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Abstract

In this work we analyse and compare different possible strategies for the trans-

formations among low-rank (i.e. few number of terms) tensor approximations. The

motivation behind this is to achieve compact yet accurate representations of potential-

like operators (scalar fields) in symbolic or analytical form. We do this analysis from

a formal and from a numerical perspective. Specifically, we concentrate on Tucker and

Canonic Polyadic ansätze. We introduce the sum-of-product finite basis representations

(SOP-FBR) for both. Here, the factor matrices (aka single-particle functions) are ap-

proximated through a set of auxiliary basis functions, specific to the system. In this

way, analytical, grid-independent, low-rank expressions can be obtained. We illustrate

how finite-precision arithmetic hinders transformations among all these forms. The

solution to this issue seems to adapt current algorithms to high-precision arithmetic at

the expense of an increase in CPU times.

Introduction

Accurate and compact low-rank tensor expressions are essential to achieve high-performance

in many different mathematical, engineering or physical applications. Low-rank refers to

the fact that these type of mathematical expressions provide a good global approximation

to a set of reference data structured in the form of a multidimensional array. This is also

of particular relevance in Deep Learning where over-parametrized models (weight matrices)

can be totally (or partially) replaced by such type of approximations.1 Specifically, the most

significant advances in the field of quantum dynamical simulations have been linked to the

introduction of novel ansätze for the efficient representation of multidimensional objects such

as the wave function (WF). The interested reader is referred to one of our recent publications

in which a comprehensive summary on the topic is presented.2 Grid-based methods require

quantities to be expressed on a grid. In other words, they are represented as multidimensional

arrays of data aka tensors (Vi1,...,if ). In the case of molecular systems, our main interest, these
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tensors are typically of f = 3N −6(5) dimensions (D). Hereafter, we shall consider an initial

f -dimensional tensor V ∈ RN1×···×Nf , consisting of
∏f

κ Nκ data-points. This number being

large enough not to fit in memory. In such case, a tensor decomposition becomes mandatory.

Arguably, in the molecular context the most widely employed tensor decomposition methods

rely on grid-based sum-of-products ansätze such as Tucker and the canonical polyadic (CP)

form, respectively Eqs.1 and 2.

V Tucker
I =

[m]∑
J

CJΩIJ (1)

V CP
I =

R∑
r=1

λrΩIr (2)

where I ≡ (i1 . . . if ) and J ≡ (j1 . . . jf ), [m] represents each of the maximum terms in the

sums, and Ω are Hartree products of single-particle potentials (SPP, aka factor matrices).

It should be noted that for the κ-th degree of freedom iκ = 1, . . . , Nκ and jκ = 1, . . . ,mκ,

with m ≪ N . Though formally similar, there are major differences between them. For

instance the CP SPPs are not orthogonal (though normalized) whereas the Tucker ones are

orthonormal, both on grid and on basis space.3 This extra degree of flexibility in the former

leads to very compact CP expansions when compared to Tucker ones. This is evident by the

nature of data-structure associated to the expansion coefficients (aka core tensor): a tensor

in the case of Tucker (CJ , with
∏f

κ=1mκ elements, with m ≪ N) and a vector in the case of

CP ({λr}Rr=1). Despite the favourable ratio in number of data between the Tucker expression

and the original tensor, an exponential scaling in the number of core elements is inherent to

any Tucker expression. This makes a priori CP approaches preferable. In what follows, we

will mainly refer to grid-based quantum dynamical problems. More specifically within the

context of multiconfigurational approaches such as the Multiconfiguration Time-Dependent

Hartree (MCTDH) or the Variational Multiconfigurational Gaussian (vMCG) within their

most common implementations: Heidelberg MCTDH4 and Quantics,5 respectively. How-

ever, it should be clear that the methods and transformations described here are by no
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means restricted to this field and/or its applications. They are also relevant in engineering6

as well as in model reduction for Deep Learning.1

MCTDH, in particular, makes extensive use of these two forms for the compressed repre-

sentation of grid-based quantities (such as the potential operator). Accordingly, major and

sustained efforts have been devoted within this community in order to achieve such low-rank

expressions from unstructured initial tensors (e.g. scalar field expressed on a grid).7–11 It

should be realised that these algorithms refit the data-points arranged on a grid (e.g. poten-

tial on a grid) into a collection of sets of structured numbers (vectors, matrices, tensors), the

so-called low-rank approximation which can be appropriately operated to retrieve an approx-

imation to the targeted values. A second alternative is the use of analytical expressions of the

potential directly in such a product form, as is the case of a commonly employed benchmark

system, HONO.12 This approach has obvious advantages over grid-based representations.

First, it is in principle possible to directly implement such expressions symbolically, as is the

case in MCTDH with the so-called operator file which encodes the system Hamiltonian.

This requires the expansion functions being simple expressions fulfilling the SOP condition.

And second, within a given set of boundaries, these forms are independent of the grid. These,

among other reasons,2 led us to suggest the use of a set of basis to analytically represent the

SPPs. In this way, the original algebraic refitting problem is turned into an optimization

one.2 This idea was first implemented using a Tucker form:

V (q1, . . . , qf ) =

m1∑
j1

· · ·
mf∑
jf

Cj1,...,jf

f∏
κ

[
tκ∑
µ

c
(κ)
µ,jκ

Tµ(qκ)] (3)

where, for simplicity, we have assumed the same number of auxiliary functions per SPP

within a given degree of freedom (DOF). More recently, we have also introduced the CP

counterpart of SOP-FBR (CP-FBR) and presented its practical implementation.13 The ac-

tual procedure differs substantially from that of SOP-FBR owing to the intrinsic difficulties
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associated to the CP form.14 In the Theory section, we discuss our current algorithm.13 It

should be emphasized that the FBR form enables rebuilding a potential tensor on grids of

any density within the provided boundaries.

In what follows, we will assume as starting point a SOP-FBR expression obtained from

a fit using either: (i) a set of reference geometries (R⃗ ≡ (q1, . . . , qf ) ≡ (i1, . . . , if )) and

associated energies (V (i1, . . . , if )) in tensor form; or (ii) a judiciously chosen list of reference

points and associated energies ({R⃗i,Ei}Ni=1). Concerning this last case, we have recently

shown that it is possible to generate such a list in an automated manner using the net-

work of stationary points (minima and first-order saddle points) of a PES as reference.15

We employed the AutoMekin software package for this.16 This software can be used also for

non-covalent interacting systems consisting of n-fragments.17

As we will discuss later, despite its simultaneous SOP and analytical nature, Eq.3 is not

suitable for the direct implementation of an MCTDH operator file. This file constitutes the

actual definition of the system Hamiltonian and for that a set of simple symbolic expressions

(e.g. powers, exponential and trigonometric functions) are used. There are two reasons pre-

venting SOP-FBR form being suitable to this: (i) a typical SOP-FBR consists of too many

terms (mf ) and (ii) the SPPs do not have a simple form since they are themselves a sum of

basis functions.

In this work, we show that starting from common low-rank SOP FBR approximations

such as Tucker or CP, it is formally possible to obtain a product-of-sums (POS) expression

potentially compatible for a direct implementation into such an operator file. First, we

present the formally exact algebraic transformations needed for this, using as starting points

both SOP-FBR and CP-FBR. Finally, we address the numerical implementation of the

transformation and show that numerical bottlenecks plague the whole process, thus hindering
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the direct achievement of our initial goal.

Theory

In this section, we present the description of the theoretical methods employed in this work.

We start by succinctly describing our recent CP-FBR approach, specifically the approxima-

tion thereof which we have used. Then we thoroughly discuss the transformation from SOP

to POS.

The Canonical Polyadic Finite Basis Representation (CP-FBR)

As any canonic polyadic form, CP-FBR form is much more compact than Tucker based

SOP-FBR. Indeed, one replaces the core tensor with a vector of a size R (rank of the

decomposition):

V (q1, . . . , qf ) =
R∑

r=1

λr

f∏
κ=1

tκ∑
µ=1

B(κ)
µr Tµ(qκ) (4)

It should be noted that, for the sake of legibility, we have changed our initial notation of

the expansion coefficients from c to B (vide infra). Note in passing that the basis functions

(T ) can be different for different degrees of freedom.2 To begin with, we would like to stress

the common features as well as to point out the differences between the two aforementioned

ansätze. We will also briefly discuss the sensitivity of the X-FBR form with respect to

variations on the auxiliary basis functions. In both cases, one can achieve the suitable

SOP form from the initial multidimensional function through tensor decomposition methods,

which, depending on the algorithm, require either a full tensor or a list of geometries sampled

from it. As mentioned in the Introduction, in case of SOP-FBR, it has been shown that

the algebraic process of the decomposition can be replaced by an optimization one.2 The

advantage of this approach is that the geometries are not restricted to the grid definition

anymore. Owing to the large degree of flexibility (number of coefficients) of the SOP-FBR
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form, one could use a set of approximated functions as SPPs and then simply tweak the core

tensor coefficients in order to minimize some objective function. Conversely, due to different

nature of the parameters in CP form, the direct optimization is not as efficient as it is in the

Tucker form. Indeed, the information of the potential is now contained in the factor matrices

(SPPs) and the weights are merely the products of their norms. Consequently, if one would

use approximated functions as SPPs in a CP-FBR form, the optimization would require the

optimization of the fitting basis, rather than the weights. Unfortunately, the RMSE as an

objective function being highly sensitive to variations in the expansion coefficients makes the

optimization process very difficult to converge.14 This can be easily illustrated. For this, we

considered an initial CP-ALS decomposition of rank R = 15. Then, we applied numerical

noise to the factors in the form of random variations at each discrete point within ±0.5%

to obtain what we will further refer to as noisy factors, which will serve as approximated

SPPs. After fitting the so-obtained noisy factors with Chebyshev polynomials of order 10,

we optimized the fitting coefficients using Powell algorithm. Initial RMSE of 188.20 cm−1

decreased to 70.44 cm−1 after approximately 7.35 · 106 iterations. In the Figure 1 we show

the changes of RMSE values in cm−1 (in logarithmic scale for better visibility) during the

optimization, on the left for the first 400 and on the right for the last 400 iterations. One can

clearly see that the values are reaching 1010, indicating the high sensitivity of the objective

function to the optimization parameters

As a consequence, CP-FBR requires an appropriate initial guess CP decomposition. We

have observed that, fortunately, this decomposition can be performed on a small subset

(coarse grid) of the grid needed for dynamics. The obtained factors are then fitted using an

appropriate basis set (potential dependent), in our case Chebyshev polynomials. The optimal

number of basis functions (or highest order in the case of polynomials) for each degree of

freedom can be determined so that it minimizes an objective function, e.g. RMSE, on a given

validation set. This set can include any list of representative points which are not mapped

on the coarse grid. In this way, one can assess interpolation power of the obtained analytical
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Figure 1: Optimization of the CP-FBR form obtained by fitting noisy factors using fitting
polynomial of order 10. Initial RMSE of CP-FBR was 188.20 cm−1 and after 7345511
iterations (using Powell algorithm) it decreased to 70.44cm−1. The values of RMSE are
given in cm−1 in logarithmic scale, so that the span of values is better visible

CP-FBR form. Typically, we use a validation grid which is slightly bigger than the coarse

one. It is our experience that the so-prepared CP-FBR form preserves well the RMSE upon

interpolation to grids of any density. In our current example, however, we simplified this

scheme. Since our goal is to compare to SOP-FBR in the context of the sum-of-products to

product-of-sums transformation, we directly generated a series of CP-FBR expansions using

(and optimizing) an increasing number of fitting polynomials up to a maximum of 10 which,

for the sake of comparison, coincides with the SOP-FBR case.

The transformation from sum-of-products to product-of-sums

We will start our analysis with a grid-based Tucker form:

Vi1,...,if =

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

f∏
κ=1

v
(κ)
iκjκ

(5)

As discussed above, this expression can be readily turned into an analytical expression

through the use of a suitable set of basis functions adapted to the problem in hand. As

a rule of thumb, topologically similar potentials share the same type of basis functions.

Specifically, we have observed that bound degrees of freedom (stretching, valence angles) are
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well represented through series of Chebyshev polynomials. These will be our default choice

in this work. More specifically, these orthogonal polynomial series are interesting because (i)

every single polynomial can be represented as a linear combination of orthogonal monomi-

als (ii) orthogonal polynomials are convenient for curve fitting because they can reduce the

multicolinearity of the variances of the parameters in the fit. As a result, we can transform

Equation 5 as follows:

V (q1, . . . , qf ) =

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

f∏
κ=1

v
(κ)
jκ

(qκ) (6)

We introduce a series of Chebyshev polynomials of first kind Tµ(qκ) of order tjκ as well as a

set of expansion coefficients B
(κ)
µjκ

for the basis functions:

v
(κ)
jκ

(qκ) =

tjκ∑
µjκ=1

B
(κ)
µjκjκ

Tµjκ
(qκ) (7)

For practical reasons, in the previous equation we have changed the usual notation of the

expansion coefficients from c
(κ)
µ,jκ

to B
(κ)
µjκjκ

. As indicated, we will consider a simplification that

has no impact whatsoever in our conclusions, we will consider the same number of auxiliary

basis sets for every degree of freedom (DOF). Hence tjκ = tκ∀jκ. In this case, equation 6

can be further simplified using the relationship between product of sums (POS) and sums

of products (SOP):

V (q1, . . . , qf ) =

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

t1∑
µ1=1

· · ·
tf∑

µf=1

f∏
κ=1

B
(κ)
µκjκ

Tµκ(qκ) (8)

Applying the associative property of multiplication to the product in Equation 8, it is possible

to write it in a more convenient way:

V (q1, . . . , qf ) =

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

t1∑
µ1=1

· · ·
tf∑

µf=1

f∏
κ=1

B
(κ)
µκjκ

f∏
κ=1

Tµκ(qκ) (9)
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Then, by commutativity and associativity of the sums, one can rewrite Equation 9 as:

V (q1, . . . , qf ) =

m1∑
j1=1

· · ·
mf∑
jf=1

t1∑
µ1=1

· · ·
tf∑

µf=1

Cj1···jf

f∏
κ=1

B
(κ)
µκjκ

f∏
κ=1

Tµκ(qκ) (10)

or perhaps, more conveniently, as:

V (q1, . . . , qf ) =

t1∑
µ1=1

· · ·
tf∑

µf=1

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

f∏
κ=1

B
(κ)
µκjκ

f∏
κ=1

Tµκ(qκ) (11)

where we have just re-ordered the sums. Now, taking a closer look to the inner part of

expression Equation 11, one can notice that it has the familiar Tucker structure. One can

then define the Tucker decomposition of a new tensor Aµ1···µf
into the same initial core tensor

Cj1···jf and the factor matrices B
(κ)
µκjκ

.

Aµ1···µf
=

m1∑
j1=1

· · ·
mf∑
jf=1

Cj1···jf

f∏
κ=1

B
(κ)
µκjκ

(12)

This tensor can be considered as the representation of the original core tensor CJ in our basis

set. Hence, in a sense, this object encapsulates all the relevant information about the PES.

Introducing this new quantity, we arrive at our sought simplified POS-FBR expression:

V (q1, . . . , qf ) =

t1∑
µ1=1

· · ·
tf∑

µf=1

Aµ1···µf

f∏
κ=1

Tµκ(qκ) (13)

This expression deserves some comments. First, the POS-FBR is, obviously, analytical, and

presents SPPs which are less complex than the SOP-FBR ones. This unlocks one of our

goals, the writing of the operator file. Equation 13 is of the form required by the MCTDH

operator file (numbers are simple examples):

...

A(mu1,..., muf) | cheb0 | cheb1 | cheb2
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...

where the first column represent elements of the A tensor and the label cheb(µκ) represent

the element Tµκ(qκ). The latter have been implemented in the Heidelberg MCTDH software

package source code by the authors. However, POS-FBR still presents a core tensor that

grows exponentially, as any Tucker, thus it still leads to far too many Hamiltonian terms.

To achieve a more compact expression, one would näıvely expect to be able to perform some

kind of diagonalisation on the core tensor and, by truncation, arriving at much fewer terms.

This is, generally, not possible. However, one can achieve a kind of pseudo-diagonalisation

of the core together with rank reduction (from
∏f

κ µκ to RA) through the use of a CP-ALS

algorithm on the A-tensor. It should be indicated that this idea was already used by Schröder

in his grid-based natpot2cpd routine of the MCTDH software package.

V (q1, . . . , qf ) =

t1∑
µ1=1

· · ·
tf∑

µf=1

RA∑
rA=1

λrA

f∏
κ=1

ϕ(κ)
µκrA

f∏
κ=1

Tµκ(qκ) (14)

where {ϕ} are the factor matrices of the tensor A. Note that the CP decomposition has

been performed on the A-tensor, hence the extra A subindices. On the other hand, one can

readily see that if starting from a CP-FBR form:

V (q1, . . . , qf ) =
R∑

r=1

λr

f∏
κ=1

tκ∑
µκ=1

B(κ)
µκrTµκ(qκ) (15)

one can also perform the same POS transformation and get:

V (q1, . . . , qf ) =

t1∑
µ1=1

· · ·
tf∑

µf=1

R∑
r=1

λr

f∏
κ=1

B(κ)
µκr

f∏
κ=1

Tµκ(qκ) (16)

where:

ACP
µ1···µf

=
R∑

r=1

λr

f∏
κ=1

B(κ)
µκr (17)

It is interesting to realize that though formally identical, Eqs. 14 and 16 carry a subtly
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different meaning. In the former, the rank (RA) corresponds to that of the A-tensor, the

representation of the original Tucker core tensor in our FBR basis. On the other hand, the

rank of the latter (R) is directly the rank of the potential tensor (or a representative subset

of it, such as a coarser grid, as in the case of CP-FBR13).

The proposed SOP-POS transformation is prone to numerical instabilities due to the

limitations of floating point arithmetic. Indeed, the coefficients included in the original SOP

expansion cover a wide numerical interval and adding numbers of very different magnitudes

(or subtracting numbers of similar magnitudes) can lead to severe losses of precision due

to round-off errors. Of course, smart sum algorithms (e.g. the Kahan algorithm) instead

of näıve sequential sums can improve on this, but they are not always readily available.

Examples of this phenomenon can be found in the literature.18–20 A particularly suited case

can be found in a paper by Jiang et al ,21 in which the authors study the errors arising from

the representation of the polynomial

p(x) = (x− 0.75)7(x− 1)10 (18)

as a series of Chebyshev polynomials of the first kind (the exact coefficients are given in

Appendix A of their paper).21 The formally exact transformation generates a series of 17-

order Chebyshev polynomials. To clearly illustrate the loss of precision, we have reproduced

their aforementioned example in Figure 2.

12



Figure 2: Loss of precision when representing a polynomial of degree 17 in a vicinity of its
stationary point by an equivalent (exact) Chebyshev series.

As it can be observed, the original expression p(x) is a smooth trace whereas the for-

mally exact Chebyshev expansion is highly oscillating. These issues will rapidly grow with

dimensionality, with the size of the approximated polynomial and the concomitant number

of operations to be performed with them. It should be noted that in this example, the largest

coefficient (in absolute value) is ∼ 103 as in our own expansions (see discussion around Table

1).

Results and discussion

In this section, we shall briefly present and discuss the actual implementation and numerical

resolution of the aforementioned transformations. We will use a simple 3D model potential,

the Polyanski–Jensen–Tennyson H16
2 O PES known as PJT2.22

From SOP-FBR to POS-FBR (and back again)

As discussed in the Theory section, to start our analysis we will use as reference our analyt-

ical SOP-FBR PES for the H2O molecule. In Ref.2 we present a detailed description of its
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computation. Here we will briefly sketch its main features. The optimisation used a grid of

[15, 15, 15] reference structures generated from a sampling of normal distributions of coor-

dinates (mode ordering is [r1, r2, θ]) centered at the water molecule equilibrium structure.2

Moreover, a set of initial SPPs was obtained from an initial Tucker decomposition using an

inexpensive reparametrized semiempirical potential (MOPAC software23) expressed on the

full grid.2 The resulting model had a total of 290 parameters:

V (q1, q2, q3) =
5∑

j1=1

5∑
j2=1

5∑
j3=1

Cj1j2j3

3∏
κ=1

11∑
µjκ=1

B
(κ)
µjκjκ

Tµjκ
(qκ) (19)

with (q1, q2, q3) ≡ (r1, r2, θ). Given the size of the parameter space, a full direct optimization

was possible (see original paper for details). The RMSE of the resulting SOP-FBR PES was

of 0.686 cm−1 on the full grid.

The transformation from SOP-FBR to POS-FBR (see Eq.13) involves the n-mode product

between our SOP-FBR optimized core tensor (CJ) and the matrices of the optimal Chebyshev

expansion coefficients (B) (see Eq.19):

A = C ×1 B
(1) ×2 B

(2) ×3 B
(3) (20)

As an example, the individual product for the first DOF reads:

(C ×1 B
(κ))µ1,...,jf =

m1∑
j1=1

Cj1,...,jfB
(1)
µ1j1

(21)

After doing these operations, the resulting POS-FBR expansion yields a RMSE of 2940580.20

cm−1 on the grid. Given that the transformation between these two expressions is formally

exact, one would expect a RMSE value closer to the original SOP-FBR one or merely 0.686

cm−1(and not such an uncanny value). Moreover, after 87301 iterations of the Powell algo-

rithm the RMSE was still of 252874.53 cm−1. Please note that global optimizers might lead

to such range of values and then arrive at meaningful values (see for instance a numerical
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example in Figure 1). In the following, we will try to disentangle the reasons behind this

erroneous value. It should be highlighted that all of these calculations have been carried out

using extended precision doubles, (numpy.longdouble)1 in combination with an improved

summation algorithm24 implemented in the Python fsum function 2.

The first thing to note is that the quality (RMSE) of an expansion is very sensitive to the

precision of Chebyshev polynomial coefficients. For instance, by simply adding a small noise

(7 · 10−9) to the original SOP parameters, without any further transformation, an increased

RMSE value of 10817.13 cm−1 is obtained. This numerical instability is propagated through

the successive series of contractions, thus leading to a degradation of the quality of the

obtained RMSE. In fact, this is very likely related to the loss of precision arising from the

tensor products, as the numbers involved in these calculations might differ by several orders

of magnitude. This well-known dramatic effect can be illustrated for the case of polynomials

of high degree, like the ones generated after the full contraction.

The SOP-POS transformation from CP-FBR

In view of the previous results, we will now take advantage of the compactness of the CP-

FBR expression. First it should be noted that the size of the A-tensor depends solely on

the number of fitting functions so that in what follows we shall consider a CP A-tensor

of size identical to the one in SOP. There are, however, two main differences regarding

its computation in the CP case: (i) the range of values of the so-called CP weights (λr)

is significantly smaller than the one from the Tucker core tensor; and (ii) the number of

operations to obtain it is much smaller in the case of CP, given that summation of products

of Chebyshev coefficients is done over R terms instead of the
∏f

κ=1 mκ terms in Tucker. Both

of them are responsible for the much less pronounced loss of the precision in CP form when

transforming the initial expression into the POS one. Indeed, in the case of CP-FBR, the

1(see https://numpy.org/doc/stable/user/basics.types.html#extended-precision)
2(https://docs.python.org/3/library/math.html)
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initial RMSE of 0.96 cm−1 after transformation leads to an RMSE of 21480.5 cm−1, 2 orders

of magnitude less than that of Tucker POS. Nevertheless, the resulting RMSE is still not

acceptable. It could be further improved by reducing the number of fitting polynomials, and

this effect can be observed in Figure 3, where we represented in logarithmic scale the ratio

of RMSE after transformation and original one, as a function of order of fitting polynomials

(Chebyshev order, tκ). This clearly shows that the RMSE is better preserved during the

SOP-POS transformation for lower order of fitting polynomials. But the drawback is that

such lower number might not be sufficient to achieve good quality of the original CP-FBR

form. To illustrate this, we show in Table 1 the variation of the RMSE with the order of the

fitting polynomial. As it can be seen, the best balance between initial quality of the CP-FBR

and the possibility to preserve it during the transformation was obtained for tκ = 8, where

RMSE is 7.34 cm−1 before and 8.98 cm−1 after. To further illustrate the effect of precision loss

associated, we have compared the POS transformations using the same number of basis and,

hence, the concomitant number of operations but in floating point number representations

of decreasing precision, from longdouble to double. Table 1 presents these values. As it

can be observed, for the lower tκ the effect is negligible, but upon increase it becomes much

more pronounced.

Table 1: Comparison of RMSE (in cm−1) of CP-FBR and POS-FBR for different
order of fitting polynomial and different precision.

Chebyshev order 5 6 7 8 9 10
CP-FBR 143.96 42.01 15.80 7.34 3.14 0.94

POS-FBR(longdouble) 143.96 42.01 15.80 8.98 22.88 21480.57
POS-FBR(double) 143.96 42.01 15.81 8.02 60.92 39182.27

Conclusions

Compact, low-rank, representations of (high-dimensional) operators are essential for efficient

grid-based simulations. This also holds for the efficient evaluation of Deep Learning models.

16



Figure 3: Logarithm of ratio of RMSE values of CP-FBR and its corresponding POS-FBR
as a function of order of fitting polynomials used to obtain CP-FBR. The figure illustrates
that with increased number of operations the rms is significantly less preserved during the
transformation

Achieving a low-rank expression through tensor decomposition (refit) is limited either by the

size of the tensor (Tucker case) or by the actual algebraic process (CP case). Refitting pro-

cesses (aka tensor decomposition) lead to expressions which are bound to a specific grid. This

is problematic. For instance, one may need to change the distribution of grid points (DVR)

or their density in the course of the simulation (for instance in order to numerically converge

the results). Hence the interest in the possibility of achieving analytical (symbolic) low-rank

expressions. In this work, we have explored the different possibilities within the context of

Tucker and CP forms. We have shown that numerical issues (finite-precision arithmetic)

prevent the transformation of SOP- and CP-FBR forms into the seemingly more convenient

POS-FBR. The latter allows the direct generation of an analytical, and more precisely, sym-

bolic expression for the Hamiltonian operator, the so-called operator file in MCTDH. The

POS-FBR form would result in a sum-of-products of simple polynomials (e.g. Chebyshev).

Unfortunately, the SOP-POS transformation involves a large number of operations leading

to a major loss of precision. This, ultimately, renders the whole process impractical. The

underlying reason is that polynomial evaluation, more precisely the underlying arithmetic,

is particularly susceptible to such loss of precision. The problem gets aggravated for poly-
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nomials of high degree, which, provided the range of our input values, would be around 10.

Finally, we would like to point out that, in the case of MCTDH, it is indeed feasible to

write a CP-FBR expression in the form of a sum of (user defined) 1D-functions owing to

its low-rank character. This is not the case for Tucker-FBR unless the core elements are

pruned.2 In any case, one could do this without transformation to POS.
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