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STABLE APPROXIMATION OF HELMHOLTZ SOLUTIONS IN THE DISK BY
EVANESCENT PLANE WAVES

Emile Parolin1,2,* , Daan Huybrechs3 and Andrea Moiola4

Abstract. Superpositions of plane waves are known to approximate well the solutions of the Helmholtz
equation. Their use in discretizations is typical of Trefftz methods for Helmholtz problems, aiming to
achieve high accuracy with a small number of degrees of freedom. However, Trefftz methods lead to
ill-conditioned linear systems, and it is often impossible to obtain the desired accuracy in floating-
point arithmetic. In this paper we show that a judicious choice of plane waves can ensure high-accuracy
solutions in a numerically stable way, in spite of having to solve such ill-conditioned systems. Numerical
accuracy of plane wave methods is linked not only to the approximation space, but also to the size
of the coefficients in the plane wave expansion. We show that the use of plane waves can lead to
exponentially large coefficients, regardless of the orientations and the number of plane waves, and
this causes numerical instability. We prove that all Helmholtz fields are continuous superposition of
evanescent plane waves, i.e., plane waves with complex propagation vectors associated with exponential
decay, and show that this leads to bounded representations. We provide a constructive scheme to select
a set of real and complex-valued propagation vectors numerically. This results in an explicit selection
of plane waves and an associated Trefftz method that achieves accuracy and stability. The theoretical
analysis is provided for a two-dimensional domain with circular shape. However, the principles are
general and we conclude the paper with a numerical experiment demonstrating practical applicability
also for polygonal domains.
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1. Introduction

The space dependence of time-harmonic solutions 𝑈(x, 𝑡) = ℜ{𝑒−𝚤𝜔𝑡𝑢(x)} of the scalar wave equation 1
𝑐2

𝜕2𝑈
𝜕𝑡2 −

∆𝑈 = 0 is characterized by the homogeneous Helmholtz equation

−∆𝑢− 𝜅2𝑢 = 0. (1)
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The wavenumber is 𝜅 := 𝜔/𝑐 > 0, with 𝑐 the wave speed and 𝜔 the time frequency. Solutions of boundary
value problems for the Helmholtz equation are oscillatory, making their numerical approximation notoriously
computationally expensive at high frequencies, namely when the wavelength 𝜆 := 2𝜋/𝜅 is much smaller than
the characteristic length of the domain.

A well-studied way to efficiently represent Helmholtz solutions in a domain of R𝑛 is to approximate them
with linear combinations of propagative plane waves x ↦→ 𝑒𝚤𝜅d·x, which are particular solutions of (1) if the
propagation direction d ∈ R𝑛 satisfies d · d = 1. Plane waves indeed offer better accuracy for fewer degrees
of freedom compared to polynomial spaces, as supported by the theory developed in [30], building on previous
results in Section 8.4 of [28] and Section 3.3.5 of [9].

Approximation by plane waves has been extensively used in the context of Trefftz schemes for the Helmholtz
equation, a class of methods that use trial and test functions satisfying (1) locally on each element of a mesh, see
[22] for a comprehensive survey. The simple expression of plane waves allows for very cheap implementations; for
instance, integrals of products of these functions can be computed in closed form with wavenumber-independent
effort, see Section 4.1 of [22]. A second widespread use of plane wave approximation is the reconstruction of
sound fields from point measurements (representing microphones) in experimental acoustics, see [11,20,25,34].

The computation of plane wave approximations is however known to be numerically unstable, imposing strong
limits to the achievable accuracy [6, 33]. This issue is often understood as an effect of the ill-conditioning of
the linear system that is solved Section 4.3 of [22], which inevitably arises from the almost-linear dependence
of plane waves with similar propagation directions. Different techniques have been proposed to overcome this
instability, e.g. [3, 6, 16]. A well-known recommendation suggests using not more than a prescribed number of
waves in elements of a given size, e.g. equation (14) of [23]: this keeps the instability at bay but limits the
achievable accuracy.

The first purpose of this paper is to shed a new light on the numerical instability experienced with propagative
plane waves and explain the fundamental mathematical reasons for their limitations as described above. The
second objective is to propose a practical remedy, in the form of including evanescent plane waves, which may
decay exponentially in one direction, and using which one can achieve arbitrary accuracy in a numerically stable
way. The approach is substantiated by theoretical analysis in combination with numerical evidence. As a first
step in this direction, we focus mainly on the model approximation problem of Helmholtz solutions in the unit
disk, using the modal analysis tools described in Section 2.

A new point of view on plane wave instability. Recent advances in approximation theory, in particular
based on the theory of frames and overcomplete bases [12], have shown that in the presence of ill-conditioning it
is not sufficient to study best approximation errors in order to obtain accurate results in floating-point arithmetic
[1, 2]. Rather, one is led to study the approximation error in relation to the coefficient norm, i.e., the norm of
the coefficients in the expansion. The former depends solely on the approximation space, but the coefficient
norm also depends on its chosen representation (i.e. on the spanning set used). We formalize this in Section 3
with the notion of stable approximation in Definition 3.1. The corresponding error analysis in Section 3.4, based
largely on results in [1, 2], allows us to conclude in Section 4 that the set of propagative plane waves does not
yield stable approximations. That is, we can formally state that there exist Helmholtz solutions, with relatively
high Fourier frequency components in the angular coordinate, that are well approximated in the approximation
space, but are nevertheless not numerically computable, see Theorem 4.3. In the terminology of approximation
theory, no countable set of propagative plane waves is a frame for the space of Helmholtz solutions. (We recall
that a frame of a Hilbert space is a natural generalization of a basis that allows for redundancy, see [1, 12].) In
particular, it lacks a so-called lower frame bound which is the property that ensures that bounded functions
can be represented with bounded coefficients. This point of view is reminiscent of a similar work in the context
of the Method of Fundamental Solutions [5], which pre-dates the stability analysis from frame theory.

Unfortunately, while the theory in [1, 2] allows to identify this problem, it offers no concrete suggestions
as to how it can be remedied. If the approximation space remains unchanged, a lower frame bound can only
be established through a change of basis, such as orthogonalization as in [3, 8, 16]. However, that changes the
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representation: the solution would no longer be represented in the simple form of an expansion in plane waves,
which is a key feature we would like to retain. Moreover, it may not be straightforward to ensure that the
orthogonalization process itself is numerically stable.

The evanescent plane wave remedy. To obtain stable representations, we propose to enrich the approxi-
mation space with evanescent plane waves, i.e. plane waves whose direction vectors are complex-valued, d ∈ C𝑛,
as defined in Section 5. The Helmholtz equation is still satisfied provided d ·d = 1 and, importantly, the expres-
sion remains simple and cheap to use in numerical schemes. Since their modulus decays exponentially in the
direction ℑ[d], evanescent plane waves are localized in bounded physical domains but also in the Fourier domain,
hence are natural candidates for the approximation of the high frequency Fourier content exhibited by certain
Helmholtz solutions. This idea is already present in the Wave Based Method, a special class of Trefftz schemes,
see e.g. [17] for a survey. Evanescent plane waves also proved particularly effective in the approximation of
interface problems in Trefftz methods, e.g. [27], and the approximation of integral kernels in some versions of
the Fast Multipole Method [10].

To support the use of evanescent plane wave, we prove in Section 6 our main positive result, Theorem 6.7,
which states that any Helmholtz solution in the unit disk can be uniquely represented in the form of a continuous
superposition of evanescent plane waves. This integral representation has the key property of being stable,
i.e. it features a provably bounded density (in a weighted 𝐿2 space), and it can be seen as a generalization of
the classical Herglotz representation, see e.g. [15, 35]. This result implies that evanescent plane waves form a
continuous frame for the space of Helmholtz solutions, see Theorem 6.10. While this is stated at the continuous
level, such a property paves the way for successful stable discrete expansions. Indeed, from the stability of the
representation one may expect that discretizations exist with bounded coefficient norms, thereby solving the
main issue with propagative plane waves.

A practical numerical recipe. In view of practical implementations, we investigate the non-trivial task
of identifying suitable sets of evanescent plane waves which deliver controllable accuracy in combination with
stability. A heuristic choice for a set of complex directions d is suggested in Section 3.2 of [17] (see also [22],
Sect. 3.2), but no mathematical justification is provided.

A first idea to obtain stable discrete representations (i.e. with bounded coefficients) would be to discretize the
continous frame, but unfortunately, our setting does not fall within the assumptions of existing results (e.g. the
boundedness assumption of [18], Thm. 1.3 is not satisfied). Instead, the construction of approximation sets
described in Section 7 is largely based on the optimal sampling procedure for weighted least-squares recently
described by Cohen and Migliorati [13] (see also [21]) and subsequently used in [29], and it is illustrated with
numerical experiments in Section 8. The strategy employed can be interpreted as the construction of a quadra-
ture rule in the two-dimensional unbounded parametric domain of the integral representation. In practice, the
recipe consists in drawing the quadrature points (i.e. select the directions of the plane waves) according to an
explicit probability density function (77) which is a generalization to the multivariate setting of the Christof-
fel function density, The latter is sometimes called spectral function. While the rigorous numerical analysis
of the above approach is thus far incomplete, we conjecture that such a construction provides stable discrete
representations, see Conjecture 7.1. In fact, the experimental results in Section 8 show that the resulting approx-
imations are both controllably accurate and numerically stable, provided one uses sufficient oversampling and
regularization.

Although the recipe is derived from the analysis on the disk, we include numerical results on a triangular
cell showing that it appears to be effective also for other shapes. Approximation and stability properties of
evanescent plane waves in more general domains and their use in mesh-based Trefftz methods (e.g. the Trefftz-
Discontinuous Galerkin method [22], Sect. 2.2) will be considered in future publications (see [19] for the extension
of the theory of this paper to three-dimensional problems).
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Figure 1. Real part of the circular waves �̃�𝑝 for three different modes (wavenumber 𝜅 = 16).
(A) Propagative 𝑝 = 8. (B) Grazing 𝑝 = 16. (C) Evanescent 𝑝 = 32.

2. Helmholtz equation in circular geometry

We first present the setting of the paper and introduce notation. The proofs of the statements follow standard
arguments and are collected in Appendix A.

2.1. Circular waves

In this paper we only consider circular two-dimensional geometries. Without loss of generality, we assume that
the domain is the open unit disk, henceforth denoted 𝐵1 := {x ∈ R2| ‖x‖ < 1}. The circular geometry enables
modal analysis via separation of variables. The circular waves are the bounded solutions of the Helmholtz
equation in the unit disk that are separable in polar coordinates. They are sometimes also referred to as
Fourier–Bessel functions or as Generalized Harmonic Polynomials [28].

The results of this paper are fomulated most concisely using the following 𝜅-dependent scalar product and
norm: for any 𝑢, 𝑣 ∈ 𝐻1(𝐵1),

(𝑢, 𝑣)ℬ := (𝑢, 𝑣)𝐿2(𝐵1)
+ 𝜅−2 (∇𝑢, ∇𝑣)𝐿2(𝐵1)

, ‖𝑢‖2ℬ := (𝑢, 𝑢)ℬ . (2)

Definition 2.1 (Circular waves). We define, for any 𝑝 ∈ Z{︃
�̃�𝑝(x) := 𝐽𝑝(𝜅𝑟)𝑒𝚤𝑝𝜃, ∀x = (𝑟, 𝜃) ∈ 𝐵1,

𝑏𝑝 := 𝛽𝑝�̃�𝑝, where 𝛽𝑝 := ‖�̃�𝑝‖−1
ℬ ,

and ℬ := span {𝑏𝑝}𝑝∈Z
‖·‖ℬ ( 𝐻1(𝐵1). (3)

In this definition, 𝐽𝑝 is the usual Bessel function of the first kind equation (10.2.2) of [31] and 𝚤 the imaginary
unit 𝚤2 = −1. The space ℬ is a strict subspace of 𝐻1(𝐵1), whose elements are solutions of the Helmholtz
equation, see Lemma 2.3 below. A representation of the real part of some circular waves is given in Figure 1.
We will refer to the circular waves with mode number |𝑝| < 𝜅 as propagative modes. The ‘energy’ of such modes
is distributed in the bulk of the domain. On the contrary, for |𝑝| ≫ 𝜅, the circular waves are termed evanescent.
Their ‘energy’ is concentrated near the boundary of the domain. In between, the waves such that |𝑝| ≈ 𝜅 are
called grazing modes.



STABLE APPROXIMATION OF HELMHOLTZ SOLUTIONS BY EVANESCENT PLANE WAVES 3503

Lemma 2.2. The space (ℬ, ‖ · ‖ℬ) is a Hilbert space and the family {𝑏𝑝}𝑝∈Z is a Hilbert basis (i.e. an orthonor-
mal basis):

(𝑏𝑝, 𝑏𝑞)ℬ = 𝛿𝑝𝑞, ∀𝑝, 𝑞 ∈ Z, and 𝑢 =
∑︁
𝑝∈Z

(𝑢, 𝑏𝑝)ℬ 𝑏𝑝, ∀𝑢 ∈ ℬ. (4)

The main reason for introducing circular waves is the possibility to use them to expand any Helmholtz
solution on the disk, as we show in the next lemma. Related results for more general domains and different
norms are available, see e.g. Section 3.1 of [22].

Lemma 2.3. 𝑢 ∈ 𝐻1(𝐵1) satisfies the Helmholtz equation (1) if and only if 𝑢 ∈ ℬ.

Circular and spherical waves have been used as basis functions in many Trefftz schemes, see Section 3.1 of
[22] and the references therein. An interesting feature of such waves is that the approximation sets are naturally
hierarchical.

2.2. Asymptotics of normalization coefficients

The normalization coefficients 𝛽𝑝 in (3) grow super-exponentially with |𝑝| after a pre-asymptotic regime up
to |𝑝| ≈ 𝜅. The precise asymptotic behavior is given by the following lemma.

Lemma 2.4. For all 𝑝 ∈ Z,

𝛽𝑝 =
(︀
2𝜋

[︀
𝐽2

𝑝 (𝜅)− 𝐽𝑝−1(𝜅)𝐽𝑝+1(𝜅) + 𝐽 ′𝑝(𝜅)𝐽𝑝(𝜅)/𝜅
]︀)︀−1/2 ∼

|𝑝|→+∞
𝜅

(︂
2
𝑒𝜅

)︂|𝑝|
|𝑝||𝑝|. (5)

Remark 2.5. The circular waves are normalized using the rather natural ℬ norm (2), i.e. the wavenumber-
weighted 𝐻1(𝐵1) norm. The use of 𝐿2(𝐵1) or other Sobolev norms in the definition of 𝛽𝑝 would not modify the
exponential dependence on |𝑝| of the asymptotics (5), but it does introduce an additional moderate power of
|𝑝|, as is visible in the proof in Appendix A.

3. Stable numerical approximation

The purpose of this section is to explain the crucial notion of stable approximation, which we could informally
call “approximation with small coefficients”, and to clarify how it enables accurate numerical computations.
Our approach builds on the results in [1,2] which highlight the importance for stability of having representations
with bounded coefficients. We also describe the practical procedure, a regularized sampling method, that we use
to investigate the existence of stable numerical approximations of Helmholtz solutions in this paper. An error
bound is formulated in Proposition 3.2.

3.1. The notion of stable approximation

Let us consider a sequence of finite approximation sets in ℬ

Φ := {Φ𝑘}𝑘∈N where Φ𝑘 := {𝜑𝑘,𝑙}𝑙, |Φ𝑘| <∞, ∀𝑘 ∈ N, (6)

and for each 𝑘, 𝑙, 𝜑𝑘,𝑙 ∈ ℬ is a solution of the Helmholtz equation (1) in the unit disk. These sets need not be
nested. When the {𝜑𝑘,𝑙}𝑙 are linearly independent, Φ𝑘 is a basis of the approximation space used for numerical
computations. However, more generally, we also allow for linearly dependent sets. Associated to any set Φ𝑘 for
some 𝑘 ∈ N, we define the synthesis operator

𝒯Φ𝑘
: C|Φ𝑘| → ℬ, 𝜇 = {𝜇𝑙}𝑙 ↦→

∑︁
𝑙

𝜇𝑙𝜑𝑘,𝑙. (7)

Here and in the following, we use the notation |𝑋| to indicate the cardinality of the set 𝑋. We are now ready
to define a notion of stable approximation, which is at the heart of this paper.
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Definition 3.1 (Stable approximation). The sequence Φ of approximation sets (6) is said to be a stable approx-
imation for ℬ if, for any tolerance 𝜂 > 0, there exist a stability exponent 𝑠 ≥ 0 and a stability constant 𝐶stb ≥ 0
such that

∀𝑢 ∈ ℬ, ∃Φ𝑘 ∈ Φ, 𝜇 ∈ C|Φ𝑘| such that

{︃
‖𝑢− 𝒯Φ𝑘

𝜇‖ℬ ≤ 𝜂‖𝑢‖ℬ and

‖𝜇‖ℓ2 ≤ 𝐶stb|Φ𝑘|𝑠‖𝑢‖ℬ.
(8)

Having a sequence of stable approximation sets means that one can approximate any Helmholtz solution to
a given accuracy in the form of a finite expansion 𝒯Φ𝑘

𝜇 where the coefficients 𝜇 have bounded ℓ2-norm. This
bound on the coefficients admits a polynomial growth in the number |Φ𝑘| of terms in the expansion, but not
an exponential growth. The stability exponent 𝑠 ≥ 0 of a stable approximation sequence controls the growth of
the coefficient norm ‖𝜇‖ℓ2 : the smaller 𝑠 the more stable the sequence. This notion of stability is not related to
a space but rather to a particular sequence of sets that are used to represent the numerical approximation. In
practice the computation of approximations using stable sequences may lead to ill-conditioned linear systems
if there is redundancy in the approximation sets. The rest of this section shows that, in spite of possible ill-
conditioning, stable sequences lead to accurate approximations, thanks to the boundedness of the expansion
coefficients.

The simplest stable approximation is provided by the truncation of any orthonormal basis of ℬ, in which
case 𝑠 = 0 and 𝐶stb = 1, e.g. the circular waves Φ𝑘 = {𝑏𝑝}|𝑝|≤𝑘. However, in view of the application to Trefftz
methods on polygonal meshes, we describe two examples of approximations sets of the type of (6): propagative
plane waves (PPWs) in (23) and evanescent plane waves (EPWs) in (81). They exhibit different stability
properties. In Theorem 4.3 we prove rigorously that PPWs are necessarily unstable. In contrast, numerical
evidence from Section 8 indicates that the sets of EPWs constructed following the numerical recipe that we
propose in Section 7.3 are stable.

3.2. Boundary sampling method

We explain how we compute the coefficients in practice, which builts on results in [24]. All the numerical
results obtained in this paper are obtained using the method described here.

Let us introduce a ‘trace operator’ 𝛾, namely a (continuous) linear operator defined on 𝐻1(𝐵1) such that the
following problem is well-posed: find 𝑢 ∈ 𝐻1(𝐵1) such that

−∆𝑢− 𝜅2𝑢 = 0, in 𝐵1, and 𝛾𝑢 = 𝑔, on 𝜕𝐵1, (9)

for some suitable boundary data 𝑔. Examples of such a trace operator 𝛾 are: the Dirichlet trace operator,
extension to 𝐻1(𝐵1) of 𝑢 ↦→ 𝑢|𝜕𝐵1 , when 𝜅2 is not an eigenvalue of the Dirichlet Laplacian; the Neumann trace
operator, extension to 𝐻1(𝐵1) of 𝑢 ↦→ 𝜕n𝑢, when 𝜅2 is not an eigenvalue of the Neumann Laplacian; the Robin
trace operator, extension to 𝐻1(𝐵1) of 𝑢 ↦→ 𝜕n𝑢− 𝚤𝜅𝑢|𝜕𝐵1 (without assumptions on the wavenumber 𝜅).

We aim at reconstructing a solution 𝑢 ∈ ℬ having access to its trace 𝛾𝑢 on the boundary for such a ‘good’
trace operator 𝛾. For simplicity, we use the Dirichlet trace operator and therefore assume that 𝜅2 is away from
the eigenvalues of the Dirichlet Laplacian. Further we will assume that 𝑢 ∈ ℬ ∩ 𝐶0(𝐵1), so that it makes sense
to consider point evaluations of the Dirichlet trace.

The reconstruction process is not the main subject of the paper and we stress that we make these two
assumptions mainly for convenience and definiteness (in particular for the numerical experiments). One can
consider alternative reconstruction procedures using other types of data, such as point evaluation in the bulk of
the domain or by taking inner product of the solution with suitable test functions. See [11] for a more general
discussion on the subject of reconstructing Helmholtz solutions from point evaluations.

Let 𝑢 ∈ ℬ ∩ 𝐶0(𝐵1) be the target of the approximation problem. We look for a set of coefficients 𝜉 ∈ C|Φ𝑘|

for a given approximation set Φ𝑘 (introduced in (6)) such that 𝒯Φ𝑘
𝜉 ≈ 𝑢. We also assume that for any 𝑙,

𝜑𝑘,𝑙 ∈ ℬ ∩ 𝐶0(𝐵1). Define the set of 𝑆 ≥ |Φ𝑘| sampling points {x𝑠}𝑆𝑠=1 on the unit circle parametrized by the
angle

𝜃𝑠 :=
2𝜋𝑠

𝑆
, 1 ≤ 𝑠 ≤ 𝑆. (10)
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Let us introduce the matrix 𝐴 = (𝐴𝑠,𝑙)𝑠,𝑙 ∈ C𝑆×|Φ𝑘| and the vector b = (b𝑠)𝑠 ∈ C𝑆 such that

𝐴𝑠,𝑙 = 𝛾(𝜑𝑘,𝑙)(x𝑠), b𝑠 = (𝛾𝑢)(x𝑠), 1 ≤ 𝑙 ≤ |Φ𝑘|, 1 ≤ 𝑠 ≤ 𝑆. (11)

The sampling method then consists in approximately solving the rectangular linear system

𝐴𝜉 = b. (12)

3.3. Regularization

It often happens that the matrix 𝐴 is ill-conditioned (see Sect. 4.3). In finite precision arithmetic, severe
ill-conditioning may prevent us from obtaining accurate approximations. However, the type of ill-conditioning
encountered here is benign if it arises only from the redundancy of the approximating functions. In that case,
ill-conditioning is associated with the numerical non-uniqueness of the solution of the linear system, yet all
associated expansions may approximate the target to similar accuracy. If among those expansions there exist
some with small coefficient norms, then it is possible to numerically compute an accurate approximation. To this
aim, we rely on the combination of oversampling and regularization techniques developed in [1, 2]. Alternative
techniques to curb ill-conditioning can be found in the literature, see [3] where a suitable change of basis is used
that works well for circular geometries, [16] which uses orthogonalization, and [6, 24] in the context of Trefftz
methods.

The first step is to compute the Singular Value Decomposition (SVD) of the matrix 𝐴, namely

𝐴 = 𝑈Σ𝑉 *. (13)

Let us denote by (𝜎𝑚)𝑚 for 𝑚 = 1, . . . , |Φ𝑘| the singular values of 𝐴, assumed to be sorted in descending order.
For notational clarity, the largest singular value is renamed 𝜎max := 𝜎1. Then, the regularization amounts to
trimming the tail of relatively small singular values, which are approximated by zero. Let 𝜖 ∈ (0, 1] be a chosen
threshold, we denote by Σ𝜖 the approximation of the diagonal matrix Σ where all diagonal elements 𝜎𝑚 such
that 𝜎𝑚 < 𝜖𝜎max are replaced by zero. This leads to the approximate factorization

𝐴𝑆,𝜖 := 𝑈Σ𝜖𝑉
*, (14)

of the matrix 𝐴. An approximate solution to (12) is then obtained by

𝜉𝑆,𝜖 := 𝐴†𝑆,𝜖b = 𝑉 Σ†𝜖𝑈
* b. (15)

Here Σ†𝜖 denotes the pseudo-inverse of the matrix Σ𝜖, namely the diagonal matrix with (Σ†𝜖)𝑗,𝑗 = (Σ𝑗,𝑗)−1 if
Σ𝑗,𝑗 ≥ 𝜖𝜎max and (Σ†𝜖)𝑗,𝑗 = 0 otherwise. Robust computation of 𝜉𝑆,𝜖 requires to compute the right-hand-side
of (15) from right to left, namely 𝜉𝑆,𝜖 := 𝑉

(︀
Σ†𝜖 (𝑈* b)

)︀
, in order to avoid mixing small and large values on the

diagonal of Σ†𝜖 .

3.4. Error estimates for the sampling method with regularization

With the regularization technique described above together with oversampling, i.e., 𝑆 larger than |Φ𝑘|,
accurate approximations can be effectively computed, provided the set sequence is a stable approximation in
the sense of Definition 3.1. This broad statement is the main message of Theorem 5.3 of [1] and Theorems 1.3
and 3.7 of [2], and is the starting point of our quest of stable approximation sets for Helmholtz solutions. More
precisely, the following proposition is a rewording of Theorem 3.7 of [2] from the context of generalized sampling
to our setting, with the notations just introduced. See Appendix B for the proof.

Proposition 3.2. Let 𝛾 be the Dirichlet trace operator and 𝑢 ∈ ℬ ∩ 𝐶0(𝐵1). Given some approximation set
Φ𝑘 (𝑘 ∈ N fixed) such that for any 𝑙, 𝜑𝑘,𝑙 ∈ ℬ ∩ 𝐶0(𝐵1); a sampling set of size 𝑆 ∈ N as described in (10) and
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some regularization parameter 𝜖 ∈ (0, 1], we consider the approximate solution of the linear system (12), namely
𝜉𝑆,𝜖 ∈ C|Φ𝑘| as defined in (15). Then

∀𝜇 ∈ C|Φ𝑘|, ∃𝑆0 > 0,∀𝑆 ≥ 𝑆0,

‖𝛾(𝑢− 𝒯Φ𝑘
𝜉𝑆,𝜖)‖𝐿2(𝜕𝐵1) ≤ 3‖𝛾(𝑢− 𝒯Φ𝑘

𝜇)‖𝐿2(𝜕𝐵1) + 2
√

𝜋
𝜖 𝜎max√

𝑆
‖𝜇‖ℓ2 .

(16)

Assume moreover that 𝜅2 is not an eigenvalue of the Dirichlet Laplacian in 𝐵1. Then, there exists a constant
𝐶err independent of 𝑢 and Φ𝑘, such that

∀𝜇 ∈ C|Φ𝑘|, ∃𝑆0 > 0, ∀𝑆 ≥ 𝑆0,

‖𝑢− 𝒯Φ𝑘
𝜉𝑆,𝜖‖𝐿2(𝐵1) ≤ 𝐶err

(︁
‖𝑢− 𝒯Φ𝑘

𝜇‖ℬ +
𝜖 𝜎max√

𝑆
‖𝜇‖ℓ2

)︁
.

(17)

Proposition 3.2 shows that having stable approximation sets in the sense of Definition 3.1 is a sufficient
condition for the accurate reconstruction of a Helmholtz solution from its samples on the boundary of the disk,
provided enough sampling points 𝑆 and a sufficiently small regularization parameter 𝜖 are used. This is summed
up in the following result, see Appendix B for its proof.

Corollary 3.3. Let 𝛿 > 0. We assume to have a sequence of approximation sets {Φ𝑘}𝑘∈N that is stable in the
sense of Definition 3.1. Assume also that 𝜅2 is not a Dirichlet eigenvalue in 𝐵1. Then,

∀𝑢 ∈ ℬ ∩ 𝐶0(𝐵1), ∃Φ𝑘, 𝑆0 > 0, 𝜖0 ∈ (0, 1], such that
∀𝑆 ≥ 𝑆0, 𝜖 ∈ (0, 𝜖0], ‖𝑢− 𝒯Φ𝑘

𝜉𝑆,𝜖‖𝐿2(𝐵1) ≤ 𝛿‖𝑢‖ℬ,
(18)

where 𝜉𝑆,𝜖 ∈ C|Φ𝑘| is defined in (15). Moreover, we can take the regularization parameter 𝜖 as large as

𝜖0 =
𝛿
√

𝑆

2𝐶err𝜎max𝐶stb|Φ𝑘|𝑠
· (19)

The point of Corollary 3.3 is not only that the solution of the regularized SVD problem provides an accurate
approximation of 𝑢, but also that it is numerically computable. This is in contrast with the classical theory for the
approximation by PPWs, e.g. [30], which provides rigorous best-approximation error bounds that often can not
be attained numerically, precisely because accurate approximations require large coefficients and cancellation,
so exact-arithmetic results cannot be reflected by floating-point computations.

The assumption on the eigenvalues in Corollary 3.3 can be lifted if in (18) the 𝐿2(𝐵1) norm is replaced by
𝐿2(𝜕𝐵1). Moreover, in this case, the constant 𝐶err at the right-hand side of (19) can be dropped. Finally, the
largest singular value 𝜎max of the matrix 𝐴 appears in the above results: in our numerical experiments 𝜎max is
moderate, see Figure 10.

In the following, it will be convenient to measure the approximation error by the relative residual

ℰ = ℰ(𝑢,Φ𝑘, 𝑆, 𝜖) :=
‖𝐴𝜉𝑆,𝜖 − b‖ℓ2
‖b‖ℓ2

, (20)

where 𝜉𝑆,𝜖 is the solution (15) of the regularized linear system. Arguing as in the proof of Proposition 3.2, (see
Appendix B) for sufficiently large 𝑆, the quantity ℰ satisfies (for a constant 𝐶 independent of 𝑢, Φ𝑘, 𝑆)

‖𝑢− 𝒯Φ𝑘
𝜉𝑆,𝜖‖𝐿2(𝐵1) ≤ 𝐶‖𝑢‖ℬ ℰ . (21)
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4. Instability of propagative plane wave sets

The purpose of this section is to present the pitfalls encountered when using propagative plane waves (PPW)
to approximate Helmholtz solutions in the unit disk. In particular, we show that PPWs with equispaced angles in
general fail to yield stable approximations. This implies that problems can not be solved numerically to arbitrary
accuracy or, in some cases, to any accuracy at all. The main effort is to show that PPW approximations lead
to large expansion coefficients and that this problem can not be avoided using PPWs alone.

4.1. Propagative plane waves and Jacobi–Anger identity

We introduce the notion of a propagative plane wave. The adjective propagative is not customary in the
literature, but serves to distinguish the following definition with the notion of evanescent plane waves (EPWs)
that will be introduced in Definition 5.1.

Definition 4.1 (Propagative plane wave). For any angle 𝜙 ∈ [0, 2𝜋), we let

PW𝜙(x) := 𝑒𝚤𝜅d(𝜙)·x, ∀x ∈ R2, where d(𝜙) := (cos 𝜙, sin 𝜙) ∈ R2. (22)

All PPWs satisfy the homogeneous Helmholtz equation (1) since d(𝜙) · d(𝜙) = 1 for any angle 𝜙 ∈ [0, 2𝜋).
Propagative plane waves are a common choice in Trefftz schemes, see Section 3.2 of [22] and the references

therein. In 2D, isotropic approximations are obtained by using equispaced angles: for some 𝑀 ∈ N, the approx-
imation set is defined as

Φ𝑀 := {𝑀−1/2 PW𝜙𝑀,𝑚
}𝑀𝑚=1, where 𝜙𝑀,𝑚 :=

2𝜋𝑚

𝑀
, 1 ≤ 𝑚 ≤𝑀. (23)

In contrast to circular waves, the approximation sets based on such PPWs are in general not hierarchical.
Plane waves spaces have been studied in the literature, in particular explicit ℎ𝑝-estimates in suitable Sobolev
semi-norms are available for general domains, see Theorems 5.2 and 5.3 of [30]. These results ensure more than
exponential convergence (with respect to the number of plane waves used) of the approximation of homogeneous
Helmholtz solutions by a finite superposition of PPWs. Therefore, at least in principle, PPWs are well-suited
for Trefftz approximations.

The Jacobi–Anger identity equation (10.12.1) of [31] provides a link between plane waves and circular waves
and is ubiquitous in the analysis that follows:

PW𝜙(𝑟, 𝜃) = 𝑒𝚤𝜅d(𝜙)·x =
∑︁
𝑝∈Z

𝚤𝑝𝐽𝑝(𝜅𝑟)𝑒𝚤𝑝(𝜃−𝜙), ∀x = (𝑟, 𝜃) ∈ 𝐵1, 𝜙 ∈ [0, 2𝜋). (24)

4.2. Herglotz representation

We recall the so-called Herglotz functions. They are defined for any 𝑣 ∈ 𝐿2([0, 2𝜋]) as

𝑢(x; 𝑣) :=
∫︁ 2𝜋

0

𝑣(𝜙)PW𝜙(x) d𝜙, ∀x ∈ R2, (25)

see equation (1.1) of [15], equation (6) of [35] and Definition 3.18 of [14]. Such an expression is termed Herglotz
representation. The function 𝑣 is called Herglotz kernel or density. These functions 𝑢(·; 𝑣) ∈ 𝐶∞(R2) are entire
solutions of the Helmholtz equation and can be seen as a continuous superposition of PPWs, weighted according
to 𝑣. To see that 𝑢(·, 𝑣) ∈ ℬ, let 𝑣 ∈ 𝐿2([0, 2𝜋]), which we write as a Fourier expansion

𝑣(𝜙) =
1

2𝜋

∑︁
𝑝∈Z

𝑣𝑝𝑒
𝚤𝑝𝜙, ∀𝜙 ∈ [0, 2𝜋], (26)
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for a sequence of coefficients (𝑣𝑝)𝑝∈Z ∈ ℓ2(Z). Plugging this expression into (25) and using the Jacobi–Anger
expansion (24) together with the orthogonality of the complex exponentials {𝜃 ↦→ 𝑒𝚤𝑝𝜃}𝑝∈Z, we obtain, for any
x = (𝑟, 𝜃) ∈ R2,

𝑢(x; 𝑣) =
∫︁ 2𝜋

0

𝑣(𝜙)PW𝜙(x) d𝜙 =
∑︁
𝑝∈Z

𝚤𝑝𝑣𝑝𝐽𝑝(𝜅𝑟)𝑒𝚤𝑝𝜃 =
∑︁
𝑝∈Z

𝚤𝑝𝑣𝑝

𝛽𝑝
𝑏𝑝(x) ∈ ℬ, (27)

thanks to the super-exponential growth of the coefficients {𝛽𝑝}𝑝∈Z shown in Lemma 2.4.
While circular waves do have a Herglotz representation, their Herglotz densities are not bounded uniformly

with respect to the index 𝑝. For any 𝑝 ∈ Z and x = (𝑟, 𝜃) ∈ 𝐵1, using once again Jacobi–Anger expansion (24)
together with the orthogonality of the complex exponentials, we have∫︁ 2𝜋

0

𝑒𝚤𝑝𝜙PW𝜙(x) d𝜙 =
∫︁ 2𝜋

0

𝑒𝚤𝑝𝜙
∑︁
𝑞∈Z

𝚤𝑞𝐽𝑞(𝜅𝑟)𝑒𝚤𝑝(𝜃−𝜙) d𝜙 = 2𝜋𝚤𝑝𝐽𝑝(𝜅𝑟)𝑒𝚤𝑝𝜃. (28)

Hence, we obtain the Herglotz representation of the circular waves,

𝑏𝑝(x) =
∫︁ 2𝜋

0

[︂
𝛽𝑝

2𝜋𝚤𝑝
𝑒𝚤𝑝𝜙

]︂
PW𝜙(x) d𝜙, (29)

sometimes referred to as Bessel’s first integral identity equation (6) of [33]. The associated Herglotz density,
𝜙 ↦→ 𝛽𝑝(2𝜋)−1𝚤−𝑝𝑒𝚤𝑝𝜙, is clearly not bounded uniformly with respect to the mode number 𝑝, as a consequence
of Lemma 2.4. As a result, the discretization of this exact integral representation (e.g. by the trapezoidal rule),
cannot yield approximate discrete representations with bounded coefficients, as we establish next.

Moreover, several solutions of the Helmholtz equation can not be represented in the form (25) for any
𝑣 ∈ 𝐿2([0, 2𝜋]). For any sequence (�̂�𝑝)𝑝∈Z ∈ ℓ2(Z), the function 𝑢 =

∑︀
𝑝∈Z �̂�𝑝𝑏𝑝 belongs to ℬ, because {𝑏𝑝}𝑝∈Z

is a Hilbert basis. If this 𝑢 admits a Herglotz representation in the form (25) then the coefficients {𝑣𝑝}𝑝∈Z of
the Fourier expansion (26) of the density 𝑣 satisfy the relation 𝑣𝑝 = 𝚤−𝑝𝛽𝑝�̂�𝑝 for all 𝑝 ∈ Z. For 𝑣 to belong
to 𝐿2([0, 2𝜋]), these coefficients would need to belong to ℓ2(Z). This is only possible if the coefficients {�̂�𝑝}𝑝∈Z
decay super-exponentially, to compensate for the growth of {𝛽𝑝}𝑝∈Z, again by Lemma (2.4). For instance, the
PPWs themselves are not Herglotz functions, because their Fourier coefficients do not decay sufficiently fast, as
can be readily seen from the Jacobi–Anger identity (24) (in particular, for a PPW |𝚤−𝑝𝛽𝑝�̂�𝑝| = 1 for all 𝑝). In
fact, the density 𝑣 for a PPW would need to be a generalized function, the Dirac distribution.

4.3. Propagative plane waves do not give stable approximations

We investigate the approximation of a circular wave 𝑏𝑝 for some 𝑝 ∈ Z by a generic sequence of approximation
sets made of PPWs. It is shown that the two conditions in (8), namely accurate approximation and bounded
coefficients, are mutually exclusive. Thus, stable approximations with PPWs are not possible.

Lemma 4.2. Recall the definition of 𝑏𝑝 and 𝛽𝑝 in (3). Let 𝑝 ∈ Z and some tolerance 1 ≥ 𝜂 > 0 be given. For
all 𝑀 ∈ N, any approximation set Φ𝑀 := {𝑀−1/2 PW𝜙𝑚}𝑀𝑚=1 made of PPWs with any distribution of angles
{𝜙𝑚}𝑀𝑚=1 ⊂ [0, 2𝜋), satisfies

∀𝜇 ∈ C𝑀 , ‖𝑏𝑝 − 𝒯Φ𝑀
𝜇‖ℬ ≤ 𝜂‖𝑏𝑝‖ℬ ⇒ ‖𝜇‖ℓ2 ≥ (1− 𝜂)𝛽𝑝‖𝑏𝑝‖ℬ. (30)

Proof. Let 𝑀 ∈ N and 𝜇 := {𝜇𝑚}𝑀𝑚=1 ∈ C𝑀 . Using the Jacobi–Anger identity (24) we obtain at x = (𝑟, 𝜃) ∈ 𝐵1

√
𝑀(𝒯Φ𝑀

𝜇)(𝑟, 𝜃) =
∑︁

1≤𝑚≤𝑀

𝜇𝑚

∑︁
𝑞∈Z

𝚤𝑞𝐽𝑞(𝜅𝑟)𝑒𝚤𝑞(𝜃−𝜙𝑚) =
∑︁
𝑞∈Z

(︁
𝚤𝑞

∑︁
1≤𝑚≤𝑀

𝜇𝑚 𝑒−𝚤𝑞𝜙𝑚

)︁
𝐽𝑞(𝜅𝑟)𝑒𝚤𝑞𝜃, (31)
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so that 𝒯Φ𝑀
𝜇 =

∑︀
𝑞∈Z 𝑐𝑞 �̃�𝑝, where the coefficients 𝑐𝑞 := 𝚤𝑞/

√
𝑀

∑︀
1≤𝑚≤𝑀 𝜇𝑚 𝑒−𝚤𝑞𝜙𝑚 satisfy

|𝑐𝑞| = 𝑀−1/2
⃒⃒⃒
𝚤𝑞

∑︁
1≤𝑚≤𝑀

𝜇𝑚 𝑒−𝚤𝑞𝜙𝑚

⃒⃒⃒
≤𝑀−1/2

∑︁
1≤𝑚≤𝑀

|𝜇𝑚| = 𝑀−1/2‖𝜇‖ℓ1 ≤ ‖𝜇‖ℓ2 , ∀𝑞 ∈ Z. (32)

To ensure that the approximation error ‖𝑏𝑝−𝒯Φ𝑀
𝜇‖ℬ = (

∑︀
𝑞∈Z |𝛿𝑝𝑞 − 𝑐𝑞𝛽

−1
𝑞 |2)1/2 is below the tolerance 𝜂 > 0,

we need at least |𝛿𝑝𝑞 − 𝑐𝑞𝛽
−1
𝑞 | < 𝜂, ∀𝑞 ∈ Z. For 𝑞 = 𝑝 this reads

𝜂 >
⃒⃒
1− 𝑐𝑝𝛽

−1
𝑝

⃒⃒
≥ 1− |𝑐𝑝|𝛽−1

𝑝 ≥ 1− ‖𝜇‖ℓ2 𝛽−1
𝑝 , (33)

which can be rewritten as (30), recalling that ‖𝑏𝑝‖ℬ = 1. �

This bound means that if one approximates circular waves 𝑏𝑝 in the form of PPW expansions 𝒯Φ𝑀
𝜇 with

a given accuracy (i.e. small 𝜂 > 0), then the norms of the coefficients ‖𝜇‖ℓ2 need to increase at least like
the normalization constant 𝛽𝑝, i.e. super-exponentially fast in |𝑝|, see Lemma 2.4. This is a clear example of
accuracy and stability properties being opposite to each other. We state this important conclusion as a theorem
to stress the message.

Theorem 4.3. There does not exist a sequence of approximation sets made of PPWs that is a stable approxi-
mation for the space of Helmholtz solutions on the disk.

Proof. Lemma 4.2 exhibits a particular sequence, the sequence of circular waves {𝑏𝑝}𝑝∈Z, for which any generic
sequence of PPW approximation sets {Φ𝑀}𝑀∈N does not provide stable approximations. Indeed, let 𝑝 ∈ Z
and suppose there exist 𝑀 ∈ N and 𝜇 ∈ C𝑀 such that ‖𝑏𝑝 − 𝒯Φ𝑀

𝜇‖ℬ ≤ 𝜂‖𝑏𝑝‖ℬ for some 𝜂 ∈ (0, 1). Then
‖𝜇‖ℓ2 ≥ (1− 𝜂)𝛽𝑝‖𝑏𝑝‖ℬ, which implies that ‖𝜇‖ℓ2 cannot be bounded uniformly with respect to 𝑝 in virtue of
Lemma 2.4. The stability condition (8) is not satisfied and we conclude that any sequence of PPW approximation
sets {Φ𝑀}𝑀∈N is unstable in the sense of Definition 3.1. �

More generally, this statement has implications for other Trefftz methods as well. It is not sufficient to study
the best approximation error in a space spanned by Trefftz elements. If one is interested in numerical methods,
one has to study approximation properties in relation to coefficient norm, and the latter depends not only on
the approximation space but also on its chosen representation, i.e. the approximation set.

In the context of the Method of Fundamental Solutions (MFS), similar instability results (exponential growth
of the coefficient size) are obtained if the analytic extension of the Helmholtz solution presents a singularity
closer to the boundary than the MFS charge points Theorem 7 of [5].

Modal analysis of a propagative plane wave. Another point of view on the same issue is directly given
by the Jacobi–Anger identity (24). This identity allows us to get quantitative insight into the modal content of
PPWs. For any x = (𝑟, 𝜃) ∈ 𝐵1 and 𝜙 ∈ [0, 2𝜋), we have

𝑒𝚤𝜅d(𝜙)·x =
∑︁
𝑝∈Z

(︀
𝚤𝑝𝑒−𝚤𝑝𝜙𝐽𝑝(𝜅𝑟)

)︀
𝑒𝚤𝑝𝜃 =

∑︁
𝑝∈Z

(︀
𝚤𝑝𝑒−𝚤𝑝𝜙𝛽−1

𝑝

)︀
𝑏𝑝(𝑟, 𝜃). (34)

The modulus of the coefficients 𝚤𝑝𝑒−𝚤𝑝𝜙𝛽−1
𝑝 in the expansion as a function of 𝑝 can be directly deduced from

Lemma 2.4 (for large |𝑝|) and is reported in Figure 3 (left). This quantity does not depend on the propagation
angle 𝜙 which parametrizes the PPW.

These coefficients decay super-exponentially fast in modulus in the evanescent regime |𝑝| ≥ 𝜅. Recalling
Remark 2.5, the coefficients with respect to a normalization in alternative sensible norms (𝐿2(𝐵1), 𝐿2(𝜕𝐵1) or
𝐿∞(𝜕𝐵1) for instance) modify the decay only by some moderate powers of |𝑝|. This does not come as a surprise,
since PPWs are entire functions. Yet, the modal content of any PPW is fixed and low-frequency. The direct
implication is that they are not suited for approximating Helmholtz solutions with a high-frequency modal
content (large |𝑝|).
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Figure 2. Real part of EW𝜙,𝜁 with 𝜙 = 𝜋/8, 𝜁 ∈ {0, 1/10, 1/2} (left to right) and 𝜅 = 16.

5. Evanescent plane waves

The goal of this section is to introduce evanescent plane waves (EPWs) with a complex-valued direction
vector d ∈ C2, as opposed to propagative ones with d ∈ R2, and to provide intuitive reasons for their better
stability properties. PPWs and EPWs are sometimes respectively called homogeneous and inhomogeneous plane
waves, since only the former have constant amplitude. Combinations of PPWs and EPWs have already been
used to approximate Helmholtz solutions, e.g. in the Wave Base Method [17], and Laplace eigenfunctions, e.g.
in Section 6.1.3 of [4].

5.1. Definition

Definition 5.1 (Evanescent plane wave). For any parameter y := (𝜙, 𝜁) ∈ [0, 2𝜋)× R, we let

EWy(x) = EW𝜙,𝜁(x) := 𝑒𝚤𝜅d(y)·x, ∀x ∈ R2, where d(y) :=
(︀

cos(𝜙 + 𝚤𝜁), sin(𝜙 + 𝚤𝜁)
)︀
∈ C2. (35)

EPWs are solutions of the homogeneous Helmholtz equation (1) since d(y) · d(y) = 1 for any y ∈ [0, 2𝜋) ×
R. A number of EPWs are illustrated in Figure 2. EPWs can be seen as standard plane waves after the
‘complexification’ of the angle 𝜙 ∈ R into 𝜙 + 𝚤𝜁 ∈ C. For y = (𝜙, 0) (i.e. setting 𝜁 = 0), we recover the usual
PPW of Definition 4.1, whose direction is defined solely by the angle 𝜙: EW𝜙,0 = PW𝜙.

Since the angle is complex, the behavior of the “wave” might be unclear. Two more explicit expressions of
EPWs are, for x = (𝑟, 𝜃) ∈ R2:

EW𝜙,𝜁(x) = 𝑒𝚤𝜅(cosh 𝜁)x·d(𝜙) 𝑒−𝜅(sinh 𝜁)x·d⊥(𝜙), where d⊥(𝜙) := (− sin 𝜙, cos 𝜙) ,

and EW𝜙,𝜁(x) = 𝑒𝚤𝜅𝑟(cosh 𝜁) cos(𝜙−𝜃) 𝑒𝜅𝑟(sinh 𝜁) sin(𝜙−𝜃).
(36)

We see from these formulas that the wave oscillates with apparent wavenumber 𝜅 cosh 𝜁 ≥ 𝜅 in the direction
of d(𝜙) := (cos 𝜙, sin 𝜙), which was defined in (22) and is parallel to ℜ[d(y)]. In addition, the wave decays
exponentially with rate 𝜅 sinh 𝜁 in the orthogonal direction d(𝜙)⊥, which is parallel to ℑ[d(y)]. This justifies
naming the new parameter 𝜁 ∈ R, which controls the imaginary part of the angle, the evanescence parameter.

5.2. Modal analysis of evanescent plane waves

The Jacobi–Anger expansion (24) extends to complex d, i.e. to EPWs, see equations (10.12.1), (10.11.1) of
[31]: for any x = (𝑟, 𝜃) ∈ 𝐵1 and y = (𝜙, 𝜁) ∈ [0, 2𝜋)× R,

EWy(x) = 𝑒𝚤𝜅d(y)·x =
∑︁
𝑝∈Z

𝚤𝑝𝐽𝑝(𝜅𝑟)𝑒𝚤𝑝(𝜃−[𝜙+𝚤𝜁]) =
∑︁
𝑝∈Z

(︀
𝚤𝑝𝑒−𝚤𝑝𝜙𝑒𝑝𝜁𝛽−1

𝑝

)︀
𝑏𝑝(𝑟, 𝜃). (37)

The modulus of the coefficients 𝚤𝑝𝑒−𝚤𝑝𝜙𝑒𝑝𝜁𝛽−1
𝑝 in the modal expansion are reported in Figure 3 (right) as

functions of 𝑝. On this graph, we have conveniently normalized the coefficients according to a normalization
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Figure 3. Modal analysis computed using Jacobi–Anger identity (37) of PW𝜙 (left) and EW𝜙,𝜁

after normalization (right). In both cases, the absolute values of the coefficients of the expansion
of the plane wave in the basis {𝑏𝑝}𝑝∈Z is represented against the mode number 𝑝. Wavenumber
𝜅 = 16. Modifying 𝜙 has no influence, modifying 𝜁 shifts the modal content in the Fourier
space.

factor (depending only on 𝜁) which is described in the following sections, see (81). We see that by tuning the
evanescence parameter 𝜁 we are able to shift the modal content of the plane waves to higher-frequency regimes.
As a result, we expect EPWs to be able to capture well the higher-frequency modes of Helmholtz solutions that
are less regular. These may arise, for instance, in the presence of close-by singularities. The difficulty then is to
properly choose suitable values for this new evanescence parameter 𝜁 in order to build approximation spaces
that are reasonable in size. This will be the main objective of the remainder of this paper.

6. Mapping Herglotz densities to Helmholtz solutions

In this section we introduce an integral transform between a space of functions defined on the parametric
domain [0, 2𝜋)× R and the space of Helmholtz solutions in the unit disk ℬ.

6.1. Space of Herglotz densities

To shorten notations we denote the parametric domain as the cylinder

𝑌 := [0, 2𝜋)× R. (38)

We introduce a weighted 𝐿2 space defined on 𝑌 . The weight function is (the square of)

𝑤𝑧(y) = 𝑤𝑧(𝜁) := 𝑒−𝜅 sinh |𝜁|+𝑧|𝜁|, ∀y = (𝜙, 𝜁) ∈ 𝑌, (39)

for some 𝑧 ∈ R. In this section, the parameter 𝑧 is temporarily not specified, although the following analysis
shows that it cannot be chosen freely and should take the specific value 𝑧 = 1/4, see (50). We stress that 𝑤𝑧

does not depend on the angle 𝜙. The weighted scalar product and associated norm are then defined by:

(𝑢, 𝑣)𝒜 :=
∫︁

𝑌

𝑢(y)𝑣(y) 𝑤2
𝑧(y)dy, ‖𝑢‖2𝒜 := (𝑢, 𝑢)𝒜 . (40)

We now introduce a subspace of 𝐿2(𝑌 ; 𝑤2
𝑧) which we call space of Herglotz densities for reasons that will be

clear in the following.

Definition 6.1 (Herglotz density). We define, for any 𝑝 ∈ Z,{︃
�̃�𝑝(y) := 𝑒𝑝𝜁𝑒𝚤𝑝𝜙, ∀y = (𝜙, 𝜁) ∈ 𝑌,

𝑎𝑝 := 𝛼𝑝�̃�𝑝, where 𝛼𝑝 := ‖�̃�𝑝‖−1
𝒜 ,

and 𝒜 := span {𝑎𝑝}𝑝∈Z
‖·‖𝒜 ( 𝐿2(𝑌 ; 𝑤2

𝑧). (41)
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Figure 4. Representation of 𝜁 ↦→ |𝑤1/4(𝜁)𝑎𝑝(𝜁, ·)|, which is independent of the second argument
of the function 𝑎𝑝, for mode number 𝑝 ∈ {0, 𝜅/2, 𝜅, 2𝜅, 4𝜅} and wavenumber 𝜅 = 16.

The wavenumber 𝜅 appears explicitly in the weight function 𝑤𝑧. Therefore, each 𝑎𝑝 for 𝑝 ∈ Z has an implicit
dependence in the wavenumber 𝜅 through the normalization factor 𝛼𝑝. Some functions 𝑎𝑝, weighted by 𝑤1/4

(see (50)), are represented in Figure 4.
For any 𝑝 ∈ Z, the complex-valued function (𝜁 + 𝚤𝜙) ↦→ 𝑎𝑝(𝜙, 𝜁) is a holomorphic function of the complex

variable 𝜁 + 𝚤𝜙 ∈ C for any (𝜙, 𝜁) ∈ 𝑌 . It follows that its real and imaginary parts are harmonic functions on
the cylinder 𝑌 .

Lemma 6.2. The space (𝒜, ‖ · ‖𝒜) is a Hilbert space and the family {𝑎𝑝}𝑝∈Z is a Hilbert basis:

(𝑎𝑝, 𝑎𝑞)𝒜 = 𝛿𝑝𝑞, ∀𝑝, 𝑞 ∈ Z, and 𝑣 =
∑︁
𝑝∈Z

(𝑣, 𝑎𝑝)𝒜 𝑎𝑝, ∀𝑣 ∈ 𝒜. (42)

The coefficients 𝛼𝑝 defined in (41) decay super-exponentially with |𝑝| after a pre-asymptotic regime up to |𝑝| ≈ 𝜅.
The precise asymptotic behavior is given by the following lemma.

Lemma 6.3. For a constant 𝑐(𝜅) only depending on 𝜅, we have

𝛼𝑝 ∼ 𝑐(𝜅)
(︁𝑒𝜅

2

)︁|𝑝|
|𝑝|1/4−𝑧−|𝑝| as |𝑝| → +∞. (43)

Proof. It is clear that 𝛼−𝑝 = 𝛼𝑝 for all 𝑝 ∈ Z. Let 𝑝 ∈ N, we have

2𝜋

∫︁ +∞

−∞
𝑒2𝑝𝜁+2𝑧|𝜁|𝑒−2𝜅 sinh|𝜁| d𝜁 = ‖�̃�𝑝‖2𝒜 ≤ 2𝜋

∫︁ +∞

−∞
𝑒2𝑝|𝜁|+2𝑧|𝜁|𝑒−2𝜅 sinh|𝜁| d𝜁,

2𝜋

∫︁ +∞

0

𝑒2(𝑝+𝑧)𝜁𝑒−2𝜅 sinh 𝜁 d𝜁 ≤ ‖�̃�𝑝‖2𝒜 ≤ 4𝜋

∫︁ +∞

0

𝑒2(𝑝+𝑧)𝜁𝑒−2𝜅 sinh 𝜁 d𝜁,

2𝜋𝜅−𝑚

∫︁ +∞

𝜅

𝜂𝑚−1𝑒−𝜂+ 𝜅2
𝜂 d𝜂 ≤ ‖�̃�𝑝‖2𝒜 ≤ 4𝜋𝜅−𝑚

∫︁ +∞

𝜅

𝜂𝑚−1𝑒−𝜂+ 𝜅2
𝜂 d𝜂,

2𝜋𝜅−𝑚

∫︁ +∞

𝜅

𝜂𝑚−1𝑒−𝜂 d𝜂 ≤ ‖�̃�𝑝‖2𝒜 ≤ 4𝜋𝑒𝜅𝜅−𝑚

∫︁ +∞

𝜅

𝜂𝑚−1𝑒−𝜂 d𝜂,

2𝜋𝜅−𝑚Γ(𝑚, 𝜅) ≤ ‖�̃�𝑝‖2𝒜 ≤ 4𝜋𝑒𝜅𝜅−𝑚Γ(𝑚, 𝜅),

(44)

where we used the change of variable 𝜂 = 𝜅𝑒𝜁 , introduced 𝑚 = 2(𝑝 + 𝑧) and used the upper incomplete Gamma
function defined in equation (8.2.2) of [31]. The Gamma function Γ(𝑚) and the upper incomplete counterpart
Γ(𝑚, 𝜅) have the same asymptotic behavior for a fixed 𝜅 when 𝑚 goes to infinity, see equation (8.11.5) of [31]
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Figure 5. Left: dependence of |𝜏𝑝| defined in (47) on the mode number 𝑝 for various wavenum-
ber 𝜅 and 𝑧 = 1/4. Right: dependence of 𝜏± defined in (49) on the wavenumber 𝜅.

which gives the asymptotic behavior of 1 − Γ(𝑚, 𝜅)/Γ(𝑚). Using equation (5.11.3) of [31] we get Γ(𝑚, 𝜅) ∼
Γ(𝑚) ∼

√
2𝜋𝑒−𝑚𝑚𝑚−1/2, as 𝑚→∞. We obtain

𝜅−2(𝑝+𝑧)Γ
(︀
2(𝑝 + 𝑧), 𝜅

)︀
∼
√

𝜋

(︂
2
𝑒𝜅

)︂2(𝑝+𝑧)

𝑝2(𝑝+𝑧)−1/2

(︂
1 +

𝑧

𝑝

)︂2(𝑝+𝑧)−1/2

as 𝑝→ +∞, (45)

and the last term is in fact equivalent to 𝑒2𝑧 at infinity; the claimed result follows. �

Using our definitions, the Jacobi–Anger expansion (37) takes the simple form

EWy(x) =
∑︁
𝑝∈Z

𝚤𝑝 �̃�𝑝(y) �̃�𝑝(x) =
∑︁
𝑝∈Z

𝜏𝑝 𝑎𝑝(y) 𝑏𝑝(x), ∀(x, y) ∈ 𝐵1 × 𝑌, (46)

where we introduced
𝜏𝑝 := 𝚤𝑝 (𝛼𝑝𝛽𝑝)−1

, ∀𝑝 ∈ Z. (47)

Formula (46) relates the basis {𝑎𝑝}𝑝∈Z of the space 𝒜 to EPWs EWy and circular waves 𝑏𝑝 on 𝐵1 and is the key
reason for introducing the space 𝒜. The behavior of |𝜏𝑝| is of crucial importance in the following analysis and
is given in Figure 5 for various wavenumber 𝜅. From the asymptotics given in Lemmas 2.4 and 6.3 we deduce
the following result.

Lemma 6.4. We have
|𝜏𝑝| ∼ 𝑐(𝜅) |𝑝|𝑧−1/4 as |𝑝| → +∞, (48)

where the constant 𝑐(𝜅) only depends on 𝜅. Hence, choosing 𝑧 = 1/4, we get

𝜏− := inf
𝑝∈Z
|𝜏𝑝| > 0, and 𝜏+ := sup

𝑝∈Z
|𝜏𝑝| <∞. (49)

It is clear that the uniform bounds for |𝜏𝑝| are possible only for a precise pair of norms for the space of
Helmholtz solutions and the space of Herglotz densities. The bounds 𝜏± depend implicitly on the wavenumber
𝜅, see Figure 5.

The uniform boundedness of 𝜏𝑝 is the key to the following analysis. In the remainder of the paper, we set
𝑧 = 1/4 in (39) and we let

𝑤 := 𝑤1/4. (50)

We conclude this subsection with a lemma that will be useful in the following.
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Lemma 6.5. For any x ∈ 𝐵1, y ↦→ EWy(x) ∈ 𝒜.

Proof. Let x ∈ 𝐵1 and define 𝑣x : y ↦→ EWy(x). The Jacobi–Anger identity (46) reads 𝑣x(y) =∑︀
𝑝∈Z 𝜏𝑝 𝑏𝑝(x) 𝑎𝑝(y) for all y ∈ 𝑌 . Since {𝑎𝑝}𝑝∈Z is a Hilbert basis for 𝒜, if we write x = (𝑟, 𝜃) ∈ [0, 1)× [0, 2𝜋),

we get
‖𝑣x‖2𝒜 =

∑︁
𝑝∈Z
|𝜏𝑝𝑏𝑝(x)|2 ≤ 𝜏2

+

∑︁
𝑝∈Z

𝛽2
𝑝 |𝐽𝑝(𝜅𝑟)|2. (51)

Using the estimates (5) and (A.10) from the proof of Lemma 2.4, we get

𝛽2
𝑝 |𝐽𝑝(𝜅𝑟)|2 ∼ 𝜅2

2𝜋

𝑟2|𝑝|

|𝑝|
, as |𝑝| → +∞, (52)

from which we conclude that ‖𝑣x‖𝒜 <∞. �

If x ∈ 𝜕𝐵1, so that 𝑟 = |x| = 1, then y ↦→ EWy(x) does not belong to 𝒜, as is readily seen from the proof of
Lemma 6.5.

6.2. Herglotz transform

We introduce an integral operator 𝑇 that allows to write every Helmholtz solution in ℬ as a continuous linear
combination of EPWs weighted by an element of 𝒜. We also describe its adjoint operator 𝑇 *, the corresponding
frame and Gram operators 𝑆 and 𝐺, and prove some of their properties. The terminology of this section is
borrowed from Frame Theory, see [12] for a reference on this field.

Synthesis operator. The first and most important definition concerns the transform that maps Herglotz
densities to Helmholtz solutions as we prove next.

Definition 6.6. Using the weight (50), we introduce the Herglotz transform 𝑇 : for any 𝑣 ∈ 𝒜,

(𝑇𝑣)(x) :=
∫︁

𝑌

𝑣(y)EWy(x) 𝑤2(y)dy, ∀x ∈ 𝐵1. (53)

This operator is well-defined on 𝒜 thanks to Lemma 6.5. In the setting of continuous-frame theory, see e.g.
equation (5.27) of [12], this operator is called synthesis operator.

The Herglotz transform 𝑇 is bounded and invertible between the space of Herglotz densities 𝒜 and the space
of Helmholtz solutions ℬ.

Theorem 6.7. The operator 𝑇 is bounded and invertible from 𝒜 to ℬ:

𝑇 : 𝒜 → ℬ, 𝑣 ↦→
∑︁
𝑝∈Z

𝜏𝑝 (𝑣, 𝑎𝑝)𝒜 𝑏𝑝, and 𝜏−‖𝑣‖𝒜 ≤ ‖𝑇𝑣‖ℬ ≤ 𝜏+‖𝑣‖𝒜 ∀𝑣 ∈ 𝒜. (54)

Moreover, 𝑇𝑎𝑝 = 𝜏𝑝𝑏𝑝 for all 𝑝 ∈ Z.

Proof. Using the Jacobi–Anger formula (46), for any 𝑣 ∈ 𝒜 and x ∈ 𝐵1 we get

(𝑇𝑣)(x) =
∫︁

𝑌

EWy(x)𝑣(y) 𝑤2(y)dy =
∫︁

𝑌

⎛⎝∑︁
𝑝∈Z

𝜏𝑝 𝑏𝑝(x)𝑎𝑝(y)

⎞⎠ 𝑣(y) 𝑤2(y)dy

=
∑︁
𝑝∈Z

𝜏𝑝

∫︁
𝑌

𝑎𝑝(y) 𝑣(y) 𝑤2(y)dy 𝑏𝑝(x) =
∑︁
𝑝∈Z

𝜏𝑝 (𝑣, 𝑎𝑝)𝒜 𝑏𝑝(x).

(55)
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Hence, from Lemma 2.2, ‖𝑇𝑣‖2ℬ =
∑︀

𝑝∈Z |𝜏𝑝|2| (𝑣, 𝑎𝑝)𝒜 |
2, and the result (54) follows from Lemmas 6.2 and 6.4.

It is readily checked that the inverse is given, for any 𝑢 ∈ ℬ, by

𝑇−1𝑢 =
∑︁
𝑝∈Z

𝜏−1
𝑝 (𝑢, 𝑏𝑝)ℬ 𝑎𝑝. (56)

�

From (56), the inverse operator 𝑇−1 can also be written as an integral operator: for 𝑢 ∈ ℬ,

(𝑇−1𝑢)(y) =
∫︁

𝐵1

𝑢(x)Ψ(x,y) dx + 𝜅−2

∫︁
𝐵1

∇𝑢(x) · ∇Ψ(x,y) dx, ∀y ∈ 𝑌,

where Ψ(x,y) :=
∑︁
𝑝∈Z

𝜏−1
𝑝 𝑎𝑝(y)𝑏𝑝(x) ∀x ∈ 𝐵1, y ∈ 𝑌.

The integral representation 𝑇𝑣 in (53) is similar to the Herglotz representation (25). This is the reason why we
refer to elements of 𝒜 as Herglotz densities. For any 𝑝 ∈ Z, the Herglotz densities 𝜏−1

𝑝 𝑎𝑝 of the circular waves 𝑏𝑝

are bounded in the 𝒜-norm by 𝜏−1
− , hence uniformly with respect to the index 𝑝. This should be contrasted with

the standard Herglotz representation (29) using only PPWs, where the associated Herglotz densities cannot be
bounded uniformly with respect to the index 𝑝 in 𝐿2([0, 2𝜋]). As we explained in Section 4.2, not all Helmholtz
solutions admit a bounded Herglotz representation that uses only PPWs (25) (with density 𝑣 ∈ 𝐿2([0, 2𝜋])).
In contrast, using EPWs the generalized Herglotz representation (53) can represent any Helmholtz solution.
Indeed, since 𝑇 is an isomorphism between 𝒜 and ℬ, for any 𝑢 ∈ ℬ, there exists a unique 𝑣 ∈ 𝒜 such that
𝑢 = 𝑇𝑣. The price to pay for this result is the need for a two-dimensional parameter domain, the cylinder
𝑌 , in place of a one-dimensional one, the interval [0, 2𝜋), and thus of a double integral; the added dimension
corresponds to the evanescence parameter 𝜁.

Theorem 6.7 is a stability result stated at the continuous level. Next, we aim to obtain a discrete version of
this integral representation.

Analysis operator. In the continuous-frame setting, see equation (5.28) of [12], the adjoint operator 𝑇 * of
𝑇 is called analysis operator.

Lemma 6.8. The adjoint 𝑇 * of 𝑇 is given for any 𝑢 ∈ ℬ by (𝑇 *𝑢)(y) := (𝑢, EWy)ℬ, ∀y ∈ 𝑌 . The operator
𝑇 * is bounded and invertible on ℬ:

𝑇 * : ℬ → 𝒜, 𝑢 ↦→
∑︁
𝑝∈Z

𝜏𝑝 (𝑢, 𝑏𝑝)ℬ 𝑎𝑝, and 𝜏−‖𝑢‖ℬ ≤ ‖𝑇 *𝑢‖𝒜 ≤ 𝜏+‖𝑢‖ℬ, ∀𝑢 ∈ ℬ. (57)

Proof. We have, for any 𝑣 ∈ 𝒜 and 𝑢 ∈ ℬ

(𝑇𝑣, 𝑢)ℬ =
(︂∫︁

𝑌

EWy𝑣(y) 𝑤2(y)dy, 𝑢

)︂
ℬ

=
∫︁

𝑌

𝑣(y) (EWy, 𝑢)ℬ 𝑤2(y)dy

=
(︁
𝑣, (EWy, 𝑢)ℬ

)︁
𝒜

=
(︀
𝑣, (𝑢, EWy)ℬ

)︀
𝒜 .

(58)

In addition, using the Jacobi–Anger formula (46), for any 𝑢 ∈ ℬ and y ∈ 𝑌

(𝑇 *𝑢)(y) = (𝑢, EWy)ℬ =
(︂

𝑢,
∑︁
𝑝∈Z

𝜏𝑝 𝑎𝑝(y)𝑏𝑝

)︂
ℬ

=
∑︁
𝑝∈Z

𝜏𝑝 (𝑢, 𝑏𝑝)ℬ 𝑎𝑝(y). (59)

From Lemma 2.2, ‖𝑇 *𝑢‖2𝒜 =
∑︀

𝑝∈Z |𝜏𝑝|2| (𝑢, 𝑏𝑝)ℬ |
2, and the result follows from Lemma 6.4. �

Frame and Gram operators. We introduce two other important operators in Frame Theory.
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Corollary 6.9. The frame operator 𝑆 := 𝑇𝑇 * and the Gram operator 𝐺 := 𝑇 *𝑇 are bounded, invertible,
self-adjoint and positive operators:

𝑆 := 𝑇𝑇 * : ℬ → ℬ, 𝑢 ↦→
∑︁
𝑝∈Z
|𝜏𝑝|2 (𝑢, 𝑏𝑝)ℬ 𝑏𝑝, and 𝜏2

−‖𝑢‖ℬ ≤ ‖𝑆𝑢‖ℬ ≤ 𝜏2
+‖𝑢‖ℬ, ∀𝑢 ∈ ℬ,

𝐺 := 𝑇 *𝑇 : 𝒜 → 𝒜, 𝑣 ↦→
∑︁
𝑝∈Z
|𝜏𝑝|2 (𝑣, 𝑎𝑝)𝒜 𝑎𝑝, and 𝜏2

−‖𝑣‖𝒜 ≤ ‖𝐺𝑣‖𝒜 ≤ 𝜏2
+‖𝑣‖𝒜, ∀𝑣 ∈ 𝒜.

(60)

Proof. This result stems directly from Theorem 6.7 and Lemma 6.8. �

The frame operator admits the more explicit formula: for any 𝑢 ∈ ℬ,

𝑆𝑢(x) =
∫︁

𝑌

(𝑢, EWy)ℬ EWy(x) 𝑤2(y)dy, ∀x ∈ 𝐵1. (61)

A continuous frame result. We are now ready to prove that EPWs form a continuous frame for the space
of Helmholtz solutions in the unit disk. We recall Definition 5.6.1 of [12]: given a complex Hilbert space ℋ and
a measure space 𝑀 with positive measure 𝜇, a family {𝑓𝑘}𝑘∈𝑀 ⊂ ℋ is called “continuous frame” if, ∀𝑓 ∈ ℋ,
𝑘 ↦→ ⟨𝑓, 𝑓𝑘⟩ is measurable in 𝑀 , and ∃𝐴, 𝐵 > 0 such that 𝐴‖𝑓‖2 ≤

∫︀
𝑀
|⟨𝑓, 𝑓𝑘⟩|2d𝜇(𝑘) ≤ 𝐵‖𝑓‖2.

Theorem 6.10. The family {EWy}y∈𝑌 is a continuous frame for ℬ. Besides, the optimal frame bounds are
𝐴 = 𝜏2

− and 𝐵 = 𝜏2
+.

Proof. We need to verify the definition of a continuous frame, see Definition 5.6.1 of [12]. For any 𝑢 ∈ ℬ, the
measurability of y ↦→ (𝑢, EWy)ℬ = (𝑇 *𝑢)(y), stems from 𝑇 *𝑢 ∈ 𝒜 according to Lemma 6.8 and 𝒜 ⊂ 𝐿2(𝑌 ; 𝑤2).
The frame condition, namely

𝐴‖𝑢‖2ℬ ≤
∫︁

𝑌

| (𝑢, EWy)ℬ |
2 𝑤2(y)dy ≤ 𝐵‖𝑢‖2ℬ, ∀𝑢 ∈ ℬ, (62)

for some constants 𝐴 and 𝐵 is a consequence of the boundedness and positivity of the frame operator 𝑆 which
was established in Corollary 6.9. Indeed, for any 𝑢 ∈ ℬ, we have∫︁

𝑌

| (𝑢, EWy)ℬ |
2 𝑤2(y)dy = (𝑆𝑢, 𝑢)ℬ =

∑︁
𝑝∈Z
|𝜏𝑝|2| (𝑢, 𝑏𝑝)ℬ |

2, (63)

which also establishes the optimality of the claimed frame bounds. �

6.3. The reproducing kernel property

The continuous frame result implies additional structure on the Herglotz density space𝒜, which then allows to
characterize the preimages of the EPWs under the integral transform 𝑇 . For a general reference on Reproducing
Kernel Hilbert Spaces (RKHS), we refer to [32].

Lemma 6.11. The range of the analysis operator 𝑇 *, i.e. the space 𝒜 defined in (41), has the reproducing
kernel property. The reproducing kernel is given by

𝐾(z,y) = 𝐾y(z) = (𝐾y, 𝐾z)𝒜 =
∑︁
𝑝∈Z

𝑎𝑝(y)𝑎𝑝(z), ∀y, z ∈ 𝑌, (64)

with pointwise convergence of the series and where 𝐾y ∈ 𝒜 is the (unique) Riesz representation of the evaluation
functional at y ∈ 𝑌 , namely

𝑣(y) = (𝑣, 𝐾y)𝒜 , ∀𝑣 ∈ 𝒜. (65)
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Figure 6. Representation of normalized evaluation functionals |𝑤𝐾y|/‖𝐾y‖𝒜 in the cylinder
𝑌 for wavenumber 𝜅 = 16.

Proof. Take any 𝑣 ∈ 𝒜 and let 𝑢 ∈ ℬ such that 𝑣 = 𝑇 *𝑢, which exists thanks to Lemma 6.8. From Corollary 6.9,
we have

𝑢 = 𝑆−1𝑆𝑢 =
∫︁

𝑌

(𝑢, EWz)ℬ 𝑆−1EWz 𝑤2(z)dz. (66)

Then we obtain the reproducing identity, for any y ∈ 𝑌

𝑣(y) = (𝑇 *𝑢)(y) = (𝑢, EWy)ℬ =
∫︁

𝑌

(𝑢, EWz)ℬ
(︀
𝑆−1EWz, EWy

)︀
ℬ 𝑤2(z)dz

=
∫︁

𝑌

𝑣(z)
(︀
𝑆−1EWz, EWy

)︀
ℬ 𝑤2(z)dz = (𝑣, 𝐾y)𝒜 ,

(67)

where we introduced (the Riesz representation of) the evaluation functional at the point y defined as
𝐾y(z) :=

(︀
EWy, 𝑆−1EWz

)︀
ℬ, ∀z ∈ 𝑌. It is a direct consequence of Corollary 6.9 that the kernel admits the

series representation (64). Alternatively, we refer to Theorem 2.4 of [32] for a direct proof of this result (valid
in the general setting), since {𝑎𝑝}𝑝∈Z is an orthonormal basis for 𝒜. �

Lemma 6.11 does not stem from any specific property of 𝒜 or the EPWs, it follows only from the continuous
frame result. The reproducing kernel property implies that pointwise evaluation of elements of 𝒜 in the cylinder
𝑌 is a continuous operation Definition 1.2 of [32]: for all y ∈ 𝑌 there is 𝑐 > 0 such that

|𝑣(y)| = | (𝑣, 𝐾y)𝒜 | ≤ 𝑐‖𝑣‖𝒜, ∀𝑣 ∈ 𝒜. (68)

Examples of (normalized) evaluation functionals are given in Figure 6.
The interest in introducing the reproducing kernel property stems from the following result, which is a direct

consequence of Lemma 6.11, Theorem 6.7, and the Jacobi–Anger identity (46).

Corollary 6.12. The EPWs are the images under 𝑇 of the Riesz representation of the evaluation functionals,
namely

EWy = 𝑇𝐾y, ∀y ∈ 𝑌. (69)

As a consequence, the construction of an approximation of a Helmholtz solution 𝑢 ∈ ℬ as an expansion of
EPWs is, up to the isomorphism 𝑇 , equivalent to the approximation of its Herglotz density 𝑣 := 𝑇−1𝑢 ∈ 𝒜 as
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an expansion of evaluation functionals, i.e.

𝑣 ≈
𝑀∑︁

𝑚=1

𝜇𝑚𝐾y𝑚

𝑇−→←−
𝑇−1

𝑢 ≈
𝑀∑︁

𝑚=1

𝜇𝑚EWy𝑚
, (70)

for some set of coefficients 𝜇 = {𝜇𝑚}𝑀𝑚=1. This remark justifies the use of the sampling techniques described
in the next section to discretize the integral representation in (53). Section 8 provides numerical evidence that
such approximations can be built, for a suitable normalization of the sets {𝐾y𝑚

}𝑚 and {EWy𝑚
}𝑚.

7. A concrete evanescent plane wave approximation set

We describe a method for the numerical approximation of a general Helmholtz solution in the unit disk
by EPWs. We exploit the equivalence of this approximation problem with the approximation problem of the
corresponding Herglotz density, see (70). The main idea is to adapt the sampling procedure of [13, 21, 29]
(sometimes called coherence-optimal sampling) to our case, in order to generate a distribution of sampling
nodes in the cylinder 𝑌 that will be used to reconstruct the Herglotz density. While the numerical recipe that
we describe below is found to be numerically very effective, see Section 8, our theoretical analysis still lacks a
formal proof of the accuracy and stability of the approximation of Helmholtz solutions using EPWs.

Let 𝑢 ∈ ℬ be the Helmholtz solution, target of the approximation problem, and let 𝑣 := 𝑇−1𝑢 ∈ 𝒜 be its
associated Herglotz density. Let also some tolerance 𝜂 > 0 be given.

7.1. Truncation of the modal expansion

Since 𝑢 (resp. 𝑣) a priori lives in an infinite dimensional space ℬ (resp. 𝒜), the idea behind the construction
of finite dimensional approximation sets is to exploit the natural hierarchy of finite dimensional subspaces
constructed by truncation of the Hilbert basis {𝑏𝑝}𝑝∈Z.

Truncation in the Helmholtz solution space. For any 𝑃 ∈ N, we define

ℬ𝑃 := span {𝑏𝑝}|𝑝|≤𝑃 ⊂ ℬ, and Π𝑃 : ℬ → ℬ, 𝑢 ↦→
∑︁
|𝑝|≤𝑃

(𝑢, 𝑏𝑝)ℬ 𝑏𝑝. (71)

Here Π𝑃 is the orthogonal projection from ℬ onto the finite dimensional subspace ℬ𝑃 . A natural approach to
compute an approximation of 𝑢 ∈ ℬ is to approximate its projection onto ℬ𝑃 , namely

𝑢𝑃 := Π𝑃 𝑢 ∈ ℬ𝑃 , ∀𝑃 ∈ N, (72)

for some 𝑃 large enough. It is immediate that the sequence of projections {𝑢𝑃 }𝑃∈N converges to 𝑢 in ℬ. In
particular, we can define for any 𝜂 > 0

𝑃 * = 𝑃 *(𝑢, 𝜂) := min
{︀
𝑃 ∈ N | ‖𝑢− 𝑢𝑃 ‖ℬ < 𝜂‖𝑢‖ℬ

}︀
. (73)

Unfortunately, it is not possible to compute such a 𝑃 * in most practical configurations. It may be possible
though to give estimates on 𝑃 *, based on some regularity assumption on 𝑢 and the decay of its coefficients in its
modal expansion. For instance, it might be physically realistic to assume that all coefficients of the propagative
modes |𝑝| ≤ 𝜅 are 𝒪(1) and the coefficients associated to the subsequent evanescent modes |𝑝| ≥ 𝜅 decay in
modulus with a given algebraic or exponential rate.

Truncation in the Herglotz density space. Similarly, for any 𝑃 ∈ N, we define

𝒜𝑃 := span {𝑎𝑝}|𝑝|≤𝑃 = 𝑇−1ℬ𝑃 ⊂ 𝒜, and 𝑣𝑃 := 𝑇−1𝑢𝑃 ∈ 𝒜𝑃 , ∀𝑃 ∈ N. (74)

Theorem 6.7 implies that the sequence {𝑣𝑃 }𝑃∈N converges to 𝑣 in 𝒜. In particular, for any 𝑃 ≥ 𝑃 *, where 𝑃 *

was defined in (73), we have
‖𝑣 − 𝑣𝑃 ‖𝒜 ≤ 𝜏−1

− ‖𝑢− 𝑢𝑃 ‖ℬ < 𝜏−1
− 𝜂‖𝑢‖ℬ. (75)
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7.2. Parameter sampling in the cylinder 𝑌

Our objective is to approximate the truncated Fourier series 𝑢𝑃 = Π𝑃 𝑢 ∈ ℬ𝑃 for some 𝑃 ∈ N, instead
of 𝑢. Up to the Herglotz transform, this problem is equivalent to the approximation of 𝑣𝑃 = 𝑇−1𝑢𝑃 ∈ 𝒜𝑃 .
In this subsection let us fix a 𝑃 ∈ N, not necessarily equal to 𝑃 *. We propose to build approximations of
elements of 𝒜𝑃 (resp. ℬ𝑃 ) by constructing a finite set of sampling nodes {y𝑚}𝑚 in the cylinder 𝑌 according
to the distribution advocated in Section 2.1 of [21], Section 2.2 of [13] and Section 2 of [29]. Despite having an
unbounded parametric domain 𝑌 , the finite integrability of the weight function 𝑤2 allows to sample 𝑌 on a
bounded region only. The associated set of sampling functionals {𝐾y𝑚

}𝑚 (up to some normalization factor) is
expected to provide a good approximation of 𝑣𝑃 . The approximation set for 𝑢𝑃 will then be given by the EPWs
{EWy𝑚

}𝑚 (up to some normalization factor).
We denote the dimension of both spaces 𝒜𝑃 and ℬ𝑃 by

𝑁𝑃 := dimℬ𝑃 = dim𝒜𝑃 = 2𝑃 + 1. (76)

The probability density function 𝜌𝑃 is defined (up to normalization) as the reciprocal of the 𝑁𝑃 -term Christoffel
function 𝜇𝑃 in the spirit of equation (2.6) of [13]:

𝜌𝑃 :=
𝑤2

𝑁𝑃 𝜇𝑃
, where 𝜇𝑃 (y) :=

(︁ ∑︁
|𝑝|≤𝑃

|𝑎𝑝(y)|2
)︁−1

, ∀y = (𝜁, 𝜙) ∈ 𝑌. (77)

Observe that 𝜌𝑃 and 𝜇𝑃 are well-defined since 0 < 𝜇𝑃 ≤ 𝜇0 <∞ from the fact that 𝑎0 is just a non-vanishing
constant. The density function 𝜌𝑃 is a univariate function on 𝑌 since it is independent of the angle 𝜙. We point
out that 1/𝜇𝑃 corresponds to the truncated series expansion of the diagonal of the reproducing kernel 𝐾, which
amounts to taking z = y and truncating at 𝑃 the series in (64).

The numerical recipe consists, for each 𝑃 ∈ N, in generating a sequence of sampling node sets in the parametric
domain 𝑌

Y𝑃 := {Y𝑃,𝑀}𝑀∈N, where Y𝑃,𝑀 := {y𝑚}𝑀𝑚=1, ∀𝑀 ∈ N, (78)

using one’s preferred sampling strategy such that |Y𝑃,𝑀 | = 𝑀 for all 𝑀 ∈ N and the sequence Y𝑃 converges
(in a suitable sense) to the density 𝜌𝑃 defined in (77) as 𝑀 tends to infinity. The sampling method could be a
deterministic, a random or even a quasi-random strategy, see Section 8. The sets are not assumed to be nested.

This choice of EPW parameters is a major difference from the heuristic choice described in equation (5) of
[24] where the parameters are chosen in order to approximate solutions defined in a rectangle containing the
physical domain of interest (𝐵1 in our case).

7.3. Evanescent plane wave approximation sets

From the sampling node sets (78) we can construct two approximations sets: one set of sampling functionals
in 𝒜 and one set of EPWs in ℬ.

Approximation sets in the Herglotz density space. Associated to the sampling node sets (78), we
introduce a sequence of finite sets in 𝒜

Ψ𝑃 := {Ψ𝑃,𝑀}𝑀∈N where Ψ𝑃,𝑀 :=

{︃√︂
𝜇𝑃 (y𝑚)

𝑀
𝐾y𝑚

}︃
y𝑚∈Y𝑃,𝑀

∀𝑀 ∈ N. (79)

The normalization of 𝐾y𝑚
in (79) is crucial for the stable approximation property (8). In the approximation sets,

each sampling functional 𝐾y𝑚 has been normalized by the real constant
√︀

𝜇𝑃 (y𝑚)/𝑀 which is (numerically)
close to ‖𝐾y𝑚‖−1

𝒜 /
√

𝑀 . More precisely, we have√︀
𝜇𝑃 (y) ‖𝐾y‖𝒜 =

(︁ ∑︁
|𝑝|≤𝑃

|𝑎𝑝(y)|2
)︁−1/2(︁ ∑︁

𝑝∈Z
|𝑎𝑝(y)|2

)︁1/2

≥ 1 ∀y ∈ 𝑌. (80)
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Approximation sets in the Helmholtz solution space. Associated to the sampling set sequences (78)
and approximation set sequences (79) in 𝒜, we define the sequence of approximation sets of (normalized) EPWs
in ℬ as follows

Φ := {Φ𝑃,𝑀}𝑃∈N,𝑀∈N, Φ𝑃,𝑀 :=

{︃√︂
𝜇𝑃 (y𝑚)

𝑀
EWy𝑚

}︃
y𝑚∈Y𝑃,𝑀

∀𝑃 ∈ N, 𝑀 ∈ N. (81)

Following Corollary 6.12, the sequence of sets (81) is the image of the sequence of sets (79) by the Herglotz
transform operator 𝑇 .

Discussion on the parameters. Our numerical recipe for building the approximation sets Φ𝑃,𝑀 is based
on only two parameters, 𝑃 and 𝑀 , whose tuning is intuitive:

(1) The first one is the Fourier truncation parameter 𝑃 . Increasing 𝑃 will improve the accuracy of the approx-
imation of 𝑢 (resp. 𝑣 = 𝑇−1𝑢) by 𝑢𝑃 = Π𝑃 𝑢 (resp. 𝑣𝑃 = 𝑇−1𝑢𝑃 ). The appropriate value for 𝑃 ≥ 𝑃 * will
solely depend on the decay of the coefficients in the modal expansion, which is intimately linked to the
regularity of the Helmholtz solution.

(2) The second one is the dimension 𝑀 of the EPW approximation space, which is also the number of sampling
points in the parameter cylinder 𝑌 . For a fixed 𝑃 , increasing 𝑀 should allow to control the accuracy of the
approximation of 𝑢𝑃 (resp. 𝑣𝑃 = 𝑇−1𝑢𝑃 ) by 𝒯Φ𝑃,𝑀

𝜉 (resp. 𝒯Ψ𝑃,𝑀
𝜉) for some bounded coefficients 𝜉 ∈ C𝑀 .

The numerical results presented below corroborate this conjecture and show experimentally that 𝑀 should
scale linearly with 𝑃 , with a moderate proportionality constant (see Sect. 8.5).

For a fixed DOF budget 𝑀 , the numerical experiments in Section 8.5 suggests that using a Fourier truncation
parameter 𝑃 = max (⌈𝜅⌉, ⌊𝑀/4⌋) gives accurate and reliable approximations.

Once the approximation sets Φ𝑃,𝑀 are chosen, our concrete implementation (see Sect. 3.3) to compute a
particular set of coefficients 𝜉𝑆,𝜖 includes two additional parameters, 𝑆 and 𝜖:

(1) The first parameter 𝑆 is the number of sampling points on the boundary of the physical domain 𝐵1.
According to (B.14) and following [1, 2], sufficient oversampling should be used. In practice, we chose for
simplicity an oversampling ratio of 2, namely 𝑆 = 2𝑀 . This amount of oversampling may not be necessary
and further numerical experiments could investigate a reduction of the oversampling ratio 𝑆/𝑀 to reduce
the computational cost.

(2) The second parameter 𝜖 is the regularization parameter, i.e. the truncation threshold of the singular values.
We set this parameter to 𝜖 = 10−14 in the numerical experiments presented below. If one is interested in
less accurate approximations than ours, this parameter could be set to larger values.

We stress that the construction of the approximation sets Φ𝑃,𝑀 , together with their accuracy and stability,
are not influenced by the choice of the reconstruction strategy made in Section 3.2. Although we focus on the
simple method of boundary sampling together with regularized SVD, alternative reconstruction strategies (such
as sampling in the bulk of the domain or taking inner product with elements of other types of test spaces, for
instance) and other regularization techniques (such as Tikhonov regularization) can also be successfully used in
practice. Irrespective of the strategy, sufficient oversampling and regularization need to be used.

Relation with the literature. As we have already alluded to, our construction is based on similar ideas
that pre-exist in the literature but in a different context. Indeed, sampling node sets similar to the ones we
propose here can be found in [13,21,29]. The context of these works is the reconstruction of elements of finite-
dimensional subspaces (with explicit orthonormal basis) in weighted 𝐿2 spaces from sampling [13] and it was
subsequently used to construct random cubature rules [29]. The underlying idea is that the information gathered
from sampling at these nodes is enough to allow accurate reconstruction as an expansion in the (truncated)
orthonormal basis.

Translated into our setting, the results available in the literature say that to reconstruct an element 𝑣𝑃 = Π𝑃 𝑣
of the finite dimensional subspace 𝒜𝑃 , it is enough to sample at the nodes Ψ𝑃,𝑀 for some sufficiently large 𝑀 . In
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contrast, the numerical recipe described above seeks to construct an approximation of the element 𝑣𝑃 = Π𝑃 𝑣 ∈
𝒜𝑃 as an expansion in the set of evaluation functionals Ψ𝑃,𝑀 for some sufficiently large 𝑀 . In other words, the
approximation we are looking for belongs to the span of the evaluation functionals, span Ψ𝑃,𝑀 , which has trivial
intersection with 𝒜𝑃 . By Corollary 6.12, applying the Herglotz transform 𝑇 to this approximation in span Ψ𝑃,𝑀

yields an element in span Φ𝑃,𝑀 (i.e. a finite superposition of EPWs) that approximates 𝑢𝑃 = 𝑇𝑣𝑃 ∈ ℬ𝑃 .
Unfortunately, besides the links with these works, we are not yet able to prove a rigorous theoretical analysis

to support our numerical recipe. Yet, extensive numerical experiments in Section 8 illustrate the excellent
approximation and stability properties of the sets Φ𝑃,𝑀 .

7.4. A conjectural stable approximation result

We formalize below our speculations, which are hinted by the numerical experiments given in the next section.
First, we state our main conjecture.

Conjecture 7.1. The sequence of approximation sets Ψ𝑃 defined in (79) is a stable approximation for 𝒜𝑃 , in
the following sense: there exist 𝑠 ≥ 0 and 𝐶 > 0 such that, for all 𝑃 ∈ N, there exists 𝑀* = 𝑀(𝑃, 𝜂) such that

∀𝑣𝑃 ∈ 𝒜𝑃 , ∃𝑀 ∈ N, 𝜇 ∈ C𝑀 , ‖𝑣𝑃 − 𝒯Ψ𝑃,𝑀
𝜇‖𝒜 ≤ 𝜂‖𝑣𝑃 ‖𝒜 and ‖𝜇‖ℓ2 ≤ 𝐶𝑀𝑠‖𝑣𝑃 ‖𝒜. (82)

In the following we assume for simplicity that all 𝑀 ≥ 𝑀* satisfy the two inequalities appearing in (82)
(otherwise the proofs can be easily adapted). This holds true if the sets are hierarchical, for instance, but this
is not necessary.

Provided the above conjecture holds, the stability of the approximation sets of EPWs constructed above
would follow as we prove next.

Proposition 7.2. Let 𝛿 > 0. If Conjecture 7.1 holds then the sequence of approximation sets (81) provides a
stable approximation for ℬ. In particular, if 𝜅2 is not a Dirichlet eigenvalue on 𝐵1,

∀𝑢 ∈ ℬ ∩ 𝐶0(𝐵1), ∃𝑃 ∈ N, 𝑀 ∈ N, 𝑆 ∈ N, 𝜖 ∈ (0, 1], ‖𝑢− 𝒯Φ𝑃,𝑀
𝜉𝑆,𝜖‖𝐿2(𝐵1) ≤ 𝛿‖𝑢‖ℬ, (83)

where 𝜉𝑆,𝜖 ∈ C|Φ𝑃,𝑀 | is computed with the regularization procedure in (15). The SVD regularization parameter
𝜖 can be chosen as (19).

Proof. We need to prove the stability of the sequence of approximation sets, namely that for any 𝜂 > 0, there
exists 𝑠 ≥ 0 and 𝐶 > 0 such that

∀𝑢 ∈ ℬ, ∃𝑃 ∈ N, 𝑀 ∈ N, 𝜇 ∈ C𝑀 , ‖𝑢− 𝒯Φ𝑃,𝑀
𝜇‖ℬ ≤ 𝜂‖𝑢‖ℬ and ‖𝜇‖ℓ2 ≤ 𝐶𝑀𝑠‖𝑢‖ℬ. (84)

Provided this holds, the claimed result is a direct application of Corollary 3.3.
Let 𝜂 > 0, 𝑢 ∈ ℬ and set 𝑣 := 𝑇−1𝑢 ∈ 𝒜. For any 𝑃 ≥ 𝑃 * = 𝑃 *(𝑢, 𝜂) with 𝑃 * defined in (73), if we let

𝑢𝑃 := Π𝑃 𝑢 and 𝑣𝑃 := 𝑇−1𝑢𝑃 we have (recall (75))

‖𝑢− 𝑢𝑃 ‖ℬ ≤ 𝜂‖𝑢‖ℬ, and ‖𝑣 − 𝑣𝑃 ‖𝒜 ≤ 𝜏−1
− 𝜂‖𝑢‖ℬ. (85)

Assuming that Conjecture 7.1 holds, there exist 𝑠 and 𝐶 (both independent of 𝑃 ) such that, for any 𝑀 ≥
𝑀*(𝑃 *, 𝜂), there exists a set of coefficients 𝜇 ∈ C𝑀 such that

‖𝑣𝑃 − 𝒯Ψ𝑃,𝑀
𝜇‖𝒜 ≤ 𝜂‖𝑣𝑃 ‖𝒜, and ‖𝜇‖ℓ2 ≤ 𝐶𝑀𝑠‖𝑣𝑃 ‖𝒜. (86)

The properties of the isomorphism 𝑇 given in Theorem 6.7 imply that

‖𝑢𝑃 − 𝒯Φ𝑃,𝑀
𝜇‖ℬ < 𝜏+𝜂‖𝑣𝑃 ‖𝒜 and ‖𝑣𝑃 ‖𝒜 ≤ 𝜏−1

− ‖𝑢𝑃 ‖ℬ ≤ 𝜏−1
− ‖𝑢‖ℬ. (87)
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Figure 7. Sampling density functions 𝜌𝑃 (left) and Υ𝑃 (right) with respect to the evanescence
parameter 𝜁 constructed for the subspace 𝒜𝑃 . Wavenumber 𝜅 = 16.

For any 𝑃 ≥ 𝑃 *(𝑢, 𝜂) and 𝑀 ≥ 𝑀*(𝑃 *, 𝜂), the total approximation error for the Herglotz density 𝑣 can be
estimated as

‖𝑣 − 𝒯Ψ𝑃,𝑀
𝜇‖𝒜 ≤ ‖𝑣 − 𝑣𝑃 ‖𝒜 + ‖𝑣𝑃 − 𝒯Ψ𝑃,𝑀

𝜇‖𝒜 ≤ 2𝜏−1
− 𝜂‖𝑢‖ℬ, (88)

and for the Helmholtz solution 𝑢 as

‖𝑢− 𝒯Φ𝑃,𝑀
𝜇‖ℬ ≤ ‖𝑢− 𝑢𝑃 ‖ℬ + ‖𝑢𝑃 − 𝒯Φ𝑃,𝑀

𝜇‖ℬ
≤

(︀
1 + 𝜏+𝜏−1

−
)︀
𝜂‖𝑢‖ℬ,

and ‖𝜇‖ℓ2 ≤ 𝐶𝑀𝑠𝜏−1
− ‖𝑢‖ℬ. (89)

Choosing 𝜂 = 𝜂/(1 + 𝜏+𝜏−1
− ), we can conclude since (89) is (84) with 𝑠 = 𝑠 and 𝐶 = 𝐶𝜏−1

− . �

8. Numerical results

We provide numerical evidence that the procedure described above allows to compute controllably accurate
approximations of Helmholtz solutions in the unit disk and in other domains1.

8.1. Probability densities and samples

Probability density and cumulative distributions functions. We represent the probability density
function 𝜌𝑃 (see (77)) as a function of the evanescence parameter 𝜁 on the left in Figure 7. Here 𝑃 denotes
the truncation parameter, meaning that the sampling is performed to approximate elements of 𝒜𝑃 , which has
dimension 𝑁𝑃 . The associated cumulative distribution function with respect to the evanescence parameter 𝜁 is
defined as

Υ𝑃 (𝜁) :=
∫︁ 𝜁

−∞
𝜌𝑃 (𝜁) d𝜁, ∀𝜁 ∈ R. (90)

It is represented in the right of Figure 7. Recall that while 𝜌𝑃 is a bi-variate function on the cylinder 𝑌 , it is
constant with respect to the angle 𝜙. As a result, the cumulative distribution with respect to this variable 𝜙 is
a linear function. This is why we represent these two functions 𝜌𝑃 and Υ𝑃 only with respect to the evanescence
parameter 𝜁.

We observe that the probability density 𝜌𝑃 is a symmetric even function and exhibits a main mode at
𝜁 = 0 which corresponds to purely PPWs. Moreover, the 𝜖-support of this density is rather tight and the

1The Julia code used to generate the numerical results of this paper is available at https://github.com/EmileParolin/
evanescent-plane-wave-approx

https://github.com/EmileParolin/evanescent-plane-wave-approx
https://github.com/EmileParolin/evanescent-plane-wave-approx
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probability eventually tends to zero exponentially as |𝜁| gets large enough. When 𝑃 ≤ 𝜅 the density is a
unimodal distribution whereas for 𝑃 ≫ 𝜅 (e.g. 𝑃 = 4𝜅) the density is a multimodal distribution. Indeed, in
the latter case, there are two symmetric modes for relatively large evanescence parameter, in addition to the
main mode at 𝜁 = 0. The cumulative distribution function Υ𝑃 is close to a step function in the case where
𝒜𝑃 contains only elements associated to the propagative regime 𝑃 ≤ 𝜅. In contrast, for 𝑃 > 𝜅 the distribution
is non-trivial for moderate values of the evanescence parameter 𝜁. This means that for 𝑃 ≤ 𝜅 one can safely
choose only PPWs, while for 𝑃 > 𝜅 EPWs are needed and their choice is non-trivial.

Parameter sampling. For any 𝑃 we generate 𝑀 = 𝜈𝑁𝑃 samples in the cylinder 𝑌 using the technique
called Inversion Transform Sampling (ITS) Section 5.2 of [13]. It consists in first generating sampling sets in
the unit square [0, 1]2 that converge (in a suitable sense) to the uniform distribution 𝒰[0,1]2 when 𝑀 →∞,

{z𝑚}𝑚, with z𝑚 = (𝑧𝑚,𝜙, 𝑧𝑚,𝜁) ∈ [0, 1]2, 𝑚 = 1, . . . ,𝑀, (91)

and then map back to the cylinder 𝑌 , to obtain sampling sets that converge to the probability density function
𝜌𝑃 when 𝑀 →∞, namely

{y𝑚}𝑚, with y𝑚 :=
(︀
2𝜋𝑧𝑚,𝜙, Υ−1

𝑃 (𝑧𝑚,𝜁)
)︀
∈ 𝑌, 𝑚 = 1, . . . ,𝑀. (92)

The fact that the density function is constant with respect to 𝜙 considerably simplifies the generation of the
samples. The inversion Υ−1

𝑃 can be performed using elementary root-finding techniques, our implementation
resorts to the bisection method.

In our numerical experiments we tested three types of sampling methods, which differ by how we generate
the first sampling distribution {z𝑚}𝑚 in the unit square:

(1) deterministic sampling: the initial samples in the unit square are a Cartesian product of two sets of equis-
paced points with the same number of points in both directions (all numerical results presented are obtained
by using as approximation set dimension the smallest square integer larger than or equal to 𝑀);

(2) Sobol sampling: the initial samples in the unit square corresponds to Sobol sequences which are quasi-random
low-discrepancy sequences2;

(3) random sampling: the initial samples in the unit square are drawn randomly according to the product of
two uniform distributions 𝒰[0,1].

Some examples of sampling sets corresponding to the probability density function 𝜌𝑃 for 𝜅 = 16 are reported
in Figure 8. For these examples the number of sampling nodes is set to 𝑀 = 𝜈𝑁𝑃 with 𝜈 = 4, for the three
types of sampling considered. As expected, the sampling points cluster near the line 𝜁 = 0 for smaller 𝑃 . This
is the (propagative) regime for which PPWs alone provide a good approximation. When 𝑃 > 𝜅 the evanescence
parameter 𝜁 spreads in a wider domain, with some clustering at the secondary modes of the distribution, in
agreement with Figure 7.

8.2. Propagative plane waves are unstable

Before presenting EPW approximations, we report some numerical experiments dedicated to verifying numer-
ically the instability result of Lemma 4.2 when using PPWs. These will also serve as a reference point to compare
with the results obtained using our EPW recipe.

Let us consider the approximation problem of Section 4.3, namely the approximation of the circular wave
𝑏𝑝 for some 𝑝 ∈ Z by an approximation set Φ𝑀 of 𝑀 ∈ N PPWs defined in (23). The sampling matrix 𝐴 was
defined in (11), using 𝑀 PPWs with equispaced angles and 𝑆 := max(2𝑀, 2|𝑝|) sampling points (we impose
𝑆 ≥ 2|𝑝| to avoid spurious results due to aliasing). The entries of the matrix 𝐴 are immediately computed as
𝐴𝑠,𝑚 = 𝑒𝚤𝜅 cos(2𝜋( 𝑠

𝑆−
𝑚
𝑀 )) for 𝑠 = 1, . . . , 𝑆, 𝑚 = 1, . . . 𝑀 . The right-hand side b is defined as in (11) for 𝑏𝑝 in

place of 𝑢; we recall that we use Dirichlet data in all our numerical experiments.

2We used the Julia packages Sobol.jl and QuasiMonteCarlo.jl, which are themselves based on [7, 26].
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Figure 8. 𝑀 = 4𝑁𝑃 samples in the cylinder 𝑌 for 𝑃 = 𝜅 (top) and 𝑃 = 4𝜅 (bottom) and
various types of sampling method (left to right). Wavenumber 𝜅 = 16. Large |𝜁| implies fast
EPW decay.

The matrix 𝐴 is notoriously ill-conditioned (see Fig. 9a): its condition number grows exponentially with
respect to the number of plane waves 𝑀 in the approximation set Φ𝑀 . This is well-known, see for instance
the numerical experiments in Section 2.3 of [33] for the circular geometry and 𝑆 = 𝑀 . This is not a feature of
the sampling method: we refer to similar experiments in Section 4.3 of [22] for the mass matrix of a Galerkin
formulation in a Cartesian geometry, again for 𝑆 = 𝑀 . The least-squares formulation suffers from an even
worse condition number: proportional to the square of the condition number of the sampling method, see e.g.
equation (30) of [33]. We apply the regularization procedure described in Section 3.3 with threshold parameter
𝜖 = 10−14.

The numerical results are reported in Figure 10a. On the left panel we report the relative residual ℰ defined
in (20) as a measure of the accuracy of the approximation. On the right panel we report the size of the coefficients
‖𝜉𝑆,𝜖‖ℓ2 as a measure of the stability of the approximation. Relative residuals and coefficient norms were already
used in [24] to assess the stability of the approximations.

We observe three regimes. First, for the propagative modes, i.e. the circular waves with mode number |𝑝| ≤ 𝜅,
the approximation is accurate (ℰ < 10−13) and the size of the coefficients is moderate (‖𝜉𝑆,𝜖‖ < 10). Second,
for mode numbers |𝑝| roughly larger than the wavenumber 𝜅, the norms of the coefficients of the computed
approximations blow up exponentially. The accuracy is spoiled proportionally. Third, for evanescent modes with
|𝑝| larger than about 2𝜅 or 3𝜅, the size of the coefficients completely destroys the stability of the approximation,
and we cannot approximate the target 𝑏𝑝 with any decent accuracy. Of course, for a relative error at 𝒪(1), the
coefficient norm reported is not meaningful, and taking 𝜉𝑆,𝜖 identically zero would provide a similar error.

Increasing the number of plane waves 𝑀 has no effect on the accuracy beyond a certain point. Indeed,
Figure 10a shows that the 𝜖-rank (i.e. the number of singular values larger than 𝜖) of the matrix 𝐴 does not
increase when 𝑀 is raised. Although increasing 𝑀 does not bring any higher accuracy, it does not increase any
further the numerical instability. For a fixed 𝑀 , the same matrix 𝐴 is used to approximate all the 𝑏𝑝’s for any
mode number 𝑝 (i.e. to compute all markers of the same color in Fig. 9a). Even when the matrix 𝐴 is extremely
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Figure 9. Accuracy ℰ , as defined in (20), (left) and stability ‖𝜉𝑆,𝜖‖ℓ2 (right) of the approx-
imation of circular waves 𝑏𝑝 by PPW (top row) and EPWs (three bottom rows). Truncation
at 𝑃 = 4𝜅 for EPWs, wavenumber 𝜅 = 16. With PPWs, the approximation accuracy does not
improve as 𝑀 increases beyond some value, because of exponentially large (with respect to 𝑝)
coefficients, as proved in Lemma 4.2. With EPWs, the approximation accuracy improves as 𝑀
increases, thanks to a decrease of the size of the coefficients. (A) PPW. (B) EPW: deterministic
sampling. (C) EPW: Sobol sampling. (D) EPW: random sampling.
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Figure 10. Singular values {𝜎𝑚}𝑀𝑚=1 of the matrix 𝐴 when using a set of 𝑀 plane waves.
Truncation at 𝑃 = 4𝜅 for EPWs, wavenumber 𝜅 = 16. The matrices associated to EPWs are
not better conditioned than the ones associated to PPWs, however the number of singular
values above the regularization threshold 𝜖 = 10−14 increases with 𝑀 and 𝑃 . (A) PPW. (B)
EPW: deterministic sampling. (C) EPW: Sobol sampling. (D) EPW: random sampling.

ill-conditioned (say 𝑀 = 32𝜅 in the numerical experiments presented here), we get at the same time almost
machine-precision accuracy for all propagative modes |𝑝| ≤ 𝜅 while having 𝒪(1) error for evanescent modes with
larger mode number |𝑝| ≥ 3𝜅. It is the simple regularization procedure described in Section 3.3 that allows us
to obtain such results. No other technique can overcome the inherent instability of PPWs. In particular, even
with regularization, accuracy in the approximation of the evanescent modes remains out of reach for a given
floating-point precision.

Analoguous numerical results are also observed in the context of the MFS, see Figure 3 of [5].

8.3. Evanescent plane waves are stable

We investigate, for the same test cases, whether the EPW sets proposed in Section 7.3 achieve better stability
properties while not compromising the accuracy of the approximation. The approximation sets Φ𝑃,𝑀 are defined
in (81) and the 𝑀 EPWs have parameters {y𝑚}𝑀𝑚=1 computed as in (92), i.e. distributed according to the
sampling distribution 𝜌𝑃 defined in (77). These EPWs are normalized as in (81). Here the parameter 𝑃 used to
generate the 𝑀 samples (which are adapted to the space 𝒜𝑃 ) is set to 4𝜅. The numerical results are reported
in Figure 9.

The main observation is that by using sufficiently many waves (i.e. setting 𝑀 sufficiently large, on the order
of 𝑀 = 32𝜅 ≈ 4𝑁𝑃 ) we are now able to approximate to (almost) machine precision all the modes |𝑝| ≤ 𝑃 = 4𝜅.
This includes the propagative modes |𝑝| ≤ 𝜅 (which were already well-approximated by purely PPWs), but more
importantly, this also includes evanescent modes 𝜅 < |𝑝| ≤ 𝑃 = 4𝜅 (corresponding to the greyed out area),
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for which purely PPWs failed to provide any meaningful approximation. Moreover, even much higher modes
|𝑝| > 𝑃 = 4𝜅 are approximated to acceptable accuracy. Further, we stress that the norms of the coefficients
‖𝜉𝑆,𝜖‖ℓ2 used in the approximate expansions remain moderate, especially for large 𝑀 . This is in stark contrast
with the results of Section 8.2, where the exponential growth of the coefficients prevented any accurate numerical
approximation.

In Figure 10, we observe that the condition number of the matrix 𝐴 is of the same order for PPWs and EPWs,
when 𝑀 is large enough. The improved accuracy for evanescent modes is not due to an improved conditioning
of the underlying linear system but to an increase of the 𝜖-rank of the matrix, i.e. the number of singular values
larger than 𝜖. This number goes from less than 100 for PPWs to around 250 for EPWs in the case 𝑀 = 32𝜅.
To further increase the 𝜖-rank, one needs to increase the truncation parameter 𝑃 .

Comparing PPWs and EPWs, we see that for small 𝑀 (e.g. 𝑀 = 4𝜅 and 𝑀 = 8𝜅) purely PPWs provide
better approximation of propagative modes than EPWs. This is because the approximation spaces made of
PPWs are tuned for propagative modes, which span a space of dimension 2𝜅+1. In contrast, the approximation
spaces made of EPWs target a larger number of modes, including some evanescent modes, which span a space
of dimension 𝑁𝑃 = 2𝑃 + 1 with 𝑃 = 4𝜅 in this numerical experiment. For a general target solution containing
evanescent modes, one does not expect any advantage in using PPWs only.

8.4. Approximation of random-expansion solutions

We test the procedure described so far by reconstructing a solution of the form

𝑢 :=
∑︁
|𝑝|≤𝑃

�̂�𝑝 [max (1, |𝑝| − 𝜅)]−1/2
𝑏𝑝 ∈ ℬ𝑃 (93)

in which �̂�𝑝 are normally-distributed random numbers with mean 0 and standard deviation 1. The coefficients
of any element of ℬ decay in modulus as 𝑜(|𝑝|−1/2) for |𝑝| → ∞; this is therefore a rather difficult scenario for
an approximation problem.

We then apply the procedure described above for the three types of sampling strategies considered. The
sampling points are constructed knowing that 𝑇−1𝑢 is an element of 𝒜𝑃 . In other words, the optimal modal
truncation parameter 𝑃 * = 𝑃 (where 𝑃 appears in (93)) is assumed to be known in this numerical experiment.
The main purpose is to investigate the validity of Conjecture 7.1. We study here the convergence of the error
with respect to the dimension of the approximation space 𝑀 . The number of sampling points on the boundary
of the disk is set to 𝑆 = 2𝑀 . The numerical results are given in Figure 11 for the Sobol sampling strategy
only. On the left panel we report the relative residual ℰ , defined in (20), as a measure of the accuracy of the
approximation. On the right panel we report the size of the coefficients, namely ‖𝜉𝑆,𝜖‖ℓ2/‖𝑢‖ℬ, as a measure of
the stability of the approximation.

The main observation is that the error quickly decays with respect to the ratio 𝑀/𝑁𝑃 = 𝑀/(2𝑃 + 1), which
represents the ratio of the dimension of the approximation set 𝑀 over the dimension of the space ℬ𝑃 the
solution (93) lives in. When 𝑃 is large enough (say 𝑃 ≥ 2𝜅 which remains moderate), the decay is relatively
independent of 𝑃 . The second observation is that the norm of the coefficients ‖𝜉𝑆,𝜖‖ℓ2/‖𝑢‖ℬ in the expansions
is a decreasing function of the size 𝑀 of the approximation space. We see once more that one gets accurate and
stable approximations. The values of ‖𝜉𝑆,𝜖‖ℓ2/‖𝑢‖ℬ reported for small values of 𝑀/𝑁𝑃 , and in particular the
increase at the start, are not significant since they correspond to inaccurate approximations.

We report in Figure 12 the plots of a solution (93) for a larger frequency 𝜅 = 64 and truncation parameter
𝑃 = 3𝜅 = 192. The approximation error when using 𝑀 = 3(2𝑃 + 1) = 1155 PPWs or EPWs is also given, with
points in 𝑌 sampled as a Sobol sequence. In the first case the absolute error in the disk is much larger, more than
12 orders of magnitude larger if measured in 𝐿∞(𝐵1) norm, and concentrated near the boundary. The number
of degrees of freedom per wavelength 𝜆 = 2𝜋/𝜅 used in each direction can be estimated by 𝜆

√︀
𝑀/𝜋 ≈ 1.9.

Note that 𝜋 here represents the area of the unit disk. For low-order methods, a common rule of thumb is to
use around 6 ∼ 10 degrees of freedom per wavelength to have 1 or 2 digits of accuracy. We obtain 12 digits of
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Figure 11. Accuracy ℰ , as defined in (20), (left) and stability ‖𝜉𝑆,𝜖‖ℓ2/‖𝑢‖ℬ (right) of the
approximation by 𝑀 EPWs (constructed using Sobol sampling) of a solution 𝑢 in the form (93)
that belong to the space ℬ𝑃 of dimension 𝑁𝑃 = 2𝑃 +1. The horizontal axis represents the ratio
𝑀/𝑁𝑃 . Wavenumber 𝜅 = 16. The number 𝑀 of EPWs necessary to approximate elements of
the space ℬ𝑃 seems to scale linearly with the space dimension 𝑁𝑃 .

accuracy for only a fraction of this number. For 𝑀 = 2(2𝑃 + 1) = 770, the maximum absolute error reached is
measured to 1.3 · 10−10 (not plotted).

Overall, the numerical results are perfectly consistent with Conjecture 7.1.

8.5. Numerical evidence of quasi-optimality

An important question regarding the efficiency of the proposed method concerns how the size of the approx-
imation set 𝑀 should vary with respect to the truncation parameter 𝑃 . Fixing 𝑃 amounts to looking at the
finite dimensional subspace ℬ𝑃 which contains the first 𝑁𝑃 = 2𝑃 + 1 modes. Since 𝑁𝑃 is the dimension of
ℬ𝑃 there is no hope to have approximation spaces with dimension 𝑀 < 𝑁𝑃 that are able to approximate all
elements of this space. An optimal approximation set would therefore achieve this with 𝑀 = 𝑁𝑃 elements at
best. We show numerical evidence that we achieve quasi-optimality, in the sense that the approximation spaces
Φ𝑃,𝑀 defined in (81) only need 𝑀 = 𝒪(𝑁𝑃 ) with a moderate proportionality constant to approximate the 𝑁𝑃

circular modes with reasonable accuracy.
We investigate numerically the linearity of the relation 𝑃 → 𝑀*(𝑃, 𝜂), where 𝑀*(𝑃, 𝜂) was defined in

Conjecture 7.1 (for a fixed 𝜂), namely the validity of a law of the form 𝑀*(𝑃, 𝜂) ≈ 𝜈𝑁𝑃 = 𝜈(2𝑃 + 1) for some
𝜈 = 𝜈(𝜂) > 0. To that end, for some 𝜎 > 0, we vary 𝑃 and compute

̃︁𝑀* = ̃︁𝑀*(𝑃, 𝜎) := min
{︀
𝑀 ∈ N | ℰ(𝑏𝑝,Φ𝑃,𝑀 , 𝑆, 𝜖) ≤ 𝜎, ∀|𝑝| ≤ 𝑃

}︀
, (94)

where ℰ was defined in (20). The quantity ̃︁𝑀* is expected to be a good estimate of 𝑀*(𝑃, 𝜂). The number of
sampling points on the boundary of the disk is set to 𝑆 = 2𝑀 .

The numerical results are given in Figure 13 for the accuracy level 𝜎 = 10−12. We represent here the variation
of the ratio ̃︁𝑀*(𝑃, 𝜎)/𝑁𝑃 with respect to the truncation parameter 𝑃 . If the optimal law for ̃︁𝑀*(𝑃, 𝜎) was linear
with respect to 𝑃 , we would expect constant values. Regardless of the type of sampling, we observe decreasing
curves that converge to some asymptotic value for 𝜈 that falls within the rather moderate range [3, 6]. This
means that the first 𝑁𝑃 circular modes (propagative and evanescent) can be stably approximated with uniform
relative error ≤ 10−12 using roughly 3𝑁𝑃 to 6𝑁𝑃 EPWs. Moreover, this asymptotic behavior seems to be
robust with respect to the wavenumber 𝜅. These more systematic results confirm what was already observed in
Section 8.4. The behavior of the optimal asymptotic ̃︁𝑀* with respect to 𝑁𝑃 seems indeed to be linear or even
sub-linear.
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Figure 12. Solution 𝑢, target of the approximation, defined in (93) with 𝑃 = 3𝜅 = 192
(top) and associated absolute errors when approximated by 𝑀 = 3(2𝑃 + 1) = 1155 plane
waves, either propagative ones Φ𝑀 from (23) (bottom left) or evanescent ones Φ𝑃,𝑀 from (81),
whose parameters are constructed using a Sobol type sampling (bottom right). The colormaps
associated to absolute errors are logarithmic for better visualization. Wavenumber 𝜅 = 64.
Note the different color scales, which shows a factor-1012 improvement in using EPWs instead
of PPWs. (A) Real part of target solution ℜ𝑢. (B) Modulus of target solution |𝑢|. (C) Absolute
error using PPW |𝑢− 𝒯Φ𝑀

𝜉𝑆,𝜖|. (D) Absolute error using EPW |𝑢− 𝒯Φ𝑃,𝑀
𝜉𝑆,𝜖|.

8.6. Triangular domain

We conclude this section with some numerical results on a triangular geometry. Our purpose is to show that
the approximation sets that we constructed also exhibit good approximation properties on other shapes, despite
being built following the analysis for the disk.

We consider a triangle Ω inscribed in the unit disk, with vertices v1 = (1, 0), v2 = (−1, 0) and v3 =
(cos(5𝜋/8), sin(5𝜋/8)). The target of the approximation problem is the Helmholtz fundamental solution x ↦→
(𝚤/4)𝐻(1)

0 (𝜅|x − s|), for wavenumber 𝜅 = 16 and for two different locations s ∈ R2 ∖ Ω of the singularity,
see Figure 14.

We study the convergence of the approximation by plane waves for increasing size of the approximation set
𝑀 . The approximation is constructed as indicated in Section 3.2–3.3 from Dirichlet data at equispaced points
on the boundary of the triangle and by solving the oversampled linear systems using a regularized SVD. The
plane waves used in the approximation sets are either propagative, with uniformly spaced angles as described
in (23), or evanescent, as described in (81). The approximation set using EPWs is constructed from sampling
the probability density function 𝜌𝑃 defined in (77) following a Sobol sequence. For a given size 𝑀 of the
approximation set, the Fourier truncation parameter is computed as 𝑃 := max (⌈𝜅⌉, ⌊𝑀/4⌋), as suggested by
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Figure 13. Ratio ̃︁𝑀*(𝑃, 𝜎)/𝑁𝑃 with respect to the truncation parameter 𝑃 for various types
of sampling method and 𝜎 = 10−12. The number of EPWs necessary to approximate elements
of the space ℬ𝑃 to relative accuracy 𝜎 seems to scale linearly with the space dimension 𝑁𝑃 .
(A) Deterministic sampling. (B) Sobol sampling. (C) Random sampling.

Figure 14. Real part of the fundamental solutions used as target for the approximation prob-
lem in the triangle. The magenta cross × indicates the position of the singularity s and is located
one wavelength 𝜆 = 2𝜋/𝜅 away from the boundary of the triangle. Wavenumber 𝜅 = 16. (A)
Singularity close to one edge. (B) Singularity close to one vertex.

Figure 13a. Finally, the EPWs are re-normalized to have unit 𝐿∞ norm on the boundary of the triangle. The
latter normalization is the only modification with respect to the sets used for the circular geometry.

The convergence results are presented in Figure 15. When using PPWs, the residual initially decreases rapidly
with 𝑀 but stalls well before reaching machine precision due to the rapidly growing coefficients. In contrast,
when using EPWs, the residual converges to machine precision and the size of the coefficients remains moderate
when the final accuracy is reached.

We also report in Figure 16 the point-wise absolute error in the bulk of the triangle between the exact solution
and the computed approximation, linearly interpolated on a triangular mesh for visualisation purposes. The
𝐿∞-norm of the error inside the triangle is of the same order of magnitude as the residual reported in Figure 15.
The error with EPWs is of the order of machine precision, whereas the error with PPWs is mainly concentrated
on the boundary of the triangle.

These results show the potential of the proposed numerical recipe for Trefftz methods and plane wave approx-
imations. This is even more striking considering that the numerical recipe used to construct the approximations
is not tuned for the triangular geometry, with the exception of the re-normalization. Better rules adapted to
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Figure 15. Accuracy ℰ , as defined in (20), (left) and stability ‖𝜉𝑆,𝜖‖ℓ2 (right) of the approx-
imation of the fundamental solutions on the triangle Ω (see Figure 14 for the meaning of the
“edge” and “vertex” configurations) by PPWs or EPWs. Wavenumber 𝜅 = 16 and regulariza-
tion parameter 𝜖 = 10−14. The convergence with respect to the size of the approximation set
𝑀 stalls when using PPWs, due to the need for large coefficients, while EPWs reach machine
precision.

Figure 16. Point-wise error in the triangle between the target of the approximation problem
(see Fig. 14) and the approximation using propagative (top) and evanescent (bottom) plane
waves. The singularity in the solution is either close to the edge (left) or close to the vertex
(right). Wavenumber 𝜅 = 16 and 𝑀 = 300. (A) PPW - Edge. (B) PPW - Vertex. (C) EPW -
Edge. (D) EPW - Vertex.
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the underlying geometry might yield even more efficient approximation schemes and are the subject of ongoing
investigations.

9. Conclusions

Ill-conditioning is inherent in plane-wave based Trefftz schemes but can be overcome if there exist accurate
approximations that are moreover stable, in the sense of having expansions with bounded coefficients. To
approximate Helmholtz solutions, PPWs are known to provide accurate approximations. However, the associated
expansions are necessarily unstable: the norm of the coefficients blow up for solutions with high-frequency
Fourier modes. In contrast, EPWs, which contain high-frequency content, give accurate as well as stable results.
To construct stable sets of EPWs, we show numerically that an effective strategy is to sample the parametric
domain according to a fully explicit probability measure.

This paper is only the first step towards stable and accurate approximation schemes based on EPWs. A
theoretical problem that we have left open is the analysis of the approximation properties of the sets of EPWs
constructed using our numerical recipe. Next steps include the extensions to more general geometries, three-
dimensional problems (see [19]), time-harmonic Maxwell and elastic wave equations, the application to Trefftz
schemes and to sound-field reconstruction algorithms. Preliminary experiments show that the proposed numer-
ical recipe performs well for convex polygons and in Trefftz-Discontinuous Galerkin schemes with several cells,
and provides a considerable improvement over standard PPW schemes.

Appendix A. Proofs of Section 2

Proof of Lemma 2.2. We only need to prove that the family {𝑏𝑝}𝑝∈Z is orthogonal, which is a consequence of
the orthogonality of the complex exponentials {𝜃 ↦→ 𝑒𝚤𝑝𝜃}𝑝∈Z on the unit circle 𝜕𝐵1. For 𝑝, 𝑞 ∈ Z, we have

(�̃�𝑝, �̃�𝑞)𝐿2(𝐵1) =
∫︁ 1

0

𝐽𝑝(𝜅𝑟)𝐽𝑞(𝜅𝑟)𝑟 d𝑟

∫︁ 2𝜋

0

𝑒𝚤(𝑝−𝑞)𝜃 d𝜃 = 2𝜋

∫︁ 1

0

𝐽2
𝑝 (𝜅𝑟)𝑟 d𝑟 𝛿𝑝𝑞. (A.1)

The orthogonality in 𝐻1(𝐵1) is easily seen from

(∇�̃�𝑝, ∇�̃�𝑞)𝐿2(𝐵1)2 = (𝜕n�̃�𝑝, �̃�𝑞)𝐿2(𝜕𝐵1) − (∆�̃�𝑝, �̃�𝑞)𝐿2(𝐵1) = (𝜕n�̃�𝑝, �̃�𝑞)𝐿2(𝜕𝐵1) + 𝜅2(�̃�𝑝, �̃�𝑞)𝐿2(𝐵1), (A.2)

where we denoted by n the outward unit normal vector and

(𝜕n�̃�𝑝, �̃�𝑞)𝐿2(𝜕𝐵1) = 𝜅𝐽 ′𝑝(𝜅)𝐽𝑞(𝜅)
∫︁ 2𝜋

0

𝑒𝚤(𝑝−𝑞)𝜃 d𝜃 = 2𝜋𝜅𝐽 ′𝑝(𝜅)𝐽𝑝(𝜅)𝛿𝑝𝑞. (A.3)

�

Proof of Lemma 2.3. It is straightforward to check that any 𝑏𝑝, for 𝑝 ∈ Z, is solution to the Helmholtz equa-
tion (1). The continuity of the Helmholtz operator

ℒ : 𝐻1(𝐵1)→ 𝐻−1(𝐵1) =
(︀
𝐻1

0 (𝐵1)
)︀*

, defined by:
⟨ℒ𝑢, 𝑣⟩𝐻−1×𝐻1

0
:= (∇𝑢, ∇𝑣)𝐿2(𝐵1)

− 𝜅2 (𝑢, 𝑣)𝐿2(𝐵1)
, ∀𝑢 ∈ 𝐻1(𝐵1), 𝑣 ∈ 𝐻1

0 (𝐵1),
(A.4)

implies that the kernel of ℒ is a closed subspace of 𝐻1(𝐵1). From the definition of ℬ given in (3), it follows that

ℬ ⊂ kerℒ :=
{︀
𝑢 ∈ 𝐻1(𝐵1) | ℒ𝑢 = 0

}︀
. (A.5)

Conversely, let 𝑢 ∈ 𝐻1(𝐵1) satisfy (1) and set 𝑔 := 𝜕n𝑢 − 𝚤𝜅𝑢 ∈ 𝐻−1/2(𝜕𝐵1). The Robin trace 𝑔 can be
written

𝑔(𝜃) =
∑︁
𝑝∈Z

𝑔𝑝𝑒
𝚤𝑝𝜃, ∀𝜃 ∈ [0, 2𝜋), with

∑︁
𝑝∈Z
|𝑔𝑝|2(1 + 𝑝2)−1/2 <∞. (A.6)
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Let 𝑃 ≥ 0, and set 𝑔𝑃 (𝜃) :=
∑︀
|𝑝|<𝑃 𝑔𝑝𝑒

𝚤𝑝𝜃, for 𝜃 ∈ [0, 2𝜋). Then there exists a unique 𝑢𝑃 ∈ span{𝑏𝑝}|𝑝|<𝑃 ,
such that 𝑔𝑃 = 𝜕n𝑢𝑃 − 𝚤𝜅𝑢𝑃 , namely 𝑢𝑃 =

∑︀
|𝑝|<𝑃 𝑔𝑝(𝜅𝛽𝑝(𝐽 ′𝑝(𝜅)− 𝚤𝐽𝑝(𝜅)))−1𝑏𝑝 (the term 𝐽 ′𝑝(𝜅)− 𝚤𝐽𝑝(𝜅) at the

denominator is non-zero because of equation (10.21.2) of [31]). The well-posedness Proposition 8.1.3 of [28] of
the problem: find 𝑣 ∈ 𝐻1(𝐵1) such that

−∆𝑣 − 𝜅2𝑣 = 0, in 𝐵1, and 𝜕n𝑣 − 𝚤𝜅𝑣 = ℎ, on 𝜕𝐵1, (A.7)

for ℎ ∈ 𝐻−1/2(𝜕𝐵1), implies that there exists a constant 𝐶 > 0, independent of 𝑃 , such that ‖𝑢 − 𝑢𝑃 ‖ℬ ≤
𝐶‖𝑔 − 𝑔𝑃 ‖𝐻−1/2(𝜕𝐵1). Letting 𝑃 tend to infinity, we obtain that 𝑢 ∈ ℬ. �

Proof of Lemma 2.4. The explicit expression for 𝛽𝑝 can be deduced by integrating by parts as in the proof of
Lemma 2.2. From (A.2), the explicit expression for the boundary term (A.3) and equation (10.22.5) of [31],

‖�̃�𝑝‖2𝐿2(𝐵1)
= 2𝜋

∫︁ 1

0

𝐽2
𝑝 (𝜅𝑟)𝑟 d𝑟 = 𝜋

(︀
𝐽2

𝑝 (𝜅)− 𝐽𝑝−1(𝜅)𝐽𝑝+1(𝜅)
)︀
, (A.8)

we deduce the expression in (5). Then the asymptotic behavior is obtained by proving that

‖�̃�𝑝‖𝐿2(𝜕𝐵1) ∼ (𝑒𝜅/2)|𝑝| |𝑝|−(|𝑝|+1/2),

‖�̃�𝑝‖𝐿2(𝐵1) ∼ 2−1/2 (𝑒𝜅/2)|𝑝| |𝑝|−(|𝑝|+1),

‖�̃�𝑝‖ℬ ∼ 𝜅−1 (𝑒𝜅/2)|𝑝| |𝑝|−|𝑝|,

as |𝑝| → +∞. (A.9)

For any 𝑝 ∈ Z, 𝐽−𝑝 = (−1)𝑝𝐽𝑝 from equation (10.4.1) of [31]. Therefore, the asymptotic behavior will not
depend on the sign of 𝑝, and we suppose 𝑝 > 0 in the following. We start with the trace: from the definition (3)
of �̃�𝑝, ‖�̃�𝑝‖2𝐿2(𝜕𝐵1)

= 2𝜋𝐽2
𝑝 (𝜅), and from equation (10.19.1) of [31], namely

𝐽𝜈 (𝑧) ∼ (2𝜋𝜈)−1/2(𝑒𝑧/2𝜈)𝜈 , as 𝜈 → +∞, 𝑧 ̸= 0, (A.10)

the first result in (A.9) follows. We now consider the 𝐿2(𝐵1) norm. From (A.8) and (A.10), we get as 𝑝→ +∞

‖�̃�𝑝‖2𝐿2(𝐵1)
∼ 1

2

(︁𝑒𝜅

2

)︁2𝑝

𝑝−(2𝑝+1)

[︂
1− 𝑝2𝑝+1

(𝑝− 1)𝑝−1/2(𝑝 + 1)𝑝+3/2

]︂
, (A.11)

and it is readily checked that the term inside the square brackets is equivalent to 𝑝−1 at infinity, so the second
result in (A.9) follows. We now consider the 𝜅-weighted 𝐻1(𝐵1) norm (2). We need to study the asymptotic of
the boundary term (A.3). From equation (10.6.1) of [31]

(𝜕n�̃�𝑝, �̃�𝑝)𝐿2(𝜕𝐵1) = 2𝜋𝜅𝐽 ′𝑝(𝜅)𝐽𝑝(𝜅) = 𝜋𝜅
(︀
𝐽𝑝−1(𝜅)− 𝐽𝑝+1(𝜅)

)︀
𝐽𝑝(𝜅). (A.12)

From (A.10), we get as 𝑝→ +∞

(𝜕n�̃�𝑝, �̃�𝑝)𝐿2(𝜕𝐵1) ∼
𝜅

2

(︁𝑒𝜅

2

)︁2𝑝

𝑝−(2𝑝+1)

[︂
2
𝑒𝜅

𝑝𝑝+1/2

(𝑝− 1)𝑝−1/2
− 𝑒𝜅

2
𝑝𝑝+1/2

(𝑝 + 1)𝑝+3/2

]︂
, (A.13)

and it is readily checked that the first term inside the square brackets is dominant and equivalent to 2
𝜅𝑝 at

infinity. Thus, the dominant term in (A.2) in the limit 𝑝→∞ is the boundary term. �
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Appendix B. Proofs of Section 3

Proof of Proposition 3.2. The method of proof closely follows that of Theorem 3.7 of [2]. In particular we first
establish a so-called Marcinkiewicz–Zygmund condition, akin to equation (3.2) of [2].

The regularity assumption for 𝑢 and Φ𝑘, which are assumed in ℬ ∩ 𝐶0(𝐵1), allows to have well-defined
pointwise evaluations of their image by the Dirichlet trace operator 𝛾 on the boundary 𝜕𝐵1. Recall that the
sampling nodes {x𝑠}𝑠 are defined in (10). For any 𝑣 ∈ ℬ ∩ 𝐶0(𝐵1),

lim
𝑆→+∞

2𝜋

𝑆

𝑆∑︁
𝑠=1

|(𝛾𝑣)(x𝑠)|2 = ‖𝛾𝑣‖2𝐿2(𝜕𝐵1)
. (B.14)

The argument of the limit in the left-hand-side is a Riemann sum approximant of the right-hand-side. A similar
argument is developed in Example 3.3 of [2] (note that 𝐴′ = 𝐵′ = 1 in the notations of [2]). We will repeatedly
use (B.14) in the remainder of the proof.

Let 𝜇 ∈ C|Φ𝑘|. From (15), we have

𝑢− 𝒯Φ𝑘
𝜉𝑆,𝜖 = [𝑢− 𝒯Φ𝑘

𝜇] + [𝒯Φ𝑘
𝐴†𝑆,𝜖𝐴𝜇− 𝒯Φ𝑘

𝜉𝑆,𝜖] + [𝒯Φ𝑘
𝜇− 𝒯Φ𝑘

𝐴†𝑆,𝜖𝐴𝜇]

= [𝑢− 𝒯Φ𝑘
𝜇] + 𝒯Φ𝑘

𝐴†𝑆,𝜖[𝐴𝜇− b] + 𝒯Φ𝑘
[Id−𝐴†𝑆,𝜖𝐴]𝜇.

(B.15)

The proof proceeds by estimating the 𝐿2 norm of the trace on 𝜕𝐵1 of each term.
The first term appears in the estimate we want to derive, so we examine the second term in (B.15).

From (B.14), provided 𝑆 has been chosen sufficiently large, we can write (picking the constant 2 on the right-
hand-side for simplicity, but any constant >1 would work)

‖𝛾(𝒯Φ𝑘
𝐴†𝑆,𝜖[𝐴𝜇− b])‖2𝐿2(𝜕𝐵1)

≤ 2
2𝜋

𝑆

𝑆∑︁
𝑠=1

|𝛾(𝒯Φ𝑘
𝐴†𝑆,𝜖[𝐴𝜇− b])(x𝑠)|2 ≤ 4𝜋

𝑆
‖𝐴𝐴†𝑆,𝜖 [𝐴𝜇− b] ‖2ℓ2 . (B.16)

Our choice of regularization (14) ensures that ‖𝐴𝐴†𝑆,𝜖‖ ≤ 1, from which we deduce

‖𝛾(𝒯Φ𝑘
𝐴†𝑆,𝜖[𝐴𝜇− b])‖2𝐿2(𝜕𝐵1)

≤ 2
2𝜋

𝑆
‖𝐴𝜇− b‖2ℓ2 = 2

2𝜋

𝑆

𝑆∑︁
𝑠=1

|𝛾(𝒯Φ𝑘
𝜇− 𝑢)(x𝑠)|2. (B.17)

Using once more (B.14), provided 𝑆 is sufficiently large, we can write (with an additional factor 2)

‖𝛾(𝒯Φ𝑘
𝐴†𝑆,𝜖[𝐴𝜇− b])‖2𝐿2(𝜕𝐵1)

≤ 4‖𝛾(𝑢− 𝒯Φ𝑘
𝜇)‖2𝐿2(𝜕𝐵1)

. (B.18)

We now examine the third term in (B.15). Arguing as before, from (B.14), there exists 𝑆 sufficiently large
such that

‖𝛾(𝒯Φ𝑘
[Id−𝐴†𝑆,𝜖𝐴]𝜇)‖2𝐿2(𝜕𝐵1)

≤ 2
2𝜋

𝑆

𝑆∑︁
𝑠=1

|𝛾(𝒯Φ𝑘
[Id−𝐴†𝑆,𝜖𝐴]𝜇)(x𝑠)|2 ≤ 2

2𝜋

𝑆
‖𝐴[Id−𝐴†𝑆,𝜖𝐴]𝜇‖2ℓ2 . (B.19)

Our choice of regularization (14) ensures that ‖𝐴[Id−𝐴†𝑆,𝜖𝐴]‖ ≤ 𝜖𝜎max so that

‖𝛾(𝒯Φ𝑘
[Id−𝐴†𝑆,𝜖𝐴]𝜇)‖2𝐿2(𝜕𝐵1)

≤ 2
2𝜋

𝑆
𝜖2𝜎2

max‖𝜇‖2ℓ2 . (B.20)

Combining all estimates, (16) is readily obtained.
In order to show (17), note first that the continuity of the trace operator 𝛾 from ℬ to 𝐿2(𝜕𝐵1) allows to

write, for any 𝜇 ∈ C|Φ𝑘|, ‖𝛾(𝑢− 𝒯Φ𝑘
𝜇)‖𝐿2(𝜕𝐵1) ≤ ‖𝛾‖ ‖𝑢− 𝒯Φ𝑘

𝜇‖ℬ. It remains to bound the 𝐿2(𝐵1) norm of
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𝑢−𝒯Φ𝑘
𝜉𝑆,𝜖, by the 𝐿2(𝜕𝐵1) norm of its trace. Let {𝑒𝑝}𝑝∈Z be the coefficients of 𝑒 := 𝑢−𝒯Φ𝑘

𝜉𝑆,𝜖, in the Hilbert
basis {𝑏𝑝}𝑝∈Z. From the asymptotics (A.9), we have

‖𝑒‖2ℬ =
∑︁
𝑝∈Z
|𝑒𝑝|2, ‖𝑒‖2𝐿2(𝐵1)

=
∑︁
𝑝∈Z

𝑐(1)
𝑝

|𝑒𝑝|2

1 + 𝑝2
, ‖𝑒‖2𝐿2(𝜕𝐵1)

=
∑︁
𝑝∈Z

𝑐(2)
𝑝

|𝑒𝑝|2√︀
1 + 𝑝2

, (B.21)

where {𝑐(1)
𝑝 }𝑝∈Z and {𝑐(2)

𝑝 }𝑝∈Z are two sequences of positive constants both bounded below and above, and
independent of 𝑢− 𝒯Φ𝑘

𝜉𝑆,𝜖. The sequence {𝑐(2)
𝑝 }𝑝∈Z is bounded below because 𝜅2 is not a Dirichlet eigenvalue.

We derive (17) from this remark and (16). �

Proof of Corollary 3.3. Let 𝜂 > 0 and 𝑢 ∈ ℬ ∩ 𝐶0(𝐵1). The stability assumption implies that there exists Φ𝑘

and 𝜇 ∈ C|Φ𝑘| such that

‖𝑢− 𝒯Φ𝑘
𝜇‖ℬ ≤ 𝜂‖𝑢‖ℬ and ‖𝜇‖ℓ2 ≤ 𝐶stb|Φ𝑘|𝑠‖𝑢‖ℬ. (B.22)

Let 𝜖 ∈ (0, 1]. Proposition 3.2 implies the existence of 𝑆 ∈ N such that for this particular 𝜇,

‖𝑢− 𝒯Φ𝑘
𝜉𝑆,𝜖‖𝐿2(𝐵1) ≤ 𝐶err

(︁
‖𝑢− 𝒯Φ𝑘

𝜇‖ℬ +
𝜖𝜎max√

𝑆
‖𝜇‖ℓ2

)︁
≤ 𝐶err

(︁
𝜂 +

𝜖𝜎max√
𝑆

𝐶stb|Φ𝑘|𝑠
)︁
‖𝑢‖ℬ. (B.23)

It remains to choose the free parameters 𝜂 > 0 and 𝜖 ∈ (0, 1] small enough to get the right-hand-side below 𝛿,
namely 𝜂 ≤ 𝛿

2𝐶err
and 𝜖 ≤ 𝜖0 with 𝜖0 given in (19). �
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