Slow, low-dimensional dynamics in balanced networks with partially-symmetric connectivity

Xiaoyu Yang, Giancarlo La Camera, Gianluigi Mongillo Summary: Cortical dynamics are slow and low dimensional. Relaxation, as measured for instance by the auto-correlation of the spike counts, is slow compared to single neuron and synapse time constants, i.e., seconds vs. hundreds of milliseconds. Spiking activity is coordinated across the network despite weak, zero-lag cross-correlations between pairs of neurons. Thus, the network dynamics are described by a small, compared to the number of observed neurons, number of collective variables. By which mechanism(s) slow and low-dimensional dynamics arise in cortical networks? How these features are related to each other? Existing theories explain them as a result of precise adjustments of the synaptic connectivity. Slow relaxation is obtained, for instance, when the network operates close to the edge of stability, which requires tuning the variance of the synaptic efficacies. Low-dimensional dynamics are obtained, for instance, if the connectivity matrix is rank-deficient, which seems to require some form of synaptic plasticity. We note that the rank of a matrix and the variance of its elements can be independently adjusted. Here, we show that slow and low-dimensional dynamics naturally arise in balanced networks in the presence of partially-symmetric synaptic connectivity, consistent with experimental observations. The symmetry leads to an effective retarded self-interaction that slows down the dynamics and it tends to induce strong cross-correlations between pairs of neurons. These, however, are actively suppressed in the balanced regime, leading to strongly-correlated network states with weak pair-wise correlations. We illustrate the computational relevance of this regime by showing that the network can dynamically retain the memory of a random stimulation over long time intervals, in the presence of temporal noise. Taken together, our results suggest that slow and low-dimensional dynamics are a generic feature of cortical networks. In turn, such a dynamics lead to robust, long-lived memory traces even in the absence of learning-related synaptic plasticity.

Additional detail:

We shortly describe the model network and the main results of our analysis. Shortly, the network consists of N all-to-all connected inhibitory neurons, described as threshold-linear rate units (Berlemont & Mongillo, 2022). Synaptic connectivity is described by the correlation between the synaptic efficacies in pairs of neurons, ρ w (level of symmetry), and by the standard deviation of the synaptic efficacies, σ w (synaptic gain). The network also receives a constant excitatory input from outside. A standard set of coupled, first-order differential equations for the time evolution of the synaptic inputs describes the network dynamics. The network operates in the balanced regime in the limit of N→∞, regardless of the value of ρ w and σ w . However, other aspects of the dynamics critically depend on their value. In particular, when the rescaled gain, g w =-1+[σ w (1+ρ w )] 2 /2, is positive, the network dynamics do not converge to a fixed point (unlike the case g w <0) and single neurons' activities keep fluctuating in time. Roughly speaking, g w quantifies the distance from the critical line (i.e., g w =0) so that the larger g w the farther from the critical line. For g w >0, the dynamics can be studied with an extension of cavity method described in (Berlemont & Mongillo, 2022). We quantify the dimensionality of the collective dynamics for g w >0 by numerically estimating the participation ratio (PR), see, e.g., (Engelken et al., 2020). For a fixed synaptic matrix, we run the dynamics for 500 time constants, starting from 100 different initial conditions (ICs), randomly and independently chosen. We sample the synaptic inputs of 250 neurons (out of N=4000) at every time constant. Finally, we perform a standard PCA analysis on the resulting time series. The results are illustrated in Fig. 1 for g w =1 and ρ w =0, 0.8 and 1.0. The PR significantly decreases (Fig. 1a) and the dynamics significantly slows down (Fig. 1b-c) at increasing ρ w . For ρ w =0.8, the projections of the dynamics on the first 2 principal components are well separated suggesting that the dynamics spend a significant amount of time in restricted regions of the phase space (depending on the IC). This is reminiscent of the weak ergodicity breaking occurring in mean-field models of spin and structural glasses (Cugliandolo & Kurchan, 1995).

To probe the computational relevance of the observed dynamics, we present the network with 5 different stimuli. Each stimulus consists of N external inputs, randomly and independently drawn from a standardized Gaussian distribution. The stimuli are transiently applied for 50 time constants. We also inject Gaussian white noise for the duration of the simulation (500 time constants). Then, we train a maximum-margin perceptron at each time point and use a one-vs-one strategy to decode the 5 stimuli. The decoding accuracy with cross-validation provides a simple way to quantify memory lifetime. Fig. 2 shows the decoding accuracies, averaged over folds and pairs of stimuli, for various network parameters and noise intensities. As can be seen (bottom row), for ρ w =0.6 the decoding accuracy stays above chance for ~100 time constants. Far from the critical line, furthermore, it is weakly dependent on noise intensity. This is in dramatic contrast to what happens at ρ w =0, i.e., in a random network (Fig. 2 top row). 
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 1 Fig. 1: (a) fraction of explained variance as a function of the number of principal components (PCs). (b)-(c)Projections of the network dynamics onto the first 2 PCs for 5 randomly selected initial conditions.
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 2 Fig. 2: Decoding accuracy at varying distance from the critical line for 2 levels of symmetry and 3 levels of temporal noise (σext). Accuracies are averaged over folds and pairs of stimuli. Gray bars indicate the interval during which the stimulus is present.