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ABSTRACT. In this paper, we investigate a network of elastic and thermo-
elastic materials. On each thermo-elastic edge, we consider two coupled wave
equations such that one of them is damped via a coupling with a heat equa-
tion. On each elastic edge (undamped), we consider two coupled conservative
wave equations. Under some conditions, we prove that the thermal damping is
enough to stabilize the whole system. If the two waves propagate with the same
speed on each thermo-elastic edge, we show that the energy of the system de-
cays exponentially. Otherwise, a polynomial energy decay is attained. Finally,
we present some other boundary conditions and show that under sufficient con-
ditions on the lengths of some elastic edges, the energy of the system decays
exponentially on some particular networks similar to the ones considered in
[18].

1. Introduction. Thermoelasticity is a principle concerned with predicting the
thermo-mechanical behaviour of elastic solids. Understanding such a principle is
needed by many engineers to design different materials. Thus, several scientists were
motivated to study the thermoelastic system described by the coupling between the
mechanical vibration and the heat (thermal) effect of materials. Mathematically, a
linear one-dimensional thermo-elastic system satisfied by a thermoelastic bar (0, L)
is represented by the following two equations:

Ut — Ugg + 0y =0, in (0, L) x (0, 00),
0p — Oy +uy, =0, in (0, L) x (0, 00),
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with the initial conditions
U(I,O) :u07ut(1:70) :ul,ﬁ(:z:,O) :903 HARS (OvL)v (12)

where, u is the displacement, 6 is the temperature deviation from the reference
temperature and the mechanical-thermal coupling « is a positive constant. The
existence and asymptotic behavior of the solution of the linear thermo-elastic sys-
tem was firstly studied in [5] but, no decay rate was given. In the one dimensional
case, the stabilization of the linear thermo-elastic system satisfied by thermo-elastic
materials (damped by thermal effect) with various boundary conditions was inves-
tigated by several authors. We will recall some of these results. In [8], the author
considered the stabilization of system (1.1)-(1.2) on a thermo-elastic rod (see Fig-
ure 1) with u and € satisfying the Dirichlet and Neumann condition respectively
(or vice versa). He succeeded in proving the exponential stability of the system.
More precisely, the author established the following energy estimate: There exist
two positive constants M and € such that

E(t) < Me "E(0), Vt> 0. (1.3)

Similarly, when u and 6 satisfy both the Dirichlet condition, it was shown that
the estimate (1.3) still holds in [13]. Then, the method of [13] was extended in
[4] to prove (1.3) when wu, — «af satisfies Dirichlet condition on both ends and
0,(0) =0,(L)=0or 6,(0) =0,0(L) =0.

Thermo-elastic

0 L
FIGURE 1. A thermoelastic rod

Later on, the importance of damping and controlling the vibrations of materi-
als composed of both elastic (undamped) and thermo-elastic (damped by thermal
effect) parts appears in several physical applications and consequently in several
mathematical papers. The main questions that received the interest of the re-
searchers is the kind of stability of the thermo-elastic system on such composite
materials and how should the thermo-elastic damping be localized to get the best
decay rate or what is the energy decay rate in different localizations of the thermal
damping? Such questions were answered in several ways. For example, in [14], it
was considered a one dimensional body which is configurated in [0, L] C R and
for a given Ly <Ly in ]0, L3[, they assumed that the material is thermo-elastic over
10, L1[U] Lo, L3[ and elastic over |Lq, La[ (see Figure 2). The authors proved that
the whole system is exponentially stable, i.e, (1.3) holds.

Thermo-elastic part Elastic part Thermo-elastic part

0 Ly Lo L

FIGURE 2. An elastic/thermo-elastic transmission problem

Then, in [6], the authors considered the stabilization of a transmission problem for
the thermo-elastic system with local thermal effect which is effective only over the
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interval [0, Lo, Lo € [0, L], see Figure 3. This corresponds to the following system:

Utt — Ugy + 0y =0, in (0, Lo) x (0, 00),
0; — 0y + g, =0, in (0, Lg) x (0, 00), (1.4)
Vit — Vg =0, in (Lo, L) x (0, 00),

with the initial conditions
u(x,0) = ug, ur(x,0) = ug, 0(x,0) = g, v(z,0) = vo,vs(2,0) =vy, € (0,L),

where u is the displacement in the thermo-elastic part, v is the displacement in the
elastic part and 6 is the temperature difference from a reference value. The system
is completed with the following boundary conditions

u(0,t) = v(L,t) = 0(0,t) =0, te€(0,00),
and the following transmission conditions
ug (Lo, t) —aB(Lo,t) = vy(Lo,t) and 604(Lo,t) = 0.

Thermo-elastic part Elastic part

0 Lo L

FIGURE 3. An elastic/thermo-elastic transmission problem

The authors proved that the localized dissipation due to the thermal effect is strong

enough to prove the exponential decay to zero of the energy. We also refer to [11] and
[15] and the references therein for the study of the stabilization of multi-dimensional
linear thermo-elastic systems.

On the other hand, there are only few publications on the stabilization of net-
works of thermo-elastic materials. Let us recall some of these results. In [1], an
exponential stability was proved on a network of thermo-elastic materials under
both Fourier’s law and Cattaneo’s law. In [18], the author studied the stability
problem of a thermo-elastic system on particular cases of networks of elastic and
thermo-elastic materials (see Figure 4).

\ Thermo-elastic

— Elastic

FIGURE 4. Elastic/therm-elastic networks

Under the continuity condition of the displacement, the Neumann condition for
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the temperature at the internal nodes, and the balance condition, an exponential
stability was proved (see also, [19] for the network of elastic and thermo-elastic
beams). Later on the authors in [7] discussed the asymptotic behaviour of a trans-
mission problem of the thermo-elastic system on star shaped networks of elastic and
thermo-elastic rods (see Figure 5).

—— Elastic

Thermo-elastic

FIGURE 5. Elastic/thermo-elastic star shaped network

The uniform exponential decay rate was proved by a frequency domain analy-
sis when only one purely elastic edge was present. Otherwise, a polynomial decay
rate was deduced under a suitable irrationality condition on the lengths of the rods
when more than one purely elastic edge is involved. After the review of these re-
sults that investigated the stabilization of a thermo-elastic system composed of the
coupling between one wave equation and a heat equation, a remarkable question
can be asked. What happens if we consider a network of elastic and thermo-elastic
materials such that:

e On the thermo-elastic edges, we have a system of two wave equations coupled
by velocity, such that one wave equation is coupled to a heat equation with a ther-
mal effect.

e On the purely undamped elastic edges, we have only a system of two conservative
wave equations coupled by velocity.

Hence our main question is the following one: Will the dissipation due to the
thermal effect be also strong enough to prove the exponential stability of the energy
of the whole system? To the best of our knowledge, the answer to this question
remains an open problem. Therefore, our aim is to solve this open question.

In this work, we investigate the stabilization of the above described transmis-
sion problem on networks of elastic and thermo-elastic materials. We prove the
exponential stability of the whole system under the condition that the two waves
propagate with the same speed on all the thermo-elastic edges of the network. On
the other hand, if there exists an exterior thermo-elastic edge such that the two
waves propagate with different speed on this edge, we show the polynomial stability
of the whole system. Our main tool is a frequency domain approach, namely to
prove the exponential stability we use a result due to Huang [10] and Priiss [17] and
to show the polynomial stability we use a result due to Borichev and Tomilov [3].

Now, let us introduce some notations needed to formulate the problem under
consideration, refer to [20] and [1] for more details. Let A/ be a network embedded
in the Euclidean space R™, m € N*, with n vertices V = {ag,as,..,an_1} and N
edges E = {ey,..,en}, with Z(N) = {1,.., N}, the set of indices of edges. Each
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edge e; is a curve, parametrized by
U [O,EJ} — € 1 Tj — Wj(xj). (15)

The degree of a vertex is the number of incident edges at the vertex. A vertex
with degree 1 is called an exterior vertex. On the other hand, a vertex with degree
greater than 1 is called an interior vertex.

We assume that the network is made of thermo-elastic edges and elastic ones,
this means that Z(N) is split up into Z(N) = Zye U L, with Z, N Zye = 0, in other
words, Tt (resp. Z,) is the set of thermo-elastic (resp. elastic) edges.

We further denote by:

Vit := set of exterior vertices of N.

Vint:= set of interior vertices of .

Z(ay):= set of indices of edges incident to ay.

Zie(ar):= set of indices of thermo-elastic edges adjacent to a.

T (ay):= set of indices of elastic edges incident to a.

Zext:= set of indices of edges adjacent to an exterior vertex of N.

The incidence matrix D = (dj;)nxn of N is defined by

1 if Wj(gj) = ag,
dkj =<¢-1 if 7Tj(0) = Qaf, (1-6)
0 otherwise,

and for a function f: N — C, we set f/ = f o its restriction to the edge e;. For
simplicity, we will write f = (f*,.., fV) and we will denote fi(z) = fI(m;(z)) for
any « in (0, £;). We consider a network of elastic and thermo-elastic materials that
coincides with the graph N. We assume that A contains at least one thermoelastic
edge, that Vo # 0, that every maximal subgraph of elastic edges is a tree whose
all of its exterior vertices except one are attached to thermo-elastic edges and that
every maximal subgraph of thermo-elastic edges is not a circuit.

Let v/ = u/(x,t) and y/ = y/(x,t) be the functions describing the displacement
at time ¢ of the edge e;, j € Z(N) and 67 = 67(x,t) be the temperature difference
to a fixed reference temperature of e;, j € Zie at time t.

Our system is described as follows:

e On every thermo-elastic edge (j € Zie) the following equations hold:

u{t —ul, + ;00 — ﬁjyf =0 in (0,¢;) x (0,00),

Y = PiYie + Biui =0 in (0,£) x (0,00), (1.7)
0{ - K:jeg;x + ajugm =0 in (ngj) X (0,00),

where o, p;, x; and B; are positive constants.
e On every elastic edge (j € Z,) one has:



6 ALAA HAYEK, SERGE NICAISE, ZAYNAB SALLOUM AND ALI WEHBE

u{t —ud, — ﬁjyg = 0 in (0,4;) x (0,00),
Yt — PiYae + Bjui =0 in (0,£;) x (0,00),

where 3; and p; are positive constants.

We assume that the initial data on the network N are

u? (z,0) = ug(x), u{A(x,O) = u{(a:), Vi e Z(N),
y]({E,O) :yé(x)’ y{(w,O) :y{(ac), Vi GI(N% (19)
07 (x,0) = 63 (), Vi € Lie(N).

We denote by Vi, ( resp. Vi.) the set of exterior (resp. interior) nodes of max-
imal subgraphs of thermo-elastic edges. Then, the boundary condition on N are
described as follows:

The displacement and temperature satisfies the Dirichlet boundary condition,

uj(ak7t) = 07 ] € I(a/k)a ag € Vvexta
¥ (ak,t) =0, j € Z(ak), ak € Vext, (1.10)
ej(a’]wt) = Oa .] S Ite(ak)7 ag € V!

ext-

The displacement and temperature are continuous,

w (ax,t) = u(ax,t), j,€ € L(ar), ax € Vin,
yj(akvt) = yz(akat)7 .]7£ € I(ak)v a € ‘/inta (111)
ej(a’]wt) = gz(a’lwt)a ]ae S Ite(ak)a ag S !

int*

The system satisfies the balance condition on y at every interior node,

> dkipiyi(ak,t) =0, ap € Vin. (1.12)
Jj€Z(ak)

The system satisfies the following balance conditions on u and 6,

> dkir0%(ak,t) =0, ax € Vi,
J€ZLte(ag) v ) ) (1.13)
dij(ud (ar, t) — ;07 (ax, )+ Y dejul(an,t) =0, ax € Via.
J€Le(ar) J€Ze(ak)
Remark that o; > 0 and x; > 0, for all j € Z;. while, on each elastic edge only two
conservative wave equations hold, i.e, the two wave equations on each elastic edge
are neither coupled to a heat equation nor affected by a thermal damping. Hence
for j € Z., we may set a; = xk; = 0. From time to time, this will allow us to unify
some arguments by not distinguishing between elastic and thermoelastic edges.
The paper is organized as follows. In Section 2, we prove that system (1.7)-
(1.13) admits a unique solution in an appropriate Hilbert space using semi-group
theory. Next, in Section 3, using a general criteria of Arendt-Batty [2], we discuss
the strong stability of the system. In Section 4, under the condition that the two
waves propagate with the same speed on each thermo-elastic edge of the network,
we prove the exponential stability of the system using a frequency domain approach
combined with a multiplier technique. Otherwise, we establish a polynomial decay.
Finally, in Section 5, we present the Neumann boundary condition at the interior
nodes of some particular networks, some of which being considered in [18]. We show
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that under some sufficient conditions, the same results as the ones from Section 4
hold.

2. Well-posedness. In this section, we will study the existence, uniqueness and
regularity of the solution of system (1.7)-(1.13), using a semigroup approach. First,
denote by

N N
L? =[] £%(0,¢)), H™ =]]H™0,¢4;), m=1,2,
j=1 j=1

and
v= ] £°0.4), v"= ] H™0,4), m=1,2.
J€Lte J€Lte
Set
Ho = {u = («)jezv) € HY/ v (ar) = 0, € T(a), ar € Vext @)
and v’ (ay) = uz(ak), Vi, L € I(ag),ar € Vint}. .
We define the energy space H associated with system (1.7)-(1.13), by
H=H,xL®xH xL>xV (2.2)
equipped with the following inner product:
. A S — _ — o
(U,U)y = Z/ (wlal + v’ 07 + pjylys + 27 27) da
— Jo
=t (2.3)

b =
+ ) / 6767 da,
0

J€Lte

for all U = (u,v,y,2,0), U = (ﬂ,f),g,é,é) € H. Next, we define the unbounded
linear operator A associated to system (1.7)-(1.13) by

u vl
v ul, — 09 + B2
Aly | = 27 (2.4)
z PiYaa — Biv?
0 ﬁjeiz - OZj’Ug:

FET(N)
whose domain D(A) is given by

D(A) = {(u,v,y,2,0) € HN[H* x Hj x H* x Hj x V?] satisfying (2.5) below},

Hj(afk) = 07 .] € Ite(ak)7 ag € Vvelxt’

ej(ak) = ee(ak)a jag € Ite(ak)v ag € !

int?

D dirfi(ar) =0, a € Vi, (2.5)
J€ZLte(ar)
dij(ul(ar) — ;0 (ax)) =0, ax € Vin,
J€Z(ax)

> dijpiyiar) =0, ax € Vine.
Jj€Z(ak)
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If (u,y,0) is a regular solution of (1.7)-(1.9), then by setting U = (u, u¢, y, y¢, 0), we
can rewrite this system as the following evolution equation:

U, = AU, U(0) = Uy, (2.6)
where Uy = (uo, u1, Yo, Y1, 60)-

The energy associated with system (1.7)-(1.13) is given by

N 0 0,
1 J . . . . 1 J
BO =35> [ (P 4P+l + i) a5 Y [Tl e 21
=170 €T V0
and we will see that
Zj .
B~ [ i do (2)
jezte 0
for regular solutions. Hence, the system is dissipative in the sense that its energy
is non-increasing.

Theorem 2.1. The unbounded linear operator A associated with system (1.7)-
(1.13) generates a Cy-semigroup of contractions on H.

Proof. Using Lumer-Phillips Theorem (see [16]), it is sufficient to prove that A is
a maximal dissipative operator so that A generates a Cy-semigroup of contractions
on H. First, let U = (u,v,y, z,0) € D(A). We have,

A p— N ool _ R
Re(AU,U)y = Re{z / viul dr + Z / (uly — ;02 + B;27 )i dx
g=170 3=170 (2.9)

£ _ o
Z /0 (K02, — a;v2)07 dx|.

J€Lte

N 2] — N Z.? A PR
w30 [Tt de Y [ (o - 5077 dn
j=170 j=170

Using Green’s formula, boundary and transmission conditions (1.10)-(1.13), we get

Zj )
Re(AU,U)y = — Z / Kki]07]? dz < 0. (2.10)
jeIte 0
Thus, the operator A is dissipative. Now, in order to prove that A is maximal it is
sufficient to show that R(I — A) = H. So, for F = (f, f,9,9,h) € H, we look for
U € D(A) such that
(I-AU=F. (2.11)
Equivalently, for all j € Z(N),
W i = i, (2.12)
Uj_u;z+aj9i_ﬁjzj:fjv ( )
y -2 =g, (2.14)
= pyle + B = ¢, (2.15)
07 — K09, + oyvl = 1. (2.16)
Assume that U € D(A) exists, then by using equation (2.12) and (2.14) we obtain
for all j € Z(N),
v =l — fI] (2.17)
2=yl — gl (2.18)
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Inserting (2.17)-(2.18) in equations (2.13), (2.15) and (2.16), we get the following
system for all j € Z(NV),

u? —uj +Otj9j —/Bjyj :F1j7 (2.19)
y - pjy:cac + Bjuj = FQJ" (220)
07 — k07, + ajul = FJ (2.21)

where, F/ = fi 4 f — Big’, Fi=§ +¢ + 8517, ng =hl +a;fl.
Set

X = {(p1, 02, 03) € Hy x Hy x V*/ pl(ar) =0, j € Te(ar), ar € Vi

) ) ot (2.22)
and Ws(ak?t) :(ADS(akvt)’ JaEEIte(ak ai € Vlnt}

Let (o1, 92, p3) € X, multiply (2.19) by ;{, (2.20) by ;% and (2.21) by ;é, then
integrate over (0,¢;) we get,

[ R— 7B — ¢ — £ —
/ujw{dm—/ Uixsoidwr/ aﬂisﬁ{dw—/ Biy’ ¢l dx
0 0 0 0
0 (2.23)
=/ F ¢ dx,
0
2 — [
/Wédﬂ:*/ pjymwzdx+ ﬂﬂ” dl”—/ F3py da, (2.24)
0 0

i L — ¢ — &G —
/ 09 ol I da — / k02 @ dx —|—/ ol b dr = / Fyl dx. (2.25)
0 0

Applying Green’s formula on the second and third term of (2.23) and taking the
sum over Z(N), we obtain using (1.13),

N 45 — N
Z/ uj¢{dx+2/ UTcplde’*Z/ ajocplm
j=170 j=170

(2.26)

Again applying Green’s formula on the second term of (2.24) and taking the sum
over Z(N), using (1.12), we get

S — N ot — Nt —
S [ vdas X [Comidi sy [ ol as
j=1"0 j=1"0 j=1"0
Nty
=Y [ Hddd
j=1"0

(2.27)
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Similarly, applying Green’s formula on the second term of (2.25) and taking the
sum over Z(N), condition (1.13) yields that,

N oot N g j— N g —
Z/ 07 ) dstrZ/ K095 dm+2/ ajul gl d
j=170 j=170 j=1"0

N, (2.28)
-y / Fi g da.
j=1"0
Adding equations (2.26), (2.27) and (2.28) we obtain
CL((U, Y, 9)7 (‘pla ¥2, @3)) = L(<p17 ¥2; 503)v v(‘ﬁh $2; 4103) eX, (229)

where,

N {2 p— N G N L —
a((u,,9), (91, 2, 03)) = Z/ w ] dr + Z/ ul o] , dx — Z/ ot do
j=1"0 j=1"0 j=1"0
N 5 . N [ N 45 —
—Z/ Byt dl‘+2/ e dw+Z/ PiYAPY0 d
oo = Jo = Jo
o N

N Z] B - Z] — N e] L
+Z/ Biu ¢ dw-‘rZ/ 0l d:c-‘rZ/ Ki0L03% , da
j=170 j=170 j=1"0
N oot —
+Z/ ajulel do
j=170

and

L A — Nty
Lenenen =Y [ Helar Y ["FHgar+ Y [T i an
j=1 j=1 j=1

As a is a continuous, coercive form on X x X’ and L is a continuous form on X, then
using Lax-Milgram Theorem there exists a unique solution (u,y,0) € X of (2.29).
Now, take in (2.29) the test function (¢1,0,0) such that ¢J € C°(0,¢;), for some
fixed j € Z(NV) and ¥ = 0 for all k # j, we obtain

[ — [ p— 45 JE—
[ e [Tl do [Cape] e
0 0 0

. . (2.30)
—/O By’ ) dx = /0 Fl o) dx, Yyl € C(0,4) for a fixed j.
Applying Green’s formula on the second and third term of (2.30) we get
b5 — G — & — & —
/ u ] dx —/ ul o) drx +/ a;0lp] dx —/ By’ ¢l dx
0 0 0 0 (231)

4G — .
= / Flpl dz, Y¢i € C(0,4) for a fixed j.
0
This implies that
W —ul, o0l — By = Fl, inD'(0,4;)

where, D’(0, ¢;) is the associated space of distributions.
As w + ;607 — Bjy? — F} € L*(0,¢;), we deduce that uw/ € H?(0,¢;). Similarly, we
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can prove that
Y = piyle + Byl = F,
G (2.32)
07 — k05, + ajuj, = F3

and 37,67 € H2(0,£j). Now, it remains to prove the transmission conditions in
(1.12)-(1.13). For that aim, fix ay € Viyt. Let,

le’ if j EI(ak) and Wj(éj) = ag,
ol =4 4=, ifj € Z(ay) and m;(0) = ax, (2.33)
07 lfj ¢ I(a’k)'

Then, take in (2.29), a test function (¢1,0,0) € X, apply Green’s formula and take
into account (2.19)-(2.21), to get

Z dkjug;(ak) - Z dkjajﬁj(ak) =0. (234)

jE€Z(ak) JE€Z(ax)

Similarly, by taking in (2.29) the test function (0,¢1,0) € X then, using Green’s
formula and taking into account (2.19)-(2.21) we obtain (1.12). Finally, we fix
ax € Vi, take (0,0,¢1) in (2.29), apply Green’s formula and take into account
(2.19)-(2.21), we get (1.13). By defining v7 by (2.17) and 2/ by (2.18), for all
Jj € Z(N), we deduce that (u,v,y,2,0) € D(A) a solution of (2.12)-(2.16) exists
and the desired goal is attained. O

As A generates a Co-semigroup of contractions (e');>o (see [16]), we have the
following result:

Theorem 2.2. (Existence and uniqueness of the solution)
(1) If Uy = (ug,u1,Y0,y1,600) € D(A), then problem (2.6) admits a strong unique
solution U = (u,v,y, 2z,0) satisfying

U e CHRy,H)NC'R,, D(A)).
(2) If Uy = (ug, u1,Yo,y1,60) € H, then problem (2.6) admits a unique weak solution
U = (u,v,y,2,0) satisfying
UecC' Ry, H).

3. Strong stability. In this section, we will give sufficient conditions that guaran-
tee the strong stability of the system (1.7)-(1.13) in the sense that the energy E(t),
of the associated system decreases to zero as t tends to infinity. To show the strong
stability of the Cp-semigroup of contractions (e‘4);>¢ we will rely on the following
result obtained by Arendt-Batty [2].

Theorem 3.1. (Arendt-Batty [2]). Let A : D(A) C H — H generates a Cy-
semigroup of contractions on the Hilbert space H. If

1) A has no pure imaginary eigenvalues,

2) o(A) NiR is countable where, o(A) is the spectrum of A.

Then, the Co-semigroup (e'1)i>o is strongly stable.

Now, we are in position to state the main result of this subsection.
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Theorem 3.2. Consider the system (1.7)-(1.13) on N. Assume additionally that
one of the following conditions holds,

1) Each mazimal subgraph of thermo-elastic edges has an exterior vertex that be-
longs to Vg .

2) There exists a mazimal subgraph of thermo-elastic edges with no exterior ver-
tices that belong to Vg and B; = 3, for all j € Z(N).

Then
iR C p(A), (S1)
and therefore tli)m E(t) — 0.

Proof. Using Sobelev embedding Theorem, we deduce that (I —.A)~! is a compact
operator. Then, the spectrum o(A) of A is reduced to its discrete spectrum o, (A).
Hence, using Arendt-Batty Theorem [2], it is sufficient to prove that o, (A)NiR = 0,
since it implies that (S1) holds. Let A € R and U = (u,v,y, 2,0) € D(A) be such
that

AU = iA,

equivalently, for all j € Z(N) we have,

vl =i, (3.1)

ul, — ;09 + Bz =i\, (3.2)

2 =iy, (3.3)

PiYae — Bjv? =i, (3.4)

K00, — ajul = iNG. (3.5)

Eliminating v/ (resp. 27) using (3.1) (resp. (3.3)) and inserting them in (3.2), (3.4)

and (3.5) we get the following system for all j € Z(N),

N+l — ;00 +id3yl =0, (3.6)
Ny pjyt, — iNBju’ =0, (3.7)
K09, —idajul —iNg? = 0.

Since we have

£ )
Sk / 107 2 dz = Re(AU, U}y = Re(iAU, U)y = 0,
J€T e 0
we deduce that
0, =0, Vj € L. (3.9)

Thus, 67 is constant for all j € Z.. But, using the fact that every maximal subgraph
of thermo-elastic edges is not a circuit and using (1.10) and (1.11), we deduce that

07 =0, Vj € Te. (3.10)
Suppose that A = 0. Then, (3.6), (3.7) and (3.9) implies that
{uz;z =0, VjeI(N),

. 3.11
piyi, =0, VjeIN). (3.1
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Multiplying the first equation and second equation of (3.11) by w7 and y7, respec-
tively. Then, integrating over (0, ¢;), summing over j € Z(N) and applying Green’s
formula, we get

N 45 N 4
Z/ |ud |2 dx—Zuiw =0,
j=170 j=1 0
(3.12)
N g N L |E
Z/ iyl dz =" piylyi| =o0.
j=170 j=1 0

But using (3.10) and the boundary conditions (1.10)-(1.13), the boundary terms
are zero, hence (3.12) becomes

N 45 )
> [ il e o,
j=1"0

(3.13)

N 45 )
> [ ot do=o
j=1"9

By the fact that p; > 0, for all j € Z(N), we obtain that ul =yJ =0, for all
j € Z(N). Again, by (1.10), (1.11) and using the fact that Vey; # 0, we deduce that
w =yl =0, for all j € Z(N). Consequently, using (3.1) and (3.3), we conclude
that v/ = 2/ =0, for all j € Z(N) and therefore, U = 0.

Now, suppose that A # 0. We will distinguish between two cases.

Case 1. Assume that each maximal subgraph of thermo-elastic edges has an exte-
rior vertex that belongs to Vext. Using (3.10) and (3.8), we have

ul =0, V] € Tie. (3.14)

This means that u? is constant for all j € Zy. But, using (1.10), (1.11) and the fact
that every maximal subgraph of thermo-elastic edges has an exterior vertex that
belongs to Vi, we deduce that u/ = 0, for all j € Z.. Thus, by (3.1), we have
v/ =0 and by (3.6), (3.14) and (3.9), we obtain that y’ = 0, for all j € Z;,. Conse-
quently, by (3.3), we get 29 = 0, for all j € Z;.. Hence, w/ = v =y/ = 29 =69 =0
on both ends of e;, for all j € Zy..

Now, let e; be an elastic edge attached only to thermo-elastic edge. As e; is iden-
tified by [0, ¢;], assume that ¢; is the extremity in common with the thermo-elastic
edge. Then, using (1.11), (3.10), (1.12) and (1.13), we have the following system

A2ud + uﬁm + i)xﬁjyj =0,
A?yj + pjy;x —iAgju! =0,
u () =y’ (¢;) =0,
ul (6;) = yi(¢;) = 0.

(3.15)

Let
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and
gj _ {yja on (0’6]')7

0, on (4;,0;+1).
Then, using the boundary conditions of (3.15), we deduce that (%/,§?) belongs to
H2(0,4; +1) x H%*(0,£; + 1) and satisfies the first two equations of (3.15). Con-
sequently, using Theorem 2.5 of [9], we deduce that @/ = 7 = 0 on (0,4; + 1)
and hence, v/ = y/ = 0 on (0,4;). Then, v/ =2/ =0 by equation (3.1) and
(3.3) respectively. We repeat this technique to every elastic edge connected only
to thermo-elastic edges and we proceed by iteration the same method on each
maximal subgraph of purely elastic edges (from the leaves to the root), so that
w =0l =yl =27 =0, for all j € Z(N).

Case 2. Assume that there exists a maximal subgraph of thermo-elastic edges
with no exterior vertices that belong to Vext and 8; = 8, for all j € Z(N). First,
notice that (3.14) holds and thus,

ul, =0, V] € L. (3.16)
Then, using (3.16), (3.9) and the fact that A # 0, 8; = 8, equation (3.6) becomes
M 4+ iy’ =0, V) € Tie. (3.17)
Differentiating (3.17) twice with respect to x and using (3.16), we deduce that
Yl =0, Vj € Tie. (3.18)
Then, using (3.18) and as X\ # 0, 3; = 3, (3.7) becomes
My —ipu! =0, Vj € Tie. (3.19)
Eliminating v/ from (3.17) and replacing it in (3.19) we obtain
(N2 = BHy! =0, Vj € T (3.20)

Then, for A # £3 we deduce that y/ = 0, for all j € T, and thus by equation
(3.19) we get u? = 0, for all j € Z;.. Again, we proceed using unique continuation
Theorem from [9] and iteration technique used in Case 1 to conclude that v/ =
vl =yl =27 =0, for all j € Z(N).

On the other hand, if A = £8. Without loss of generality, assume that A = 5.
First, using (3.19), we have

y* =iVl € Tie (3.21)
and thus using (3.14), (3.21) implies that
yb =iul = 0,0 € T (3.22)

Our aim is to prove that

; 2
yi. = 0, V) € IN). (323

This would end the proof as in the case A = 0. As (3.16) and (3.18) hold, it is
enough to prove that (3.23) holds for each elastic edge. Let e; be an elastic edge
attached to a thermo-elastic edge at the vertex aj, where ay is a leaf of a maximal
subgraph of elastic edges. As A\ = 3, then (3.6) and (3.7) lead to

BPu? +ul, + By’ =0, (3.24)
B2y + pjyh, — iB%u’ = 0. (3.25)

{ugx =0, Vj € I(N),
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By eliminating w/ from (3.24) and inserting it in (3.25), we obtain the following
equation

Voo + 82Ny o (3.26)
Moreover, using (3.25), (1.11) and (3.21), xjve have
Yo (ar) =0 (3.27)
and using (3.25), (1.12), (1.13), (3.10) and (3.22), we get
Yhaw(ar) = 0. (3.28)

Consequently, by setting Z7 = yJ_ and using (3.26)-(3.28), we have the following
system
Z;ix+/82(pj+ )Zj -0

P (3.29)

)

Zj ((lk) = 0,

Zj(ax) = 0.
Therefore, Z9 = 0 and then yJ, = 0. This means that yJ is constant. But using
(1.12) and (3.22), we deduce that y?(az) = 0. Hence, yJ = 0. Therefore, using
(3.25), we obtain that y/ = iu’ and then yJ = iuJ = 0. Again, by iteration on each
maximal subgraph of purely elastic edges (from the leaves to the root), we repeat
the same procedure to prove that (3.23) holds. Whenever (3.23) is attained, we can

proceed as the case A = 0 which finishes the proof. The same procedure can be
used in the case A = —pf. O

Let us finish this section by introducing some notations that will be used in the
next section.

Let 7., denotes the set of indices of edges adjacent to a vertex in V., and G
denotes the set of indices of edges adjacent to two vertices in Vi,,.

I
int

4. Energy decay rates. Take an arbitrary network A/ for which the System (1.7)-
(1.13) is stable. In this section, we will prove that under the condition that the
two coupled wave equations propagate with the same speed on each thermo-elastic
edge, i.e., p; =1, for all j € 7., and using a frequency domain approach combined
with a multiplier method, the energy of the system decays exponentially to zero.
Otherwise, if there exist j € Ze N I/ such that p; # 1, we prove a polynomial
decay rate of type t~/3, see ([3, 17]). The main results are presented in Theorem
4.1 and Theorem 4.11.

4.1. Exponential stability.

Theorem 4.1. Let N be an arbitrary network for which the operator A associated
with System (1.7)-(1.13) satisfies (S1). If p; = 1, for all j € Iy, then the energy
of the system decays exponentially in H. In other words, there exist two positive
constants M and e such that

et Azo|ln < Me™||zollz, V>0, Ve H.

Proof. Following Huang [10] and Priiss [17], the Cp-semigroup of contractions
(e!4);>0 on H is exponentially stable if and only if (S1) and

limsup [|(1A — A) | £(3) < 00 (52)

[A|—o00
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hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose
that (S2) does not hold, then there exist a sequence of real numbers A, € R and a
sequence of vectors Uy, = (Un, Un, Yns 2n, On) € D(A) such that

|)\n| — +00, HUnHH = ||(unavnaynvzn79n)”7{ =1, (41)

and

(idn — AUn = (frs Fris Gn> Gn> n) — 0 in H, (4.2)
are satisfied.
In what follows, we drop the index n for simplicity.
Now by detailing (4.2), we get for all j € Z(N)
iu! —vl = f7 =0 in H'(0,¢), (4.3)
i — 4 a0l — B2 = f7 =0 in L(0,4;), (4.4)
iy — 27 =g¢' =0 in H0,¢), (4.5)
iXe — piyl, + Bvt =G — 0 in L*(0,¢;), (4.6)
iINT — k00 4+ ol =R — 0 in L?(0,¢;). (4.7)

Then, by eliminating v/ and 27 from equations (4.3) and (4.5) respectively, (4.3)-
(4.7) imply

Nl +ud, — ;0] + NGy’ = B¢’ — [T —iAf, (4.8)
Nyl + piyl, — NGl = =B f7 — ) —iAg’, (4.9)
iIN — k07, 4+ idajul = B + a; fi (4.10)

where, p; = 1, for all j € Zi.. Now, we will proceed by dividing the proof into
different Lemmas.

Lemma 4.2. Under all above assumptions, we have
£ )
/ 16512 dx = o(1), Vj € L. (4.11)
0

Proof. Taking the inner product in H of equation (4.2) with the uniformly bounded
sequence U = (u,v,y, 2,0), we get

o
> nj/o 160712 dzz = —Re((iN — A)U,U)y = o(1).

jezte
As kj > 0,Y] € Ly, it follows that

16211 72(0,,) = (1), Vj € Tie.

Using (4.3), (4.5) and (4.1), we have for all j € Z(N)
X l20,) = O, [l = (L) (1.12)
127 1|22 (0,6, = O1), gl 20,5 = O(D). (4.13)
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Also, using (4.8), (4.9) and (4.10), we have for all j € Z(N)
03
by

J
Yza

A

J
Uzy

B\ - 0(1)7

L2(0,¢5)

= O(l)v
L2(0,45)

—0(1). (4.14)
L2(0,¢5)

Lemma 4.3. Under all above assumptions, we have for all j € I,

X (£5) = O(1), ui(¢;) = O(1), (4.15)
,\uJ(O) =0(1), uJ(0) = O(1), (4.16)
( i) =0(1), yi(4;) = 0(1), (4.17)
¥’ (0) = O(1), y2(0) = O(1). (4.18)

Proof. For all j € Ty, let 7 be a function in W1°°(0,¢;), then multiply (4.8) by
207 ug, integrate over (0,¢;), take the real part and apply Green’s formula, we get

r={; z=L;

&G o
—/ O |\ |2 da + BT |\ |?

G o
0 - [ wd o+ 2l

=0 =0

Y i T R 4.19
—2Re ozj/ 02 ®ul, dr + Re 2i B; I Ny’ ul dx (4.19)
0

£ £ . —
= 2Re/ B; ‘Iﬂgjugc dz — 2Re f’flﬂ L dr — 2Re/ iANfI DI, du.
0 0

Using (4.12), (4.14) and (4.11) we obtain,

IEZZJ'

+ @7 fuf |2

’E:ej

. . £ o —
I | |? =0(1) - 2Re/ INFI DI, da. (4.20)
0

x=0 =0

But,

¢ ¢ o ¢ o
—2Re/ MfJ(I)J | da = 2Re/ iINfI®Lud dx + 2Re/ iANOTuI f7 dx

0 0 0
;czej (421)
—2Re(iAfI DI ud)

z=0

Using (4.12) and the fact that f7 converges to zero in H'(0,¢;), (4.21) becomes

r={;
é J
- 2Re/ iNfI DIl do = —2Re(iAfI®Iud) + o(1). (4.22)
0 z=0
Let ® = gz, for all j € ;.. Using Young’s inequality, we get
4 e i g 2 j 2 |fj(£j)‘2
2Re I DI ug dx| < Lej| ! (€5)]7 + —— +o(1). (4.23)
0 €j

Recalling the Gagliardo-Nirenberg inequality [12]: For all £ > 0, there are two posi-
tive constants C; and Cy depending on £ such that for any ¥ in H'(0,¢) c C([0,4]),

1/2
9] 2 0.6 < Cul[Wall o0, 1¥11 12000 + Coll®]]22(0.0)- (4.24)
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Applying (4.24) to ¥ = f7 and using the fact that f7/ converge to zero in H'(0,¢;),
we deduce that f7(¢;) = o(1). Thus, (4.23) yields that

£ o — ,
2Re/ NI uh, dr| < Gej| Ml (45)17 + o(1). (4.25)
0

By inserting (4.25) in (4.20) and as 7 = z, we obtain
(6 — Gej)|? (€))7 + 5 |uf, (£) 2 = O(1).
By taking ¢; = i, we deduce that (4.15) holds. Similarly, by taking ®/ = (z —¢;),

for all j € Zye, we conclude that (4.16) holds. Also, multiplying (4.9) by 230% and
2(x — Ej)yi respectively, we deduce that (4.17) and (4.18) hold. O

Lemma 4.4. Under all above assumptions, we have for all j € Ty,
Z]‘ ) e]‘ )
/ 2 da = o(1), / 1092 da = o(1). (4.26)
0 0

Proof. Let j € Tye. Multiply (4.10) by % and integrate over (0, ¢;) we get

{7 p— £ u?v G ¢ uig:
Z/ 67 u, d;v—/ /ijﬂi,z—dx—i—iaj/ |ud |2 d;v:/ R — dx
0 0 0 0 A

o g
+aj/ Y gy
0 A

Applying Green’s formula on the first and second term of (4.27) and using (4.12),
we obtain

(4.27)

Z:Zj —_— — m’:e]‘

£ ol Y
975 A — 07 2
+/0 Ryl = do = ri05~

0o -
—i/ 0 w3 dx + 167wl
0

z=0 =0

Ej X
+i aj/ |ul |* dx = o(1).
0

Using Cauchy-Schwarz inequality, (4.1), (4.11) and (4.14), we have

$=€j 7
97 Uz
D

x:éj

— K =o(1). (4.28)

£ _
i aj/ |ul |* da + i67ui
0

=0 z=0

Then, by applying Gagliardo-Nirenberg inequality for ¥ = %, U= % and again

using (4.11), (4.14), (4.15), (4.16), we deduce that (4.28) yields

L
e w2 dz = o(1).
J |w‘
0

Taking the imaginary part and using the fact that a; is a positive constant for all
7 € Tie, we deduce that

2]‘ )
/ il 2 de = o(1). (4.29)
0
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9j+aju§;
A

Now, multiply (4.10) by and integrate over (0,¢;), we get

G , b i ————— Gopi —
z/ 167 + ajul|? dx —/ %(w + ajul) doe = / 7(91 + ajul) do
0 0 0 (4.30)

G o fi —— ——
+/ aj)\f"’” (07 + ajul) da.
0

By applying Green’s formula on the second term of (4.30), using Cauchy- Schwarz
inequality on the integrals of the right hand side, (4.1) and the fact that A7 and fJ
converge to zero in L*(0,¢;), we obtain

b : G 1ga)? & U
2/ 07 + ajul|? dx—l—/ Kj—~ dx—l—/ ajki0)—— dx
0 0 0 A

A
=L, (431)

k05 (07 oyl
- — + =o(1).
% (ﬁ W), T
67 67
Again, by using Gagliardo-Nirenberg inequality for ¥ = —, U =—X and

| AT
J
v = u—“;\, we deduce that the boundary term in (4.31) converges to zero. More-

over, using (4.11) and (4.14), the second and third terms of (4.31) converge to zero.
Consequently, using (4.29), we conclude (4.26). O

Lemma 4.5. Under all above assumptions, we have for all j € T,

/ |\ |? de = o(1) and / |v7|? dz = o(1). (4.32)
0 0

Proof. Let j € Tyo. Multiply (4.8) by u, integrate over (0,¢;) and apply Green’s
formula, we get

&G &G B Z ,7
/ |\u?|? dx — / |ul | da + ul ud — / o000 dx
0 0 0

£; _ £; _ G b
+/ 1B y’w dx :/ Big’ul dx —/ flui dx — i)\/ flud dzx.
0 0 0 0

=0

Using Cauchy-Schwarz inequality, (4.26), (4.15), (4.16), (4.11), (4.12) and (4.13),
we deduce that

0o
/ |\ |? dx = o(1).
0
Using (4.3) we conclude that (4.32) holds. O

As a conclusion, we have for every j € Z;,
v/ — 0, in L*0,¢)),
uw! — 0, in H'Y(0,¢;),
07 — 0, in HY(0,¢;).
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Lemma 4.6. Assume that all above assumptions hold. Then, for every thermo-
elastic edge, we have

M (£5) = o(1), ul(¢;) = o(1), Re(irf?(€;)u?(¢;)) = o(1), (4.33)

M (0) = o(1), u(0) = o(1), Re(irf?(0)u’(0)) = o(1), (4.34)

07(0) = 0(1),67(£;) = o(1). (4.35)

Proof. By the proof of Lemma 4.3, for all j € T, and any ®/ in W°°(0,¢;), (4.19)

holds. Then, using (4.26), (4.32), (4.11) and (4.13) we obtain
a=t; a=t;

T @[l ?
=0

) ) £; o —
®7 |\ |? =o(1) — 2Re / I DI, da. (4.36)
0

=0

Then, by taking ®/ = z, for all j € Zi,, and using (4.25), we deduce that (4.36)
becomes,

(05 — L) | (5)17 + £ ]ud, ()17 = o(1).
Taking €; = i, we deduce that
M (£;) = o(1) and ul (¢;) = o(1).

Consequently, by (4.36) and (4.22), we conclude that (4.33) holds. Similarly, by
taking ®/ = (x — ¢;), for all j € Z;., we conclude that (4.34) holds. On the other
hand, applying Gagliardo-Nirenberg inequality for ¥ = 67 using (4.26) and (4.11)
we deduce that (4.35) holds. O

Lemma 4.7. Under all above assumptions, we have for all j € Ty,

17
| e ao = o). (4.37)

Proof. Multiply (4.8) by y%f, then integrate over (0, ¢;) we get

/ Ty dx+/ Ugvﬂfijz de _/ ity y dz + 4 Byy Yba da

/ Big Jymd _/ ij:r:v da:—z/ Pyl da

Using Cauchy-Schwarz inequality, (4.11), (4.14) and the fact that g7 and f converge
to zero in L*(0,¢;), we obtain

ZEZEA

Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we get

éj —_— Zj
/ M Y d$+/ ul ywz d$+l/ 5Jy y:m dx = 0(1)72/ ijfm da. (4.38)
0 0 0

£ _
- / /\u@ym dx + )\uj
0

I:Zj

—Hﬂjyj —z/ 12 yﬁ; dx—ifjﬁ +o(1).
0

=0
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But, using (4.33), (4.34), (4.17), (4.18), (4.13) and the fact that f7 converge to zero
in H'(0,¢;), we deduce that

G 2
- / M yd, da —i—/ ul, yix dx — z/ Bilyi|? dz = o(1). (4.39)
0 0

Similarly, multiplying (4.9) by “jT\T, integrating over (0,¢;) and using the fact that
pj = 1for all j € Zie, we get

£; — G g
/ M ul dm—i—/ ym )\ L do — / ﬂjujum dzx
0

i e 2 pp—
/ @fj u” — / gf% dx — z/ g uls dx.
0

Using Cauchy-Schwarz mequahty7 (4.14) and the fact that f7 and §’ converge to
zero in L?(0,¢;), we obtain

L — £ W 4 — &G —
/ Ay U d:c+/ ymm% dx— Biuw uty dx = 0(1)—1‘/ g uy dx. (4.40)
0 0 0 0

Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we obtain

4 o=t £ .
_/ )\y édaﬂr}\y _|_/ m—dw-l—z/ Bjlu, ‘Qdfv
0 x=0 0 )\
_ $=€j Zj -
—z’ﬁjuju];p = @/ gmuz dxr — lg 'l +o(1).
=0 0 z=0

But, using (4.17), (4.18), (4.26), (4.33), (4.34), and the fact that g/ coverges to zero
in H'(0,¢;), we deduce that

G G I
7/ Ayl dx+/ Yl —= dx = o(1). (4.41)
0 0 A

Taking the imaginary part of equations (4.39) and (4.41) then, adding the two
resulting equations, we conclude that

£
|l de o),
0
and the result holds. O

Lemma 4.8. Under all above assumptions, we have
£; 4
/ Ny’ dx = o(1), Vj € L. (4.42)
0

Proof. Multiply (4.9) by 7 then, integrate over (0, ¢;) and apply Green’s formula,
we get

£ ] 4o —
[ e de = [Tl oyl
0 0
T
2 ,7 &G L
= —/ Bifly dx—/ gyl dx—i/ g’ \yd dz.
0 0 0

—i/ Bi\ulyi dx
-0 0
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But, using Cauchy-Schwarz inequality, (4.12), (4.13), (4.17), (4.18), (4.37) and the

fact that f7, g7 converge to zero in H'(0,¢;) and §’ converges to zero in L?(0,¢;),
we deduce that (4.42) holds. O

Lemma 4.9. Assume that all above assumptions hold. Then, for every thermo-
elastic edge, we have

Xy (£) = o(1), y4(6;) = o(1), Re(ig’ (¢;)y’ (£;)) = o(1), (4.43)
Ay’ (0) = o(1), y2(0) = o(1), Re(irg’(0)y’(0)) = o(1). (4.44)
Proof. The proof is the same as the one of Lemma 4.3 or Lemma 4.6, using (4.37)
and (4.42), the result holds. O

Lemma 4.10. Under all above assumptions, for each elastic edge we have
2 ) Lo
/ 2 da = o(1), / Wl 2 da = o1), (4.45)
0 0
£ ) L
| P de=ot), [l dz = o). (4.46)
0

0
Proof. Let e; be an elastic edge attached to a thermoelastic one at an interior vertex
ay, where ay, is a leaf of a maximal subgraph of elastic edges. Recall that o; = 0,
and let ®7 € W1H°°(0, ;). Multiply (4.8) by 2®7u, then integrate over (0,;), take
the real part and apply Green’s formula, we obtain
x=L;

I:fj

U ) o &G o
—/ B9 M2 da + &7 |2 —/ 7 [l |2 da + B |ud
0 0

x=0 x=0

£ o — 2 . —
+Re 2@'/ A3 @7y vl do = 2Re/ B, g7 ul dx
0 0
G — & L —
—2Re/ F®lul dx — QRe/ iANfI DI g du.
0 0

Again applying Green’s formula on the fifth term of the left hand side and on the
third term of the right hand side, we get

=L, =0,
G o ! G o !
—/ O | |2 da + 7| Md)? —/ O |ud|? da 4 BT |ud|?
0 _ 0 _
=0 =0
G &G RN
—Re 21'/ M B;®7y? dx — Re 2i/ A B; @77 dr + Re (2i8; 97 Ay’ ud)
0 0 =0 (4.47)

7 o 6 6
= 2Re/ B; ¥ ¢’ ul do — 2Re/ F®Iul dx + Re 21'/ Aud f1®7 dx
0 0 0
x=L;

G R
+Re 2i/ FIOI I dz — 2Re(i) f7 @7 ud)
0

=0

But using Cauchy-Schwarz inequality, (4.12) and (4.13), we deduce that

G
Re 22’/ I B; 80y dx = o(1). (4.48)
0
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Also, using Cauchy-Schwarz inequality, (4.12), (4.13) and the fact that f7 converge
to zero in H'(0,¢;) and f7, ¢’ converge to zero in L?(0,£;), we have

£ . — G — G
2Re/ B9 ¢’ ul, da — 2Re/ FI® ul dx + Re 22’/ At f1®7 dx
0 0 0

. (4.49)
+Re 2¢/' FoI T da = o(1).
0
Inserting (4.48) and (4.49) in the identity (4.47), we get
Zj ' ‘ . . I:Ej e]‘ ‘ . - - ZL’IZJ'
_/ B9 |\ |? da + B9 \ai? 2 —/ B [ul |2 da + I ul 2
0 x=0 0 x=0
%) (4.50)

I:Zj

+Re (2iB;®7 My ud) +2 Im/ i B @y de = —2Re(i\f7 ®Iud)

=0 =0

Similarly, multiply (4.9) by 2<I>jg, integrate over (0,¢;), take the real part and
apply Green’s formula, we obtain

w:Zj LE:ZJ'

_ / BI? do+ DD - / P2 i+ py 9y 2
0 0

=0 =0

—Re 22/ AB;®Iuiyl dw = —Re 2/ B fidiyl
L £; =
—Re 2/ § ®y) dr — Re 2i/ Ag’ @7yl du.
0 0

Applying Green’s formula on the last integral of the right hand side, we get

CE:ZJ‘ CE:ZJ‘

4G . o £; o .
- / B ? do+ DD - / Py [2 i+ py 9yl 2
0 0

=0 =0

—ReZz/ AB; @I ulyl, dx——ReQ/ ﬁfﬂqﬂ

¢ ¢ (4.51)
—Re 2 / F®Iyl dr + Re 2i / gL ®Iyi dx + Re 2i )\gj P yi da
0 0 0 ot
—2 Re(iAg’ ®Iyd)
x=0

But, using (4.13) and the fact that ¢’ converge to zero in H'(0,¢;) and f7, g’
converge to zero in L?(0,¢;), we conclude that

Z,
—Re2/ ,ijqﬂ da:—ReQ/ G DIy da:+Re22/ Nl ®Iyi da
0 (4.52)

+Re 2i/' Mg/ ®Iyd dx = o(1).
0



24 ALAA HAYEK, SERGE NICAISE, ZAYNAB SALLOUM AND ALI WEHBE

Then, inserting (4.52) in equation (4.51), we get

= =
b L ! b o o !
- [ e P e e - [ el do ke P
0 =0 0 =0 (453)
£ — N .
+2 Im/ \3; @Iyl do = o(1) — 2 Re(irg’ ®7yd)
0
=0

Without loss of generality, assume that 7;(a;) = 0 and let ® =z — ¢; (otherwise,
let @/ = z). Then, adding the two equations (4.50) and (4.53), using Lemma 4.6,
Lemma 4.9, the fact that w,y, f and g satisfy the continuity conditions in (1.11)
and u, 0 and y satisfy the balance conditions (1.12)-(1.13), we deduce that

0 ¢
/ |\ |? dx —|—/ |ul | dx
0

[j .
+ / P da+ / pilyi|? d = of1).
0

Consequently, as p; > 0 for all j € Z, (4.45) and (4.46) hold. Repeating the same
technique of Lemma 4.6 and Lemma 4.9, we conclude that

Auj( ) = o(1), u},(0) = o(1), Re(iAf7(0)u’ (0)) = o(1),
Y (0) = o(1), y1.(0) = o(1), Re(irg’ (0) (0)) = o(1),
AuJ( i) = 0(1), ul((;) = o(1), Re(iAf’ (¢;)u’ (¢;)) = o(1),
Ny (6) = o(1), i (4) = o(1), Re(irg’ (¢;)y’ (¢;)) = o(1).

Then, by iteration on each maximal subgraph of purely elastic edges (from leaves
to the root), we prove that

45 ) Lo £ _
/ P da:+/ il 2 dx+/ 2 dm—i—/ WP dz = o(1),  (4.54)
0 0 0
for all j € Z.. O

In conclusion, using Lemmas 4.4, 4.5, 4.7, 4.8 and 4.10, we conclude that
[|U||% = o(1), which contradicts (4.1). O

Remark 1. Examples of networks for which (S1) holds are given by Theorem 3.2.

Remark 2. If there exists an elastic edge (j € Zo) such that p; # 1 then, using
Lemma 4.10, we show that Theorem 4.1 holds (i.e., the energy of the system decays
exponentially to zero). But, if there exists a thermo-elastic edge (j € Zte) such that
p; 7 1 then, it seems that the energy of the system does not decay exponentially,
but polynomially (see Theorem 4.11 below).

4.2. Polynomial stability.

Theorem 4.11. Let N be an arbitrary network for which the operator A associated
with System (1.7)-(1.13) satisfies (S1). Assume that there exists j € Ty, NI, such
that p; # 1. Then, the energy of the system satisfies

C
E(t) < WHUOH%)(A)a YUy € D(A), t>0, (4.55)
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for some positive constant C' > 0.
Proof. Following Borichev-Tomilov [3], the Cy-semigroup of contractions (e*4)
on H is polynomially stable if and only if (S1) and

— 1A = A) " ) < o0 (52)

t>0

hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose
that (S2) does not hold, then there exist a sequence of real numbers A\, € R and a
sequence of vectors Uy, = (tn, Un, Yn, 2n, On) € D(A) such that (4.1) and

M (ihy — AUp = (frs fris G G h) — 0 in H (4.56)
are satisfied.
In what follows, we drop the index n for simplicity.

Now by detailing (4.56), we get for all j € Z(N)
AN (idu? —v?) = fI -0 in HY(0,¢;), (4.57)
N (i —ud 4+ ;08 — B;27) = fj — 0 in L*(0,4;), (4.58)
NNy —29) =¢ - 0 in Hl(O,Ej), (4.59)
A (X — pjyl, 4+ Bjv7) = ¢ — 0 in L*(0,¢;), (4.60)
N(INGT — k09 + ajvl) =R — 0 in L*(0,¢;). (4.61)
(4.61)

Then, by eliminating v/ and 2’ using (4.57) and (4.59) respectively, (4.57)-
becomes

o Bigh  f
N+l — 00 4+ NGy = ;\6 EECEESE (4.62)
_ ) _ . B J aJ Y
Ny + pjyle — NG = —;—ﬁ - % - Z%’ (4.63)
) ) hi L fJ
i — ;0 + idagul = 35+ a;fw (4.64)

First, our aim is to prove that for each thermo-elastic edge, we have
v/ — 0, in L*(0,¢;),
uw) — 0, in HY(0,¢;),
67 — 0, in HY(0,¢;), (4.65)
27 =0, in L*(0,¢;),
v/ — 0, in HY(0,¢;).
Following the same proof of Lemmas 4.4, 4.5, 4.7, 4.8, we can prove that (4.65)
holds for all j € Zy. with p; = 1. Hence, we only need to prove that (4.65) holds for

all j € Tye NI, with p; # 1. We will proceed by dividing the proof into different
Lemmas.

Lemma 4.12. Under all above assumptions, we have

X6

Proof. Same proof as the one of Lemma 4.2. O

Zj i
/ 6712 do = o(l) Vj € Ly (4.66)
0
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Using (4.1), (4.57) and (4.59), we can easily deduce that (4.12)-(4.13) holds, for all
Jj € Z(N). Also, using (4.62), (4.63) and (4.64) we conclude (4.14) for all j € Z(N).

Lemma 4.13. Under all above assumptions, (4.15)-(4.18) holds.

Proof. Let ® be a function in W1°°(0,¢;), for all j € Zi.. Multiplying (4.62)
by 2<I>ju£, integrating over (0,¢;) then taking the real part and applying Green’s
Formula, we obtain

z:fj

$:ej

G o G o
—/ I | Au? |2 da 4 BT M |2 —/ O |ud |? dx + 7 |ul|?
0 0

=0 =0

Ej 1 url [j . Barad
—2Re o; / 0Dl dx + Re Qi/ BNy &, da (4.67)
0 0

G BB giyd G Fipiyd G iyl
= 2Re / L‘Zux dr — 2Re/ f GU;c dr — 2Re / if 5%6 dzr
0 A 0 A 0 A

Using (4.12), (4.13) and (4.66) we get,

w:éj :L’:Aej

I |\ |2

+oI = o0().

=0
Let ® = x, for all j € Zi.. We deduce that (4.15) holds. Similarly, by taking

7 = (z — {;), we conclude (4.16). Also, multiplying (4.9) by 2zyl and 2(z — )yl
respectively, we deduce that (4.17) and (4.18) hold. O

=0

Lemma 4.14. Under all above assumptions, we have

0 1
/ |l |* da = % Vi€ NTey (4.68)
0

Proof. Let j € Ty N Z., .. Multiply (4.64) by %, and integrate over (0,¢;), we get

ext*

[ 4 , @ £ _
z/ 07wl dx —/ /@ﬂizT dx +i/ aj|ul | dx
0 0 0

0 147 05 i

J hJuE J a,fjum
= —d J T dx.
A G z+/0 V €

Applying Green’s formula on the first and second term of (4.69), using Cauchy-
Schwarz inequality, (4.12) and the fact that f7 converge to zero in H'(0,¢;) and h?
converge to zero in L?(0,¢;), we obtain

(4.69)

0. r=L; 0. i z={;
— Jp— J 'U/gr Qi —
—z/ 0iui d + i07u +/ R0 d = =t
0 =0 0 =0 (470)
£
. P2 - o(1)
—|—z/0 a|ul)] dx—T.
But, using Cauchy-Schwarz inequality, (4.66), (4.12) and (4.14), we deduce that

yn
J 1
/0 Ol ul dx = %, (4.71)
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and
/ 91““ - /(\3). (4.72)

On the other hand, by applying Gagliardo-Nirenberg inequality to ¥ = 6’ and

U= 7“ using Poincaré inequality, (4.66) and (4.14) we deduce that

. o(1 . o(1 .
67(0) = %, 07(¢;) = %, JELe NI, (4.73)
and
0i0) o) 6i(6) o)
)\ = 7, )\] = ?, ] S Ite ﬁIéxt (474)
Using (4.71), (4.72), (4.73), (4.74), (4.15) and (4.16) we conclude that (4.68) holds.
O
Lemma 4.15. Under all above assumptions, we have for all j € T,e NI,
& &G
/ |\’ |* dz = o(1) and / |72 dz = o(1). (4.75)
0 0

Proof. Let j € Tye NI

ext -

Multiply (4.62) by uJ, integrate over (0,4;) and apply
Green’s formula, we get

b b - A
/ |\ |? da — / |ul |* da + ulud - / o000 dx
0 0 0 0

¢ ¢ i— 6 Fi 0 i
i — ] ng]uj J f]uj ) 3J fju]
+/0 i 7w dx :/0 3G dx — MY: dx —i e dz.

Using Cauchy-Schwarz inequality, (4.12), (4.13), (4.66), (4.68), (4.15) and (4.16) we
deduce that

x:éj

Zj .
/ |\ |? dz = o(1).
0
Using (4.57), we conclude that (4.75) holds. O

Lemma 4.16. Assume that all above assumptions hold. Then, for j € Ty N T, ,,
we have

X (£) = o(1), uf(£;) = o(1), (4.76)
Mu? (0) = o(1), u?(0) = o(1), (4.77)
67(0) = o(1),67 (¢;) = o(1). (4.78)

Proof. By the proof of Lemma 4.13, for all j € Zie NZ,,, and any ®7 in W>°(0, ¢;),
(4.67) holds. Then, using (4.68), (4.75), (4.66) and (4.13) we obtain

z={;

+ ®Juf |

m:lj

®7 |\l |? = o(1).

=0
Then, by taking ® = z, for all j € Z;.NZ

ext)

z=0

we deduce that (4.76) holds. Similarly,
by taking ®/ = (z — ¢;), for all j € I N I.,, we conclude that (4.77) holds. On

the other hand, by (4.73), we directly have (4.78). O
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Lemma 4.17. Under all above assumptions, we have for all j € T1e NI,

éj . é]' .
/ Ay |2 dz = o(1) and / |29)? dx = o(1). (4.79)
0 0

Proof. Let j € TycNZ!

!+ Multiply equation (4.63) by AuJ, then integrate over (0, £;),
we get

¢ o T ¢ 4
/ Nyl da + pj/ Yl Aud do — z/ Bil\u|? dx
0 0 0

£ ﬁf]& L5 gjﬁ £ gjﬁ
_ j .
——/0 G dm—/o G dm—z/o de'

Applying Green’s formula on the second term of (4.80), using Cauchy-Schwarz
inequality and (4.12), we obtain

(4.80)

x

={;
2 _7 4G — N t :
/ Nylui dx — p; / yiud dx + pjyl Al - z/ Bil\u |? dx = o(1).
0 0 0
=0

x

But, using (4.76), (4.77), (4.68) (4.75), (4.17), (4.18) and (4.13), we deduce that
£ —
/ Nydud dx = o(1). (4.81)
0

Similarly, multiply (4.62) by Ay/ then integrate over (0, ¢;) and apply Green’s for-
mula, we obtain

x={;
£ — 2 — R £ o
/ Nulyi dx — / ul Ay dx + ul Ny - / a;0)\y? dx
0 0 o0 0
£ ) % B.giyd b Figd b Figd
—Hﬂj/ I\ |? dx = ﬁ]i;g dx — f)\:g dr — z/ f)\:Z dz.
0 0 0 0

Consequently, using (4.68), (4.76), (4.77), (4.17), (4.18) and (4.66) we get

Zj . . Kj )
/ Nudyi derZﬂj/ I\ % dz = o(1).
0 0

Then, taking the imaginary part of the above equality, using (4.81) and the fact
that /3, is a positive constant for all j € Zye N 7, we deduce that

ext)

lj .
/ My |2 dx = o(1).
0
Finally, by (4.60), we conclude that(4.79) holds. O

Lemma 4.18. Under all above assumptions, we have for all j € Tye NI,

£ )
/0 ly2|? dz = o(1). (4.82)
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Proof. Multiply (4.63) by y, integrate over (0,¢;) and apply Green’s formula, we
get

z={;
J 2 -
— z/ Biwyl dx
0 0 0
=0

T By T gy [ gy
= — o )\6 dr — o Fdﬂ?—lo 7d$

Then, using (4.79), (4.17), (4.18) and (4.13), we deduce that (4.82) holds. O

£ ) G _
/ Ay |? da — pj/ L7 dx + pjyly’

Now, following the same proof of Lemma 4.13 and Lemma 4.16, we deduce that for
all j € o NZ! ,, we have

{wej) = o(1), y(£;) = o(1),
My (0) = o(1), 42(0) = o(1).

Hence, using (4.83), Lemma 4.16 and by iteration on each maximal subgraph of
purely elastic edges (from leaves to root), the results of Lemma 4.10 hold for every
elastic edge. Finally, using Lemmas 4.14, 4.15, 4.17, 4.18 and 4.10, we conclude
that ||U||3 = o(1), which contradicts (4.1). O

(4.83)

Remark 3. 1) If every maximal subgraph of thermo-elastic edges is composed of
maximum three thermo-elastic edges and there exist j € Zie N G/, such that p; # 1
then, the same result of Theorem 4.11 holds. The key step to prove that result is to
show that (4.73) still holds. Due to (1.11) and as (4.73) holds for all j € Ty N T,

we deduce that (4.73) is achieved for all j € Ty, (in particular for j € Zio N Gl )-
Hence, the desired result is attained.

2) If we replace condition (1.13) by the following condition

Z dkjué(akvt) = O, ak € V}n‘m

j€Zlax) , , (4.84)
> diglagul(an,t) — #5605 (ar, 1)) = 0, a € Vi,

J€Tse(ak)

Then, we can also prove that the same results of Theorem 4.1 and Theorem 4.11
hold for system {(1.7)-(1.12),(4.84)}. Notice that due to condition (4.84), a slight
gain appears when proving the system {(1.7)-(1.12),(4.84)} is strongly stable. In
other words, the energy associated with system {(1.7)-(1.12),(4.84)} converges to
zero if one of the following conditions holds,

i) Each maximal subgraph of thermo-elastic edges contains at least one interior
vertex or contains an exterior vertex that belongs to Veyt.

ii) There exists a maximal subgraph of thermo-elastic edges that contains no inte-
rior vertices and contains no exterior vertex that belongs to Vox and §; = 3, for all

jEI(N).

Idea of the proof. In comparison with Theorem 3.2, it is enough to prove that
if each maximal subgraph of thermo-elastic edges contains at least one interior ver-
tex, then the energy associated with system {(1.7)-(1.12),(4.84)} converges to zero.
Due to the fact that (I — A.)~! is compact where, A, = Al ., 1s the operator
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associated with system {(1.7)-(1.12),(4.84)}, we have o(A,) = 0,(As). Following
the same proof as the one of Theorem 3.2, let A € R and U = (u,v,y,2,0) € D(A,)
be such that

AU =iAU.

As A, = Ay, ., we obtain, (3.1)-(3.10). If A = 0, we proceed exactly as in the
proof of Theorem 3.2. Otherwise, if A # 0 then, using (3.10) and (3.8) we have
(3.14), which means that u’ is constant for every j € Zi, but, due to the fact
that each maximal subgraph of thermo-elastic edges contains at least one interior
vertex and using (3.9), (3.1) and (1.11), the balance condition (4.84) asserts that
u’(ar) = 0 for some j € Tyo(ay),ar € Vi,. Again, using (1.11) we deduce that
w =0, for all j € Ti. Finally, we proceed exactly as Case 1 of the proof of
Theorem 3.2 to reach the desired aim.

5. Stabilization of thermo-elastic system with Neumann boundary con-
dition at the interior nodes of some particular networks. In this section,
we investigate the stabilization of a thermo-elastic system with Neumann boundary
condition at the interior nodes of some particular networks (composed of elastic and
thermoelastic materials) similar to the particular networks considered in [18]. In
the first case, we consider trees (Gp) for which all exterior edges (except one) are
thermo-elastic. In the second case, we consider the path (P) composed of two exte-
rior elastic edges and an interior thermoelastic edge. In the third case, we consider
(G3), trees of elastic materials, whose leaves (exterior nodes of the last generation)
are connected to thermoelastic materials as follows: the thermoelastic body con-
nects two leaves issued from the same vertex, with the condition that each leaf is
connected to only one thermoelastic body.

In fact, the considered networks (G1), (P) and (G3) are particular graphs of the
general networks covered in Section 1-Section 4. Notice that, if we apply the bound-
ary conditions of Section 1 on these particular networks, we can deduce that the
stabilization of the thermo-elastic system on (G1), (P) and (Gs) is achieved when
0 satisfies Dirichlet condition on each end of every thermo-elastic edge (see Section
1-Section 4). In this section, we discuss the stabilization of the thermo-elastic sys-
tem on these particular networks such that 6 satisfies Neumann boundary condition
at each interior node connected to a thermo-elastic edge (see Figure 6).

The system is described as follows:

e On every thermo-elastic edge (j € Zie) the following equations hold:
wl, —ud, + a;0i — Bjyg =0 in (0,¢;) x (0,00),
yi_t - p]y;w + ﬁ]ug =0 in (076]) X (07 OO), (51)
9{ - Rjegrx + O‘jugr =0 in (Ov EJ) X (Ov OO),

where o, p;, x; and B; are positive constants.
e On every elastic edge (j € Z,) one has:

ugt —ud, — ﬁjyf = 0 in (0,4;) x (0,00),
Yt — PiYa, + Bjui =0 in (0,£;) x (0,00),

where 3; and p; are positive constants.
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— Elastic edge
(P) Thermo-elastic edge
£] 2 [ .
ag a, as ay ® ‘QJ({EL'} =0
X 9‘_{.(0’.;-) =0

FIGURE 6. Elastic/thermo-elastic networks

We assume that the initial data on the network N are
uj(ac,O) :u%(m)v u{(m,O):u{(x), VjEI(N>7
¥ (2,0) =y (2), yl(2,0) = yi(x), VjeIWN), (5.3)
6 (x,0) = 65 (), Vj € Tie(N).

The boundary conditions of system (5.1)-(5.3) on the considered networks will be
as follows.

The system satisfies the Dirichlet boundary condition for the displacement and
temperature at the exterior nodes,

uj(ak’t) = 07 .] S I(ak)a ag € V;tha
Y (ak,t) =0, j€Z(ar), ar € Vext, (5.4)
09 (ak,t) =0, j € Lie(ar), ar € Vext-

The displacement is continuous at every interior node,

uj(ak’t) = ’U,Z(a]wt), ]?e S I(ak)a ap € V}nta
yj(ak,t) = yé(akvt), ],£ € I(ak); ag € Vvint~

The temperature satisfies the Neumann condition at the interior nodes,
Hi(akvt) = 07 .7 € Itc(ak)a af S ‘/int~ (56)
The system satisfies the balance condition at every interior node,

> dig(uh(an,t) — 0 (ak, 1)+ Y dijud(ar,t) =0, ax € Vi,
J€Tve(ag) Jj€Ze(ag)
(5.7)
Z dk]p]y;(ak,t) = 07 ai € ‘/int-
Jj€Z(ag)
Mainly, we find sufficient conditions on the lengths of the purely elastic edges at-
tached to the thermo-elastic ones so that the system is strongly stable and then
exponentially stable on the above described networks.
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Here the energy space H; is given by
Hi = {(u,us, y,y1,0) € H§ x L? x Hy x L2 x V satisfying (5.9)}, (5.8)

¢ A .
| (@t 409 dr =0, ¥ € G . (5.9)
0

where, Gyt is the set of indices of edges adjacent to two interior vertices.

Remark that it follows from the third equation of (5.1) and from the Neumann
condition in (5.6) that for all j € Gy N Zie, we have f(fj (ajul, +07) de = 0, which
implies that f(f "(ajud +67) dz is conservative in time. Hence, if this quantity is zero
at time ¢ = 0, it will remain zero at all time ¢ > 0, hence without loss of generality,
we assume that (5.9) holds.

The Hilbert space H; is equipped with the inner product given in (2.3).
Next, we define the unbounded linear operator A; by:

vI
ugz;r - ajeg + szj
2 (5.10)
"{jgiz - ajv:]c

Ay

DR S
Il

JEI(N)
with domain

D(A1) = {(u,v,y,2,0) € H1 N [H? x H x H? x Hj x V?], satistying (5.11)}

aj(ak) =0, je Ite(ak)v ax € Vext,
0%(ar) = 0,j € Lee(ar), ar € Vint,
Z dk;(ui(ak) - Oéjej(ak)) = 0, ap € Mnt; (5.11)
Jj€Z(ak)
Y digpiyilar) =0, ai € Vi,
J€Z(ak)

Let © denotes the set of indices of purely elastic edges attached to thermo-elastic
edges in the network A/. The main results of this section are stated in the following
Theorems:

Theorem 5.1. The unbounded linear operator A; generates a Cy-semigroup of
contractions on Hi.

Proof. The same proof as the one of Theorem 2.1 implies that A; is a maximal
dissipative operator. Then, using Lumer-Phillips Theorem (see [16]), A; generates
a Co-semigroup of contractions (etAl)tZO on H;. O

Theorem 5.2. Consider the system (5.1)-(5.7) on N. Assume that one of the
following conditions holds:

1) N is the graph Gy,
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2) N is the graph P, B; = B,p; = 1,¥j € Z(P), and there exists j € {1,3} such
that

mn

l; # ——, Ym € N*, (5.12)

T V2B,

3) N is the graph G2, B; = B,p; = 1,Vj € Z(Gs), and in every circuit C, for the
unique j, k € Q such that e; and ey, are edges of C, we have

sin(V23,¢4;) + sin(V2BxL) # 0. (5.13)

Then, iR C p(A1) and therefore the Co-semigroup of contractions (eA1);>q is
strongly stable.

Proof. As before (I — A;)™! being compact, then (A1) = 0,(A;). Thus, it is
sufficient to prove that o,(A;) NiR = (. Let A € R and U = (u,v,y, 2,0) € D(A1)
be such that

AU =AU,

equivalently, for all j € Z(N') we have (3.1)-(3.5). Using (3.1), (3.3) to eliminate v’
and 27, we obtain (3.6)-(3.8). Further, we easily check that

éj .
> /0 103 dx = Re(ALU, U)pe, = Re(iAU, U)ye, = O.

jeIte

This implies that (3.9) holds. Thus, 7 is constant for all j € Zi.
If A =0 then, using (3.6), (3.8) and (3.9), we have

ul, =0, Vi€ Z(N),
uwl, — a0l =0, VjeIWN), (5.14)
PiYhe =0, Vj € Z(N),

where o; =0,V5 € Ze.

Multiplying the second equation and third equation of (5.14) by w and yJ,
respectively. Then, integrating over (0,¢;), summing over j € Z(N) and applying
Green’s formula, we get

N 45 N
- R
- g / |ul|® da + g ulul
j=1"0 j=1

J

4 N 45 _ N £
+ E / a0’ ul dr — E ajui| =0,
o =170 j=1 0

N g N e
Z/ pilyil? de =" piylyd
j=1"0 j=1 0

But, using (5.4), (5.5), (5.7) and (5.9), we obtain for all j € Z(N),

=0.

N £

—Z/ il 2 da — Z/ 1092 da = 0,
j=170 j€Ti V0

N 45

> [ ol de =0,

j=1"0
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This implies that ), =y = 0, for all j € Z(N) and ¢/ = 0, for all j € Z;.. Again,
by (5.4)-(5.7), we deduce that v/ = y7 = 0, for all j € Z(N). Consequently, using
(3.1) and (3.3), we conclude that U = 0.

Now, assume that A # 0. We will proceed by distinguishing different cases:

Case i. Assume that N is the graph G;. Then, the proof in this case is exactly
the same as the proof of Case 1 in Theorem 3.2. In fact, under the boundary condi-
tions of Section 5, on each thermo-elastic edge e; of (G1), 67 satisfies the Dirichlet
boundary condition on one end and the Neumann boundary condition on the other
end. While, under the boundary conditions of Section 1, 7 satisfies the Dirichlet
boundary condition on the both ends of each thermo-elastic edge e; of (G1). This
shows that on networks like (G1), if 7 satisfies Dirichlet boundary condition on
only one end of each thermo-elastic edge e;, then it is enough to prove that the
system is strongly stable.

Now, before proceeding the other cases (Case ii and Case iii below), remark
that for an arbitrary network N with 3; = f,p; = 1, for all j € Z(N), and using
(3.8) and (3.9), (3.16)-(3.20) hold for all j € Zye. Then, for A # £3 we have y/ = 0,
for all j € Zi, and thus by equation (3.19) we get u/ = 0, for all j € Zi,. Then,
by (3.8), we obtain that #7 = 0, for all j € Z;.. Again, by proceeding using unique
continuation Theorem in [9] and iteration technique used in Case 1 of the proof of
Theorem 3.2, we conclude that u/ = v/ = y/ = 27 = 0, for all j € Z(N). So, it is
enough to treat the remaining cases (Case ii and Case iii below) with A = 0.
Without loss of generality, assume that A = .

Case ii. Assume that A is the path P, composed of two exterior elastic edges
and an interior thermo-elastic edge, 5; = 3,p; = 1, for all j € Z(P) and there
exists j € {1,3} such that (5.12) holds. Without loss of generality, assume that
m1(0) = ap,m2(0) = a; and 73(0) = ae. By differentiating (3.8) with respect to x
and by using (3.9) we deduce that, for the thermoelastic edge ea, we have

u?, =0. (5.15)

But, using (3.17) and dividing by A = 3, we also have y* = iu?. Thus, u? and y?
can be written in the following form

y? =azx +0b, u®=—iax —ib, for somea,be C. (5.16)
Moreover, using (3.9), (5.16) and (5.9), we can write
0? = iasa. (5.17)

For the elastic edges {e1, es}, (3.6)-(3.8) becomes,

{52uj +ul, +iB%7 =0, on (0,4;), j =1,3, (5.18)

B2y +yi, — %7 =0, on (0,4), j = 1,3.

Using (5.4)-(5.7), (5.16) and (5.17), we have the following boundary conditions:

(0) = —ib, y'(£1) = y*(0) = b, (5.19)
(1
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and
u?(ls) = y*(ls) =0,
u3(0) = u?(ly) = —ialy —ib, y>(0) = y*(l2) = aly + b,
uz (0) = u(f2) — 20%(f2) = —i(1 + a3)a, y3(0) = yZ(f2) = a.
Consequently, (5.18), (5.19) and (5.20) leads to the following system
Pl = AP, j=1,3

where,
u’ 0o 1 0 0
J _ 732 _ Q2
i | _ g% 0 —ip* 0
P = % and A= 0 0 0 1
yi B> 0 —p* 0
The solution of (5.21) is given by
dI =M @I(0), j=1,3.
But using (5.19) and (5.20), we have
0 —ib
ul(0) —i(1+ a3)a
o1(0) = ; N(0) = ;
0 b
Y:(0) a
and
0 —ialy —ib
u3(l3) —i(14+ a3)a
3 () = ; @°(0) =
0 als +b
ya(ls) a

Since we have
®1(0) = e 1@ (¢)) and ®3(43) = e 3(0),

using (5.23), (5.24) and technical computations, we obtain

/2 2 . 2
iv203a Sin(vV2801) + ialy — ib+ 202 ¢
43 2
2 2 2
v2a3a sin(v3280,) — aly + b — 282 _ ¢
43 2
and
—iv/2a2 P02
ZIV2080 G (VBBE) — ialts + ) — ib— 1EBY g,
43 2
—v203a adlza

— 2 sin(V2603) + a(ly + £3) + b+

13 =0.
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(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)
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Multiplying the second equation of (5.26) (and (5.27) repectively) by 4, then adding
the resulting equation to the first equation of (5.26) (and (5.27) repectively) we
obtain,

—iaa ‘
sin(v28¢;) = 0, Vj € {1,3}. (5.28)
BV2
So, if there exists j € {1,3} such that ¢; # VYm € N*, we deduce that a = 0.

\fﬁ

Consequently, by (5.26) or (5.27) we deduce that b = 0 and hence u? = y? = 0
and 6% = 0. By proceeding using unique continuation Theorem in [9] and iteration
technique used in Case 1 of the proof of Theorem 3.2, we deduce that u/ = 7 =
v/ =29 =0, j =1,2,3. The same procedure can be used in the case A = —3 so
that the desired goal holds.

Case iii. Assume that N is the graph G, 5; = 8, p; = 1, for all j € Z(G2) and
that in every circuit C, for the unique j, k € € such that e; and ej are edges of C,
(5.13) holds. Notice that for all j € Zie, we have (3.21) holds. As in the proof of
Case 2 of Theorem 3.2, our aim is to prove (5.14). This would end the proof as in
the case A = 0. But since, (3.9), (3.16) and (3.18) hold, then it is enough to prove
that (5.14) holds for every elastic edge. First, for a fixed circuit C' of G5 without
loss of generality, we may use the parametrizations from Figure 7.

eIaST'G\\ o / elastic

€1 €3

a3 €3 \‘T:s

thermoelastic
FIGURE 7. A circuit and its parametrizations:

7T1(0) = aq, 7T2(0) = a3, and 7T3(0) = as.

First, notice that for the thermoelastic edge eg, (5.16) and (5.17) hold. Also, for
the elastic edges {e1, ez}, (5.21) holds with

b iaby —ib
. 2 ) . 2
ol(e) = | 0 i 2)0 | and 3%(0) = z&;‘)‘;)“ (5.29)
a a

Our aim is to find {u!(0),y*(0),u3(¢3),y>(¢3)}. For that purpose, we use (5.25) to
find ®1(0) and ®3(¢3).
Then, using (5.29) and technical computations, we have

ul(0) = % sin(v/2301) + ialy — ib+ mZ[la

y(0) = \/i%za sin(v/2841) — aly +b— a2£1a
This implies that

yL,(0) = B2(y(0) — i (0)) = j“ﬁ in(v2601). (5.30)
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Similarly, using (5.29) and technical computations, we have

u3(l3) = “fo‘? L sin(v/2B03) — ia(ly + £3) — ib — M,

y3(€3) = #ﬁo‘gasin(\/ﬁﬁéw a(ly +03) + b+ a2£3a
This implies that

V.(0) = B(0) — () = —29 u(v/2s0s). (5.31)

S

On the other hand, using (5.4)-(5.7), we have u!'(0) = u3(¢3) and y*(0) = y*(¢3).
Then,
This means that

2
asaf /. V2 .
sin(vV2801) + sin(v/23¢ ):O
25 (sim(v250) + sin(v/2565)
Notice that if sin(v/23¢;) + sin(v/28¢5) # 0, then, a = 0, i.e., 2 = 0. Using (3.8),
we obtain that u2 = 0. Again, repeating the same strategy in every circuit of N/

and using the fact that (5.13) holds, we deduce that
07 =0, Vj € Tio. (5.33)

Hence, u), = 0, for all j € Ti, and (3.22) holds. Consequently, using (5.4)-(5.7),
(5.33), (3.21)-(3.22) and using iteration method from the leaves to the root, we prove
that every elastic edge satisfies (3.29). This implies that yjm, =0, for all j € Z..
Finally, we can proceed as the case A = 0. This finishes the proof. The same
procedure is used in the case A = —f so that the desired goal holds. O

Theorem 5.3. Let N be an arbitrary network for which the operator Ay associated
with System (5.1)-(5.7) satisfies iR C p(A1). If p; = 1, for all j € Z(N'), then the
energy of the system decays exponentially in Hy. In other words, there exist two
positive constants M and € such that

Het'A1$0H7.tl < Me_5t||x0||yl, Vit> 0, A4 Xo € H1.

Proof. Same proof as the one of Theorem 4.1 holds. O

Remark 4. Examples of networks for which iR C p(.A;) are given by Theorem 5.2.
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