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Abstract. In this paper, we investigate a network of elastic and thermo-
elastic materials. On each thermo-elastic edge, we consider two coupled wave

equations such that one of them is damped via a coupling with a heat equa-

tion. On each elastic edge (undamped), we consider two coupled conservative
wave equations. Under some conditions, we prove that the thermal damping is

enough to stabilize the whole system. If the two waves propagate with the same

speed on each thermo-elastic edge, we show that the energy of the system de-
cays exponentially. Otherwise, a polynomial energy decay is attained. Finally,

we present some other boundary conditions and show that under sufficient con-
ditions on the lengths of some elastic edges, the energy of the system decays

exponentially on some particular networks similar to the ones considered in

[18].

1. Introduction. Thermoelasticity is a principle concerned with predicting the
thermo-mechanical behaviour of elastic solids. Understanding such a principle is
needed by many engineers to design different materials. Thus, several scientists were
motivated to study the thermoelastic system described by the coupling between the
mechanical vibration and the heat (thermal) effect of materials. Mathematically, a
linear one-dimensional thermo-elastic system satisfied by a thermoelastic bar (0, L)
is represented by the following two equations:{

utt − uxx + αθx = 0, in (0, L)× (0,∞),

θt − θxx + αutx = 0, in (0, L)× (0,∞),
(1.1)
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with the initial conditions

u(x, 0) = u0, ut(x, 0) = u1, θ(x, 0) = θ0, x ∈ (0, L), (1.2)

where, u is the displacement, θ is the temperature deviation from the reference
temperature and the mechanical-thermal coupling α is a positive constant. The
existence and asymptotic behavior of the solution of the linear thermo-elastic sys-
tem was firstly studied in [5] but, no decay rate was given. In the one dimensional
case, the stabilization of the linear thermo-elastic system satisfied by thermo-elastic
materials (damped by thermal effect) with various boundary conditions was inves-
tigated by several authors. We will recall some of these results. In [8], the author
considered the stabilization of system (1.1)-(1.2) on a thermo-elastic rod (see Fig-
ure 1) with u and θ satisfying the Dirichlet and Neumann condition respectively
(or vice versa). He succeeded in proving the exponential stability of the system.
More precisely, the author established the following energy estimate: There exist
two positive constants M and ϵ such that

E(t) ≤ Me−ϵtE(0), ∀t > 0. (1.3)

Similarly, when u and θ satisfy both the Dirichlet condition, it was shown that
the estimate (1.3) still holds in [13]. Then, the method of [13] was extended in
[4] to prove (1.3) when ux − αθ satisfies Dirichlet condition on both ends and
θx(0) = θx(L) = 0 or θx(0) = 0, θ(L) = 0.

Figure 1. A thermoelastic rod

Later on, the importance of damping and controlling the vibrations of materi-
als composed of both elastic (undamped) and thermo-elastic (damped by thermal
effect) parts appears in several physical applications and consequently in several
mathematical papers. The main questions that received the interest of the re-
searchers is the kind of stability of the thermo-elastic system on such composite
materials and how should the thermo-elastic damping be localized to get the best
decay rate or what is the energy decay rate in different localizations of the thermal
damping? Such questions were answered in several ways. For example, in [14], it
was considered a one dimensional body which is configurated in [0, L3] ⊂ R and
for a given L1<L2 in ]0, L3[, they assumed that the material is thermo-elastic over
]0, L1[∪]L2, L3[ and elastic over ]L1, L2[ (see Figure 2). The authors proved that
the whole system is exponentially stable, i.e, (1.3) holds.

Figure 2. An elastic/thermo-elastic transmission problem

Then, in [6], the authors considered the stabilization of a transmission problem for
the thermo-elastic system with local thermal effect which is effective only over the
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interval [0, L0], L0 ∈ [0, L], see Figure 3. This corresponds to the following system:
utt − uxx + αθx = 0, in (0, L0)× (0,∞),

θt − θxx + αutx = 0, in (0, L0)× (0,∞),

vtt − vxx = 0, in (L0, L)× (0,∞),

(1.4)

with the initial conditions

u(x, 0) = u0, ut(x, 0) = u1, θ(x, 0) = θ0, v(x, 0) = v0, vt(x, 0) = v1, x ∈ (0, L),

where u is the displacement in the thermo-elastic part, v is the displacement in the
elastic part and θ is the temperature difference from a reference value. The system
is completed with the following boundary conditions

u(0, t) = v(L, t) = θ(0, t) = 0, t ∈ (0,∞),

and the following transmission conditions

ux(L0, t)− α θ(L0, t) = vx(L0, t) and θx(L0, t) = 0.

Figure 3. An elastic/thermo-elastic transmission problem

The authors proved that the localized dissipation due to the thermal effect is strong

enough to prove the exponential decay to zero of the energy. We also refer to [11] and
[15] and the references therein for the study of the stabilization of multi-dimensional
linear thermo-elastic systems.

On the other hand, there are only few publications on the stabilization of net-
works of thermo-elastic materials. Let us recall some of these results. In [1], an
exponential stability was proved on a network of thermo-elastic materials under
both Fourier’s law and Cattaneo’s law. In [18], the author studied the stability
problem of a thermo-elastic system on particular cases of networks of elastic and
thermo-elastic materials (see Figure 4).

Figure 4. Elastic/therm-elastic networks

Under the continuity condition of the displacement, the Neumann condition for
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the temperature at the internal nodes, and the balance condition, an exponential
stability was proved (see also, [19] for the network of elastic and thermo-elastic
beams). Later on the authors in [7] discussed the asymptotic behaviour of a trans-
mission problem of the thermo-elastic system on star shaped networks of elastic and
thermo-elastic rods (see Figure 5).

Figure 5. Elastic/thermo-elastic star shaped network

The uniform exponential decay rate was proved by a frequency domain analy-
sis when only one purely elastic edge was present. Otherwise, a polynomial decay
rate was deduced under a suitable irrationality condition on the lengths of the rods
when more than one purely elastic edge is involved. After the review of these re-
sults that investigated the stabilization of a thermo-elastic system composed of the
coupling between one wave equation and a heat equation, a remarkable question
can be asked. What happens if we consider a network of elastic and thermo-elastic
materials such that:

• On the thermo-elastic edges, we have a system of two wave equations coupled
by velocity, such that one wave equation is coupled to a heat equation with a ther-
mal effect.
• On the purely undamped elastic edges, we have only a system of two conservative
wave equations coupled by velocity.

Hence our main question is the following one: Will the dissipation due to the
thermal effect be also strong enough to prove the exponential stability of the energy
of the whole system? To the best of our knowledge, the answer to this question
remains an open problem. Therefore, our aim is to solve this open question.

In this work, we investigate the stabilization of the above described transmis-
sion problem on networks of elastic and thermo-elastic materials. We prove the
exponential stability of the whole system under the condition that the two waves
propagate with the same speed on all the thermo-elastic edges of the network. On
the other hand, if there exists an exterior thermo-elastic edge such that the two
waves propagate with different speed on this edge, we show the polynomial stability
of the whole system. Our main tool is a frequency domain approach, namely to
prove the exponential stability we use a result due to Huang [10] and Prüss [17] and
to show the polynomial stability we use a result due to Borichev and Tomilov [3].

Now, let us introduce some notations needed to formulate the problem under
consideration, refer to [20] and [1] for more details. Let N be a network embedded
in the Euclidean space Rm,m ∈ N∗, with n vertices V = {a0, a2, .., an−1} and N
edges E = {e1, .., eN}, with I(N ) = {1, .., N}, the set of indices of edges. Each
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edge ej is a curve, parametrized by

πj : [0, ℓj ] → ej : xj → πj(xj). (1.5)

The degree of a vertex is the number of incident edges at the vertex. A vertex
with degree 1 is called an exterior vertex. On the other hand, a vertex with degree
greater than 1 is called an interior vertex.

We assume that the network is made of thermo-elastic edges and elastic ones,
this means that I(N ) is split up into I(N ) = Ite ∪ Ie, with Ie ∩ Ite = ∅, in other
words, Ite (resp. Ie) is the set of thermo-elastic (resp. elastic) edges.
We further denote by:

Vext:= set of exterior vertices of N .

Vint:= set of interior vertices of N .

I(ak):= set of indices of edges incident to ak.

Ite(ak):= set of indices of thermo-elastic edges adjacent to ak.

Ie(ak):= set of indices of elastic edges incident to ak.

Iext:= set of indices of edges adjacent to an exterior vertex of N .

The incidence matrix D = (dkj)n×N of N is defined by

dkj =


1 if πj(ℓj) = ak,

−1 if πj(0) = ak,

0 otherwise,

(1.6)

and for a function f : N → C, we set f j = f ◦ πj its restriction to the edge ej . For
simplicity, we will write f = (f1, .., fN ) and we will denote f j(x) = f j(πj(x)) for
any x in (0, ℓj). We consider a network of elastic and thermo-elastic materials that
coincides with the graph N . We assume that N contains at least one thermoelastic
edge, that Vext ̸= ∅, that every maximal subgraph of elastic edges is a tree whose
all of its exterior vertices except one are attached to thermo-elastic edges and that
every maximal subgraph of thermo-elastic edges is not a circuit.

Let uj = uj(x, t) and yj = yj(x, t) be the functions describing the displacement
at time t of the edge ej , j ∈ I(N ) and θj = θj(x, t) be the temperature difference
to a fixed reference temperature of ej , j ∈ Ite at time t.

Our system is described as follows:
• On every thermo-elastic edge (j ∈ Ite) the following equations hold:

uj
tt − uj

xx + αjθ
j
x − βjy

j
t = 0 in (0, ℓj)× (0,∞),

yjtt − ρjy
j
xx + βju

j
t = 0 in (0, ℓj)× (0,∞),

θjt − κjθ
j
xx + αju

j
tx = 0 in (0, ℓj)× (0,∞),

(1.7)

where αj , ρj , κj and βj are positive constants.
• On every elastic edge (j ∈ Ie) one has:
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{
uj
tt − uj

xx − βjy
j
t = 0 in (0, ℓj)× (0,∞),

yjtt − ρjy
j
xx + βju

j
t = 0 in (0, ℓj)× (0,∞),

(1.8)

where βj and ρj are positive constants.

We assume that the initial data on the network N are
uj(x, 0) = uj

0(x), u
j
t (x, 0) = uj

1(x), ∀j ∈ I(N ),

yj(x, 0) = yj0(x), y
j
t (x, 0) = yj1(x), ∀j ∈ I(N ),

θj(x, 0) = θj0(x), ∀j ∈ Ite(N ).

(1.9)

We denote by V ′
ext( resp. V ′

int) the set of exterior (resp. interior) nodes of max-
imal subgraphs of thermo-elastic edges. Then, the boundary condition on N are
described as follows:
The displacement and temperature satisfies the Dirichlet boundary condition,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,

yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,

θj(ak, t) = 0, j ∈ Ite(ak), ak ∈ V ′
ext.

(1.10)

The displacement and temperature are continuous,
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,

yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,

θj(ak, t) = θℓ(ak, t), j, ℓ ∈ Ite(ak), ak ∈ V ′
int.

(1.11)

The system satisfies the balance condition on y at every interior node,∑
j∈I(ak)

dkjρjy
j
x(ak, t) = 0, ak ∈ Vint. (1.12)

The system satisfies the following balance conditions on u and θ,
∑

j∈Ite(ak)

dkjκjθ
j
x(ak, t) = 0, ak ∈ V ′

int,∑
j∈Ite(ak)

dkj(u
j
x(ak, t)− αjθ

j(ak, t)) +
∑

j∈Ie(ak)

dkju
j
x(ak, t) = 0, ak ∈ Vint.

(1.13)

Remark that αj > 0 and κj > 0, for all j ∈ Ite while, on each elastic edge only two
conservative wave equations hold, i.e, the two wave equations on each elastic edge
are neither coupled to a heat equation nor affected by a thermal damping. Hence
for j ∈ Ie, we may set αj = κj = 0. From time to time, this will allow us to unify
some arguments by not distinguishing between elastic and thermoelastic edges.

The paper is organized as follows. In Section 2, we prove that system (1.7)-
(1.13) admits a unique solution in an appropriate Hilbert space using semi-group
theory. Next, in Section 3, using a general criteria of Arendt-Batty [2], we discuss
the strong stability of the system. In Section 4, under the condition that the two
waves propagate with the same speed on each thermo-elastic edge of the network,
we prove the exponential stability of the system using a frequency domain approach
combined with a multiplier technique. Otherwise, we establish a polynomial decay.
Finally, in Section 5, we present the Neumann boundary condition at the interior
nodes of some particular networks, some of which being considered in [18]. We show
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that under some sufficient conditions, the same results as the ones from Section 4
hold.

2. Well-posedness. In this section, we will study the existence, uniqueness and
regularity of the solution of system (1.7)-(1.13), using a semigroup approach. First,
denote by

L2 =

N∏
j=1

L2(0, ℓj), Hm =

N∏
j=1

Hm(0, ℓj), m = 1, 2,

and

V =
∏

j∈Ite

L2(0, ℓj), Vm =
∏

j∈Ite

Hm(0, ℓj), m = 1, 2.

Set

H1
0 =

{
u = (uj)j∈I(N ) ∈ H1/ uj(ak) = 0,∀j ∈ I(ak), ak ∈ Vext

and uj(ak) = uℓ(ak), ∀j, ℓ ∈ I(ak), ak ∈ Vint

}
.

(2.1)

We define the energy space H associated with system (1.7)-(1.13), by

H = H1
0 × L2 ×H1

0 × L2 × V (2.2)

equipped with the following inner product:

(U, Ũ)H =

N∑
j=1

∫ ℓj

0

(uj
xũ

j
x + vj ṽj + ρjy

j
xỹ

j
x + zj z̃j) dx

+
∑
j∈Ite

∫ ℓj

0

θj θ̃j dx,

(2.3)

for all U = (u, v, y, z, θ), Ũ = (ũ, ṽ, ỹ, z̃, θ̃) ∈ H. Next, we define the unbounded
linear operator A associated to system (1.7)-(1.13) by

A


u
v
y
z
θ

 =




vj

uj
xx − αjθ

j
x + βjz

j

zj

ρjy
j
xx − βjv

j

κjθ
j
xx − αjv

j
x




j∈I(N )

(2.4)

whose domain D(A) is given by

D(A) =
{
(u, v, y, z, θ) ∈ H ∩ [H2 ×H1

0 ×H2 ×H1
0 × V2] satisfying (2.5) below

}
,

θj(ak) = 0, j ∈ Ite(ak), ak ∈ V ′
ext,

θj(ak) = θℓ(ak), j, ℓ ∈ Ite(ak), ak ∈ V ′
int,∑

j∈Ite(ak)

dkjκjθ
j
x(ak) = 0, ak ∈ V ′

int,∑
j∈I(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) = 0, ak ∈ Vint,∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(2.5)
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If (u, y, θ) is a regular solution of (1.7)-(1.9), then by setting U = (u, ut, y, yt, θ), we
can rewrite this system as the following evolution equation:

Ut = AU, U(0) = U0, (2.6)

where U0 = (u0, u1, y0, y1, θ0).

The energy associated with system (1.7)-(1.13) is given by

E(t) =
1

2

N∑
j=1

∫ ℓj

0

(|uj
x|2 + |uj

t |2 + ρj |yjx|2 + |yjt |2) dx+
1

2

∑
j∈Ite

∫ ℓj

0

|θj |2 dx (2.7)

and we will see that

E′(t) = −
∑
j∈Ite

∫ ℓj

0

κj |θjx|2 dx, (2.8)

for regular solutions. Hence, the system is dissipative in the sense that its energy
is non-increasing.

Theorem 2.1. The unbounded linear operator A associated with system (1.7)-
(1.13) generates a C0-semigroup of contractions on H.

Proof. Using Lumer-Phillips Theorem (see [16]), it is sufficient to prove that A is
a maximal dissipative operator so that A generates a C0-semigroup of contractions
on H. First, let U = (u, v, y, z, θ) ∈ D(A). We have,

Re(AU,U)H = Re

[ N∑
j=1

∫ ℓj

0

vjxu
j
x dx+

N∑
j=1

∫ ℓj

0

(uj
xx − αjθ

j
x + βjz

j)vj dx

+

N∑
j=1

∫ ℓj

0

ρjz
j
xy

j
x dx+

N∑
j=1

∫ ℓj

0

(ρjy
j
xx − βjv

j)zj dx+
∑
j∈Ite

∫ ℓj

0

(κjθ
j
xx − αjv

j
x)θ

j dx

]
.

(2.9)

Using Green’s formula, boundary and transmission conditions (1.10)-(1.13), we get

Re(AU,U)H = −
∑
j∈Ite

∫ ℓj

0

κj |θjx|2 dx ≤ 0. (2.10)

Thus, the operator A is dissipative. Now, in order to prove that A is maximal it is
sufficient to show that R(I − A) = H. So, for F = (f, f̃ , g, g̃, h) ∈ H, we look for
U ∈ D(A) such that

(I −A)U = F. (2.11)

Equivalently, for all j ∈ I(N ),

uj − vj = f j , (2.12)

vj − uj
xx + αjθ

j
x − βjz

j = f̃ j , (2.13)

yj − zj = gj , (2.14)

zj − ρjy
j
xx + βjv

j = g̃j , (2.15)

θj − κjθ
j
xx + αjv

j
x = hj . (2.16)

Assume that U ∈ D(A) exists, then by using equation (2.12) and (2.14) we obtain
for all j ∈ I(N ),

vj = uj − f j , (2.17)

zj = yj − gj . (2.18)



STABILITY OF THERMO-ELASTIC SYSTEM ON E/T-E NETWORKS 9

Inserting (2.17)-(2.18) in equations (2.13), (2.15) and (2.16), we get the following
system for all j ∈ I(N ),

uj − uj
xx + αjθ

j
x − βjy

j = F j
1 , (2.19)

yj − ρjy
j
xx + βju

j = F j
2 , (2.20)

θj − κjθ
j
xx + αju

j
x = F j

3 (2.21)

where, F j
1 = f̃ j + f j − βjg

j , F j
2 = g̃j + gj + βjf

j , F j
3 = hj + αjf

j
x.

Set

X =
{
(φ1, φ2, φ3) ∈ H1

0 ×H1
0 × V1/ φj

3(ak) = 0, j ∈ Ite(ak), ak ∈ V ′
ext

and φj
3(ak, t) = φℓ

3(ak, t), j, ℓ ∈ Ite(ak), ak ∈ V ′
int

}
.

(2.22)

Let (φ1, φ2, φ3) ∈ X , multiply (2.19) by φj
1, (2.20) by φj

2 and (2.21) by φj
3, then

integrate over (0, ℓj) we get,∫ ℓj

0

ujφj
1 dx−

∫ ℓj

0

uj
xxφ

j
1 dx+

∫ ℓj

0

αjθ
j
xφ

j
1 dx−

∫ ℓj

0

βjy
jφj

1 dx

=

∫ ℓj

0

F j
1φ

j
1 dx,

(2.23)

∫ ℓj

0

yjφj
2 dx−

∫ ℓj

0

ρjy
j
xxφ

j
2 dx+

∫ ℓj

0

βju
jφj

2 dx =

∫ ℓj

0

F j
2φ

j
2 dx, (2.24)

and∫ ℓj

0

θjφj
3 dx−

∫ ℓj

0

κjθ
j
xxφ

j
3 dx+

∫ ℓj

0

αju
j
xφ

j
3 dx =

∫ ℓj

0

F j
3φ

j
3 dx. (2.25)

Applying Green’s formula on the second and third term of (2.23) and taking the
sum over I(N ), we obtain using (1.13),

N∑
j=1

∫ ℓj

0

ujφj
1 dx+

N∑
j=1

∫ ℓj

0

uj
xφ

j
1,x dx−

N∑
j=1

∫ ℓj

0

αjθ
jφj

1,x dx

−
N∑
j=1

∫ ℓj

0

βjy
jφj

1 dx =

N∑
j=1

∫ ℓj

0

F j
1φ

j
1 dx.

(2.26)

Again applying Green’s formula on the second term of (2.24) and taking the sum
over I(N ), using (1.12), we get

N∑
j=1

∫ ℓj

0

yjφj
2 dx+

N∑
j=1

∫ ℓj

0

ρjy
j
xφ

j
2,x dx+

N∑
j=1

∫ ℓj

0

βju
jφj

2 dx

=

N∑
j=1

∫ ℓj

0

F j
2φ

j
2 dx.

(2.27)
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Similarly, applying Green’s formula on the second term of (2.25) and taking the
sum over I(N ), condition (1.13) yields that,

N∑
j=1

∫ ℓj

0

θjφj
3 dx+

N∑
j=1

∫ ℓj

0

κjθ
j
xφ

j
3,x dx+

N∑
j=1

∫ ℓj

0

αju
j
xφ

j
3 dx

=

N∑
j=1

∫ ℓj

0

F j
3φ

j
3 dx.

(2.28)

Adding equations (2.26), (2.27) and (2.28) we obtain

a((u, y, θ), (φ1, φ2, φ3)) = L(φ1, φ2, φ3), ∀(φ1, φ2, φ3) ∈ X , (2.29)

where,

a((u, y, θ), (φ1, φ2, φ3)) =

N∑
j=1

∫ ℓj

0

ujφj
1 dx+

N∑
j=1

∫ ℓj

0

uj
xφ

j
1,x dx−

N∑
j=1

∫ ℓj

0

αjθ
jφj

1,x dx

−
N∑
j=1

∫ ℓj

0

βjy
jφj

1 dx+
N∑
j=1

∫ ℓj

0

yjφj
2 dx+

N∑
j=1

∫ ℓj

0

ρjy
j
xφ

j
2,x dx

+
N∑
j=1

∫ ℓj

0

βju
jφj

2 dx+
N∑
j=1

∫ ℓj

0

θjφj
3 dx+

N∑
j=1

∫ ℓj

0

κjθ
j
xφ

j
3,x dx

+
N∑
j=1

∫ ℓj

0

αju
j
xφ

j
3 dx

and

L(φ1, φ2, φ3) =

N∑
j=1

∫ ℓj

0

F j
1φ

j
1 dx+

N∑
j=1

∫ ℓj

0

F j
2φ

j
2 dx+

N∑
j=1

∫ ℓj

0

F j
3φ

j
3 dx.

As a is a continuous, coercive form on X ×X and L is a continuous form on X , then
using Lax-Milgram Theorem there exists a unique solution (u, y, θ) ∈ X of (2.29).

Now, take in (2.29) the test function (φ1, 0, 0) such that φj
1 ∈ C∞

c (0, ℓj), for some
fixed j ∈ I(N ) and φk

1 = 0 for all k ̸= j, we obtain∫ ℓj

0

uj φj
1 dx+

∫ ℓj

0

uj
xφ

j
1,x dx−

∫ ℓj

0

αjθ
jφj

1,x dx

−
∫ ℓj

0

βjy
jφj

1 dx =

∫ ℓj

0

F j
1φ

j
1 dx, ∀φj

1 ∈ C∞
c (0, ℓj) for a fixed j.

(2.30)

Applying Green’s formula on the second and third term of (2.30) we get∫ ℓj

0

uj φj
1 dx−

∫ ℓj

0

uj
xxφ

j
1 dx+

∫ ℓj

0

αjθ
j
xφ

j
1 dx−

∫ ℓj

0

βjy
jφj

1 dx

=

∫ ℓj

0

F j
1φ

j
1 dx, ∀φj

1 ∈ C∞
c (0, ℓj) for a fixed j.

(2.31)

This implies that

uj − uj
xx + αjθ

j
x − βjy

j = F j
1 , in D′(0, ℓj)

where, D′(0, ℓj) is the associated space of distributions.

As uj + αjθ
j
x − βjy

j − F j
1 ∈ L2(0, ℓj), we deduce that uj ∈ H2(0, ℓj). Similarly, we
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can prove that

yj − ρjy
j
xx + βju

j = F j
2 ,

θj − κjθ
j
xx + αju

j
x = F j

3

(2.32)

and yj , θj ∈ H2(0, ℓj). Now, it remains to prove the transmission conditions in
(1.12)-(1.13). For that aim, fix ak ∈ Vint. Let,

φj
1 =



x
ℓj
, if j ∈ I(ak) and πj(ℓj) = ak,

ℓj−x
ℓj

, if j ∈ I(ak) and πj(0) = ak,

0, if j /∈ I(ak).

(2.33)

Then, take in (2.29), a test function (φ1, 0, 0) ∈ X , apply Green’s formula and take
into account (2.19)-(2.21), to get∑

j∈I(ak)

dkju
j
x(ak)−

∑
j∈I(ak)

dkjαjθ
j(ak) = 0. (2.34)

Similarly, by taking in (2.29) the test function (0, φ1, 0) ∈ X then, using Green’s
formula and taking into account (2.19)-(2.21) we obtain (1.12). Finally, we fix
ak ∈ V ′

int, take (0, 0, φ1) in (2.29), apply Green’s formula and take into account
(2.19)-(2.21), we get (1.13). By defining vj by (2.17) and zj by (2.18), for all
j ∈ I(N ), we deduce that (u, v, y, z, θ) ∈ D(A) a solution of (2.12)-(2.16) exists
and the desired goal is attained.

As A generates a C0-semigroup of contractions (etA)t≥0 (see [16]), we have the
following result:

Theorem 2.2. (Existence and uniqueness of the solution)
(1) If U0 = (u0, u1, y0, y1, θ0) ∈ D(A), then problem (2.6) admits a strong unique
solution U = (u, v, y, z, θ) satisfying

U ∈ C1(R+,H) ∩ C0(R+, D(A)).

(2) If U0 = (u0, u1, y0, y1, θ0) ∈ H, then problem (2.6) admits a unique weak solution
U = (u, v, y, z, θ) satisfying

U ∈ C0(R+,H).

3. Strong stability. In this section, we will give sufficient conditions that guaran-
tee the strong stability of the system (1.7)-(1.13) in the sense that the energy E(t),
of the associated system decreases to zero as t tends to infinity. To show the strong
stability of the C0-semigroup of contractions (etA)t≥0 we will rely on the following
result obtained by Arendt-Batty [2].

Theorem 3.1. (Arendt-Batty [2]). Let A : D(A) ⊂ H → H generates a C0-
semigroup of contractions on the Hilbert space H. If
1) A has no pure imaginary eigenvalues,
2) σ(A) ∩ iR is countable where, σ(A) is the spectrum of A.

Then, the C0-semigroup (etA)t≥0 is strongly stable.

Now, we are in position to state the main result of this subsection.
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Theorem 3.2. Consider the system (1.7)-(1.13) on N . Assume additionally that
one of the following conditions holds,

1) Each maximal subgraph of thermo-elastic edges has an exterior vertex that be-
longs to Vext .

2) There exists a maximal subgraph of thermo-elastic edges with no exterior ver-
tices that belong to Vext and βj = β, for all j ∈ I(N ).

Then

iR ⊂ ρ(A), (S1)

and therefore lim
t→∞

E(t) → 0.

Proof. Using Sobelev embedding Theorem, we deduce that (I −A)−1 is a compact
operator. Then, the spectrum σ(A) of A is reduced to its discrete spectrum σp(A).
Hence, using Arendt-Batty Theorem [2], it is sufficient to prove that σp(A)∩iR = ∅,
since it implies that (S1) holds. Let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A) be such
that

AU = iλU,

equivalently, for all j ∈ I(N ) we have,

vj = iλuj , (3.1)

uj
xx − αjθ

j
x + βjz

j = iλvj , (3.2)

zj = iλyj , (3.3)

ρjy
j
xx − βjv

j = iλzj , (3.4)

κjθ
j
xx − αjv

j
x = iλθj . (3.5)

Eliminating vj (resp. zj) using (3.1) (resp. (3.3)) and inserting them in (3.2), (3.4)
and (3.5) we get the following system for all j ∈ I(N ),

λ2uj + uj
xx − αjθ

j
x + iλβjy

j = 0, (3.6)

λ2yj + ρjy
j
xx − iλβju

j = 0, (3.7)

κjθ
j
xx − iλαju

j
x − iλθj = 0. (3.8)

Since we have∑
j∈Ite

κj

∫ ℓj

0

|θjx|2 dx = Re(AU,U)H = Re(iλU, U)H = 0,

we deduce that

θjx = 0, ∀j ∈ Ite. (3.9)

Thus, θj is constant for all j ∈ Ite. But, using the fact that every maximal subgraph
of thermo-elastic edges is not a circuit and using (1.10) and (1.11), we deduce that

θj = 0, ∀j ∈ Ite. (3.10)

Suppose that λ = 0. Then, (3.6), (3.7) and (3.9) implies that{
uj
xx = 0, ∀j ∈ I(N ),

ρjy
j
xx = 0, ∀j ∈ I(N ).

(3.11)
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Multiplying the first equation and second equation of (3.11) by uj and yj , respec-
tively. Then, integrating over (0, ℓj), summing over j ∈ I(N ) and applying Green’s
formula, we get 

N∑
j=1

∫ ℓj

0

|uj
x|2 dx−

N∑
j=1

uj
xu

j

∣∣∣∣∣
ℓj

0

= 0,

N∑
j=1

∫ ℓj

0

ρj |yjx|2 dx−
N∑
j=1

ρjy
j
xy

j

∣∣∣∣∣
ℓj

0

= 0.

(3.12)

But using (3.10) and the boundary conditions (1.10)-(1.13), the boundary terms
are zero, hence (3.12) becomes

N∑
j=1

∫ ℓj

0

|uj
x|2 dx = 0,

N∑
j=1

∫ ℓj

0

ρj |yjx|2 dx = 0.

(3.13)

By the fact that ρj > 0, for all j ∈ I(N ), we obtain that uj
x = yjx = 0, for all

j ∈ I(N ). Again, by (1.10), (1.11) and using the fact that Vext ̸= ∅, we deduce that
uj = yj = 0, for all j ∈ I(N ). Consequently, using (3.1) and (3.3), we conclude
that vj = zj = 0, for all j ∈ I(N ) and therefore, U = 0.

Now, suppose that λ ̸= 0. We will distinguish between two cases.

Case 1. Assume that each maximal subgraph of thermo-elastic edges has an exte-
rior vertex that belongs to Vext. Using (3.10) and (3.8), we have

uj
x = 0, ∀j ∈ Ite. (3.14)

This means that uj is constant for all j ∈ Ite. But, using (1.10), (1.11) and the fact
that every maximal subgraph of thermo-elastic edges has an exterior vertex that
belongs to Vext, we deduce that uj = 0, for all j ∈ Ite. Thus, by (3.1), we have
vj = 0 and by (3.6), (3.14) and (3.9), we obtain that yj = 0, for all j ∈ Ite. Conse-
quently, by (3.3), we get zj = 0, for all j ∈ Ite. Hence, uj = vj = yj = zj = θj = 0
on both ends of ej , for all j ∈ Ite.
Now, let ej be an elastic edge attached only to thermo-elastic edge. As ej is iden-
tified by [0, ℓj ], assume that ℓj is the extremity in common with the thermo-elastic
edge. Then, using (1.11), (3.10), (1.12) and (1.13), we have the following system

λ2uj + uj
xx + iλβjy

j = 0,

λ2yj + ρjy
j
xx − iλβju

j = 0,

uj(ℓj) = yj(ℓj) = 0,

uj
x(ℓj) = yjx(ℓj) = 0.

(3.15)

Let

ũj =

{
uj , on (0, ℓj),

0, on (ℓj , ℓj + 1),
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and

ỹj =

{
yj , on (0, ℓj),

0, on (ℓj , ℓj + 1).

Then, using the boundary conditions of (3.15), we deduce that (ũj , ỹj) belongs to
H2(0, ℓj + 1) × H2(0, ℓj + 1) and satisfies the first two equations of (3.15). Con-
sequently, using Theorem 2.5 of [9], we deduce that ũj = ỹj = 0 on (0, ℓj + 1)

and hence, uj = yj = 0 on (0, ℓj). Then, vj = zj = 0 by equation (3.1) and
(3.3) respectively. We repeat this technique to every elastic edge connected only
to thermo-elastic edges and we proceed by iteration the same method on each
maximal subgraph of purely elastic edges (from the leaves to the root), so that
uj = vj = yj = zj = 0, for all j ∈ I(N ).

Case 2. Assume that there exists a maximal subgraph of thermo-elastic edges
with no exterior vertices that belong to Vext and βj = β, for all j ∈ I(N ). First,
notice that (3.14) holds and thus,

uj
xx = 0, ∀j ∈ Ite. (3.16)

Then, using (3.16), (3.9) and the fact that λ ̸= 0, βj = β, equation (3.6) becomes

λuj + iβyj = 0, ∀j ∈ Ite. (3.17)

Differentiating (3.17) twice with respect to x and using (3.16), we deduce that

yjxx = 0, ∀j ∈ Ite. (3.18)

Then, using (3.18) and as λ ̸= 0, βj = β, (3.7) becomes

λyj − iβuj = 0, ∀j ∈ Ite. (3.19)

Eliminating uj from (3.17) and replacing it in (3.19) we obtain

(λ2 − β2)yj = 0, ∀j ∈ Ite. (3.20)

Then, for λ ̸= ±β we deduce that yj = 0, for all j ∈ Ite and thus by equation
(3.19) we get uj = 0, for all j ∈ Ite. Again, we proceed using unique continuation
Theorem from [9] and iteration technique used in Case 1 to conclude that uj =
vj = yj = zj = 0, for all j ∈ I(N ).

On the other hand, if λ = ±β. Without loss of generality, assume that λ = β.
First, using (3.19), we have

yℓ = iuℓ,∀ℓ ∈ Ite (3.21)

and thus using (3.14), (3.21) implies that

yℓx = iuℓ
x = 0,∀ℓ ∈ Ite. (3.22)

Our aim is to prove that {
uj
xx = 0, ∀j ∈ I(N ),

yjxx = 0, ∀j ∈ I(N ).
(3.23)

This would end the proof as in the case λ = 0. As (3.16) and (3.18) hold, it is
enough to prove that (3.23) holds for each elastic edge. Let ej be an elastic edge
attached to a thermo-elastic edge at the vertex ak, where ak is a leaf of a maximal
subgraph of elastic edges. As λ = β, then (3.6) and (3.7) lead to

β2uj + uj
xx + iβ2yj = 0, (3.24)

β2yj + ρjy
j
xx − iβ2uj = 0. (3.25)
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By eliminating uj from (3.24) and inserting it in (3.25), we obtain the following
equation

yjxxxx + β2 (ρj + 1)

ρj
yjxx = 0. (3.26)

Moreover, using (3.25), (1.11) and (3.21), we have

yjxx(ak) = 0 (3.27)

and using (3.25), (1.12), (1.13), (3.10) and (3.22), we get

yjxxx(ak) = 0. (3.28)

Consequently, by setting Zj = yjxx and using (3.26)-(3.28), we have the following
system 

Zj
xx + β2 (ρj + 1)

ρj
Zj = 0,

Zj(ak) = 0,

Zj
x(ak) = 0.

(3.29)

Therefore, Zj = 0 and then yjxx = 0. This means that yjx is constant. But using
(1.12) and (3.22), we deduce that yjx(ak) = 0. Hence, yjx = 0. Therefore, using
(3.25), we obtain that yj = iuj and then yjx = iuj

x = 0. Again, by iteration on each
maximal subgraph of purely elastic edges (from the leaves to the root), we repeat
the same procedure to prove that (3.23) holds. Whenever (3.23) is attained, we can
proceed as the case λ = 0 which finishes the proof. The same procedure can be
used in the case λ = −β.

Let us finish this section by introducing some notations that will be used in the
next section.

Let I ′
ext denotes the set of indices of edges adjacent to a vertex in V ′

ext and G′
int

denotes the set of indices of edges adjacent to two vertices in V ′
int.

4. Energy decay rates. Take an arbitrary network N for which the System (1.7)-
(1.13) is stable. In this section, we will prove that under the condition that the
two coupled wave equations propagate with the same speed on each thermo-elastic
edge, i.e., ρj = 1, for all j ∈ Ite, and using a frequency domain approach combined
with a multiplier method, the energy of the system decays exponentially to zero.
Otherwise, if there exist j ∈ Ite ∩ I ′

ext such that ρj ̸= 1, we prove a polynomial

decay rate of type t−1/3, see ([3, 17]). The main results are presented in Theorem
4.1 and Theorem 4.11.

4.1. Exponential stability.

Theorem 4.1. Let N be an arbitrary network for which the operator A associated
with System (1.7)-(1.13) satisfies (S1). If ρj = 1, for all j ∈ Ite, then the energy
of the system decays exponentially in H. In other words, there exist two positive
constants M and ϵ such that

∥etAx0∥H ≤ Me−ϵt∥x0∥H, ∀ t > 0, ∀ x0 ∈ H.

Proof. Following Huang [10] and Prüss [17], the C0-semigroup of contractions
(etA)t≥0 on H is exponentially stable if and only if (S1) and

lim sup
|λ|→∞

∥(iλ−A)−1∥L(H) < ∞ (S2)
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hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose
that (S2) does not hold, then there exist a sequence of real numbers λn ∈ R and a
sequence of vectors Un = (un, vn, yn, zn, θn) ∈ D(A) such that

|λn| −→ +∞, ∥Un∥H = ∥(un, vn, yn, zn, θn)∥H = 1, (4.1)

and

(iλn −A)Un = (fn, f̃n, gn, g̃n, hn) −→ 0 in H, (4.2)

are satisfied.
In what follows, we drop the index n for simplicity.

Now by detailing (4.2), we get for all j ∈ I(N )

iλuj − vj = f j → 0 in H1(0, ℓj), (4.3)

iλvj − uj
xx + αjθ

j
x − βjz

j = f̃ j → 0 in L2(0, ℓj), (4.4)

iλyj − zj = gj → 0 in H1(0, ℓj), (4.5)

iλzj − ρjy
j
xx + βjv

j = g̃j → 0 in L2(0, ℓj), (4.6)

iλθj − κjθ
j
xx + αjv

j
x = hj → 0 in L2(0, ℓj). (4.7)

Then, by eliminating vj and zj from equations (4.3) and (4.5) respectively, (4.3)-
(4.7) imply

λ2uj + uj
xx − αjθ

j
x + iλβjy

j = βjg
j − f̃ j − iλf j , (4.8)

λ2yj + ρjy
j
xx − iλβju

j = −βjf
j − g̃j − iλgj , (4.9)

iλθj − κjθ
j
xx + iλαju

j
x = hj + αjf

j
x, (4.10)

where, ρj = 1, for all j ∈ Ite. Now, we will proceed by dividing the proof into
different Lemmas.

Lemma 4.2. Under all above assumptions, we have∫ ℓj

0

|θjx|2 dx = o(1), ∀j ∈ Ite. (4.11)

Proof. Taking the inner product in H of equation (4.2) with the uniformly bounded
sequence U = (u, v, y, z, θ), we get∑

j∈Ite

κj

∫ ℓj

0

|θjx|2 dx = −Re((iλI −A)U,U)H = o(1).

As κj > 0,∀j ∈ Ite, it follows that

||θjx||2L2(0,ℓj)
= o(1), ∀j ∈ Ite.

Using (4.3), (4.5) and (4.1), we have for all j ∈ I(N )

||λuj ||L2(0,ℓj) = O(1), ||uj
x||L2(0,ℓj) = O(1), (4.12)

||λyj ||L2(0,ℓj) = O(1), ||yjx||L2(0,ℓj) = O(1). (4.13)
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Also, using (4.8), (4.9) and (4.10), we have for all j ∈ I(N )∣∣∣∣∣∣∣∣uj
xx

λ

∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1),

∣∣∣∣∣∣∣∣yjxxλ
∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1),

∣∣∣∣∣∣∣∣θjxxλ
∣∣∣∣∣∣∣∣
L2(0,ℓj)

= O(1). (4.14)

Lemma 4.3. Under all above assumptions, we have for all j ∈ Ite

λuj(ℓj) = O(1), uj
x(ℓj) = O(1), (4.15)

λuj(0) = O(1), uj
x(0) = O(1), (4.16)

λyj(ℓj) = O(1), yjx(ℓj) = O(1), (4.17)

λyj(0) = O(1), yjx(0) = O(1). (4.18)

Proof. For all j ∈ Ite, let Φj be a function in W 1,∞(0, ℓj), then multiply (4.8) by

2Φjuj
x, integrate over (0, ℓj), take the real part and apply Green’s formula, we get

−
∫ ℓj

0

Φj
x|λuj |2 dx+Φj |λuj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

Φj
x|uj

x|2 dx+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

−2Re αj

∫ ℓj

0

θjxΦ
juj

x dx+Re 2i

∫ ℓj

0

βjΦ
jλyjuj

x dx

= 2Re

∫ ℓj

0

βjΦ
jgjuj

x dx− 2Re

∫ ℓj

0

f̃ jΦjuj
x dx− 2Re

∫ ℓj

0

iλf jΦjuj
x dx.

(4.19)

Using (4.12), (4.14) and (4.11) we obtain,

Φj |λuj |2
∣∣∣∣∣
x=ℓj

x=0

+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

= O(1)− 2Re

∫ ℓj

0

iλf jΦjuj
x dx. (4.20)

But,

−2Re

∫ ℓj

0

iλf jΦjuj
x dx = 2Re

∫ ℓj

0

iλf jΦj
xu

j dx+ 2Re

∫ ℓj

0

iλΦjujf j
x dx

−2Re(iλf jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.

(4.21)

Using (4.12) and the fact that f j converges to zero in H1(0, ℓj), (4.21) becomes

− 2Re

∫ ℓj

0

iλf jΦjuj
x dx = −2Re(iλf jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

+ o(1). (4.22)

Let Φj = x, for all j ∈ Ite. Using Young’s inequality, we get∣∣∣∣∣2Re
∫ ℓj

0

iλf jΦjuj
x dx

∣∣∣∣∣ ≤ ℓ2jϵj |λuj(ℓj)|2 +
|f j(ℓj)|2

ϵj
+ o(1). (4.23)

Recalling the Gagliardo-Nirenberg inequality [12]: For all ℓ > 0, there are two posi-
tive constants C1 and C2 depending on ℓ such that for any Ψ in H1(0, ℓ) ⊂ C([0, ℓ]),

||Ψ||L∞(0,ℓ) ≤ C1||Ψx||1/2L2(0,ℓ)||Ψ||1/2L2(0,ℓ) + C2||Ψ||L2(0,ℓ). (4.24)
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Applying (4.24) to Ψ = f j and using the fact that f j converge to zero in H1(0, ℓj),
we deduce that f j(ℓj) = o(1). Thus, (4.23) yields that∣∣∣∣∣2Re

∫ ℓj

0

iλf jΦjuj
x dx

∣∣∣∣∣ ≤ ℓ2jϵj |λuj(ℓj)|2 + o(1). (4.25)

By inserting (4.25) in (4.20) and as Φj = x, we obtain

(ℓj − ℓ2jϵj)|λuj(ℓj)|2 + ℓj |uj
x(ℓj)|2 = O(1).

By taking ϵj =
1

2ℓj
, we deduce that (4.15) holds. Similarly, by taking Φj = (x− ℓj),

for all j ∈ Ite, we conclude that (4.16) holds. Also, multiplying (4.9) by 2xyjx and

2(x− ℓj)y
j
x respectively, we deduce that (4.17) and (4.18) hold.

Lemma 4.4. Under all above assumptions, we have for all j ∈ Ite,∫ ℓj

0

|uj
x|2 dx = o(1),

∫ ℓj

0

|θj |2 dx = o(1). (4.26)

Proof. Let j ∈ Ite. Multiply (4.10) by uj
x

λ and integrate over (0, ℓj) we get

i

∫ ℓj

0

θjuj
x dx−

∫ ℓj

0

κjθ
j
xx

uj
x

λ
dx+ iαj

∫ ℓj

0

|uj
x|2 dx =

∫ ℓj

0

hj u
j
x

λ
dx

+αj

∫ ℓj

0

f j
x

uj
x

λ
dx.

(4.27)

Applying Green’s formula on the first and second term of (4.27) and using (4.12),
we obtain

−i

∫ ℓj

0

θjxu
j dx+ iθjuj

∣∣∣∣∣
x=ℓj

x=0

+

∫ ℓj

0

κjθ
j
x

uj
xx

λ
dx− κjθ

j
x

uj
x

λ

∣∣∣∣∣
x=ℓj

x=0

+i αj

∫ ℓj

0

|uj
x|2 dx = o(1).

Using Cauchy-Schwarz inequality, (4.1), (4.11) and (4.14), we have

i αj

∫ ℓj

0

|uj
x|2 dx+ iθjuj

∣∣∣∣∣
x=ℓj

x=0

− κjθ
j
x

uj
x

λ

∣∣∣∣∣
x=ℓj

x=0

= o(1). (4.28)

Then, by applying Gagliardo-Nirenberg inequality for Ψ = θj
√
λ
, Ψ =

θj
x√
λ
and again

using (4.11), (4.14), (4.15), (4.16), we deduce that (4.28) yields

i αj

∫ ℓj

0

|uj
x|2 dx = o(1).

Taking the imaginary part and using the fact that αj is a positive constant for all
j ∈ Ite, we deduce that ∫ ℓj

0

|uj
x|2 dx = o(1). (4.29)
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Now, multiply (4.10) by
θj+αju

j
x

λ and integrate over (0, ℓj), we get

i

∫ ℓj

0

|θj + αju
j
x|2 dx−

∫ ℓj

0

κjθ
j
xx

λ
(θj + αju

j
x) dx =

∫ ℓj

0

hj

λ
(θj + αju

j
x) dx

+

∫ ℓj

0

αjf
j
x

λ
(θj + αju

j
x) dx.

(4.30)

By applying Green’s formula on the second term of (4.30), using Cauchy- Schwarz
inequality on the integrals of the right hand side, (4.1) and the fact that hj and f j

x

converge to zero in L2(0, ℓj), we obtain

i

∫ ℓj

0

|θj + αju
j
x|2 dx+

∫ ℓj

0

κj
|θjx|2

λ
dx+

∫ ℓj

0

αjκjθ
j
x

uj
xx

λ
dx

−κjθ
j
x√
λ

(
θj√
λ
+

αju
j
x√
λ

)∣∣∣∣∣
x=ℓj

x=0

= o(1).

(4.31)

Again, by using Gagliardo-Nirenberg inequality for Ψ =
θj√
λ
, Ψ =

θjx√
λ

and

Ψ =
uj
x√
λ
, we deduce that the boundary term in (4.31) converges to zero. More-

over, using (4.11) and (4.14), the second and third terms of (4.31) converge to zero.
Consequently, using (4.29), we conclude (4.26).

Lemma 4.5. Under all above assumptions, we have for all j ∈ Ite∫ ℓj

0

|λuj |2 dx = o(1) and

∫ ℓj

0

|vj |2 dx = o(1). (4.32)

Proof. Let j ∈ Ite. Multiply (4.8) by uj , integrate over (0, ℓj) and apply Green’s
formula, we get ∫ ℓj

0

|λuj |2 dx−
∫ ℓj

0

|uj
x|2 dx+ uj

xu
j

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

αjθ
j
xu

j dx

+

∫ ℓj

0

iβjλy
juj dx =

∫ ℓj

0

βjg
juj dx−

∫ ℓj

0

f̃ juj dx− iλ

∫ ℓj

0

f juj dx.

Using Cauchy-Schwarz inequality, (4.26), (4.15), (4.16), (4.11), (4.12) and (4.13),
we deduce that ∫ ℓj

0

|λuj |2 dx = o(1).

Using (4.3) we conclude that (4.32) holds.

As a conclusion, we have for every j ∈ Ite

vj → 0, in L2(0, ℓj),

uj → 0, in H1(0, ℓj),

θj → 0, in H1(0, ℓj).
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Lemma 4.6. Assume that all above assumptions hold. Then, for every thermo-
elastic edge, we have

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), Re

(
iλf j(ℓj)u

j(ℓj)
)
= o(1), (4.33)

λuj(0) = o(1), uj
x(0) = o(1), Re

(
iλf j(0)uj(0)

)
= o(1), (4.34)

θj(0) = o(1), θj(ℓj) = o(1). (4.35)

Proof. By the proof of Lemma 4.3, for all j ∈ Ite, and any Φj in W 1,∞(0, ℓj), (4.19)
holds. Then, using (4.26), (4.32), (4.11) and (4.13) we obtain

Φj |λuj |2
∣∣∣∣∣
x=ℓj

x=0

+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

= o(1)− 2Re

∫ ℓj

0

iλf jΦjuj
x dx. (4.36)

Then, by taking Φj = x, for all j ∈ Ite, and using (4.25), we deduce that (4.36)
becomes,

(ℓj − ℓ2jϵj)|λuj(ℓj)|2 + ℓj |uj
x(ℓj)|2 = o(1).

Taking ϵj =
1

2ℓj
, we deduce that

λuj(ℓj) = o(1) and uj
x(ℓj) = o(1).

Consequently, by (4.36) and (4.22), we conclude that (4.33) holds. Similarly, by
taking Φj = (x − ℓj), for all j ∈ Ite, we conclude that (4.34) holds. On the other
hand, applying Gagliardo-Nirenberg inequality for Ψ = θj , using (4.26) and (4.11)
we deduce that (4.35) holds.

Lemma 4.7. Under all above assumptions, we have for all j ∈ Ite,∫ ℓj

0

|yjx|2 dx = o(1). (4.37)

Proof. Multiply (4.8) by yj
xx

λ , then integrate over (0, ℓj) we get∫ ℓj

0

λujyjxx dx+

∫ ℓj

0

uj
xx

yjxx
λ

dx−
∫ ℓj

0

αjθ
j
x

yjxx
λ

dx+ i

∫ ℓj

0

βjy
jyjxx dx

=

∫ ℓj

0

βjg
j y

j
xx

λ
dx−

∫ ℓj

0

f̃ j y
j
xx

λ
dx− i

∫ ℓj

0

f jyjxx dx.

Using Cauchy-Schwarz inequality, (4.11), (4.14) and the fact that gj and f̃ j converge
to zero in L2(0, ℓj), we obtain∫ ℓj

0

λujyjxx dx+

∫ ℓj

0

uj
xx

yjxx
λ

dx+i

∫ ℓj

0

βjy
jyjxx dx = o(1)−i

∫ ℓj

0

f jyjxx dx. (4.38)

Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we get

−
∫ ℓj

0

λuj
xy

j
x dx+ λujyjx

∣∣∣∣∣
x=ℓj

x=0

+

∫ ℓj

0

uj
xx

yjxx
λ

dx− i

∫ ℓj

0

βj |yjx|2 dx

+iβjy
jyjx

∣∣∣∣∣
x=ℓj

x=0

= i

∫ ℓj

0

f j
xy

j
x dx− if jyjx

∣∣∣∣∣
x=ℓj

x=0

+ o(1).
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But, using (4.33), (4.34), (4.17), (4.18), (4.13) and the fact that f j converge to zero
in H1(0, ℓj), we deduce that

−
∫ ℓj

0

λuj
xy

j
x dx+

∫ ℓj

0

uj
xx

yjxx
λ

dx− i

∫ ℓj

0

βj |yjx|2 dx = o(1). (4.39)

Similarly, multiplying (4.9) by uj
xx

λ , integrating over (0, ℓj) and using the fact that
ρj = 1 for all j ∈ Ite, we get∫ ℓj

0

λyjuj
xx dx+

∫ ℓj

0

yjxx
uj
xx

λ
dx− i

∫ ℓj

0

βju
juj

xx dx

= −
∫ ℓj

0

βjf
j u

j
xx

λ
dx−

∫ ℓj

0

g̃j
uj
xx

λ
dx− i

∫ ℓj

0

gjuj
xx dx.

Using Cauchy-Schwarz inequality, (4.14) and the fact that f j and g̃j converge to
zero in L2(0, ℓj), we obtain∫ ℓj

0

λyjuj
xx dx+

∫ ℓj

0

yjxx
uj
xx

λ
dx−i

∫ ℓj

0

βju
juj

xx dx = o(1)−i

∫ ℓj

0

gjuj
xx dx. (4.40)

Applying Green’s formula on the first and third term of the left hand side and on
the integral of the right hand side, we obtain

−
∫ ℓj

0

λyjxu
j
x dx+ λyjuj

x

∣∣∣∣∣
x=ℓj

x=0

+

∫ ℓj

0

yjxx
uj
xx

λ
dx+ i

∫ ℓj

0

βj |uj
x|2 dx

−iβju
juj

x

∣∣∣∣∣
x=ℓj

x=0

= i

∫ ℓj

0

gjxu
j
x dx− igjuj

x

∣∣∣∣∣
x=ℓj

x=0

+ o(1).

But, using (4.17), (4.18), (4.26), (4.33), (4.34), and the fact that gj coverges to zero
in H1(0, ℓj), we deduce that

−
∫ ℓj

0

λyjxu
j
x dx+

∫ ℓj

0

yjxx
uj
xx

λ
dx = o(1). (4.41)

Taking the imaginary part of equations (4.39) and (4.41) then, adding the two
resulting equations, we conclude that∫ ℓj

0

|yjx|2 dx = o(1).

and the result holds.

Lemma 4.8. Under all above assumptions, we have∫ ℓj

0

|λyj |2 dx = o(1), ∀j ∈ Ite. (4.42)

Proof. Multiply (4.9) by yj then, integrate over (0, ℓj) and apply Green’s formula,
we get ∫ ℓj

0

|λyj |2 dx−
∫ ℓj

0

|yjx|2 dx+ yjyjx

∣∣∣∣∣
x=ℓj

x=0

− i

∫ ℓj

0

βjλu
jyj dx

= −
∫ ℓj

0

βjf
jyj dx−

∫ ℓj

0

g̃jyj dx− i

∫ ℓj

0

gjλyj dx.
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But, using Cauchy-Schwarz inequality, (4.12), (4.13), (4.17), (4.18), (4.37) and the
fact that f j , gj converge to zero in H1(0, ℓj) and g̃j converges to zero in L2(0, ℓj),
we deduce that (4.42) holds.

Lemma 4.9. Assume that all above assumptions hold. Then, for every thermo-
elastic edge, we have

λyj(ℓj) = o(1), yjx(ℓj) = o(1), Re
(
iλgj(ℓj)y

j(ℓj)
)
= o(1), (4.43)

λyj(0) = o(1), yjx(0) = o(1), Re
(
iλgj(0)yj(0)

)
= o(1). (4.44)

Proof. The proof is the same as the one of Lemma 4.3 or Lemma 4.6, using (4.37)
and (4.42), the result holds.

Lemma 4.10. Under all above assumptions, for each elastic edge we have∫ ℓj

0

|λuj |2 dx = o(1),

∫ ℓj

0

|uj
x|2 dx = o(1), (4.45)∫ ℓj

0

|λyj |2 dx = o(1),

∫ ℓj

0

|yjx|2 dx = o(1). (4.46)

Proof. Let ej be an elastic edge attached to a thermoelastic one at an interior vertex
ak, where ak is a leaf of a maximal subgraph of elastic edges. Recall that αj = 0,

and let Φj ∈ W 1,∞(0, ℓj). Multiply (4.8) by 2Φjuj
x then integrate over (0, ℓj), take

the real part and apply Green’s formula, we obtain

−
∫ ℓj

0

Φj
x|λuj |2 dx+Φj |λuj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

Φj
x|uj

x|2 dx+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

+Re 2i

∫ ℓj

0

λβjΦ
jyjuj

x dx = 2Re

∫ ℓj

0

βjΦ
jgjuj

x dx

−2Re

∫ ℓj

0

f̃ jΦjuj
x dx− 2Re

∫ ℓj

0

iλf jΦjuj
x dx.

Again applying Green’s formula on the fifth term of the left hand side and on the
third term of the right hand side, we get

−
∫ ℓj

0

Φj
x|λuj |2 dx+Φj |λuj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

Φj
x|uj

x|2 dx+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

−Re 2i

∫ ℓj

0

λujβjΦ
jyjx dx− Re 2i

∫ ℓj

0

λujβjΦ
j
xy

j dx+Re (2iβjΦ
jλyjuj)

∣∣∣∣∣
x=ℓj

x=0

= 2Re

∫ ℓj

0

βjΦ
jgjuj

x dx− 2Re

∫ ℓj

0

f̃ jΦjuj
x dx+Re 2i

∫ ℓj

0

λujf j
xΦ

j dx

+Re 2i

∫ ℓj

0

f jΦj
xλu

j dx− 2Re(iλf jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.

(4.47)

But using Cauchy-Schwarz inequality, (4.12) and (4.13), we deduce that

Re 2i

∫ ℓj

0

λujβjΦ
j
xy

j dx = o(1). (4.48)
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Also, using Cauchy-Schwarz inequality, (4.12), (4.13) and the fact that f j converge

to zero in H1(0, ℓj) and f̃ j , gj converge to zero in L2(0, ℓj), we have

2Re

∫ ℓj

0

βjΦ
jgjuj

x dx− 2Re

∫ ℓj

0

f̃ jΦjuj
x dx+Re 2i

∫ ℓj

0

λujf j
xΦ

j dx

+Re 2i

∫ ℓj

0

f jΦj
xλu

j dx = o(1).

(4.49)

Inserting (4.48) and (4.49) in the identity (4.47), we get

−
∫ ℓj

0

Φj
x|λuj |2 dx+Φj |λuj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

Φj
x|uj

x|2 dx+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

+Re (2iβjΦ
jλyjuj)

∣∣∣∣∣
x=ℓj

x=0

+ 2 Im

∫ ℓj

0

λujβjΦ
jyjx dx = −2Re(iλf jΦjuj)

∣∣∣∣∣
x=ℓj

x=0

.

(4.50)

Similarly, multiply (4.9) by 2Φjyjx, integrate over (0, ℓj), take the real part and
apply Green’s formula, we obtain

−
∫ ℓj

0

Φj
x|λyj |2 dx+Φj |λyj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

ρjΦ
j
x|yjx|2 dx+ ρjΦ

j |yjx|2
∣∣∣∣∣
x=ℓj

x=0

−Re 2i

∫ ℓj

0

λβjΦ
jujyjx dx = −Re 2

∫ ℓj

0

βjf
jΦjyjx dx

−Re 2

∫ ℓj

0

g̃jΦjyjx dx− Re 2i

∫ ℓj

0

λgjΦjyjx dx.

Applying Green’s formula on the last integral of the right hand side, we get

−
∫ ℓj

0

Φj
x|λyj |2 dx+Φj |λyj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

ρjΦ
j
x|yjx|2 dx+ ρjΦ

j |yjx|2
∣∣∣∣∣
x=ℓj

x=0

−Re 2i

∫ ℓj

0

λβjΦ
jujyjx dx = −Re 2

∫ ℓj

0

βjf
jΦjyjx dx

−Re 2

∫ ℓj

0

g̃jΦjyjx dx+Re 2i

∫ ℓj

0

λgjxΦ
jyj dx+Re 2i

∫ ℓj

0

λgjΦj
xy

j dx

−2 Re(iλgjΦjyj)

∣∣∣∣∣
x=ℓj

x=0

.

(4.51)

But, using (4.13) and the fact that gj converge to zero in H1(0, ℓj) and f j , g̃j

converge to zero in L2(0, ℓj), we conclude that

−Re 2

∫ ℓj

0

βjf
jΦjyjx dx− Re 2

∫ ℓj

0

g̃jΦjyjx dx+Re 2i

∫ ℓj

0

λgjxΦ
jyj dx

+Re 2i

∫ ℓj

0

λgjΦj
xy

j dx = o(1).

(4.52)



24 ALAA HAYEK, SERGE NICAISE, ZAYNAB SALLOUM AND ALI WEHBE

Then, inserting (4.52) in equation (4.51), we get

−
∫ ℓj

0

Φj
x|λyj |2 dx+Φj |λyj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

ρjΦ
j
x|yjx|2 dx+ ρjΦ

j |yjx|2
∣∣∣∣∣
x=ℓj

x=0

+2 Im

∫ ℓj

0

λβjΦ
jujyjx dx = o(1)− 2 Re(iλgjΦjyj)

∣∣∣∣∣
x=ℓj

x=0

.

(4.53)

Without loss of generality, assume that πj(ak) = 0 and let Φj = x− ℓj (otherwise,
let Φj = x). Then, adding the two equations (4.50) and (4.53), using Lemma 4.6,
Lemma 4.9, the fact that u, y, f and g satisfy the continuity conditions in (1.11)
and u, θ and y satisfy the balance conditions (1.12)-(1.13), we deduce that∫ ℓj

0

|λuj |2 dx+

∫ ℓj

0

|uj
x|2 dx

+

∫ ℓj

0

|λyj |2 dx+

∫ ℓj

0

ρj |yjx|2 dx = o(1).

Consequently, as ρj > 0 for all j ∈ Ie, (4.45) and (4.46) hold. Repeating the same
technique of Lemma 4.6 and Lemma 4.9, we conclude that

λuj(0) = o(1), uj
x(0) = o(1), Re

(
iλf j(0)uj(0)

)
= o(1),

λyj(0) = o(1), yjx(0) = o(1), Re
(
iλgj(0)yj(0)

)
= o(1),

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), Re

(
iλf j(ℓj)u

j(ℓj)
)
= o(1),

λyj(ℓj) = o(1), yjx(ℓj) = o(1), Re
(
iλgj(ℓj)y

j(ℓj)
)
= o(1).

Then, by iteration on each maximal subgraph of purely elastic edges (from leaves
to the root), we prove that∫ ℓj

0

|λuj |2 dx+

∫ ℓj

0

|uj
x|2 dx+

∫ ℓj

0

|λyj |2 dx+

∫ ℓj

0

|yjx|2 dx = o(1), (4.54)

for all j ∈ Ie.

In conclusion, using Lemmas 4.4, 4.5, 4.7, 4.8 and 4.10, we conclude that
||U ||H = o(1), which contradicts (4.1).

Remark 1. Examples of networks for which (S1) holds are given by Theorem 3.2.

Remark 2. If there exists an elastic edge (j ∈ Ie) such that ρj ̸= 1 then, using
Lemma 4.10, we show that Theorem 4.1 holds (i.e., the energy of the system decays
exponentially to zero). But, if there exists a thermo-elastic edge (j ∈ Ite) such that
ρj ̸= 1 then, it seems that the energy of the system does not decay exponentially,
but polynomially (see Theorem 4.11 below).

4.2. Polynomial stability.

Theorem 4.11. Let N be an arbitrary network for which the operator A associated
with System (1.7)-(1.13) satisfies (S1). Assume that there exists j ∈ Ite ∩ I ′

ext such
that ρj ̸= 1. Then, the energy of the system satisfies

E(t) ≤ C

t1/3
||U0||2D(A), ∀U0 ∈ D(A), t > 0, (4.55)
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for some positive constant C > 0.

Proof. Following Borichev-Tomilov [3], the C0-semigroup of contractions (etA)t≥0

on H is polynomially stable if and only if (S1) and

lim sup
|λ|→∞

1

λ6
∥(iλ−A)−1∥L(H) < ∞ (S2)

hold. As we have assumed that (S1) is satisfied, it remains to prove that condition
(S2) is satisfied. To this aim, we proceed by a contradiction argument. Suppose
that (S2) does not hold, then there exist a sequence of real numbers λn ∈ R and a
sequence of vectors Un = (un, vn, yn, zn, θn) ∈ D(A) such that (4.1) and

λ6(iλn −A)Un = (fn, f̃n, gn, g̃n, hn) −→ 0 in H (4.56)

are satisfied.
In what follows, we drop the index n for simplicity.

Now by detailing (4.56), we get for all j ∈ I(N )

λ6(iλuj − vj) = f j → 0 in H1(0, ℓj), (4.57)

λ6(iλvj − uj
xx + αjθ

j
x − βjz

j) = f̃ j → 0 in L2(0, ℓj), (4.58)

λ6(iλyj − zj) = gj → 0 in H1(0, ℓj), (4.59)

λ6(iλzj − ρjy
j
xx + βjv

j) = g̃j → 0 in L2(0, ℓj), (4.60)

λ6(iλθj − κjθ
j
xx + αjv

j
x) = hj → 0 in L2(0, ℓj). (4.61)

Then, by eliminating vj and zj using (4.57) and (4.59) respectively, (4.57)-(4.61)
becomes

λ2uj + uj
xx − αjθ

j
x + iλβjy

j =
βjg

j

λ6
− f̃ j

λ6
− i

f j

λ5
, (4.62)

λ2yj + ρjy
j
xx − iλβju

j = −βjf
j

λ6
− g̃j

λ6
− i

gj

λ5
, (4.63)

iλθj − κjθ
j
xx + iλαju

j
x =

hj

λ6
+

αjf
j
x

λ6
. (4.64)

First, our aim is to prove that for each thermo-elastic edge, we have

vj → 0, in L2(0, ℓj),

uj → 0, in H1(0, ℓj),

θj → 0, in H1(0, ℓj),

zj → 0, in L2(0, ℓj),

yj → 0, in H1(0, ℓj).

(4.65)

Following the same proof of Lemmas 4.4, 4.5, 4.7, 4.8, we can prove that (4.65)
holds for all j ∈ Ite with ρj = 1. Hence, we only need to prove that (4.65) holds for
all j ∈ Ite ∩ I ′

ext with ρj ̸= 1. We will proceed by dividing the proof into different
Lemmas.

Lemma 4.12. Under all above assumptions, we have∫ ℓj

0

|θjx|2 dx =
o(1)

λ6
, ∀j ∈ Ite. (4.66)

Proof. Same proof as the one of Lemma 4.2.



26 ALAA HAYEK, SERGE NICAISE, ZAYNAB SALLOUM AND ALI WEHBE

Using (4.1), (4.57) and (4.59), we can easily deduce that (4.12)-(4.13) holds, for all
j ∈ I(N ). Also, using (4.62), (4.63) and (4.64) we conclude (4.14) for all j ∈ I(N ).

Lemma 4.13. Under all above assumptions, (4.15)-(4.18) holds.

Proof. Let Φj be a function in W 1,∞(0, ℓj), for all j ∈ Ite. Multiplying (4.62)

by 2Φjuj
x, integrating over (0, ℓj) then taking the real part and applying Green’s

Formula, we obtain

−
∫ ℓj

0

Φj
x|λuj |2 dx+Φj |λuj |2

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

Φj
x|uj

x|2 dx+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

−2Re αj

∫ ℓj

0

θjxΦ
juj

x dx+Re 2i

∫ ℓj

0

βjλy
jΦjuj

x dx

= 2Re

∫ ℓj

0

βjΦ
jgjuj

x

λ6
dx− 2Re

∫ ℓj

0

f̃ jΦjuj
x

λ6
dx− 2Re

∫ ℓj

0

i
f jΦjuj

x

λ5
dx.

(4.67)

Using (4.12), (4.13) and (4.66) we get,

Φj |λuj |2
∣∣∣∣∣
x=ℓj

x=0

+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

= O(1).

Let Φj = x, for all j ∈ Ite. We deduce that (4.15) holds. Similarly, by taking

Φj = (x− ℓj), we conclude (4.16). Also, multiplying (4.9) by 2xyjx and 2(x− ℓj)y
j
x

respectively, we deduce that (4.17) and (4.18) hold.

Lemma 4.14. Under all above assumptions, we have∫ ℓj

0

|uj
x|2 dx =

o(1)

λ2
, ∀ j ∈ Ite ∩ I ′

ext. (4.68)

Proof. Let j ∈ Ite ∩ I ′
ext. Multiply (4.64) by uj

x

λ , and integrate over (0, ℓj), we get

i

∫ ℓj

0

θjuj
x dx−

∫ ℓj

0

κjθ
j
xx

uj
x

λ
dx+ i

∫ ℓj

0

αj |uj
x|2 dx

=

∫ ℓj

0

hjuj
x

λ7
dx+

∫ ℓj

0

αjf
j
xu

j
x

λ7
dx.

(4.69)

Applying Green’s formula on the first and second term of (4.69), using Cauchy-
Schwarz inequality, (4.12) and the fact that f j converge to zero in H1(0, ℓj) and hj

converge to zero in L2(0, ℓj), we obtain

−i

∫ ℓj

0

θjxu
j dx+ iθjuj

∣∣∣∣∣
x=ℓj

x=0

+

∫ ℓj

0

κjθ
j
x

uj
xx

λ
dx− κj

θjx
λ
uj
x

∣∣∣∣∣
x=ℓj

x=0

+i

∫ ℓj

0

αj |uj
x|2 dx =

o(1)

λ7
.

(4.70)

But, using Cauchy-Schwarz inequality, (4.66), (4.12) and (4.14), we deduce that∫ ℓj

0

θjxu
j dx =

o(1)

λ4
, (4.71)
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and ∫ ℓj

0

θjx
uj
xx

λ
dx =

o(1)

λ3
. (4.72)

On the other hand, by applying Gagliardo-Nirenberg inequality to Ψ = θj and

Ψ =
θj
x

λ , using Poincaré inequality, (4.66) and (4.14) we deduce that

θj(0) =
o(1)

λ3
, θj(ℓj) =

o(1)

λ3
, j ∈ Ite ∩ I ′

ext, (4.73)

and
θjx(0)

λ
=

o(1)

λ2
,

θjx(ℓj)

λ
=

o(1)

λ2
, j ∈ Ite ∩ I ′

ext. (4.74)

Using (4.71), (4.72), (4.73), (4.74), (4.15) and (4.16) we conclude that (4.68) holds.

Lemma 4.15. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0

|λuj |2 dx = o(1) and

∫ ℓj

0

|vj |2 dx = o(1). (4.75)

Proof. Let j ∈ Ite ∩ I ′
ext. Multiply (4.62) by uj , integrate over (0, ℓj) and apply

Green’s formula, we get∫ ℓj

0

|λuj |2 dx−
∫ ℓj

0

|uj
x|2 dx+ uj

xu
j

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

αjθ
j
xu

j dx

+

∫ ℓj

0

iβjλy
juj dx =

∫ ℓj

0

βjg
juj

λ6
dx−

∫ ℓj

0

f̃ juj

λ6
dx− i

∫ ℓj

0

f juj

λ5
dx.

Using Cauchy-Schwarz inequality, (4.12), (4.13), (4.66), (4.68), (4.15) and (4.16) we
deduce that ∫ ℓj

0

|λuj |2 dx = o(1).

Using (4.57), we conclude that (4.75) holds.

Lemma 4.16. Assume that all above assumptions hold. Then, for j ∈ Ite ∩ I ′
ext,

we have

λuj(ℓj) = o(1), uj
x(ℓj) = o(1), (4.76)

λuj(0) = o(1), uj
x(0) = o(1), (4.77)

θj(0) = o(1), θj(ℓj) = o(1). (4.78)

Proof. By the proof of Lemma 4.13, for all j ∈ Ite∩I ′
ext, and any Φj in W 1,∞(0, ℓj),

(4.67) holds. Then, using (4.68), (4.75), (4.66) and (4.13) we obtain

Φj |λuj |2
∣∣∣∣∣
x=ℓj

x=0

+Φj |uj
x|2
∣∣∣∣∣
x=ℓj

x=0

= o(1).

Then, by taking Φj = x, for all j ∈ Ite∩I ′
ext, we deduce that (4.76) holds. Similarly,

by taking Φj = (x − ℓj), for all j ∈ Ite ∩ I ′
ext, we conclude that (4.77) holds. On

the other hand, by (4.73), we directly have (4.78).
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Lemma 4.17. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0

|λyj |2 dx = o(1) and

∫ ℓj

0

|zj |2 dx = o(1). (4.79)

Proof. Let j ∈ Ite∩I ′
ext.Multiply equation (4.63) by λuj , then integrate over (0, ℓj),

we get ∫ ℓj

0

λ3yjuj dx+ ρj

∫ ℓj

0

yjxxλu
j dx− i

∫ ℓj

0

βj |λuj |2 dx

= −
∫ ℓj

0

βjf
juj

λ5
dx−

∫ ℓj

0

g̃juj

λ5
dx− i

∫ ℓj

0

gjuj

λ4
dx.

(4.80)

Applying Green’s formula on the second term of (4.80), using Cauchy-Schwarz
inequality and (4.12), we obtain

∫ ℓj

0

λ3yjuj dx− ρj

∫ ℓj

0

yjxλu
j
x dx+ ρjy

j
xλu

j

∣∣∣∣∣
x=ℓj

x=0

− i

∫ ℓj

0

βj |λuj |2 dx = o(1).

But, using (4.76), (4.77), (4.68) (4.75), (4.17), (4.18) and (4.13), we deduce that∫ ℓj

0

λ3yjuj dx = o(1). (4.81)

Similarly, multiply (4.62) by λyj then integrate over (0, ℓj) and apply Green’s for-
mula, we obtain

∫ ℓj

0

λ3ujyj dx−
∫ ℓj

0

uj
xλy

j
x dx+ uj

xλy
j

∣∣∣∣∣
x=ℓj

x=0

−
∫ ℓj

0

αjθ
j
xλy

j dx

+iβj

∫ ℓj

0

|λyj |2 dx =

∫ ℓj

0

βjg
jyj

λ5
dx−

∫ ℓj

0

f̃ jyj

λ5
dx− i

∫ ℓj

0

f jyj

λ4
dx.

Consequently, using (4.68), (4.76), (4.77), (4.17), (4.18) and (4.66) we get∫ ℓj

0

λ3ujyj dx+ iβj

∫ ℓj

0

|λyj |2 dx = o(1).

Then, taking the imaginary part of the above equality, using (4.81) and the fact
that βj is a positive constant for all j ∈ Ite ∩ I ′

ext, we deduce that∫ ℓj

0

|λyj |2 dx = o(1).

Finally, by (4.60), we conclude that(4.79) holds.

Lemma 4.18. Under all above assumptions, we have for all j ∈ Ite ∩ I ′
ext∫ ℓj

0

|yjx|2 dx = o(1). (4.82)
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Proof. Multiply (4.63) by yj , integrate over (0, ℓj) and apply Green’s formula, we
get ∫ ℓj

0

|λyj |2 dx− ρj

∫ ℓj

0

|yjx|2 dx+ ρjy
j
xy

j

∣∣∣∣∣
x=ℓj

x=0

− i

∫ ℓj

0

βju
jyj dx

= −
∫ ℓj

0

βjf
jyj

λ6
dx−

∫ ℓj

0

g̃jyj

λ6
dx− i

∫ ℓj

0

gjyj

λ5
dx.

Then, using (4.79), (4.17), (4.18) and (4.13), we deduce that (4.82) holds.

Now, following the same proof of Lemma 4.13 and Lemma 4.16, we deduce that for
all j ∈ Ite ∩ I ′

ext, we have{
λyj(ℓj) = o(1), yjx(ℓj) = o(1),

λyj(0) = o(1), yjx(0) = o(1).
(4.83)

Hence, using (4.83), Lemma 4.16 and by iteration on each maximal subgraph of
purely elastic edges (from leaves to root), the results of Lemma 4.10 hold for every
elastic edge. Finally, using Lemmas 4.14, 4.15, 4.17, 4.18 and 4.10, we conclude
that ||U ||H = o(1), which contradicts (4.1).

Remark 3. 1) If every maximal subgraph of thermo-elastic edges is composed of
maximum three thermo-elastic edges and there exist j ∈ Ite ∩G′

int such that ρj ̸= 1
then, the same result of Theorem 4.11 holds. The key step to prove that result is to
show that (4.73) still holds. Due to (1.11) and as (4.73) holds for all j ∈ Ite ∩ I ′

ext,
we deduce that (4.73) is achieved for all j ∈ Ite (in particular for j ∈ Ite ∩ G′

int).
Hence, the desired result is attained.

2) If we replace condition (1.13) by the following condition
∑

j∈I(ak)

dkju
j
x(ak, t) = 0, ak ∈ Vint,∑

j∈Ite(ak)

dkj(αju
j
t (ak, t)− κjθ

j
x(ak, t)) = 0, ak ∈ V ′

int.
(4.84)

Then, we can also prove that the same results of Theorem 4.1 and Theorem 4.11
hold for system {(1.7)-(1.12),(4.84)}. Notice that due to condition (4.84), a slight
gain appears when proving the system {(1.7)-(1.12),(4.84)} is strongly stable. In
other words, the energy associated with system {(1.7)-(1.12),(4.84)} converges to
zero if one of the following conditions holds,

i) Each maximal subgraph of thermo-elastic edges contains at least one interior
vertex or contains an exterior vertex that belongs to Vext.

ii) There exists a maximal subgraph of thermo-elastic edges that contains no inte-
rior vertices and contains no exterior vertex that belongs to Vext and βj = β, for all
j ∈ I(N ).

Idea of the proof. In comparison with Theorem 3.2, it is enough to prove that
if each maximal subgraph of thermo-elastic edges contains at least one interior ver-
tex, then the energy associated with system {(1.7)-(1.12),(4.84)} converges to zero.
Due to the fact that (I − A∗)

−1 is compact where, A∗ = A|D(A∗)
is the operator
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associated with system {(1.7)-(1.12),(4.84)}, we have σ(A∗) = σp(A∗). Following
the same proof as the one of Theorem 3.2, let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A∗)
be such that

A∗U = iλU.

As A∗ = A|D(A∗)
, we obtain, (3.1)-(3.10). If λ = 0, we proceed exactly as in the

proof of Theorem 3.2. Otherwise, if λ ̸= 0 then, using (3.10) and (3.8) we have
(3.14), which means that uj is constant for every j ∈ Ite but, due to the fact
that each maximal subgraph of thermo-elastic edges contains at least one interior
vertex and using (3.9), (3.1) and (1.11), the balance condition (4.84) asserts that
uj(ak) = 0 for some j ∈ Ite(ak), ak ∈ V ′

int. Again, using (1.11) we deduce that
uj = 0, for all j ∈ Ite. Finally, we proceed exactly as Case 1 of the proof of
Theorem 3.2 to reach the desired aim.

5. Stabilization of thermo-elastic system with Neumann boundary con-
dition at the interior nodes of some particular networks. In this section,
we investigate the stabilization of a thermo-elastic system with Neumann boundary
condition at the interior nodes of some particular networks (composed of elastic and
thermoelastic materials) similar to the particular networks considered in [18]. In
the first case, we consider trees (G1) for which all exterior edges (except one) are
thermo-elastic. In the second case, we consider the path (P) composed of two exte-
rior elastic edges and an interior thermoelastic edge. In the third case, we consider
(G2), trees of elastic materials, whose leaves (exterior nodes of the last generation)
are connected to thermoelastic materials as follows: the thermoelastic body con-
nects two leaves issued from the same vertex, with the condition that each leaf is
connected to only one thermoelastic body.

In fact, the considered networks (G1), (P) and (G2) are particular graphs of the
general networks covered in Section 1-Section 4. Notice that, if we apply the bound-
ary conditions of Section 1 on these particular networks, we can deduce that the
stabilization of the thermo-elastic system on (G1), (P) and (G2) is achieved when
θ satisfies Dirichlet condition on each end of every thermo-elastic edge (see Section
1-Section 4). In this section, we discuss the stabilization of the thermo-elastic sys-
tem on these particular networks such that θ satisfies Neumann boundary condition
at each interior node connected to a thermo-elastic edge (see Figure 6).

The system is described as follows:
• On every thermo-elastic edge (j ∈ Ite) the following equations hold:

uj
tt − uj

xx + αjθ
j
x − βjy

j
t = 0 in (0, ℓj)× (0,∞),

yjtt − ρjy
j
xx + βju

j
t = 0 in (0, ℓj)× (0,∞),

θjt − κjθ
j
xx + αju

j
tx = 0 in (0, ℓj)× (0,∞),

(5.1)

where αj , ρj , κj and βj are positive constants.
• On every elastic edge (j ∈ Ie) one has:{

uj
tt − uj

xx − βjy
j
t = 0 in (0, ℓj)× (0,∞),

yjtt − ρjy
j
xx + βju

j
t = 0 in (0, ℓj)× (0,∞),

(5.2)

where βj and ρj are positive constants.
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Figure 6. Elastic/thermo-elastic networks

We assume that the initial data on the network N are
uj(x, 0) = uj

0(x), u
j
t (x, 0) = uj

1(x), ∀j ∈ I(N ),

yj(x, 0) = yj0(x), y
j
t (x, 0) = yj1(x), ∀j ∈ I(N ),

θj(x, 0) = θj0(x), ∀j ∈ Ite(N ).

(5.3)

The boundary conditions of system (5.1)-(5.3) on the considered networks will be
as follows.
The system satisfies the Dirichlet boundary condition for the displacement and
temperature at the exterior nodes,

uj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,

yj(ak, t) = 0, j ∈ I(ak), ak ∈ Vext,

θj(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vext.

(5.4)

The displacement is continuous at every interior node,{
uj(ak, t) = uℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint,

yj(ak, t) = yℓ(ak, t), j, ℓ ∈ I(ak), ak ∈ Vint.
(5.5)

The temperature satisfies the Neumann condition at the interior nodes,

θjx(ak, t) = 0, j ∈ Ite(ak), ak ∈ Vint. (5.6)

The system satisfies the balance condition at every interior node,

∑
j∈Ite(ak)

dkj(u
j
x(ak, t)− αjθ

j(ak, t)) +
∑

j∈Ie(ak)

dkju
j
x(ak, t) = 0, ak ∈ Vint,

∑
j∈I(ak)

dkjρjy
j
x(ak, t) = 0, ak ∈ Vint.

(5.7)

Mainly, we find sufficient conditions on the lengths of the purely elastic edges at-
tached to the thermo-elastic ones so that the system is strongly stable and then
exponentially stable on the above described networks.
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Here the energy space H1 is given by

H1 =
{
(u, ut, y, yt, θ) ∈ H1

0 × L2 ×H1
0 × L2 × V satisfying (5.9)

}
, (5.8)∫ ℓj

0

(αju
j
x + θj) dx = 0, ∀ j ∈ Gint ∩ Ite (5.9)

where, Gint is the set of indices of edges adjacent to two interior vertices.

Remark that it follows from the third equation of (5.1) and from the Neumann

condition in (5.6) that for all j ∈ Gint ∩ Ite, we have
∫ ℓj
0
(αju

j
tx + θjt ) dx = 0, which

implies that
∫ ℓj
0
(αju

j
x+θj) dx is conservative in time. Hence, if this quantity is zero

at time t = 0, it will remain zero at all time t > 0, hence without loss of generality,
we assume that (5.9) holds.

The Hilbert space H1 is equipped with the inner product given in (2.3).
Next, we define the unbounded linear operator A1 by:

A1


u
v
y
z
θ

 =




vj

uj
xx − αjθ

j
x + βjz

j

zj

ρjy
j
xx − βjv

j

κjθ
j
xx − αjv

j
x




j∈I(N )

(5.10)

with domain

D(A1) =
{
(u, v, y, z, θ) ∈ H1 ∩ [H2 ×H1

0 ×H2 ×H1
0 × V2], satisfying (5.11)

}


θj(ak) = 0, j ∈ Ite(ak), ak ∈ Vext,

θjx(ak) = 0, j ∈ Ite(ak), ak ∈ Vint,∑
j∈I(ak)

dkj(u
j
x(ak)− αjθ

j(ak)) = 0, ak ∈ Vint,∑
j∈I(ak)

dkjρjy
j
x(ak) = 0, ak ∈ Vint.

(5.11)

Let Ω denotes the set of indices of purely elastic edges attached to thermo-elastic
edges in the network N . The main results of this section are stated in the following
Theorems:

Theorem 5.1. The unbounded linear operator A1 generates a C0-semigroup of
contractions on H1.

Proof. The same proof as the one of Theorem 2.1 implies that A1 is a maximal
dissipative operator. Then, using Lumer-Phillips Theorem (see [16]), A1 generates
a C0-semigroup of contractions (etA1)t≥0 on H1.

Theorem 5.2. Consider the system (5.1)-(5.7) on N . Assume that one of the
following conditions holds:

1) N is the graph G1,
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2) N is the graph P, βj = β, ρj = 1,∀j ∈ I(P), and there exists j ∈ {1, 3} such
that

ℓj ̸=
mπ√
2βj

, ∀m ∈ N∗, (5.12)

3) N is the graph G2, βj = β, ρj = 1,∀j ∈ I(G2), and in every circuit C, for the
unique j, k ∈ Ω such that ej and ek are edges of C, we have

sin(
√
2βjℓj) + sin(

√
2βkℓk) ̸= 0. (5.13)

Then, iR ⊂ ρ(A1) and therefore the C0-semigroup of contractions (etA1)t≥0 is
strongly stable.

Proof. As before (I − A1)
−1 being compact, then σ(A1) = σp(A1). Thus, it is

sufficient to prove that σp(A1) ∩ iR = ∅. Let λ ∈ R and U = (u, v, y, z, θ) ∈ D(A1)
be such that

A1U = iλU,

equivalently, for all j ∈ I(N ) we have (3.1)-(3.5). Using (3.1), (3.3) to eliminate vj

and zj , we obtain (3.6)-(3.8). Further, we easily check that∑
j∈Ite

κj

∫ ℓj

0

|θjx|2 dx = Re(A1U,U)H1
= Re(iλU, U)H1

= 0.

This implies that (3.9) holds. Thus, θj is constant for all j ∈ Ite.
If λ = 0 then, using (3.6), (3.8) and (3.9), we have

uj
xx = 0, ∀j ∈ I(N ),

uj
xx − αjθ

j
x = 0, ∀j ∈ I(N ),

ρjy
j
xx = 0, ∀j ∈ I(N ),

(5.14)

where αj = 0,∀j ∈ Ie.
Multiplying the second equation and third equation of (5.14) by uj and yj ,

respectively. Then, integrating over (0, ℓj), summing over j ∈ I(N ) and applying
Green’s formula, we get

−
N∑
j=1

∫ ℓj

0

|uj
x|2 dx+

N∑
j=1

uj
xu

j

∣∣∣∣∣
ℓj

0

+

N∑
j=1

∫ ℓj

0

αjθ
juj

x dx−
N∑
j=1

αjθ
juj

∣∣∣∣∣
ℓj

0

= 0,

N∑
j=1

∫ ℓj

0

ρj |yjx|2 dx−
N∑
j=1

ρjy
j
xy

j

∣∣∣∣∣
ℓj

0

= 0.

But, using (5.4), (5.5), (5.7) and (5.9), we obtain for all j ∈ I(N ),

−
N∑
j=1

∫ ℓj

0

|uj
x|2 dx−

∑
j∈Ite

∫ ℓj

0

|θj |2 dx = 0,

N∑
j=1

∫ ℓj

0

ρj |yjx|2 dx = 0.
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This implies that uj
x = yjx = 0, for all j ∈ I(N ) and θj = 0, for all j ∈ Ite. Again,

by (5.4)-(5.7), we deduce that uj = yj = 0, for all j ∈ I(N ). Consequently, using
(3.1) and (3.3), we conclude that U = 0.

Now, assume that λ ̸= 0. We will proceed by distinguishing different cases:

Case i. Assume that N is the graph G1. Then, the proof in this case is exactly
the same as the proof of Case 1 in Theorem 3.2. In fact, under the boundary condi-
tions of Section 5, on each thermo-elastic edge ej of (G1), θ

j satisfies the Dirichlet
boundary condition on one end and the Neumann boundary condition on the other
end. While, under the boundary conditions of Section 1, θj satisfies the Dirichlet
boundary condition on the both ends of each thermo-elastic edge ej of (G1). This
shows that on networks like (G1), if θ

j satisfies Dirichlet boundary condition on
only one end of each thermo-elastic edge ej , then it is enough to prove that the
system is strongly stable.

Now, before proceeding the other cases (Case ii and Case iii below), remark
that for an arbitrary network N with βj = β, ρj = 1, for all j ∈ I(N ), and using
(3.8) and (3.9), (3.16)-(3.20) hold for all j ∈ Ite. Then, for λ ̸= ±β we have yj = 0,
for all j ∈ Ite and thus by equation (3.19) we get uj = 0, for all j ∈ Ite. Then,
by (3.8), we obtain that θj = 0, for all j ∈ Ite. Again, by proceeding using unique
continuation Theorem in [9] and iteration technique used in Case 1 of the proof of
Theorem 3.2, we conclude that uj = vj = yj = zj = 0, for all j ∈ I(N ). So, it is
enough to treat the remaining cases (Case ii and Case iii below) with λ = ±β.
Without loss of generality, assume that λ = β.

Case ii. Assume that N is the path P, composed of two exterior elastic edges
and an interior thermo-elastic edge, βj = β, ρj = 1, for all j ∈ I(P) and there
exists j ∈ {1, 3} such that (5.12) holds. Without loss of generality, assume that
π1(0) = a0, π2(0) = a1 and π3(0) = a2. By differentiating (3.8) with respect to x
and by using (3.9) we deduce that, for the thermoelastic edge e2, we have

u2
xx = 0. (5.15)

But, using (3.17) and dividing by λ = β, we also have y2 = iu2. Thus, u2 and y2

can be written in the following form

y2 = ax+ b, u2 = −iax− ib, for some a, b ∈ C. (5.16)

Moreover, using (3.9), (5.16) and (5.9), we can write

θ2 = iα2a. (5.17)

For the elastic edges {e1, e3}, (3.6)-(3.8) becomes,{
β2uj + uj

xx + iβ2yj = 0, on (0, ℓj), j = 1, 3,

β2yj + yjxx − iβ2uj = 0, on (0, ℓj), j = 1, 3.
(5.18)

Using (5.4)-(5.7), (5.16) and (5.17), we have the following boundary conditions:
u1(0) = y1(0) = 0,

u1(ℓ1) = u2(0) = −ib, y1(ℓ1) = y2(0) = b,

u1
x(ℓ1) = u2

x(0)− α2θ
2(0) = −i(1 + α2

2)a, y
1
x(ℓ1) = y2x(0) = a

(5.19)
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and 
u3(ℓ3) = y3(ℓ3) = 0,

u3(0) = u2(ℓ2) = −iaℓ2 − ib, y3(0) = y2(ℓ2) = aℓ2 + b,

u3
x(0) = u2

x(ℓ2)− α2θ
2(ℓ2) = −i(1 + α2

2)a, y
3
x(0) = y2x(ℓ2) = a.

(5.20)

Consequently, (5.18), (5.19) and (5.20) leads to the following system

Φj
x = AΦj , j = 1, 3 (5.21)

where,

Φj =


uj

uj
x

yj

yjx

 and A =


0 1 0 0

−β2 0 −iβ2 0
0 0 0 1
iβ2 0 −β2 0

 .

The solution of (5.21) is given by

Φj = eAx Φj(0), j = 1, 3. (5.22)

But using (5.19) and (5.20), we have

Φ1(0) =



0

u1
x(0)

0

y1x(0)


; Φ1(ℓ1) =



−ib

−i(1 + α2
2)a

b

a


, (5.23)

and

Φ3(ℓ3) =



0

u3
x(ℓ3)

0

y3x(ℓ3)


; Φ3(0) =



−iaℓ2 − ib

−i(1 + α2
2)a

aℓ2 + b

a


. (5.24)

Since we have

Φ1(0) = e−Aℓ1Φ1(ℓ1) and Φ3(ℓ3) = eAℓ3Φ3(0), (5.25)

using (5.23), (5.24) and technical computations, we obtain
i
√
2α2

2a

4β
sin(

√
2βℓ1) + iaℓ1 − ib+

iα2
2ℓ1a

2
= 0,

√
2α2

2a

4β
sin(

√
2βℓ1)− aℓ1 + b− α2

2ℓ1a

2
= 0,

(5.26)

and 
−i

√
2α2

2a

4β
sin(

√
2βℓ3)− ia(ℓ2 + ℓ3)− ib− iα2

2ℓ3a

2
= 0,

−
√
2α2

2a

4β
sin(

√
2βℓ3) + a(ℓ2 + ℓ3) + b+

α2
2ℓ3a

2
= 0.

(5.27)
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Multiplying the second equation of (5.26) (and (5.27) repectively) by i, then adding
the resulting equation to the first equation of (5.26) (and (5.27) repectively) we
obtain,

−iα2
2a

β
√
2

sin(
√
2βℓj) = 0, ∀j ∈ {1, 3}. (5.28)

So, if there exists j ∈ {1, 3} such that ℓj ̸=
mπ√
2β

, ∀m ∈ N∗, we deduce that a = 0.

Consequently, by (5.26) or (5.27) we deduce that b = 0 and hence u2 = y2 = 0
and θ2 = 0. By proceeding using unique continuation Theorem in [9] and iteration
technique used in Case 1 of the proof of Theorem 3.2, we deduce that uj = yj =
vj = zj = 0, j = 1, 2, 3. The same procedure can be used in the case λ = −β so
that the desired goal holds.

Case iii. Assume that N is the graph G2, βj = β, ρj = 1, for all j ∈ I(G2) and
that in every circuit C, for the unique j, k ∈ Ω such that ej and ek are edges of C,
(5.13) holds. Notice that for all j ∈ Ite, we have (3.21) holds. As in the proof of
Case 2 of Theorem 3.2, our aim is to prove (5.14). This would end the proof as in
the case λ = 0. But since, (3.9), (3.16) and (3.18) hold, then it is enough to prove
that (5.14) holds for every elastic edge. First, for a fixed circuit C of G2 without
loss of generality, we may use the parametrizations from Figure 7.

Figure 7. A circuit and its parametrizations:
π1(0) = a1, π2(0) = a2, and π3(0) = a3.

First, notice that for the thermoelastic edge e2, (5.16) and (5.17) hold. Also, for

the elastic edges {e1, e3}, (5.21) holds with

Φ1(ℓ1) =


−ib

−i(1 + α2
2)a

b
a

 and Φ3(0) =


−iaℓ2 − ib
−i(1 + α2

2)a
aℓ2 + b

a

 . (5.29)

Our aim is to find {u1(0), y1(0), u3(ℓ3), y
3(ℓ3)}. For that purpose, we use (5.25) to

find Φ1(0) and Φ3(ℓ3).
Then, using (5.29) and technical computations, we have

u1(0) =
i
√
2α2

2a
4β sin(

√
2βℓ1) + iaℓ1 − ib+

iα2
2ℓ1a
2 ,

y1(0) =
√
2α2

2a
4β sin(

√
2βℓ1)− aℓ1 + b− α2

2ℓ1a
2 .

This implies that

y1xx(0) = β2(y1(0)− iu1(0)) =
α2
2aβ√
2

sin(
√
2βℓ1). (5.30)
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Similarly, using (5.29) and technical computations, we have
u3(ℓ3) =

−i
√
2α2

2a
4β sin(

√
2βℓ3)− ia(ℓ2 + ℓ3)− ib− iα2

2ℓ3a
2 ,

y3(ℓ3) =
−
√
2α2

2a
4β sin(

√
2βℓ3) + a(ℓ2 + ℓ3) + b+

α2
2ℓ3a
2 .

This implies that

y3xx(0) = β2(y3(0)− iu3(0)) =
−α2

2aβ√
2

sin(
√
2βℓ3). (5.31)

On the other hand, using (5.4)-(5.7), we have u1(0) = u3(ℓ3) and y1(0) = y1(ℓ3).
Then,

y1xx(0) = y3xx(ℓ3). (5.32)

This means that
α2
2aβ√
2

(
sin(

√
2βℓ1) + sin(

√
2βℓ3)

)
= 0.

Notice that if sin(
√
2βℓ1) + sin(

√
2βℓ3) ̸= 0, then, a = 0, i.e., θ2 = 0. Using (3.8),

we obtain that u2
x = 0. Again, repeating the same strategy in every circuit of N

and using the fact that (5.13) holds, we deduce that

θj = 0, ∀j ∈ Ite. (5.33)

Hence, uj
x = 0, for all j ∈ Ite and (3.22) holds. Consequently, using (5.4)-(5.7),

(5.33), (3.21)-(3.22) and using iteration method from the leaves to the root, we prove
that every elastic edge satisfies (3.29). This implies that yjxx = 0, for all j ∈ Ie.
Finally, we can proceed as the case λ = 0. This finishes the proof. The same
procedure is used in the case λ = −β so that the desired goal holds.

Theorem 5.3. Let N be an arbitrary network for which the operator A1 associated
with System (5.1)-(5.7) satisfies iR ⊂ ρ(A1). If ρj = 1, for all j ∈ I(N ), then the
energy of the system decays exponentially in H1. In other words, there exist two
positive constants M and ϵ such that

∥etA1x0∥H1 ≤ Me−ϵt∥x0∥H1 , ∀ t > 0, ∀ x0 ∈ H1.

Proof. Same proof as the one of Theorem 4.1 holds.

Remark 4. Examples of networks for which iR ⊂ ρ(A1) are given by Theorem 5.2.
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