋆ − ξ⋆)
2
)
,

with limH∋h#0 ξ
h
⋆ = ξ⋆ and

E[(Xh −X0)
2] = hE[Var(φ(Y,Z)|Y )] ! 0 as H ∋ h # 0,

it follows that (Xh − ξh⋆ )
+ converges to (X0 − ξ⋆)

+ in L2(P) as H ∋ h # 0, so that

Var
(
(Xh − ξh⋆ )

+
)
! Var

(
(X0 − ξ⋆)

+
)

as H ∋ h # 0.

Finally

S2,2
h

P-as
−!

Var
(
(X0 − ξ⋆)

+
)

(1− α)2
as H ∋ h # 0.

We conclude by studying the convergence of
{
S1,2
h , h ∈ H

}
. Recalling that {(Xh − ξh⋆ )

+, h ∈
H} converges to (X0 − ξ⋆)

+ in L2(P), we deduce that

E
[
ehkη

h
k

∣∣Fh
k−1

]
=

α

(1− α)2
E[(Xh − ξh⋆ )

+] !
α

(1− α)2
E[(X0 − ξ⋆)

+] as H ∋ h # 0. (2.35)
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Besides, a direct computation gives limH∋h#0
h−(1+β)

⌈h−2⌉ = 1β=1. Hence, by Lemma A.1(i),

lim
H∋h#0

h−(1+β)

⌈h−2⌉

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉

∣∣∣E[ehkηhk ∣∣Fh
k−1

]
− α

(1− α)2
E[(X0 − ξ⋆)

+]
∣∣∣ = 0,

so that

lim
H∋h#0

h−(1+β)

⌈h−2⌉

⌈h−2⌉∑
k=1

γkΠk+1:⌈h−2⌉E
[
ehkη

h
k

∣∣Fh
k−1

]
=

αE[(X0 − ξ⋆)
+]1β=1

(1− α)2
lim
n"∞

Σ̃n,

where

Σ̃n :=

n∑
k=1

γkΠk+1:n.

Observe now that

Σ̃n+1 = γn+1 +
(
1− γn+1V

′′
0 (ξ⋆)

)
Σ̃n = Σ̃n + γn+1

(
1− V ′′

0 (ξ⋆)Σ̃n

)
.

We let Σ̃⋆ :=
1

V ′′
0 (ξ⋆)

and ∆Σ̃n := Σ̃n − Σ̃⋆. Hence,

∆Σ̃n+1 =
(
1− γn+1V

′′
0 (ξ⋆)

)
∆Σ̃n = −Σ̃⋆

n+1∏
k=1

(
1− γkV

′′
0 (ξ⋆)

)
,

so that

|∆Σ̃n| ≤ |Σ̃⋆| exp
(
− V ′′

0 (ξ⋆)

n∑
k=1

γk

)
.

Since
∑

n≥1 γn = ∞,

lim
n"∞

n∑
k=1

γkΠk+1:n = Σ̃⋆,

which eventually yields

S1,2
h = S2,1

h
P-as
−!

αE[(X0 − ξ⋆)
+]1β=1

V ′′
0 (ξ⋆)(1− α)2

as H ∋ h # 0.

The proof is now complete.

Corollary 2.1. Assume that the hypotheses of Theorem 2.1 are satisfied. Thenh−β
(
ξh⌈h−2⌉ − ξ⋆

)
h−1

(
χh
⌈h−2⌉ − χ⋆

)
 L

−! N
(− v(ξ⋆)

fX0
(ξ⋆)1β=1

−
∫∞
ξ⋆

v(ξ)
1−αdξ

 ,Σβ

)
as H ∋ h # 0,

where we recall that Σβ is given by (2.12).

Remark 2.2. (Barrera et al., 2019, Algorithm 1) differs from our NSA scheme in two ways.
First, they use a single-time-scale scheme for both (VaR,ES) components, while we use a two-
time-scale scheme with a slower, more precise VaR component independent of the ES scheme
and then a faster ES component with optimal convergence rate. Second, the nth iteration of
their NSA algorithm uses hn instead of the positive constant h in (2.8)-(2.9), for some sequence
{hn, n ≥ 1} that tends to 0 as n " ∞. Their approach builds iterates such that (ξhn

n , χhn
n ) !

(ξ⋆, χ⋆) as n " ∞, allowing them to use (Fort, 2015, Theorem 2.1) for obtaining their unbiased
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CLT (Barrera et al., 2019, Theorem 3.2). However, their approach results in an algorithm with
a substantially increased complexity. Indeed, in view of Barrera et al. (2019, Theorem 3.2),
the error of their algorithm after n iterations is of order √

γn = γ
1/2
1 n−β/2, β ∈

(
1
2 , 1
]
. For

a prescribed error order ε > 0, one has to choose n = ⌈Cε−2/β⌉. The discussion of (Barrera
et al., 2019, Section 3.2) advises to take hn = ⌈Cn−β′⌉, β′ > β. This results in a complexity of
order C

∑n
k=1 h

−1
k = Cε−2(1+β′)/β, which is optimal for β′ ! β = 1, yielding Cε−4. As will be

discussed in Section 6, the NSA algorithm proposed in Crépey, Frikha, and Louzi (2023), instead,
has an optimal complexity of Cε−3.

Proof. For h ∈ H, we writeh−β
(
ξh⌈h−2⌉ − ξ⋆

)
h−1

(
χh
⌈h−2⌉ − χ⋆

)
 =

h−β
(
ξh⌈h−2⌉ − ξh⋆

)
h−1

(
χh
⌈h−2⌉ − χh

⋆

)
+

(
h−β(ξh⋆ − ξ⋆)

h−1(χh
⋆ − χ⋆)

)
.

From Lemma 2.2(i),(
h−β(ξh⋆ − ξ⋆)

h−1(χh
⋆ − χ⋆)

)
! −

 v(ξ⋆)
fX0

(ξ⋆)1β=1∫∞
ξ⋆

v(ξ)
1−αdξ

 as H ∋ h # 0.

Combining the previous result and Theorem 2.1 yields the desired result.

3 Averaged Nested Stochastic Approximation Algorithm

According to Theorem 2.1 and Corollary 2.1, the best rate of convergence in the CLT is achieved
by setting β = 1, that is, by taking γn = γ1n

−1 for the nested VaR stochastic algorithm. Note
carefully nonetheless that the choice β = 1 and the ensuing rate are only available under the
constraint λγ1 > 1. However, one does not have access to the value of λ. So typically, γ1 must be
fine-tuned empirically, adding a computational burden to the implementation of the algorithm.

To avoid this fine tuning issue of the VaR SA scheme, we propose to explore the Ruppert-
Polyak averaging principle (Frikha, 2016; Polyak & Juditsky, 1992; Ruppert, 1991). We follow
the footsteps of (Barrera et al., 2019; Frikha, 2016) and define, for a given bias parameter h ∈ H,
the new sequence of averaged VaR estimators

ξ
h
n =

1

n

n∑
k=1

ξhk =
(
1− 1

n

)
ξ
h
n−1 +

1

n
ξhn, n ≥ 1, (3.1)

where ξ
h
0 = 0, ξh0 is a real valued random variable satisfying E[|ξh0 |2] < ∞, and the estimates

{ξhn, n ≥ 0} are obtained similarly to the scheme (2.8) with a step sequence γn = γ1n
−β , β ∈(

1
2 , 1
)
.

Remark 3.1. Unlike (Barrera et al., 2019, Theorem 3.3), we do not average out the ES nested
SA estimators {χh

n, 0 ≤ n ≤ ⌈h−2⌉} inasmuch as, in view of Theorem 2.1, their convergence rate
of order h is already optimal.

Theorem 3.1. Assume that the hypotheses of Theorem 2.1 are satisfied and that γn = γ1n
−β,

γ1 > 0 and β ∈
(
1
2 , 1
)
. Then

h−1

 ξ
h
⌈h−2⌉ − ξh⋆

χh
⌈h−2⌉ − χh

⋆

 L
−! N (0,Σ) as H ∋ h # 0,

where

Σ =

 α(1−α)
fX0

(ξ⋆)2
α

1−α
E[(X0−ξ⋆)+]

fX0
(ξ⋆)

α
1−α

E[(X0−ξ⋆)+]
fX0

(ξ⋆)
Var((X0−ξ⋆)+)

(1−α)2

 . (3.2)
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Proof. We employ the same notation as in the proof of Theorem 2.1. From the decomposi-
tion (2.17), we have

ξhn − ξh⋆ =
1

V ′′
h (ξ

h
⋆ )

ahn +
1

V ′′
h (ξ

h
⋆ )

rhn +
1

V ′′
h (ξ

h
⋆ )

ρhn +
1

V ′′
h (ξ

h
⋆ )

ehn, (3.3)

where the definitions for {rhn, n ≥ 1}, {ρhn, n ≥ 1} and {ehn, n ≥ 1} are provided by (2.14)–(2.16)
and {ahn, n ≥ 1} is given by

ahn = − 1

γn

(
ξhn − ξh⋆ − (ξhn−1 − ξh⋆ )

)
. (3.4)

From (3.1) and (3.3), we readily get that, for n ≥ 1,

ξ
h
n − ξh⋆ =

1

V ′′
h (ξ

h
⋆ )n

n∑
k=1

ahk +
1

V ′′
h (ξ

h
⋆ )n

n∑
k=1

rhk +
1

V ′′
h (ξ

h
⋆ )n

n∑
k=1

ρhk +
1

V ′′
h (ξ

h
⋆ )n

n∑
k=1

ehk . (3.5)

We now let n = ⌈h−2⌉ and study each term of the above decomposition.

Step 1. Study of
{

h−1

V ′′
h (ξh⋆ )⌈h−2⌉

∑⌈h−2⌉
k=1 ahk , h ∈ H

}
.

By summing by parts we obtain

1

n

n∑
k=1

1

γk

(
ξhk − ξh⋆ − (ξhk−1 − ξh⋆ )

)
=

1

n

( 1

γn
(ξhn − ξh⋆ )−

1

γ1
(ξh0 − ξh⋆ )

)
+

1

n

n∑
k=2

( 1

γk−1
− 1

γk

)
(ξhk−1 − ξh⋆ ).

(3.6)

We deal with each term on the right hand side separately. On the one hand, recalling that
suph∈H E[|ξh0 − ξh⋆ |] < ∞, it follows from Lemma 2.2(ii) that

E
[∣∣∣∣ 1n( 1

γn
(ξhn − ξh⋆ )−

1

γ1
(ξh0 − ξh⋆ )

)∣∣∣∣] ≤ C

n

( 1

γn
E[(ξhn − ξh⋆ )

2]
1
2 + E[|ξh0 − ξh⋆ |]

)
≤ C

n

( 1
√
γn

+ 1
)
.

On the other hand, using again Lemma 2.2(ii) and a comparison between series and integrals,
we obtain

E
[∣∣∣∣ 1n

n∑
k=2

( 1

γk−1
− 1

γk

)
(ξhk−1 − ξh⋆ )

∣∣∣∣] ≤ 1

n

n∑
k=2

( 1

γk−1
− 1

γk

)
E[(ξhk−1 − ξh⋆ )

2]
1
2

≤ C

n

n∑
k=2

( 1

γk−1
− 1

γk

)
γ

1
2
k−1

≤ C

n
√
γn

.

Gathering the previous upper bounds,

E
[∣∣∣∣ 1n

n∑
k=1

1

γk
ahk

∣∣∣∣] ≤ C

n
√
γn

. (3.7)

Now, recalling that limH∋h#0 V
′′
h (ξ

h
⋆ ) = V ′′

0 (ξ⋆) and that β ∈
(
1
2 , 1
)
, we obtain

h−1

V ′′
h (ξ

h
⋆ )⌈h−2⌉

⌈h−2⌉∑
k=1

ahk
L1(P)
−! 0 as H ∋ h # 0.
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Step 2. Study of
{

h−1

V ′′
h (ξh⋆ )⌈h−2⌉

∑⌈h−2⌉
k=1 rhk , h ∈ H

}
.

It follows from the inequality (2.27) and Lemma 2.2(ii) that for k ≥ 1

E[|rhk |] ≤ C E[(ξhk−1 − ξh⋆ )
2] ≤ Cγk, (3.8)

so that

E
[∣∣∣∣ 1√

n

n∑
k=1

rhk

∣∣∣∣] ≤ C√
n

n∑
k=1

γk.

A comparison between series and integrals eventually yields

h−1

V ′′
h (ξ

h
⋆ )⌈h−2⌉

⌈h−2⌉∑
k=1

rhk
L1(P)
−! 0 as H ∋ h # 0.

Step 3. Study of
{

h−1

V ′′
h (ξh⋆ )⌈h−2⌉

∑⌈h−2⌉
k=1 ρhk , h ∈ H

}
.

Using (2.28) and Lemma 2.2(ii) yields

E[|ρhk |2] ≤ C E[(ξhk−1 − ξh⋆ )
2]

1
2 ≤ Cγ

1
2
k . (3.9)

Recalling that {ρhk , k ≥ 1} is a sequence of martingale increments, this implies that

E
[∣∣∣∣ 1√

n

n∑
k=1

ρhk

∣∣∣∣2] ≤ C

n

n∑
k=1

γ
1
2
k .

Using comparison between series and integrals, we conclude that

h−1

V ′′
h (ξ

h
⋆ )⌈h−2⌉

⌈h−2⌉∑
k=1

ρhk
L2(P)
−! 0 as H ∋ h # 0.

In view of the study of the different terms of the decomposition (2.20) in the proof of Theorem
2.1, it suffices to establish a CLT for the corresponding martingale arrays. This is the goal of
the next step.
Step 4. Study of

{(
h−1

V ′′
h (ξh⋆ )⌈h−2⌉

∑⌈h−2⌉
k=1 ehk ,

h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 ηhk

)
, h ∈ H

}
.

We apply again the CLT for martingale arrays (Hall & Heyde, 1980, Corollary 3.1) to the
sequence {( h−1

V ′′
h (ξ

h
⋆ )⌈h−2⌉

⌈h−2⌉∑
k=1

ehk ,
h−1

⌈h−2⌉

⌈h−2⌉∑
k=1

ηhk

)
, h ∈ H

}
,

recalling that the sequence {ηhn, n ≥ 1} is defined by (2.23). We start by checking the conditional
Lindeberg condition. Note that Step 7 of the proof of Theorem 2.1 already guarantees that the
sequence

{
h−1

⌈h−2⌉
∑⌈h−2⌉

k=1 ηhk , h ∈ H
}

satisfies this condition. From the definition (2.7) of H1 and
(2.16), for any δ > 0, we have

⌈h−2⌉∑
k=1

E
[∣∣∣ h−1

V ′′
h (ξ

h
⋆ )⌈h−2⌉

ehk

∣∣∣2+δ]
≤

⌈h−2⌉∑
k=1

E[|ehk |2+δ]

|V ′′
h (ξ

h
⋆ )|2+δ⌈h−2⌉1+

δ
2

≤ c2+δ
α

|V ′′
h (ξ

h
⋆ )|2+δ⌈h−2⌉

δ
2

! 0 as H ∋ h # 0,
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recalling that cα = 1 ∨ α/(1 − α). We now prove the convergence of the conditional covariance
matrices sequence

{
Sh = (Si,j

h )1≤i,j≤2, h ∈ H
}
, defined by

S1,1
h :=

⌈h−2⌉∑
k=1

h−2

V ′′
h (ξ

h
⋆ )

2⌈h−2⌉2
E[|ehk |2|Fh

k−1] =
α

1− α

⌈h−2⌉∑
k=1

h−2

V ′′
h (ξ

h
⋆ )

2⌈h−2⌉2
,

S2,2
h :=

⌈h−2⌉∑
k=1

E
[( h−1

⌈h−2⌉
ηhk

)2∣∣∣∣Fh
k−1

]
=

h−2

⌈h−2⌉
Var

(
(Xh − ξh⋆ )

+
)

(1− α)2
,

S1,2
h = S2,1

h :=
h−2

V ′′
h (ξ

h
⋆ )⌈h−2⌉2

⌈h−2⌉∑
k=1

E
[
ehkη

h
k

∣∣Fh
k−1

]
.

Recalling again that limH∋h#0 V
′′
h (ξ

h
⋆ ) = V ′′

0 (ξ⋆) =
fX0

(ξ⋆)

1−α , we readily get

S1,1
h

P-as
−!

α(1− α)

fX0(ξ⋆)
2

as H ∋ h # 0.

Note that the asymptotic behavior of the sequence
{
S2,2
h , h ∈ H

}
has been studied in Step 7

of the proof of Theorem 2.1.
From (2.35) and the fact that limH∋h#0 V

′′
h (ξ

h
⋆ ) = V ′′

0 (ξ⋆) =
fX0

(ξ⋆)

1−α , Cesàro’s lemma yields

S1,2
h = S2,1

h
P-as
−!

α

1− α

E[(X0 − ξ⋆)
+]

fX0(ξ⋆)
as H ∋ h # 0.

The proof is now complete.

Corollary 3.1. Assume that the hypotheses of Theorem 3.1 are satisfied. Then

h−1

 ξ
h
⌈h−2⌉ − ξ⋆

χh
⌈h−2⌉ − χ⋆

 L
−! N

( − v(ξ⋆)
fX0

(ξ⋆)

−
∫∞
ξ⋆

v(ξ)
1−αdξ

 ,Σ

)
as H ∋ h # 0,

where Σ is given by (3.2).

See Remark 2.2 for a comment on the absence of bias in (Barrera et al., 2019, Theorem 3.3) and
their reliance on the unbiased averaged CLT (Fort, 2015, Theorem 3.2).

Proof. For h ∈ H, we decompose ξ
h
⌈h−2⌉ − ξ⋆

χh
⌈h−2⌉ − χ⋆

 =

 ξ
h
⌈h−2⌉ − ξh⋆

χh
⌈h−2⌉ − χh

⋆

+

(
ξh⋆ − ξ⋆

χh
⋆ − χ⋆

)
.

By Lemma 2.2(i),

h−1

(
ξh⋆ − ξ⋆

χh
⋆ − χ⋆

)
! −

 v(ξ⋆)
fX0

(ξ⋆)∫∞
ξ⋆

v(ξ)
1−αdξ

 as H ∋ h # 0.

Using Theorem 3.1 and the result above allows concluding the proof.
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4 Multilevel Stochastic Approximation Algorithm

Let h0 =
1
K ∈ H. Define the sequence of bias parameters {hℓ, 0 ≤ ℓ ≤ L} by

hℓ =
h0
M ℓ

=
1

KM ℓ
∈ H, 0 ≤ ℓ ≤ L, (4.1)

for some fixed integer M > 1. The MLSA algorithm is based on the telescopic summations

ξhL
⋆ = ξh0

⋆ +
L∑

ℓ=1

ξhℓ
⋆ − ξ

hℓ−1
⋆ , (4.2)

χhL
⋆ = χh0

⋆ +

L∑
ℓ=1

χhℓ
⋆ − χ

hℓ−1
⋆ . (4.3)

Following Crépey, Frikha, and Louzi (2023) and Frikha (2016), for a sequence of positive integers
N = {Nℓ, 0 ≤ ℓ ≤ L}, we define the MLSA estimators

ξML
N = ξh0

N0
+

L∑
ℓ=1

ξhℓ
Nℓ

− ξ
hℓ−1

Nℓ
, (4.4)

χML
N = χh0

N0
+

L∑
ℓ=1

χhℓ
Nℓ

− χ
hℓ−1

Nℓ
. (4.5)

Each level 0 ≤ ℓ ≤ L is simulated independently: for j ∈ {(ℓ− 1)+, ℓ}, given {(X(n)
hℓ−1

, X
(n)
hℓ

), 1 ≤
n Nℓ}

iid∼ (Xhℓ−1
, Xhℓ

), we iterate for 0 ≤ n ≤ Nℓ − 1

ξ
hj

n+1 = ξ
hj
n − γn+1H1(ξ

hj
n , X

(n+1)
hj

), (4.6)

χ
hj

n+1 = χ
hj
n − 1

n+ 1
H2(χ

hj
n , ξ

hj
n , X

(n+1)
hj

), (4.7)

starting from real valued random variables ξ
hj

0 and χ
hj

0 = 0, ξ
hj

0 being independent from{
X

(n)
hj

, 1 ≤ n ≤ Nℓ

}
and such that E

[∣∣ξhj

0

∣∣2] < ∞. To obtain perfectly correlated Xhℓ
and

Xhℓ−1
, we first sample Xhℓ−1

and then use the decomposition

Xhℓ
=

1

M
Xhℓ−1

+
1

KM ℓ

KMℓ∑
k=KMℓ−1+1

φ(Y, Z(k)) (4.8)

to obtain Xhℓ
by sampling iid random variables

{
Z(k),KM ℓ−1 < k ≤ KM ℓ

}
.

4.1 Convergence Rate Analysis

Lemma 4.1. (i) Assume that Var(φ(Y,Z)) < ∞. Then

h
− 1

2
ℓ (Xhℓ

−Xhℓ−1
) =: Gℓ

L
−! G :=

(
(M − 1)Var(φ(Y, Z)|Y )

) 1
2N as ℓ " ∞, (4.9)

where N is a standard normal random variable independent of Y defined on a copy (Ω̃, F̃ , P̃)
of the original probability space (Ω,F ,P).

(ii) Assume that, for all ℓ ≥ 1, the function FXhℓ−1
|Gℓ

is continuously differentiable P-as with
derivative fXhℓ−1

|Gℓ
, such that the sequence of functions {(x, g) 7! fXhℓ−1

|Gℓ=g(x), ℓ ≥ 1} is
bounded uniformly in ℓ ≥ 1 and converges locally uniformly to some bounded and continuous
function (x, g) 7! fg(x). Then, for any ξ ∈ R,

h
− 1

2
ℓ E

[∣∣1Xhℓ
>ξ − 1Xhℓ−1

>ξ

∣∣]! E[|G|fG(ξ)] as ℓ " ∞.

16



(iii) For any ξ ∈ R, we have

h
− 1

2
ℓ

(
(Xhℓ

− ξ)+ − (Xhℓ−1
− ξ)+

) L
−! 1X0>ξ G as ℓ " ∞.

Proof. (i) We let Gℓ = h
− 1

2
ℓ (Xhℓ

−Xhℓ−1
), and introduce

Φ(k)(y) := φ(y, Z(k))− E[φ(y, Z)], y ∈ Rd,

where {Z(k), k ≥ 1} is an iid sequence of random variables independent of Y with the same law
as Z. We can then write

Xhℓ
−Xhℓ−1

=
1

KM ℓ

KMℓ∑
k=1

Φ(k)(Y )− 1

KM ℓ−1

KMℓ−1∑
k=1

Φ(k)(Y )

=
(
1− 1

M

)( 1

KM ℓ−1(M − 1)

KMℓ∑
k=KMℓ−1+1

Φ(k)(Y )− 1

KM ℓ−1

KMℓ−1∑
k=1

Φ(k)(Y )

)
,

so that

Gℓ =
(
1− 1

M

) 1
2

(
1

(KM ℓ−1(M − 1))
1
2

KMℓ∑
k=KMℓ−1+1

Φ(k)(Y )− (M − 1)
1
2

(KM ℓ−1)
1
2

KMℓ−1∑
k=1

Φ(k)(Y )

)
.

Now, conditionally on Y , the following central limit theorem holds:

Uℓ :=

 1

(KMℓ−1(M−1))
1
2

∑KMℓ

k=KMℓ−1+1Φ
(k)(Y )

1

(KMℓ−1)
1
2

∑KMℓ−1

k=1 Φ(k)(Y )

 L
−!
ℓ"∞

N
(
0,E[Φ(1)(Y )2|Y ]I2

)
,

where I2 stands for the 2 × 2 identity matrix. Observing that Gℓ = (1 − 1/M)
1
2 ⟨uM , Uℓ⟩, with

uM :=
(
1,−(M − 1)

1
2

)⊤, we conclude that, conditionally on Y ,

h
− 1

2
ℓ (Xhℓ

−Xhℓ−1
)

L
−! N

(
0, (M − 1)Var(φ(Y,Z)|Y )

)
as ℓ " ∞.

The proof of (4.9) is thus complete.

(ii) We have

E
[∣∣1Xhℓ

>ξ − 1Xhℓ−1
>ξ

∣∣] = P(Xhℓ−1
≤ ξ < Xhℓ

) + P(Xhℓ
≤ ξ < Xhℓ−1

).

Introducing the random variable Gℓ, we compute

P(Xhℓ−1
≤ ξ < Xhℓ

) = P
(
Xhℓ−1

≤ ξ < Xhℓ−1
+ h

1
2
ℓ Gℓ

)
= P

(
Xhℓ−1

≤ ξ < Xhℓ−1
+ h

1
2
ℓ Gℓ, Gℓ > 0

)
= E

[
P
(
ξ − h

1
2
ℓ Gℓ < Xhℓ−1

≤ ξ,Gℓ > 0
∣∣Gℓ

)]
= E

[
1Gℓ>0

(
FXhℓ−1

|Gℓ
(ξ)− FXhℓ−1

|Gℓ
(ξ − h

1
2
ℓ Gℓ)

)]
= h

1
2
ℓ E[G

+
ℓ fXhℓ−1

|Gℓ
(ξ)] + h

1
2
ℓ r+ℓ ,

where

r+ℓ :=

∫ 1

0
E
[
G+

ℓ

(
fXhℓ−1

|Gℓ
(ξ − th

1
2
ℓ Gℓ)− fXhℓ−1

|Gℓ
(ξ)
)]
dt.
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Similarly,
P(Xhℓ

≤ ξ < Xhℓ−1
) = h

1
2
ℓ E[G

−
ℓ fXhℓ−1

|Gℓ
(ξ)] + h

1
2
ℓ r

−
ℓ ,

where

r−ℓ :=

∫ 1

0
E
[
G−

ℓ

(
fXhℓ−1

|Gℓ
(ξ − th

1
2
ℓ Gℓ)− fXhℓ−1

|Gℓ
(ξ)
)]
dt.

Hence
h
− 1

2
ℓ E

[∣∣1Xhℓ
>ξ − 1Xhℓ−1

>ξ

∣∣] = E[|Gℓ|fXhℓ−1
|Gℓ

(ξ)] + r+ℓ + r−ℓ .

We now prove that the first term in the right hand side of the above decomposition converges
towards E[|G|]fG(ξ) and that the two other terms vanish as ℓ " ∞. For a fixed K > 0, we
decompose the first term as

E[|Gℓ|fXhℓ−1
|Gℓ

(ξ)] = E[|Gℓ|(fXhℓ−1
|Gℓ

(ξ)− fGℓ
(ξ))1|Gℓ|≤K ]

+ E[|Gℓ|(fXhℓ−1
|Gℓ

(ξ)− fGℓ
(ξ))1|Gℓ|>K ] + E[|Gℓ|fGℓ

(ξ)].
(4.10)

For the first term, we use the fact that the sequence of functions
{
g 7! fXhℓ−1

|Gℓ=g(ξ), ℓ ≥ 1
}

converges locally uniformly towards g 7! fg(ξ). We thus deduce

lim
ℓ"∞

E[|Gℓ|(fXhℓ−1
|Gℓ

(ξ)− fGℓ
(ξ))1|Gℓ|≤K ] = 0.

For the second term, since g 7! fg(ξ) is bounded and the functions {g 7! fXhℓ−1
|Gℓ=g(ξ), ℓ ≥ 1}

are bounded uniformly in ℓ ≥ 1, and given that

E[G2
ℓ ] ≤ 2h−1

ℓ

(
E[(Xhℓ

−X0)
2] + E[(Xhℓ−1

−X0)
2]
)
≤ 2(1 +M−1)E[Var(φ(Y,Z)|Y )] < ∞,

so that supℓ≥1 E[G2
ℓ ] < ∞, we have the upper bound

E[|Gℓ|(fXhℓ−1
|Gℓ

(ξ)− fGℓ
(ξ))1|Gℓ|>K ] ≤ C E[G2

ℓ ]
1
2P(|Gℓ| > K)

1
2 ≤ CK−1 sup

ℓ≥1
E[G2

ℓ ].

For the last term, since supℓ≥1 E[G2
ℓ ] < ∞, the function g 7! fg(ξ) is continuous and bounded

and Gℓ
L

−!
ℓ"∞

G, we have

lim
ℓ"∞

E[|Gℓ|fGℓ
(ξ)] = E[|G|fG(ξ)].

Coming back to the decomposition (4.10), letting ℓ " ∞ and then M " ∞ eventually yields

lim
ℓ"∞

E[|Gℓ|fXhℓ−1
|Gℓ

(ξ)] = E[|G|fG(ξ)].

Similar lines of reasonings using the tightness of {Gℓ, ℓ ≥ 1}, the uniform boundedness and the
local uniform convergence of the functions {(x, g) 7! fXhℓ−1

|Gℓ=g(x), ℓ ≥ 1}, and the continuity
of (x, g) 7! fg(x) give

lim
ℓ"∞

r+ℓ = lim
ℓ"∞

r−ℓ = 0.

(iii) Since P(X0 = ξ) = 0, a first order Taylor’s expansion gives

(Xh − ξ)+ = (X0 − ξ)+ + 1X0>ξ(Xh −X0) + a(X0, Xh −X0)(Xh −X0),

where

a(X0, Xh −X0) =

∫ 1

0

(
1X0+t(Xh−X0)>ξ − 1X0>ξ

)
dt.
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Since Xh
P
! X0 as H ∋ h # 0 and P(X0 = ξ) = 0,

a(X0, Xh −X0)
P

−!
H∋h#0

0.

The above expansion gives, for ℓ ≥ 1,

(Xhℓ
− ξ)+−(Xhℓ−1

− ξ)+ = 1X0>ξ(Xhℓ
−Xhℓ−1

)

+ a(X0, Xhℓ
−X0)(Xhℓ

−X0)− a(X0, Xhℓ−1
−X0)(Xhℓ−1

−X0).

The standard central limit theorem guarantees that both sequences
{
h
− 1

2
ℓ (Xhℓ

−X0), ℓ ≥ 1
}

and{
h
− 1

2
ℓ (Xhℓ−1

−X0), ℓ ≥ 1
}

are tight. Hence,

h
− 1

2
ℓ

(
a(X0, Xhℓ

−X0)(Xhℓ
−X0)− a(X0, Xhℓ−1

−X0)(Xhℓ−1
−X0)

) P
−!
ℓ"∞

0.

It follows from the proof of Lemma 4.1(i) that h
− 1

2
ℓ (Xhℓ

−Xhℓ−1
)

L
−! G conditionally on Y as

ℓ " ∞. Since X0 is σ(Y )-measurable, then, conditionally on Y ,

h
− 1

2
ℓ 1X0>ξ(Xhℓ

−Xhℓ−1
)

L
−!
ℓ"∞

1X0>ξ G.

Gathering the previous asymptotic results yields, by Slutsky’s theorem,

h
− 1

2
ℓ

(
(Xhℓ

− ξ)+ − (Xhℓ−1
− ξ)+

) L
−! 1X0>ξ G as ℓ " ∞.

Finally, we obtain the CLT for the MLSA estimators of the VaR and ES. Depending on the
context, we use the notation Nℓ to designate both Nℓ and

⌈
Nℓ

⌉
interchangeably.

Assumption 2. There exist C < ∞ and δ0 > 0 such that, for any h ∈ H and any compact set
K ⊂ R,

sup
ξ∈K

|fXh
(ξ)− fX0(ξ)| ≤ Ch

1
4
+δ0 .

Theorem 4.1. Suppose that the assumptions of Theorem 2.1 are satisfied and that Assumption 2
holds. Assume also that γn = γ1n

−β, β ∈
(
1
2 , 1
]
, with λγ1 > 1 if β = 1. Let

Nℓ = h
− 2

β

L

( L∑
ℓ′=0

h
− 2β−1

2(1+β)

ℓ′

) 1
β

h
3

2(1+β)

ℓ , 0 ≤ ℓ ≤ L. (4.11)

Then  h−1
L

(
ξML
N − ξhL

⋆

)
h
− 1

β
− 2β−1

4β(1+β)

L

(
χML
N − χhL

⋆

)
 L

−! N (0,ΣML
β ) as L " ∞,

where ΣML
β =

γ1E[|G|fG(ξ⋆)]

(1−α)(2fX0
(ξ⋆)−(1−α)γ−1

1 1β=1)
0

0
h

2β−1
2(1+β)
0

(
M

2β−1
2(1+β)−1

) 1
β

(1−α)2

(
h−1
0 Var((Xh0

−ξ
h0
⋆ )+)

M
2β−1

2β(1+β)

+
Var(1X0>ξ⋆G)

M
2β−1
2(1+β)−1

)
 .

(4.12)
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Remark 4.1. We use the optimal iteration parameters (4.11) obtained for the VaR MLSA
in Crépey, Frikha, and Louzi (2023, Section 4.2). These were obtained by optimizing the MLSA
complexity while constraining the global L2 error of the MLSA VaR estimator to a prescribed
error of order ε2 > 0.

Proof. In the following developments, we denote by C a positive constant whose value may
change from line to line and does not depend upon L.

According to (4.4), (4.2) and (2.18),

ξML
N − ξhL

⋆ = ξh0
N0

− ξh0
⋆ +

L∑
ℓ=1

(
ξhℓ
Nℓ

− ξhℓ
⋆ −

(
ξ
hℓ−1

Nℓ
− ξ

hℓ−1
⋆

))
= ξh0

N0
− ξh0

⋆ +
L∑

ℓ=1

(
ξhℓ
0 − ξhℓ

⋆ − (ξ
hℓ−1

0 − ξ
hℓ−1
⋆ )

)
Π1:Nℓ

+

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓ

k − g
hℓ−1

k ) +

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(rhℓ

k − r
hℓ−1

k )

+

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ρhℓ

k − ρ
hℓ−1

k ) +
L∑

ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k ),

(4.13)

recalling the definitions (2.13)–(2.19). Similarly, from (2.20), (4.3) and (4.5),

χML
N − χhL

⋆ = χh0
N0

− χh0
⋆ +

L∑
ℓ=1

(
χhℓ
Nℓ

− χhℓ
⋆ −

(
χ
hℓ−1

Nℓ
− χ

hℓ−1
⋆

))
= χh0

N0
− χh0

⋆ +

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

θhℓ
k − θ

hℓ−1

k

+
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ζhℓ
k − ζ

hℓ−1

k +
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k ,

(4.14)

recalling the definitions (2.21)–(2.23).
We will study each part of the decompositions (4.13)-(4.14) independently.

Step 1. Study of
{
h−1
L

(
ξh0
N0

− ξh0
⋆

)
, L ≥ 1

}
.

Using Lemma 2.2(ii) and (4.11), we obtain

E
[∣∣h−1

L

(
ξh0
N0

− ξh0
⋆

)∣∣2] ≤ Ch−2
L γN0 ≤ Ch

2β−1
2(1+β)

L ,

so that
h−1
L

(
ξh0
N0

− ξh0
⋆

) L2(P)
−! 0 as L " ∞.

Step 2. Study of
{
h−1
L

∑L
ℓ=1

(
ξhℓ
0 − ξhℓ

⋆ − (ξ
hℓ−1

0 − ξ
hℓ−1
⋆ )

)
Π1:Nℓ

, L ≥ 1
}
.

Using the facts that suph∈H E[|ξh0 − ξh⋆ |] < ∞, recalling (2.11), and that lim supn"∞ γ−1
n |Π1:n| =
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0, which stems from (2.24) and Lemma A.1(ii), we obtain

E
[∣∣∣∣h−1

L

L∑
ℓ=1

(
ξhℓ
0 − ξhℓ

⋆ − (ξ
hℓ−1

0 − ξ
hℓ−1
⋆ )

)
Π1:Nℓ

∣∣∣∣]

≤ 2 sup
h∈H

E[|ξh0 − ξh⋆ |]h−1
L

L∑
ℓ=1

|Π1:Nℓ
|

≤ Ch−1
L

L∑
ℓ=1

γNℓ

≤ Ch
1
2
L,

where we used (4.11) for the last inequality. Hence

h−1
L

L∑
ℓ=1

(
ξhℓ
0 − ξhℓ

⋆ − (ξ
hℓ−1

0 − ξ
hℓ−1
⋆ )

)
Π1:Nℓ

L1(P)
−! 0 as L " ∞.

Step 3. Study of
{
h−1
L

∑L
ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(ghℓ
k − g

hℓ−1

k ), L ≥ 1
}
.

There exists a compact set K ⊂ R such that ξhℓ
⋆ ∈ K, for all ℓ ≥ 0. Thus, Assumptions 1(iv)

and 2 and Lemma 2.2(i) imply

|V ′′
0 (ξ⋆)− V ′′

hℓ
(ξhℓ

⋆ )| ≤ 1

1− α

(
[fX0 ]Lip|ξhℓ

⋆ − ξ⋆|+ sup
ξ∈K

∣∣fX0(ξ)− fXhℓ
(ξ)
∣∣)

≤ C
(
hℓ + h

1
4
+δ0

ℓ

)
≤ Ch

( 1
4
+δ0)∧1

ℓ .

From the definition (2.13), by using Lemma 2.2(ii), we deduce that, for ℓ ≥ 1,

E
[∣∣ghℓ

k

∣∣] ≤ |V ′′
0 (ξ⋆)− V ′′

hℓ
(ξhℓ

⋆ )|E[(ξhℓ
k−1 − ξhℓ

⋆ )2]
1
2 ≤ Ch

( 1
4
+δ0)∧1

ℓ γ
1
2
k . (4.15)

Via (2.24), (4.11) and Lemma A.1(i), by distinguishing the two cases δ0 < 3
4 ∧ 2β−1

4(1+β) = 2β−1
4(1+β)

and δ0 ≥ 2β−1
4(1+β) , we obtain

E
[∣∣∣∣h−1

L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓ

k − g
hℓ−1

k )

∣∣∣∣]

≤ h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γk|Πk+1:Nℓ
|
(
E
[∣∣ghℓ

k

∣∣]+ E
[∣∣ghℓ−1

k

∣∣])
≤ Ch−1

L

L∑
ℓ=1

h
( 1
4
+δ0)∧1

ℓ

Nℓ∑
k=1

γ
3
2
k |Πk+1:Nℓ

|

≤ Ch−1
L

L∑
ℓ=1

h
( 1
4
+δ0)∧1

ℓ γ
1
2
Nℓ

≤ Ch
δ0∧ 2β−1

4(1+β)

L ,

so that

h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ghℓ

k − g
hℓ−1

k )
L1(P)
−! 0 as L " ∞.
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Step 4. Study of
{
h−1
L

∑L
ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(rhℓ
k − r

hℓ−1

k ), L ≥ 1
}
.

It follows from (3.8), (2.24), Lemma A.1(i) and (4.11) that

E
[∣∣∣∣h−1

L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(rhℓ

k − r
hℓ−1

k )

∣∣∣∣]

≤ h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γk|Πk+1:Nℓ
|
(
E
[∣∣rhℓ

k

∣∣]+ E
[∣∣rhℓ−1

k

∣∣])
≤ Ch−1

L

L∑
ℓ=1

Nℓ∑
k=1

γ2k |Πk+1:Nℓ
|

≤ Ch−1
L

L∑
ℓ=1

γNℓ

≤ Ch
1
2
L,

so that

h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(rhℓ

k − r
hℓ−1

k )
L1(P)
−! 0 as L " ∞.

Step 5. Study of
{
h−1
L

∑L
ℓ=1

∑Nℓ
k=1 γkΠk+1:Nℓ

(ρhℓ
k − ρ

hℓ−1

k ), L ≥ 1
}
.

Given that the innovations of the MLSA scheme are independent levelwise, the random vari-
ables

{∑Nℓ
k=1 γkΠk+1:Nℓ

(ρhℓ
k − ρ

hℓ−1

k ), ℓ ≥ 1
}

are independent and with zero mean. Besides, at
each level ℓ ≥ 1, the sequence {ρhℓ

k − ρ
hℓ−1

k , k ≥ 1} is an {Fhℓ
k , k ≥ 1}-martingale increment

sequence. Thus, from (3.9), (2.24), Lemma A.1(i) (recalling that λγ1 > 1) and (4.11), we have

E
[(

h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ρhℓ

k − ρ
hℓ−1

k )

)2]

= h−2
L

L∑
ℓ=1

Nℓ∑
k=1

γ2kΠ
2
k+1:Nℓ

E[(ρhℓ
k − ρ

hℓ−1

k )2]

≤ 2h−2
L

L∑
ℓ=1

Nℓ∑
k=1

γ2kΠ
2
k+1:Nℓ

(
E
[∣∣ρhℓ

k

∣∣2]+ E
[∣∣ρhℓ−1

k

∣∣2])
≤ Ch−2

L

L∑
ℓ=1

Nℓ∑
k=1

γ
5
2
k Π

2
k+1:Nℓ

≤ Ch−2
L

L∑
ℓ=1

γ
3
2
Nℓ

≤ Ch
1
4
L,

so that

h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ρhℓ

k − ρ
hℓ−1

k )
L2(P)
−! 0 as L " ∞.

Step 6. Study of
{
h
− 1

β
− 2β−1

4β(1+β)

L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 θ

hℓ
k − θ

hℓ−1

k , L ≥ 1
}
.
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Define

γ̄n =
1

n

n∑
k=1

γk, n ≥ 1.

The random variables
{

1
Nℓ

∑Nℓ
k=1 θ

hℓ
k −θ

hℓ−1

k , ℓ ≥ 1
}

are independent and centered. Moreover, for

any fixed level ℓ ≥ 1, the sequence
{
θhℓ
k − θ

hℓ−1

k , k ≥ 1
}

is an {Fhℓ
k , k ≥ 1}-martingale increment

sequence. Hence, using (2.29), a comparison between series and integrals and then (4.11), we
obtain

E
[∣∣∣∣h− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

θhℓ
k − θ

hℓ−1

k

∣∣∣∣2]

≤ 2h
− 2

β
− 2β−1

2β(1+β)

L

L∑
ℓ=1

1

Nℓ

(
E
[(

1√
Nℓ

Nℓ∑
k=1

θhℓ
k

)2]
+ E

[(
1√
Nℓ

Nℓ∑
k=1

θ
hℓ−1

k

)2])

≤ Ch
− 2

β
− 2β−1

2β(1+β)

L

L∑
ℓ=1

γ̄Nℓ

Nℓ

≤ C

h
3β

2(1+β)

L , β ∈
(
1
2 , 1
)
,

h
3
4
L |lnhL| , β = 1.

Hence

h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

θhℓ
k − θ

hℓ−1

k

L2(P)
−! 0 as L " ∞.

Step 7. Study of
{
h
− 1

β
− 2β−1

4β(1+β)

L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 ζ

hℓ
k − ζ

hℓ−1

k , L ≥ 1
}
.

Using (2.30), a comparison between series and integrals and then (4.11), we obtain

E
[∣∣∣∣h− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ζhℓ
k − ζ

hℓ−1

k

∣∣∣∣]

≤ h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1√
Nℓ

(
E
[∣∣∣∣ 1√

Nℓ

Nℓ∑
k=1

ζhℓ
k

∣∣∣∣]+ E
[∣∣∣∣ 1√

Nℓ

Nℓ∑
k=1

ζ
hℓ−1

k

∣∣∣∣])

≤ Ch
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

γ̄Nℓ

≤ C

h
9

4β(1+β)

L , β ∈
(
1
2 , 1
)
,

h
3
8
L |lnhL| , β = 1.

Hence

h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ζhℓ
k − ζ

hℓ−1

k

L1(P)
−! 0 as L " ∞.

Step 8. Study of
{
h
− 1

β
− 2β−1

4β(1+β)

L

(
χh0
N0

− χh0
⋆

)
, L ≥ 1

}
.

It follows from the definition of N0 in (4.11) that

h
− 1

β
− 2β−1

4β(1+β)

L

(
χh0
N0

− χh0
⋆

)
= h

− 3
4(1+β)

0

(
1−M

− 2β−1
2(1+β)

) 1
2β

√
N0

(
χh0
N0

− χh0
⋆

)
(
1−M

− 2β−1
2(1+β)

(L+1)) 1
2β

.
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According to the decomposition (2.20),

√
N0

(
χh0
N0

− χh0
⋆

)
=

1√
N0

N0∑
k=1

θh0
k +

1√
N0

N0∑
k=1

ζh0
k +

1√
N0

N0∑
k=1

ηh0
k .

From (2.29) and (2.30), we obtain

1√
N0

N0∑
k=1

θh0
k

L2(P)
−! 0,

1√
N0

N0∑
k=1

ζh0
k

L1(P)
−! 0 as N0 " ∞.

Since {ηh0
k , k ≥ 1} is an iid sequence satisfying E[|ηh0

1 |2] < ∞, the classical CLT yields

1√
N0

N0∑
k=1

ηh0
k

L
−! N

(
0,

Var
(
(Xh0 − ξh0

⋆ )+
)

(1− α)2

)
as N0 " ∞.

Hence

h
− 1

β
− 2β−1

4β(1+β)

L

(
χh0
N0

− χh0
⋆

) L
−!
L"∞

N
(
0, h

− 3
2(1+β)

0

(
1−M

− 2β−1
2(1+β)

) 1
β
Var

(
(Xh0 − ξh0

⋆ )+
)

(1− α)2

)
.

Step 9. Study of{(
h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k ), h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k

)
, L ≥ 1

}
.

Since N1 ≥ · · · ≥ NL, we have

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k ) =

N1∑
k=1

L∑
ℓ=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k )11≤k≤Nℓ
,

and
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k =

N1∑
k=1

L∑
ℓ=1

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

.

We now apply again the CLT for martingale arrays (Hall & Heyde, 1980, Corollary 3.1) to the
martingale array{(

h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k ), h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k

Nℓ

)
, L ≥ 1

}
.

We first check the conditional Lindeberg condition. Let δ > 0. By the levelwise independence
of the innovations of the MLSA scheme and given that, for all k ≥ 1, the random variables{
(ehℓ

k − e
hℓ−1

k )11≤k≤Nℓ
, 1 ≤ ℓ ≤ L

}
are independent and centered, applying successively the

Marcinkiewicz-Zygmund and the Jensen inequalities, we obtain
N1∑
k=1

E
[∣∣∣∣h−1

L

L∑
ℓ=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k )11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)
L

N1∑
k=1

γ2+δ
k E

[∣∣∣∣ L∑
ℓ=1

Π2
k+1:Nℓ

(ehℓ
k − e

hℓ−1

k )211≤k≤Nℓ

∣∣∣∣1+ δ
2
]

≤ Ch
−(2+δ)
L

N1∑
k=1

γ2+δ
k L

δ
2

L∑
ℓ=1

|Πk+1:Nℓ
|2+δ E

[∣∣ehℓ
k − e

hℓ−1

k

∣∣2+δ]
11≤k≤Nℓ

= Ch
−(2+δ)
L L

δ
2

L∑
ℓ=1

Nℓ∑
k=1

γ2+δ
k |Πk+1:Nℓ

|2+δ E
[∣∣ehℓ

k − e
hℓ−1

k

∣∣2+δ]
. (4.16)
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It follows from Lemma 4.1(ii) and the uniform boundedness of
{
fXhℓ−1

, ℓ ≥ 1
}

that

E
[∣∣ehℓ

k − e
hℓ−1

k

∣∣2+δ]
= E

[∣∣H1(ξ
hℓ
⋆ , X

(k)
hℓ

)−H1(ξ
hℓ−1
⋆ , X

(k)
hℓ−1

)
∣∣2+δ]

≤ 1

(1− α)2+δ

(
E
[∣∣∣1

Xhℓ
>ξ

hℓ
⋆

− 1
Xhℓ−1

>ξ
hℓ
⋆

∣∣∣]+ E
[∣∣∣1

Xhℓ−1
>ξ

hℓ
⋆

− 1
Xhℓ−1

>ξ
hℓ−1
⋆

∣∣∣])
≤ C

(
E
[∣∣∣1Xhℓ

>ξ⋆ − 1Xhℓ−1
>ξ⋆

∣∣∣]+ E
[∣∣∣1

Xhℓ
>ξ

hℓ
⋆

− 1Xhℓ
>ξ⋆

∣∣∣]
+ E

[∣∣∣1
Xhℓ−1

>ξ
hℓ−1
⋆

− 1Xhℓ−1
>ξ⋆

∣∣∣]+ E
[∣∣∣1

Xhℓ−1
>ξ

hℓ
⋆

− 1
Xhℓ−1

>ξ
hℓ−1
⋆

∣∣∣])
≤ C

(
h

1
2
ℓ + E

[∣∣FXhℓ
(ξhℓ

⋆ )− FXhℓ
(ξ⋆)

∣∣]+ E
[∣∣FXhℓ−1

(ξ
hℓ−1
⋆ )− FXhℓ−1

(ξ⋆)
∣∣]

+ E
[∣∣FXhℓ−1

(ξhℓ
⋆ )− FXhℓ−1

(ξ
hℓ−1
⋆ )

∣∣])
≤ C(h

1
2
ℓ + |ξhℓ

⋆ − ξ⋆|+ |ξhℓ−1
⋆ − ξ⋆|+ |ξhℓ

⋆ − ξ
hℓ−1
⋆ |)

≤ Ch
1
2
ℓ ,

(4.17)

where we used Lemma 2.2(i) for the last inequality. Plugging the previous estimate into (4.16)
and then using Lemma A.1(i) and then (4.11), we obtain

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h−1
L γkΠk+1:Nℓ

(ehℓ
k − e

hℓ−1

k )11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)
L L

δ
2

L∑
ℓ=1

γ1+δ
Nℓ

h
1
2
ℓ

≤ Ch
δ
2
LL

δ
2 .

Hence

lim sup
L"∞

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h−1
L γkΠk+1:Nℓ

(ehℓ
k − e

hℓ−1

k )11≤k≤Nℓ

∣∣∣∣2+δ]
= 0.

Similarly,
N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)( 1

β
+ 2β−1

4β(1+β)
)

L

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

(ηhℓ
k − η

hℓ−1

k )2

N2
ℓ

11≤k≤Nℓ

∣∣∣∣1+ δ
2
]

≤ Ch
−(2+δ)( 1

β
+ 2β−1

4β(1+β)
)

L

N1∑
k=1

L
δ
2

L∑
ℓ=1

E
[∣∣ηhℓ

k − η
hℓ−1

k

∣∣2+δ]
N2+δ

ℓ

11≤k≤Nℓ

= Ch
−(2+δ)( 1

β
+ 2β−1

4β(1+β)
)

L L
δ
2

L∑
ℓ=1

1

N2+δ
ℓ

Nℓ∑
k=1

E
[∣∣ηhℓ

k − η
hℓ−1

k

∣∣2+δ]
. (4.18)

Now note that

E
[∣∣ηhℓ

k − η
hℓ−1

k

∣∣2+δ]
≤ 21+δ

(1− α)2+δ
E
[∣∣(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

∣∣2+δ]
≤ 22+2δ

(1− α)2+δ

(
E[|Xhℓ

−Xhℓ−1
|2+δ] + |ξhℓ

⋆ − ξ
hℓ−1
⋆ |2+δ

)
≤ Ch

1+ δ
2

ℓ ,

(4.19)
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where we used the facts that x 7! x+ is 1-Lipschitz, as well as Lemmas 2.1(i) and 2.2(i). There-
fore, plugging the previous estimate into (4.18) and using (4.11), we obtain

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)( 1

β
+ 2β−1

4β(1+β)
)

L L
δ
2

L∑
ℓ=1

h
1+ δ

2
ℓ

N1+δ
ℓ

≤ Ch
δ( 1

β
+ 2β−1

4β(1+β)
)

L |lnhL|
δ
2

L∑
ℓ=1

h
−(2−β)δ+2β−1

2(1+β)

ℓ .

By taking δ ∈
(
0, 2β−1

2−β

)
, we obtain

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]
≤ Ch

δ( 1
β
+ 2β−1

4β(1+β)
)

L |lnhL|
δ
2 ,

so that

lim sup
L"∞

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]
= 0.

The conditional Lindeberg condition is thus satisfied.
We now prove the convergence of the conditional covariance matrices sequence

{
SL =

(Si,j
L )1≤i,j≤2, L ≥ 1

}
defined by

S1,1
L :=

N1∑
k=1

E
[( L∑

ℓ=1

h−1
L γkΠk+1:Nℓ

(ehℓ
k − e

hℓ−1

k )11≤k≤Nℓ

)2∣∣∣∣FhL
k−1

]
,

S2,2
L :=

N1∑
k=1

E
[( L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2∣∣∣∣FhL
k−1

]
,

S1,2
L = S2,1

L :=

N1∑
k=1

E
[ L∑

ℓ=1

h
−1− 1

β
− 2β−1

4β(1+β)

L

Nℓ
γkΠk+1:Nℓ

(ehℓ
k − e

hℓ−1

k )(ηhℓ
k − η

hℓ−1

k )11≤k≤Nℓ

∣∣∣∣FhL
k−1

]
.

The sequence of random variables
{∑L

ℓ=1 γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k )11≤k≤Nℓ
), k ≥ 1

}
is an

{FhL
k , k ≥ 1}-martingale increment sequence. Also, the random variables

{
(ehℓ

k −e
hℓ−1

k )11≤k≤Nℓ
, 1 ≤

ℓ ≤ L
}

are independent and centered. Hence

S1,1
L =

N1∑
k=1

E
[( L∑

ℓ=1

h−1
L γkΠk+1:Nℓ

(ehℓ
k − e

hℓ−1

k )11≤k≤Nℓ

)2]
=

L∑
ℓ=1

Uℓ,

with

Uℓ :=

Nℓ∑
k=1

h−2
L γ2kΠ

2
k+1:Nℓ

E[(ehℓ
1 − e

hℓ−1

1 )2]

= γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1

h
− 2β−1

2(1+β)

ℓ

(
γ−1
Nℓ

Nℓ∑
k=1

γ2kΠ
2
k+1:Nℓ

)
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2]

= γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1

h
− 2β−1

2(1+β)

ℓ ΣNℓ
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2],
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where we used (4.11) and the definition (2.31) of Σn. The uniform boundedness of {fXh
, h ∈ H}

and Lemma 2.2(i) give

h
− 1

2
ℓ

∣∣∣E[(ehℓ
1 − e

hℓ−1

1 )2]− 1

(1− α)2
E
[∣∣1Xhℓ

>ξ⋆ − 1Xhℓ−1
−ξ⋆

∣∣]∣∣∣
≤

h
− 1

2
ℓ

(1− α)2
(
E
[∣∣1

Xhℓ
>ξ

hℓ
⋆

− 1Xhℓ
>ξ⋆

∣∣]+ E
[∣∣1

Xhℓ−1
>ξ

hℓ−1
⋆

− 1Xhℓ−1
>ξ⋆

∣∣])
≤

h
− 1

2
ℓ

(1− α)2
(
|FXhℓ

(ξhℓ
⋆ )− FXhℓ

(ξ⋆)|+ |FXhℓ−1
(ξ

hℓ−1
⋆ )− FXhℓ−1

(ξ⋆)|
)

≤ suph∈H ∥fXh
∥∞

(1− α)2
h
− 1

2
ℓ

(
|ξhℓ
⋆ − ξ⋆|+ |ξhℓ−1

⋆ − ξ⋆|
)

≤ Ch
1
2
ℓ .

Hence, by Lemma 4.1(ii),

lim
ℓ"∞

h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2] =
1

(1− α)2
lim
ℓ"∞

h
− 1

2
ℓ E

[∣∣1Xhℓ
>ξ⋆ − 1Xhℓ−1

>ξ⋆

∣∣] = E[|G|fG(ξ⋆)]
(1− α)2

. (4.20)

Now, using the definitions (2.31) and (2.32),

S1,1
L = γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1 L∑
ℓ=1

h
− 2β−1

2(1+β)

ℓ ΣNℓ
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2]

= γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1 L∑
ℓ=1

h
− 2β−1

2(1+β)

ℓ Σ⋆h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2]

+ γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1 L∑
ℓ=1

h
− 2β−1

2(1+β)

ℓ ∆ΣNℓ
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2],

where ∆ΣNℓ
= ΣNℓ

− Σ⋆. Reusing the notation from the result (2.33), there exists µ > 0 such
that for ε > 0, there exists n0 ≥ 0 such that, for n ≥ n0, 1 − (µ + ε)γn > 0 and |∆Σn| ≤ ε.
One further has the existence of L0 ≥ 1 such that, for L ≥ L0, N1 ≥ · · · ≥ NL ≥ n0 so that
|∆ΣNL

| ≤ ε. By the inequality (2.33) and Lemma A.1(i), for n ≥ NL,

|∆Σn| ≤ |∆ΣNL
| exp

(
− (µ+ ε)

n∑
k=NL

γk

)
+ ε

n∑
k=NL

γk exp

(
− (µ+ ε)

n∑
j=k

γj

)
≤ |∆ΣNL

|+ Cε ≤ Cε.

In particular, sup1≤ℓ≤L |∆ΣNℓ
| ≤ Cε. Thus

lim sup
L"∞

sup
1≤ℓ≤L

|∆ΣNℓ
| = 0.

Using the previous limit, (4.20), and the ‘./∞’ case of Cesàro’s lemma, we obtain

lim sup
L"∞

∣∣∣∣γ1( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1 L∑
ℓ=1

h
− 2β−1

2(1+β)

ℓ ∆ΣNℓ
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2]

∣∣∣∣
≤ C lim sup

L"∞
sup

1≤ℓ≤L
|∆ΣNℓ

| = 0.

Finally, again by (4.20) and Cesàro’s lemma (‘./∞’ version),

lim
L"∞

S1,1
L = lim

L"∞
γ1

( L∑
ℓ=0

h
− 2β−1

2(1+β)

ℓ

)−1( L∑
ℓ=1

h
− 2β−1

2(1+β)

ℓ Σ⋆h
− 1

2
ℓ E[(ehℓ

k − e
hℓ−1

k )2]

)
=

γ1E[|G|fG(ξ⋆)]
(1− α)2

(
2V ′′

0 (ξ⋆)−
1β=1

γ1

) .
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In order to deal with
{
S2,2
L , L ≥ 1

}
, we proceed similarly. In particular, one has

S2,2
L =

N1∑
k=1

E
[( L∑

ℓ=1

h
− 1

β
− 2β−1

4β(1+β)

L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2]

=
L∑

ℓ=1

h
− 2

β
− 2β−1

2β(1+β)

L

N2
ℓ

Nℓ∑
k=1

E[(ηhℓ
k − η

hℓ−1

k )2]

=
L∑

ℓ=1

Wℓ,

where we introduced, for ℓ ≥ 1

Wℓ :=
h
− 2

β
− 2β−1

2β(1+β)

L

Nℓ
E[(ηhℓ

1 − η
hℓ−1

1 )2]

=
h
− 2

β
− 2β−1

2β(1+β)

L

(1− α)2
hℓ
Nℓ

h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

)
.

By Lemma 2.2(i),

h
− 1

2
ℓ E

[∣∣(Xhℓ
− ξhℓ

⋆ )+ − (Xhℓ−1
− ξ

hℓ−1
⋆ )+ −

(
(Xhℓ

− ξ⋆)
+ − (Xhℓ−1

− ξ⋆)
+
)∣∣]

≤ h
− 1

2
ℓ

(
|ξhℓ
⋆ − ξ⋆|+ |ξhℓ−1

⋆ − ξ⋆|
)
≤ Ch

1
2
ℓ ,

so that, by Lemma 4.1(iii) and Slutsky’s theorem,

h
− 1

2
ℓ

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

) L
−!
ℓ"∞

1X0>ξ⋆ G.

By Lemmas 2.1(i) and 2.2(i),

sup
ℓ≥1

h
− p

2
ℓ E

[∣∣(Xhℓ
− ξhℓ

⋆ )+ − (Xhℓ−1
− ξ

hℓ−1
⋆ )+

∣∣p] < ∞,

for some p > 2. The previous weak convergence together with the above uniform integrability
yield

lim
ℓ"∞

h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

)
= Var(1X0>ξ⋆ G). (4.21)

Eventually, (4.11) and Cesàro’s lemma (‘0/0’ version) give

lim
L"∞

S2,2
L = lim

L"∞

h
− 2

β
− 2β−1

2β(1+β)

L

(1− α)2

( L∑
ℓ=1

hℓ
Nℓ

)

× lim
L"∞

( L∑
ℓ=1

hℓ
Nℓ

)−1( L∑
ℓ=1

hℓ
Nℓ

h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

))

=
h

2β−1
2(1+β)

0

(
M

2β−1
2(1+β) − 1

) 1
β
−1

(1− α)2

× lim
L"∞

( L∑
ℓ=1

h
2β−1
2(1+β)

ℓ

)−1( L∑
ℓ=1

h
2β−1
2(1+β)

ℓ h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

))

=
h

2β−1
2(1+β)

0

(
M

2β−1
2(1+β) − 1

) 1
β
−1

(1− α)2
Var(1X0>ξ⋆ G).
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We now prove that
{
S1,2
L , L ≥ 1

}
converges towards zero in L1(P). It follows from (4.20)

and (4.21) that

E[(ehℓ
1 − e

hℓ−1

1 )2] =
1

(1− α)2
E
[∣∣1Xhℓ

>ξ⋆ − 1Xhℓ−1
>ξ⋆

∣∣] ≤ Ch
1
2
ℓ , (4.22)

E[(ηhℓ
1 − η

hℓ−1

1 )2] =
1

(1− α)2
Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

)
≤ Chℓ,

which, by the Cauchy-Schwarz inequality, yields

E
[∣∣(ehℓ

k − e
hℓ−1

k )(ηhℓ
k − η

hℓ−1

k )
∣∣] ≤ Ch

3
4
ℓ . (4.23)

Hence, using (4.23) then (2.24), Lemma A.1(i), and (4.11), we obtain

∣∣S1,2
L

∣∣ ≤ h
−1− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

γk|Πk+1:Nℓ
|E
[∣∣(ehℓ

k − e
hℓ−1

k )(ηhℓ
k − η

hℓ−1

k )
∣∣]

≤ Ch
−1− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

h
3
4
ℓ

Nℓ

Nℓ∑
k=1

γk|Πk+1:Nℓ
|

≤ Ch
−1+ 1

β
+ 2β−1

4β(1+β)

L

L∑
ℓ=1

h
− 3(1−β)

4(1+β)

ℓ

≤ C

h
−β2−β+3
4β(1+β)

L , β ∈
(
1
2 , 1
)
,

h
1
8
L |lnhL| , β = 1.

Hence
S1,2
L = S2,1

L
P-as
−! 0 as L " ∞.

It follows that(
h−1
L

L∑
ℓ=1

Nℓ∑
k=1

γkΠk+1:Nℓ
(ehℓ

k − e
hℓ−1

k ), h
− 1

β
− 2β−1

4β(1+β)

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k

)
L
!
L"∞

N (0, Σ̃β),

where

Σ̃β :=


γ1E[|G|fG(ξ⋆)]

(1−α)(2fX0
(ξ⋆)−(1−α)γ−1

1 1β=1)
0

0
h

2β−1
2(1+β)
0

(
M

2β−1
2(1+β)−1

) 1
β

(1−α)2
Var(1X0>ξ⋆G)

M
2β−1
2(1+β)−1

 .

Step 10. Conclusion.

Combining Steps 1 to 7, the CLTs of Steps 8 and 9, and noting that the two sequences in-
troduced in the two last steps are independent (by independency of the levels), concludes the
demonstration.

5 Averaged Multilevel Stochastic Approximation Algorithm

For each level 0 ≤ ℓ ≤ L and for j ∈ {(ℓ−1)+, ℓ}, we consider the estimate ξhj

Nℓ
calculated by aver-

aging out the simulations ξhj

0 , . . . , ξ
hj

Nℓ
from (4.6). The averaged MLSA (AMLSA) approximation

for the VaR is

ξ
ML
N = ξ

h0

N0
+

L∑
ℓ=1

ξ
hℓ

Nℓ
− ξ

hℓ−1

Nℓ
. (5.1)
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5.1 Convergence Rate Analysis

Theorem 5.1. Suppose that the assumptions of Theorem 2.1 are satisfied, that Assumption 2
holds, that γn = γ1n

−β, β ∈
(
8
9 , 1
)
, and that δ0 ≥ 1

8 . Let

Nℓ = h−2
L

( L∑
ℓ′=0

h
− 1

4
ℓ′

)
h

3
4
ℓ , 0 ≤ ℓ ≤ L. (5.2)

Then (
h−1
L

(
ξ

ML
N − ξhL

⋆

)
h
− 9

8
L

(
χML
N − χhL

⋆

)
)

L
−! N (0,Σ

ML
) as L " ∞,

where

Σ
ML

=


E[|G|fG(ξ⋆)]

(1−α)2(1−M− 1
4 )

0

0
h
− 3

8
0 (1−M− 1

4 )
1
2Var((Xh0

−ξ
h0
⋆ )+)

(1−α)2
+

h
1
4
0 Var(1X0>ξ⋆G)

(1−α)2M
1
4
0

 . (5.3)

Remark 5.1. Contrary to the classical Ruppert-Polyak averaging principle, the above CLT is
not valid for any β ∈

(
1
2 , 1
)
, but requires β ∈

(
8
9 , 1
)
. This lower threshold on the admissible

values of β appears when one studies the convergence of the different related terms in the proof
below.

The values of Nℓ in (5.2) are determined by minimizing the algorithm complexity while main-
taining the L2 error at order ε2, as detailed in Section B.2; the ensuing complexity is discussed
in Section 6.

Proof. In the following developments, we denote by C a positive constant whose value may
change from line to line and does not depend upon L.

Recalling the sequences {ahn, n ≥ 1}, {ghn, n ≥ 1}, {rhn, n ≥ 1}, {ρhn, n ≥ 1} and {ehn, n ≥ 1}
from (3.4) and (2.13)–(2.16), the decomposition (2.17) implies

ξhn − ξh⋆ =
1

V ′′
0 (ξ⋆)

ahn +
1

V ′′
0 (ξ⋆)

ghn +
1

V ′′
0 (ξ⋆)

rhn +
1

V ′′
0 (ξ⋆)

ρhn +
1

V ′′
0 (ξ⋆)

ehn. (5.4)

Averaging the previous identity yields

ξ
h
n − ξh⋆ =

1

V ′′
0 (ξ⋆)n

n∑
k=1

ahk +
1

V ′′
0 (ξ⋆)n

n∑
k=1

ghk

+
1

V ′′
0 (ξ⋆)n

n∑
k=1

rhk +
1

V ′′
0 (ξ⋆)n

n∑
k=1

ρhk +
1

V ′′
0 (ξ⋆)n

n∑
k=1

ehk .

(5.5)

From (5.1), (4.2), and the above equality, we obtain

ξ
ML
N − ξhL

⋆ = ξ
h0

N0
− ξh0

⋆ +

L∑
ℓ=1

(
ξ
hℓ

Nℓ
− ξhℓ

⋆ −
(
ξ
hℓ−1

Nℓ
− ξ

hℓ−1
⋆

))
= ξ

h0

N0
− ξh0

⋆ +
1

V ′′
0 (ξ⋆)

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ahℓ
k − a

hℓ−1

k (5.6)

+
1

V ′′
0 (ξ⋆)

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k +
1

V ′′
0 (ξ⋆)

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

rhℓ
k − r

hℓ−1

k (5.7)

+
1

V ′′
0 (ξ⋆)

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ρhℓ
k − ρ

hℓ−1

k +
1

V ′′
0 (ξ⋆)

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ehℓ
k − e

hℓ−1

k . (5.8)
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We now study each term of the above decomposition.

Step 1. Study of
{
h−1
L

(
ξ
h0

N0
− ξh0

⋆

)
, L ≥ 1

}
.

Thanks to (3.1), Lemma 2.2(ii) and a comparison between series and integrals,

E
[(
ξ
h0

N0
− ξh0

⋆

)2] ≤ 1

N0

N0∑
k=1

E[(ξh0
k − ξh0

⋆ )2] ≤ C

N0

N0∑
k=1

γk ≤ CγN0 .

Hence, using (5.2),

E
[∣∣h−1

L

(
ξ
h0

N0
− ξh0

⋆

)∣∣2] ≤ Ch−2
L γN0 ≤ Ch

−2+ 9β
4

L .

Recalling that β ∈
(
8
9 , 1
)
, this implies that

h−1
L

(
ξ
h0

N0
− ξh0

⋆

) L2(P)
−! 0 as L " ∞.

Step 2. Study of
{
h−1
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 a

hℓ
k − a

hℓ−1

k , L ≥ 1
}
.

From the inequality (3.7) and (5.2), we obtain

E
[∣∣∣∣h−1

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ahℓ
k − a

hℓ−1

k

∣∣∣∣] ≤ Ch−1
L

L∑
ℓ=1

1

Nℓ
√
γNℓ

≤ Ch
3β+2

4
L ,

hence

h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ahℓ
k − a

hℓ−1

k

L1(P)
−! 0 as L " ∞.

Step 3. Study of
{
h−1
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 g

hℓ
k − g

hℓ−1

k , L ≥ 1
}
.

Using (4.15) and a comparison between series and integrals, we obtain

E
[∣∣∣∣h−1

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

∣∣∣∣]

≤ 2h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

(E
[∣∣ghℓ

k

∣∣]+ E
[∣∣ghℓ−1

k

∣∣])
≤ Ch−1

L

L∑
ℓ=1

h
( 1
4
+δ0)∧1

ℓ γ
1
2
Nℓ
.

If δ0 ≥ 3
4 , by (5.2),

E
[∣∣∣∣h−1

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

∣∣∣∣] ≤ Ch−1
L

L∑
ℓ=1

hℓγ
1
2
Nℓ

≤ Ch
−1+ 9

8
β

L

L∑
ℓ=1

h
1− 3

8
β

ℓ

≤ Ch
−1+ 9

8
β

L ,
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where we used the fact that β < 1. Else, if 1
8 ≤ δ0 <

3
4 , by (5.2) again,

E
[∣∣∣∣h−1

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

∣∣∣∣]

≤ Ch−1
L

L∑
ℓ=1

h
1
4
+δ0

ℓ γ
1
2
Nℓ

≤ Ch
−1+ 9

8
β

L

L∑
ℓ=1

h
1
4
+δ0− 3

8
β

ℓ

≤ C

h
−1+ 9

8
β

L , δ0 >
1
8 ,

h
−1+ 9

8
β

L |lnhL| , δ0 =
1
8 .

Taking into account the fact that β ∈
(
8
9 , 1
)
, we thus obtain

h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

L1(P)
−! 0 as L " ∞.

Step 4. Study of
{
h−1
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 r

hℓ
k − r

hℓ−1

k , L ≥ 1
}
.

Using (3.8), a comparison between series and integrals and (5.2), we obtain

E
[∣∣∣∣h−1

L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

rhℓ
k − r

hℓ−1

k

∣∣∣∣]

≤ 2h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

(E
[∣∣rhℓ

k

∣∣]+ E
[∣∣rhℓ−1

k

∣∣])
≤ Ch−1

L

L∑
ℓ=1

γNℓ

≤ Ch
−1+ 3

2
β

L .

In view of the fact that β ∈
(
8
9 , 1
)
, we obtain

h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

rhℓ
k − r

hℓ−1

k

L1(P)
−! 0 as L " ∞.

Step 5. Study of
{
h−1
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 ρ

hℓ
k − ρ

hℓ−1

k , L ≥ 1
}
.

Using similar arguments to the ones used in Step 5 of the proof of Theorem 4.1, we obtain
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from (3.9), (5.2), and a comparison between series and integrals, that

E
[(

h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ρhℓ
k − ρ

hℓ−1

k

)2]

= h−2
L

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

E[(ρhℓ
k − ρ

hℓ−1

k )2]

≤ 2h−2
L

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

(E
[∣∣ρhℓ

k

∣∣2]+ E
[∣∣ρhℓ−1

k

∣∣2])
≤ Ch−2

L

L∑
ℓ=1

γ
1
2
Nℓ

Nℓ

≤ Ch
3β−2

4
L .

Hence, given that β ∈
(
8
9 , 1
)
,

h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ρhℓ
k − ρ

hℓ−1

k

L2(P)
−! 0 as L " ∞.

Step 6. Study of
{
h
− 9

8
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 θ

hℓ
k − θ

hℓ−1

k , L ≥ 1
}
.

The random variables
{

1
Nℓ

∑Nℓ
k=1 θ

hℓ
k − θ

hℓ−1

k , ℓ ≥ 1
}

are independent and centered. Hence,
using (2.29), a comparison between series and integrals, and then (5.2), we obtain

E
[∣∣∣∣h− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

θhℓ
k − θ

hℓ−1

k

∣∣∣∣2]

≤ 2h
− 9

4
L

L∑
ℓ=1

1

Nℓ

(
E
[(

1√
Nℓ

Nℓ∑
k=1

θhℓ
k

)2]
+ E

[(
1√
Nℓ

Nℓ∑
k=1

θ
hℓ−1

k

)2])

≤ Ch
− 9

4
L

L∑
ℓ=1

γNℓ

Nℓ

≤ Ch
− 3

4
+ 3

2
β

L .

Therefore

h
− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

θhℓ
k − θ

hℓ−1

k

L2(P)
−! 0 as L " ∞.

Step 7. Study of
{
h
− 9

8
L

∑L
ℓ=1

1
Nℓ

∑Nℓ
k=1 ζ

hℓ
k − ζ

hℓ−1

k , L ≥ 1
}
.

Using (2.30), we obtain

E
[∣∣∣∣h− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ζhℓ
k − ζ

hℓ−1

k

∣∣∣∣]

≤ h
− 9

8
L

L∑
ℓ=1

1√
Nℓ

(
E
[∣∣∣∣ 1√

Nℓ

Nℓ∑
k=1

ζhℓ
k

∣∣∣∣]+ E
[∣∣∣∣ 1√

Nℓ

Nℓ∑
k=1

ζ
hℓ−1

k

∣∣∣∣])

≤ Ch
− 9

8
L

L∑
ℓ=1

γNℓ

≤ Ch
− 9

8
+ 3

2
β

L .
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Hence, since β ∈
(
8
9 , 1
)
,

h
− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ζhℓ
k − ζ

hℓ−1

k

L1(P)
−! 0 as L " ∞.

Step 8. Study of
{
h
− 9

8
L

(
χh0
N0

− χh0
⋆

)
, L ≥ 1

}
.

It follows from (5.2) that

h
− 9

8
L

(
χh0
N0

− χh0
⋆

)
= h

− 3
8

0

(
1−M− 1

4
) 1

2

√
N0

(
χh0
N0

− χh0
⋆

)
(
1−M− 1

4
(L+1)

) 1
2

.

According to the decomposition (2.20),

√
N0

(
χh0
N0

− χh0
⋆

)
=

1√
N0

N0∑
k=1

θh0
k +

1√
N0

N0∑
k=1

ζh0
k +

1√
N0

N0∑
k=1

ηh0
k .

From (2.29) and (2.30), we obtain

1√
N0

N0∑
k=1

θh0
k

L2(P)
−! 0 as N0 " ∞,

1√
N0

N0∑
k=1

ζh0
k

L1(P)
−! 0 as N0 " ∞.

Since {ηh0
k , k ≥ 1} is an iid sequence satisfying E[|ηh0

1 |2] < ∞, the classical CLT yields

1√
N0

N0∑
k=1

ηh0
k

L
−! N

(
0,

Var
(
(Xh0 − ξh0

⋆ )+
)

(1− α)2

)
as N0 " ∞,

so that

h
− 9

8
L

(
χh0
N0

− χh0
⋆

) L
−! N

(
0, h

− 3
4

0

(
1−M− 1

4
)Var((Xh0 − ξh0

⋆ )+
)

(1− α)2

)
as L " ∞.

Step 9. Study of

{(
h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ehℓ
k − e

hℓ−1

k , h
− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k

)
, L ≥ 1

}
.

Since N1 ≥ · · · ≥ NL,

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ehℓ
k − e

hℓ−1

k =

N1∑
k=1

L∑
ℓ=1

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

.

We apply again the CLT for martingale arrays (Hall & Heyde, 1980, Corollary 3.1) to the sequence

{(
h−1
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ehℓ
k − e

hℓ−1

k , h
− 9

8
L

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

ηhℓ
k − η

hℓ−1

k

)
, L ≥ 1

}
.
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We first check the conditional Lindeberg condition. Let δ > 0. Since, for all k ≥ 1, the sequence{
1
Nℓ

(ehℓ
k − e

hℓ−1

k )11≤k≤Nℓ
, 1 ≤ ℓ ≤ L

}
is a sequence of independent centered random variables,

using first the Marcinkiewicz-Zygmund inequality and then Jensen’s inequality,

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h−1
L

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)
L

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

(ehℓ
k − e

hℓ−1

k )2

N2
ℓ

11≤k≤Nℓ

∣∣∣∣1+ δ
2
]

≤ Ch
−(2+δ)
L

N1∑
k=1

L
δ
2

L∑
ℓ=1

E
[∣∣ehℓ

k − e
hℓ−1

k

∣∣2+δ]
N2+δ

ℓ

11≤k≤Nℓ

≤ Ch
−(2+δ)
L L

δ
2

L∑
ℓ=1

h
1
2
ℓ

N1+δ
ℓ

,

where we used (4.17) for the last inequality. From the previous upper bound and (5.2), we obtain

N1∑
k=0

E
[∣∣∣∣ L∑

ℓ=1

h−1
L

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
−(2+δ)
L L

δ
2

L∑
ℓ=1

h
1
2
ℓ

N1+δ
ℓ

≤ Ch
1+5δ

4
L L

δ
2

L∑
ℓ=1

h
1−3δ

4
ℓ

≤ C


h

1+5δ
4

L L
δ
2 , δ < 1

3 ,

h
1+5δ

4
L L1+ δ

2 , δ = 1
3 ,

h
1
2
(1+δ)

L L
δ
2 , δ > 1

3 .

We thus conclude

lim sup
L"∞

N1∑
k=0

E
[∣∣∣∣ L∑

ℓ=1

h−1
L

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]
= 0,

for any δ > 0. Proceeding as in (4.18), using in particular (4.19) together with the fact that
suph∈H E[|Xh|2+δ] < ∞ for some δ > 0 and (5.2),

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 9

8
L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]

≤ Ch
− 9

8
(2+δ)

L L
δ
2

L∑
ℓ=1

1

N2+δ
ℓ

Nℓ∑
k=1

E
[∣∣ηhℓ

k − η
hℓ−1

k

∣∣2+δ]
≤ Ch

− 9
8
(2+δ)

L L
δ
2

L∑
ℓ=1

h
1+ δ

2
ℓ

N1+δ
ℓ

≤ C


h

9
8
δ

L L
δ
2 , δ < 1,

h
9
8
δ

L L1+ δ
2 , δ = 1,

h
1
4
+ 7

8
δ

L L
δ
2 , δ > 1.
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Thus

lim sup
L"∞

N1∑
k=1

E
[∣∣∣∣ L∑

ℓ=1

h
− 9

8
L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

∣∣∣∣2+δ]
= 0.

The conditional Lindeberg condition is thus satisfied.
It remains to investigate the asymptotic behavior of the conditional covariance matrices

sequence
{
SL = (Si,j

L )1≤i,j≤2, L ≥ 1
}

defined by

S1,1
L :=

N1∑
k=1

E
[( L∑

ℓ=1

h−1
L

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2∣∣∣∣FhL
k−1

]
,

S2,2
L :=

N1∑
k=1

E
[( L∑

ℓ=1

h
− 9

8
L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2∣∣∣∣FhL
k−1

]
,

S1,2
L = S2,1

L :=

N1∑
k=1

E
[ L∑

ℓ=1

h
− 17

8
L

N2
ℓ

(ehℓ
k − e

hℓ−1

k )(ηhℓ
k − η

hℓ−1

k )11≤k≤Nℓ

∣∣∣∣FhL
k−1

]
.

In order to deal with
{
S1,1
L , L ≥ 1

}
, we write

S1,1
L =

N1∑
k=1

E
[( L∑

ℓ=1

h−1
L

ehℓ
k − e

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2]
=

L∑
ℓ=1

U ℓ,

where, for ℓ ≥ 1,

U ℓ :=
h−2
L

N2
ℓ

Nℓ∑
k=1

E[(ehℓ
k − e

hℓ−1

k )2] =
h−2
L

Nℓ
E[(ehℓ

1 − e
hℓ−1

1 )2].

By the ‘./∞’ case of Cesàro’s lemma, (4.20) and (5.2),

lim
L"∞

S1,1
L = lim

L"∞
h−2
L

( L∑
ℓ=1

h
1
2
ℓ

Nℓ

)
× lim

L"∞

( L∑
ℓ=1

h
1
2
ℓ

Nℓ

)−1( L∑
ℓ=1

h
1
2
ℓ

Nℓ
h
− 1

2
ℓ E[(ehℓ

1 − e
hℓ−1

1 )2]

)

=
1(

1−M− 1
4

) × lim
L"∞

( L∑
ℓ=1

h
− 1

4
ℓ

)−1( L∑
ℓ=1

h
− 1

4
ℓ h

− 1
2

ℓ E[(ehℓ
1 − e

hℓ−1

1 )2]

)
=

E[|G|fG(ξ⋆)]
(1− α)2

(
1−M− 1

4

) .
As for

{
S2,2
L , L ≥ 1

}
, we have

S2,2
L =

N1∑
k=1

E
[( L∑

ℓ=1

h
− 9

8
L

ηhℓ
k − η

hℓ−1

k

Nℓ
11≤k≤Nℓ

)2]
=

L∑
ℓ=1

W ℓ,

with, for ℓ ≥ 1,

W ℓ :=
h
− 9

4
L

Nℓ
E[(ηhℓ

1 − η
hℓ−1

1 )2]

=
h
− 9

4
L

(1− α)2
hℓ
Nℓ

h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+

)
.
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In accordance with the convergence result (4.21), the ‘0/0’ case of Cesàro’s lemma and (5.2) give

lim
L"∞

S2,2
L = lim

L"∞

h
− 9

4
L

(1− α)2

( L∑
ℓ=1

hℓ
Nℓ

)

× lim
L"∞

( L∑
ℓ=1

hℓ
Nℓ

)−1( L∑
ℓ=1

hℓ
Nℓ

h−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
⋆ )+
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=
h

1
4
0

(1− α)2M
1
4

× lim
L"∞

( L∑
ℓ=1

h
1
4
ℓ

)−1( L∑
ℓ=1

h
1
4
ℓ h

−1
ℓ Var

(
(Xhℓ

− ξhℓ
⋆ )+ − (Xhℓ−1

− ξ
hℓ−1
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=
h

1
4
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(1− α)2M
1
4

Var(1X0>ξ⋆ G).

From (4.23), (5.2), we obtain

∣∣S1,2
L

∣∣ ≤ h
− 17

8
L

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

E
[∣∣(ehℓ

k − e
hℓ−1

k )(ηhℓ
k − η

hℓ−1

k )
∣∣]

≤ Ch
− 17

8
L

L∑
ℓ=1

h
3
4
ℓ

Nℓ

≤ Ch
1
8
LL,

yielding
S1,2
L = S2,1

L
P-as
−! 0 as L " ∞.

The proof is now complete.

6 Complexity Analysis

We briefly discuss here the optimal complexities of the SA schemes that stem from our results.
Let ε > 0 denote a target total error order.

By Corollary 2.1, the convergence rate of the nested SA scheme is of order hβ as H ∋ h # 0.
To achieve a prescribed error of order ε, we have to choose a bias parameter h = ε1/β , β ∈

(
1
2 , 1
]
,

and a number of iterations n = ⌈h−2⌉ = ⌈ε−2/β⌉. The ensuing complexity is

CostβNSA = C
n

h
= Cε

− 3
β . (6.1)

The optimal complexity is reached for β = 1 under the constraint λγ1 > 1, for which

Cost1NSA = Cε−3. (6.2)

The complexity of the averaged nested SA (ANSA) scheme (cf. Corollary 3.1) with a bias
parameter h = ε and n = ⌈h−2⌉ = ⌈ε−2⌉ SA iterations is

CostANSA = C
n

h
= Cε−3, (6.3)

regardless of the value of β ∈
(
1
2 , 1
)
, which allows to circumvent the constraint on γ1 > 0 that

appears in the case of the nested SA scheme.
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Concerning the MLSA scheme, Lemma 2.2(i) and Theorem 4.1 show that the convergence
rate of this algorithm is of order hL as L " ∞, so that to achieve a prescribed error ε, we must
choose hL of the order of ε, i.e.

L =

⌈
lnh0ε

−1

lnM

⌉
. (6.4)

Via (4.11), this results in the complexity

CostβMLSA = C

L∑
ℓ=0

Nℓ

hℓ
= Cε

−1− 3
2β . (6.5)

This complexity is minimal for β = 1, provided that the condition λγ1 > 1 is satisfied, and is
worth

Cost1MLSA = Cε−
5
2 . (6.6)

Finally, regarding the averaged MLSA scheme, Theorem 5.1 and Lemma 2.2(i) show that, we
must choose L as in (6.4) to obtain hL of the order of ε. Using (5.2), the ensuing complexity is

CostAMLSA = C

L∑
ℓ=0

Nℓ

hℓ
= Cε−

5
2 . (6.7)

This complexity is independent of β ∈
(
8
9 , 1
)

and bears no additional condition on γ1 > 0.

7 Financial Case Study

The code for this numerical case study is available at github.com/azarlouzi/avg_mlsa.
We consider a long position in a swap of strike K̄, maturity T on some underlying (e.g. FX

or interest) rate. The swap is issued at par. The rate’s risk neutral model {St, 0 ≤ t ≤ T} is
a Bachelier process of inital value S0, drift κ and volatility σ. The swap pays at reset dates
0 < T1 < · · · < Td = T the cash flows ∆Ti(STi−1 − K̄), where ∆Ti = Ti − Ti−1. The swap’s
nominal Nom is set so that each leg is worth 100 at inception. The risk-free rate is r. For
t ∈ [0, T ], we let it denote the integer such that t ∈ [Tit−1, Tit) if t ∈ [0, T ), and it = +∞
otherwise.

Hence

dSt = κStdt+ σdWt, i.e. St = S0e
κt + σ

∫ t

0
e−κ(s−t)dWs, (7.1)

where {Wt, 0 ≤ t ≤ T} is a standard Brownian motion. The fair value of the swap at time
t ∈ [0, T ] is

Pt = Nom× E
[ d∑
i=it

e−r(Ti−t)∆Ti(STi−1 − K̄)

∣∣∣∣Ft

]
The loss, at some short time horizon δ ∈ (0, T1), on a short position on the swap, is

X0 = e−rδPδ.

We are interested in retrieving the VaR ξ⋆ and ES χ⋆, at some confidence level α ∈ (0, 1), of
the position.
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7.1 Analytical and Simulation Formulas

The swap is issued at par, i.e. P0 = 0, hence

K̄ = S0

∑d
i=1 e

−rTi∆Ti e
κTi−1∑d

i=1 e
−rTi∆Ti

. (7.2)

Note that iδ = 1 so that, by (7.1)-(7.2) and the fact that ±
∫ δ
0 e−κsdWs ∼ N

(
0,
∫ δ
0 e−2κsds

)
,

X0
L
= ηY, where η = Nom× σ

√
1− e−2κδ

2κ

d∑
i=2

e−rTi∆Ti e
κTi−1 (7.3)

and Y is a standard Gaussian random variable independent of W . This allows one to simulate
X0 exactly.

On this basis, the values of ξ⋆ and χ⋆ can be obtained analytically via

α = P(X0 ≤ ξ⋆) = P(ηY ≤ ξ⋆), i.e. ξ⋆ = ηF−1(α), (7.4)

where F denotes the standard Gaussian cdf, and

χ⋆ = E[X0|X0 ≥ ξ⋆] =
η

1− α
E[Y 1ηY≥ξ⋆ ], i.e. χ⋆ =

η

1− α
f
(ξ⋆
η

)
, (7.5)

where f is the standard Gaussian pdf.
We also have

X0 = Nom× σE
[ d∑

i=2

e−rTi∆Ti e
κTi−1

∫ Ti−1

0
e−κsdWs

∣∣∣∣Fδ

]
L
= E[φ(Y,Z)|Y ], (7.6)

where

Y =

√
1− e−2κδ

2κ
U0 ∼ ±

∫ δ

0
e−κsdWs,

Z1 =

√
1− e−2κ(T1−δ)

2κ
U1 ∼ ±

∫ T1

δ
e−κsdWs,

Zi =

√
1− e−2κ∆Ti

2κ
Ui ∼ ±

∫ Ti

Ti−1

e−κsdWs, 2 ≤ i ≤ d− 1,

φ(y, z) = Nom× σ

d∑
i=2

e−rTi∆Ti e
κTi−1

(
y +

i−1∑
j=1

zj

)
, y ∈ R, z = (z1, . . . , zd−1) ∈ Rd−1,

with {Ui, 0 ≤ i ≤ d− 1} iid∼ N (0, 1). On this basis, Xh can be simulated as

Xh =
1

K

K∑
k=1

φ(Y,Z(k)), (7.7)

where h = 1
K ∈ H and {Z(k), 1 ≤ k ≤ K} iid∼ Z are independent from Y .

7.2 Numerical Results

We aim at comparing numerically the four schemes of Sections 2–5 in terms of asymptotic error
distribution. To this end, we fix a small prescribed accuracy ε > 0, set h = ε as in (6.1)-(6.3) for
the nested and the averaged nested SA schemes and set hL = ε as in (6.5)-(6.7) for the multilevel
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and the averaged multilevel SA schemes. We run each scheme 5000 times and then we plot,
for each algorithm separately, the empirical joint distribution of the normalized errors of the
corresponding (VaR,ES) estimates. The error normalizations are calculated as they appear in
Corollaries 2.1 and 3.1 and Theorems 4.1 and 5.1. The unbiased SA scheme of (Bercu et al., 2021,
Theorem 3.4) and the unbiased averaged SA scheme of (Bardou et al., 2009a, Theorem 2.4), based
on simulating the loss X0 exactly via (7.3), are also run for benchmarking purposes. A small
difference between our unbiased averaged SA scheme and Bardou, Frikha, and Pagès (2009a,
Theorem 2.4) is that we do not average out the ES component. Qualitatively however, the
resulting outputs should be similar.

For the case study, we set S0 = 1, r = 2%, κ = 12%, σ = 20%, T = 1year, ∆Ti = 3months,
δ = 7 days and α = 85%. We use a 30/360 day count fraction convention. (7.4) and (7.5)
yield ξ⋆ ≈ 2.19 and χ⋆ ≈ 3.29. The biased risk measures ξhL

⋆ and χhL
⋆ needed for the CLTs of

Therorems 4.1 and 5.1 are computed by running the nested SA scheme with the bias hL and
105 iterations. We set ε = 1

256 and β = 0.9 for all SA schemes. We adopt the hyperparameters
γn = n−β for the unbiased SA and unbiased averaged SA algorithms, γn = 0.1(250 + n)−β for
the NSA and ANSA algorithms, and h0 = 1

32 , M = 2 and γn = 0.1(1500 + n)−β for the MLSA
and AMLSA algorithms.

Figure 1, page 41, plots kernel fittings of the joint distributions of the normalized errors
for each algorithm. For a sufficiently small prescribed accuracy ε > 0, the joint probability
distribution of the normalized (VaR,ES) error appears to be centrosymmetric unimodal for all
algorithms. This is in line with the CLTs proven in the previous sections as well as with (Bercu
et al., 2021, Theorem 3.4). Consistent with the expressions (3.2) and (5.3) for the covariance
matrices of the corresponding limiting normalized errors, the directions of the axes of the ellip-
soidal fitted densities suggest some asymptotic correlation between the VaR and ES errors for
the ANSA algorithm and an asymptotic decorrelation for the AMLSA algorithm. The MLSA
panel shows no asymptotic correlation, in accordance with the corresponding CLT. The NSA
panel does show some correlation, but this is due to the choice β = 0.9 that is too close to 1,
for which correlation does exist. Similar comments are applicable to the unbiased SA and the
averaged unbiased SA panels.

8 Conclusion

In Crépey, Frikha, and Louzi (2023), a nested stochastic approximation algorithm for VaR and
ES, as well as a multilevel acceleration of the latter, were presented and compared in terms of non
asymptotic L2 errors. The present article complements the latter by analyzing the corresponding
asymptotic error distributions, as required for delimiting VaR and ES trust regions and confidence
intervals. Further averaged extensions of these algorithms are also presented and shown to achieve
better convergence rates than their original counterparts. A financial case study where exact VaR
and ES values, as well as unbiased SA schemes, are available for benchmarking purposes, validates
our theoretical findings.

The optimal complexity attained by the presented algorithms, for some prescribed accuracy
ε > 0, is O(ε−

5
2 ). Given a step size γn = γ1n

−β , β ∈
(
1
2 , 1
]
, this complexity is achieved by the

MLSA algorithm for β = 1 under the constraint λγ1 > 1, where the constant λ > 0 in (2.10) is
explicit but tedious to compute. This complexity is also achieved by the AMLSA algorithm for
β ∈

(
8
9 , 1
)

without any constraint on γ1. However, O(ε−
5
2 ) remains higher than the theoretical

optimum of O(ε−2) for such multilevel algorithms (Frikha, 2016; Giles, 2008). The gap in
performance stems from the discontinuity of the gradient used in the updating formula (2.8),
causing an O(1) error when the generated loss Xh is too close to the estimate ξhn but falls on
the opposite side of the discontinuity with respect to the simulation target X0 (Giles, Haji-Ali,
& Spence, 2023; Haji-Ali, Spence, & Teckentrup, 2022). This limitation should be addressed in
future research.
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Figure 1: Joint distributions of the normalized VaR and ES errors.
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A Auxiliary Result

Lemma A.1. Let γn = γ1n
−β, with γ1 > 0 and β ∈

(
1
2 , 1
]
.

(i) Let {en, n ≥ 1} be a nonnegative sequence. Then, for b ≥ 0 and λ > 0, with γ1 > b/λ if
β = 1,

lim sup
n!∞

γ−b
n

n∑
k=1

γ1+b
k ek exp

(
− λ

n∑
j=k+1

γj

)
≤ 1

C
lim sup
n!∞

en,

where

C :=

λ− b/γ1 if β = 1 and γ1 > b/λ,

λ if β ∈
(
1
2 , 1
)
.

(ii) For b ≥ 0 and λ > 0, with γ1 > b/λ if β = 1,

lim sup
n!∞

γ−b
n exp

(
− λ

n∑
j=1

γj

)
= 0.

Lemma A.1(i) is a special case of Fort (2015, Lemma 5.9), and Lemma A.1(ii) is a special
case of Lemma A.1(i).

B Square Convergence of the Averaged MLSA Scheme

We study the L2 error of the AMLSA algorithm (5.1) to fully apprehend its convergence and
complexity.

B.1 Convergence Rate Analysis

Lemma B.1 (Crépey, Frikha, and Louzi (2023, Theorem 3.1)). Suppose that Assumptions 1
and 2 are satisfied, that φ(Y,Z) is in L2(P), that

sup
h∈H

E
[
|ξh0 |4 exp

( 16

1− α
cα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

< ∞,

where cα = 1 ∨ α
1−α , and that γn = γ1n

−β, with β ∈ (0, 1] and λ2γ1 > 2 if β = 1 where

λ2 = inf
h∈H

3

4
V ′′
h (ξ

h
⋆ ) ∧ ∥V ′′

h ∥∞
V ′′
h (ξ

h
⋆ )

4

[V ′′
h ]

2
Lip

.

Then, for any positive integer n,

sup
h∈H

E[(ξhn − ξh⋆ )
4] ≤ Cγ2n. (B.1)

Theorem B.1. Within the framework of Lemma B.1 and assuming that γn = γ1n
−β, with

β ∈
(
1
2 , 1
)
, for any positive integer L and any N = {Nℓ, 0 ≤ ℓ ≤ L} ∈ NL+1

0 , it holds

E
[(
ξ

ML
N − ξhL

⋆

)2] ≤ C

(
γN0 +

( L∑
ℓ=1

1

Nℓ
√
γNℓ

)2

+

( L∑
ℓ=1

h
1+4δ0∧3

4
ℓ

√
γNℓ

)2

+

( L∑
ℓ=1

γNℓ

)2

+

L∑
ℓ=1

√
γNℓ

Nℓ
+

L∑
ℓ=1

h
1
2
ℓ

Nℓ

)
.

(B.2)
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Proof. In the following developments, we denote by C a positive constant whose value may vary
from line to line but does not depend upon L. We come back to the decomposition (5.8) and
analyze each term separately.

Step 1. Study of
{
ξ
h0

N0
− ξh0

⋆ , L ≥ 1
}
.

By Lemma 2.2(ii) and a comparison between series and integrals, we have that

E
[(
ξ
h0

N0
− ξh0

⋆

)2] ≤ 1

N0

N0∑
k=1

E[(ξh0
k − ξh0

⋆ )2] ≤ C

N0

N0∑
k=1

γk ≤ CγN0 .

Step 2. Study of
{∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 a

hℓ
k − a

hℓ−1

k , L ≥ 1
}
.

We have that

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ahℓ
k − a

hℓ−1

k

)2] 1
2

≤
L∑

ℓ=1

E
[(

1

Nℓ

Nℓ∑
k=1

ahℓ
k

)2] 1
2

+ E
[(

1

Nℓ

Nℓ∑
k=1

a
hℓ−1

k

)2] 1
2

.

It follows from (3.4), (3.6) and Lemma 2.2(ii) that

E
[(

1

n

n∑
k=1

ahk

)2] 1
2

≤ 1

n

( 1

γn
E[(ξhn − ξh⋆ )

2]
1
2 +

1

γ1
E[(ξh0 − ξh⋆ )

2]
1
2

)
+

1

n

n−1∑
k=1

( 1

γk+1
− 1

γk

)
E[(ξhk − ξh⋆ )

2]
1
2

≤ C

(
1

n

( 1
√
γn

+ 1
)
+

1

n

n−1∑
k=1

( 1

γk+1
− 1

γk

)√
γk

)
≤ C

n
√
γn

.

Therefore

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ahℓ
k − a

hℓ−1

k

)2]
≤ C

( L∑
ℓ=1

1

Nℓ
√
γNℓ

)2

.

Step 3. Study of
{∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 g

hℓ
k − g

hℓ−1

k , L ≥ 1
}
.

We have

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

)2] 1
2

≤
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

E[(ghℓ
k )2]

1
2 + E[(ghℓ−1

k )2]
1
2 .

It follows from Assumption 2, the uniform Lipschitz regularity of Vh combined with Lemma 2.2
(i) that |V ′′

0 (ξ⋆)−V ′′
hℓ
(ξhℓ

⋆ )| ≤ C(h
( 1
4
+δ0)∧1

ℓ +hℓ), which in turn using also (2.13) and Lemma 2.2(ii)
give for ℓ ≥ 1,

E[(ghℓ
k )2]

1
2 ≤ |V ′′

0 (ξ⋆)− V ′′
hℓ
(ξhℓ

⋆ )|E[(ξhℓ
k−1 − ξhℓ

⋆ )2]
1
2 ≤ Ch

( 1
4
+δ0)∧1

ℓ γ
1
2
k .

By a comparison between series and integrals, we thus deduce

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ghℓ
k − g

hℓ−1

k

)2]
≤ C

( L∑
ℓ=1

h
1
4
+(δ0∧ 3

4
)

ℓ γ
1
2
Nℓ

)2

.
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Step 4. Study of
{∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 r

hℓ
k − r

hℓ−1

k , L ≥ 1
}
.

Note that

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

rhℓ
k − r

hℓ−1

k

)2] 1
2

≤
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

E[(rhℓ
k )2]

1
2 + E[(rhℓ−1

k )2]
1
2 .

By (2.14), (2.26), the uniform Lipschitz regularity of V ′′
h (stemming from Assumption 1(iv)) and

eventually Lemma B.1, we get

E[|rhk |2] ≤ C E[(ξhk−1 − ξh⋆ )
4] ≤ Cγ2k .

Combining the two previous inequalities and using a comparison between series and integrals,
we conclude

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

rhℓ
k − r

hℓ−1

k

)2]
≤ C

( L∑
ℓ=1

γNℓ

)2

.

Step 5. Study of
{∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 ρ

hℓ
k − ρ

hℓ−1

k , L ≥ 1
}
.

We recall that the random variables
{

1
Nℓ

∑Nℓ
k=1(ρ

hℓ
k − ρ

hℓ−1

k ), ℓ ≥ 1
}

are independent and with

zero mean an that at each level ℓ ≥ 1, the sequence {ρhℓ
k − ρ

hℓ−1

k , k ≥ 1} is an {Fhℓ
k , k ≥ 1}-

martingale increment sequence. Using (3.9) and a comparison between series and integrals, we
obtain

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ρhℓ
k − ρ

hℓ−1

k

)2]
≤ 2

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

E
[∣∣ρhℓ

k

∣∣2]+ E
[∣∣ρhℓ−1

k

∣∣2] ≤ C

L∑
ℓ=1

√
γNℓ

Nℓ
.

Step 6. Study of
{∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 e

hℓ
k − e

hℓ−1

k , L ≥ 1
}
.

Again, the random variables
{

1
Nℓ

∑Nℓ
k=1(e

hℓ
k − e

hℓ−1

k ), ℓ ≥ 1
}

are independent and centered and,

for any fixed ℓ ≥ 1,
{
ehℓ
k − e

hℓ−1

k , k ≥ 1
}

is a sequence of {Fhℓ
k , k ≥ 1}-martingale increments.

From (4.22), we thus get

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

ehℓ
k − e

hℓ−1

k

)2]
=

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

E[(ehℓ
k − e

hℓ−1

k )2] ≤ C

L∑
ℓ=1

h
1
2
ℓ

Nℓ
.

B.2 Complexity Analysis

The global error of estimating ξ⋆ by ξ
ML
N can be decomposed as the sum of a statistical and a

bias error
ξ

ML
N − ξ⋆ =

(
ξ

ML
N − ξhL

⋆

)
+ (ξhL

⋆ − ξ⋆).

Let ε2 be a fixed prescribed L2 error, ε ∈ (0, 1). Lemma 2.2(i) guarantees that the bias of
estimating ξ⋆ by ξML

N to be of order hL, so that we have to choose the number of levels

L =

⌈
lnh0ε

−1

lnM

⌉
so that hL =

h

ML
≤ ε. (B.3)

The cost of the AMLSA scheme is

CostAMLSA = C
L∑

ℓ=0

Nℓ

hℓ
,
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for some fixed constant C independent of L. In order to optimize the number of iterations
N = {Nℓ, 0 ≤ ℓ ≤ L}, we try out several candidates as a leading term in the upper bound (B.2).
We retain three particularly compelling cases. As usual, we minimize the above computational
cost under the constraint that the aforementioned candidate is of order ε2.

We first consider the optimization problem

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ

subject to
∑L

ℓ=0 h
(1+4δ0∧3)/4
ℓ

√
γNℓ

= C−1ε,

yielding

Nℓ =

⌈
C

2
β γ

1
β

1 ε
− 2

β

( L∑
ℓ′=0

h
− 2β−1−4δ0∧3

2(2+β)

ℓ′

) 2
β

h
5+4δ0∧3
2(2+β)

ℓ

⌉
, 0 ≤ ℓ ≤ L.

Such a choice adds the constraints

1

2
< β ≤ 2

3
and δ0 ≥

3

4

to guarantee that the upper estimate (B.2) is of order ε2. The corresponding complexity is

CostβAMLSA = Cε
− 2

β −!
β" 2

3

ε−3.

We now consider the optimization problem

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ

subject to
∑L

ℓ=0N
−1
ℓ γ

− 1
2

Nℓ
= C−1ε.

The minimizers are given by

Nℓ =

⌈
C

2
2−β γ

− 1
2−β

1 ε
− 2

2−β

( L∑
ℓ′=0

h
− 2−β

4−β

ℓ′

) 2
2−β

h
2

4−β

ℓ

⌉
, 0 ≤ ℓ ≤ L.

If the additional conditions
2

3
≤ β < 1 and δ0 >

1

12
,

are met, one attains the order ε2 for the global L2 error (B.2) with an optimal cost satisfying

CostβAMLSA = Cε
− 2

2−β
−1 −!

β# 2
3

ε−
5
2 .

The final case worth exploring consists in solving the optimization problem

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ

subject to
∑L

ℓ=0 h
1
2
ℓ N

−1
ℓ = C−1ε2.

This yields, under constraints stated in Theorem 5.1,

Nℓ =

⌈
C2ε−2

( L∑
ℓ′=0

h
− 1

4
ℓ′

)
h

3
4
ℓ

⌉
, 0 ≤ ℓ ≤ L.

The convergence analysis for this last heuristic is provided by Theorem 5.1, and the ensuing
complexity is discussed in Section 6.
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