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Reconstructing the neutrally-buoyant particle flow near a singular corner

The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions. A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target domain. We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target domain. Thereafter, we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one. The robustness of such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator. In fact, we show that our algorithm well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajectories rather than homogeneously distributed orbits. Potential applications to microfluidics and improvements of the proposed algorithm are finally discussed.

Introduction

Particle-laden flows are multiphase flows for which the dispersed phase is made of rigid particles immersed in the carrier (fluid) phase. Their relevance to industrial applications (e.g., aerosol technology [START_REF] Hinds | Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles[END_REF], or combustion [START_REF] Burtscher | Characterization of particles in combustion engine exhaust[END_REF]) and natural phenomena (e.g., transport of red blood cells [START_REF] Minerick | Electrokinetic transport of red blood cells in microcapillaries[END_REF], or debris flows [START_REF] Iverson | Debris-flow mobilization from landslides[END_REF]) remarks the ubiquity of particle suspensions, both in turbulent and laminar flows. Among the laminar flows, suspended particles are frequently used in smallscale systems such as in microfluidic [START_REF] Bazaz | Computational inertial microfluidics: A review[END_REF][START_REF] Jiang | Inertial microfluidics in contraction-expansion microchannels: A review[END_REF] and lab-on-a-chip [START_REF] Moerland | Rotating magnetic particles for lab-on-chip applications-A comprehensive review[END_REF][START_REF] Chen | Acoustofluidic micromixers: From rational design to lab-on-a-chip applications[END_REF] devices, or to deliver drugs [START_REF] Mitchell | Engineering precision nanoparticles for drug delivery[END_REF][START_REF] Deeba | Applications of nanoparticles in treatment of respiratory disorders[END_REF] and replace surfactant [START_REF] Ng | Guidelines for surfactant replacement therapy in neonates, Paediat[END_REF][START_REF] Stevens | Surfactant replacement therapy[END_REF]. As the typical velocity scales associated to micro-and nano-fluidic systems are slow, and the characteristic lengths scales are small, the Stokesian approximation of such flows is commonly employed.

To date, several modeling approaches have been proposed *Corresponding author. E-mail address: francesco.romano@ensam.eu (Francesco Romanò) Executive Editor: Cristian Marchioli for particles in unbounded flows [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF][START_REF] Saffman | The lift on a small sphere in a slow shear flow[END_REF][START_REF] Weisenborn | On the Oseen drag on a sphere[END_REF] and complementary exact [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF][START_REF] Jeffery | On the steady rotation of a solid of revolution in a viscous fluid[END_REF], numerical [START_REF] Romanò | Particle-boundary interaction in a shear-driven cavity flow[END_REF][START_REF] Breugem | A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows[END_REF], asymptotic [START_REF] Goldman | Slow viscous motion of a sphere parallel to a plane wall-II Couette flow[END_REF][START_REF] Chaoui | Creeping flow around a sphere in a shear flow close to a wall[END_REF][START_REF] Dauparas | Leading-order Stokes flows near a corner[END_REF][START_REF] Al-Hatmi | On the motion of two microspheres in a stokes flow driven by an external oscillator field[END_REF],

or modeled [START_REF] Romanò | Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges[END_REF][START_REF] Magnaudet | Near-wall forces on a neutrally buoyant spherical particle in an axisymmetric stagnation-point flow[END_REF][START_REF] Chowdhury | Evaluating the electrostatic charge transfer model for particle-particle interactions[END_REF] corrections attempted to include particleboundary interactions in the original equation of Maxey and Riley [START_REF] Maxey | Equation of motion for a small rigid sphere in a nonuniform flow[END_REF]. Despite the well established mathematical framework, understanding and predicting the dynamics of the particulate phase is still a challenge. In particular, the intrinsically dissipative dynamics of most of the forces exerted by the fluid on the particle may lead to the formation of intricate attractors either because of high-strain regions [START_REF] Babiano | Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems[END_REF][START_REF] Bouzaiene | Spreading of Lagrangian particles in the Black Sea: A comparison between drifters and a high-resolution ocean model[END_REF], particle-boundary interactions [START_REF] Schwabe | Formation of dynamic particle accumulation structures in oscillatory thermocapillary flow in liquid bridges[END_REF][START_REF] Romanò | A generic mechanism for finite-size coherent particle structures[END_REF][START_REF] Romanò | Finite-size Lagrangian coherent structures in thermocapillary liquid bridges[END_REF], Coriolis [START_REF] Romanò | Oscillatory switching centrifugation: Dynamics of a particle in a pulsating vortex[END_REF][START_REF] Xu | Oscillatory counter-centrifugation[END_REF], or inertial [START_REF] Haller | Lagrangian coherent structures[END_REF][START_REF] Lasheras | Dynamics of a small spherical particle in steady two-dimensional vortex flows[END_REF][START_REF] Raju | Dynamics of small, spherical particles in vortical and stagnation point flow fields[END_REF] effects. The picture becomes even more complex when considering that a qualitatively novel dynamics can emerge when two or more of such effects gets combined. This is the case, for instance, of the non-trivial attactors reported for inertial particles in steady [START_REF] Romanò | Numerical investigation of the interaction of a finite-size particle with a tangentially moving boundary[END_REF][START_REF] Gereltbyamba | Behavior of settling inertial particles in a differentially heated cubic cavity at moderate Rayleigh number[END_REF] or oscillatory [START_REF] Romanò | Particle coherent structures in confined oscillatory switching centrifugation[END_REF][START_REF] Sauma-Pérez | An experimental study of the motion of a light sphere in a rotating viscous fluid[END_REF][START_REF] Ku | Accumulation of heavy particles in circular bounded vortex flows induced by two small rotating cylinders[END_REF] cavity flows. The prediction of the particle dynamics becomes even more challenging when the particles are immersed in a complex chaotic fluid flow [START_REF] Romanò | Finite-size Lagrangian coherent structures in a two-sided lid-driven cavity[END_REF][START_REF] Romanò | Finite-size coherent structures in thermocapillary bridges[END_REF], where non-dissipative forces, such as buoyancy, actively contribute to a symmetry breaking [START_REF] Wu | Attractors for the motion of a finite-size particle in a two-sided lid-driven cavity[END_REF] or to the creation of attractors [START_REF] Romanò | Stokesian motion of a spherical particle near a right corner made by tangentially moving walls[END_REF].

Starting from the method originally proposed by Romanò [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF] for retrieving the velocity field in the tracer limit, this paper will extend our previous approach by demonstrating that a similar method has potential for targeting a different objective, i.e., predicting the dynamics of neutrally-buoyant finite-size particles. As in Ref. [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF], we will still rely on the trajectories of a few large density-mismatched inertial particles, but contrary to Ref. [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF] we will not take the tracer limit (Stokes number tending to zero). This will allow us to correct for sedimentation and density-mismatch effects, i.e., to reconstruct the dynamics of a neutrally-buoyant particle preserving the dissipative effects due to its finite size and to the corresponding interaction with the boundaries. The aim is to demonstrate that a robust reconstruction of the particulate phase space for the neutrally-buoyant particle is possible, even for singular flows as the one considered in this paper (not yet demonstrated by Ref. [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF]). Such a correction for density-mismatch effect can help to better understand the particle dynamics in phase space, as a major source of dissipation can be corrected for. This will be demonstrated for a singular corner flow that reflects the Taylor's scraper problem [START_REF] Taylor | On scraping viscous fluid from a plane surface[END_REF]. The forces and torques on a sphere near the right dihedral corner in Stokes flow have been numerically computed by Ref. [START_REF] Romanò | Forces and torques on a sphere moving near a dihedral corner in creeping flow[END_REF] and are here used to integrate the particle trajectories. At first, the mathematical problem is formulated in Sect. 2, then the particulate flow is defined by taking advantage of the symmetries of the problem and of the linearity of the creeping flow approximation (see Sect. 3). Thereafter, the technique proposed for the phase-space reconstruction is presented in Sect. 4 and the corresponding are analysed and discussed in Sect. 5. A summary, some conclusions and the future perspectives of our approach are finally reported in Sect. 6.

Problem formulation

The motion of a rigid sphere near a semi-infinite right dihedral corner made by two solid walls is considered. The spherical particle of density ρ p and radius a p moves with translational velocity Ũ = ( Ũ, Ṽ, W) and rotational velocity Ω = ( Ωx , Ωy , Ωz ). The sphere is immersed in a Newtonian fluid of constant density ρ f and kinematic viscosity ν. One of the two corner walls slides tangentially to its own plane at z = 0 with velocity Ũw = ( Ũw , 0, 0). By moving towards the corner edge located at x = (0, ỹ, 0), the sliding wall drives an incompressible flow between the particle and the walls. Moreover, owing to the density mismatch, also the buoyancy force due to the gravitational acceleration g = g(0, 0, 1) contribute to establish the fluid flow (see Fig. 1).

The particle experiences a creeping flow if the local particle Reynolds number is small, i.e., emphRe

p = | Ũ + Ω × ( xs -xp ) -ũ|a p /ν ≪ 1
, where xp = ( xp , ỹp , zp ) is the position vector of the particle centroid, while xs denotes the particle surface. Moreover, considering a region at distance L from the corner edge, also the near-corner flow driven by the sliding wall can be assumed Stokesian if emphRe = | Ũw |L/ν ≪ 1. When both such assumptions hold, the inertial term of the momentum equation can be neglected and the fluid flow between the particle and the corner is governed by the incom-
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Spherical particle moving near a dihedral corner with a wall sliding at velocity Ũw = ( Ũw , 0, 0). The sphere is subject to the forces exerted by the surrounding fluid and by the gravitational acceleration g. The solid lines represent the streamlines of the Stokes flow without the particle, and the light-blue region denotes the subdomain accessible to the particle centroid, considering that the sphere cannot penetrate the walls. The dynamics of the particle is therefore considered within the light-blue domain, whereas the fluid domain extension in x-and z-direction is of 360a p , and of 720a p in y-direction (same domain as in Ref. [START_REF] Romanò | Forces and torques on a sphere moving near a dihedral corner in creeping flow[END_REF]).

pressible creeping flow equations:

∇ • u = 0, ∇p = ∇ 2 u, ( 1 
)
where u is the dimensionless velocity field of the fluid phase and p its reduced pressure field. The non-dimensional form of the equations has been obtained by scaling lengths ( x, xp , xs ), velocities ( Ũ, Ũw ) and pressure ( p) by a p , ν/a p and ρ f ν 2 /a 2 p , respectively; consistently, the rotation rate of the particle ( Ω) is scaled by ν/a 2 p . Below, the tilde-sign is dropped for denoting the non-dimensional quantities.

The mathematical problem ( 1) is closed by the no-slip boundary conditions at the solid walls and over the particle surface

x = 0 : u = 0, (2a) 
z = 0 : u = U w , (2b) 
x = x s : u = U + Ω × (x s -x p ), (2c) 
and by enforcing the far-field conditions for the fluid flow at a distance L/a p from the corner edge. For |x p | ≪ L/a p we can safely assume that the particle perturbation has vanished (see Romanò et al. [START_REF] Romanò | Forces and torques on a sphere moving near a dihedral corner in creeping flow[END_REF]), hence the far-field flow is enforced to correspond to the analytical solution of the Taylor's scraper flow [START_REF] Taylor | On scraping viscous fluid from a plane surface[END_REF], i.e.,

u = U w [ f ′ (θ) cos(θ) + f (θ) sin(θ) ] , ( 3a 
) v = 0, (3b) 
w = U w [ f ′ (θ) sin(θ) -f (θ) cos(θ) ] , (3c) 
where θ = cos -1

( x/ √ x 2 + z 2 )
is the polar angle and f (θ) = [θ sin(π/2-θ)-π/2(π/2-θ) sin θ]/(1-π 2 /4). Such an analytical solution is enforced at x = 360, z = 360, and y = ±360, as in Romanò et al. [START_REF] Romanò | Forces and torques on a sphere moving near a dihedral corner in creeping flow[END_REF].

Owing to the symmetries and the linearity of our creeping flow problem, the original problem can be solved as superposition of four cases (one of which with two variants): I) rotation of a sphere with axis parallel to the edge of a steady right corner:

U w = 0, U = 0, Ω = Ω y e y , g = 0, (4) 
II) translation of a sphere normal to one of the walls of a steady right corner:

a) U w = 0, U = Ue x , Ω = 0, g = 0, (5a) b) U w = 0, U = We z , Ω = 0, g = 0, (5b) 
III) a sphere held steady near a right corner with one of its walls sliding towards the edge:

U w = U w e x , U = 0, Ω = 0, g = 0, (6) 
IV) a sphere held steady near a stationary right corner under the effect of buoyancy forces:

U w = 0, U = 0, Ω = 0, g = ga 3 /ν 2 (0, 0, 1), (7) 
where the wall and particle velocities have been normalized by ν/a p , the particle rotation rate by ν/a 2 p , and the gravity acceleration is made non-dimensional by scaling it with ν 2 /a 3 p .

Dynamics of a spherical particle

As the flow between the spherical particle and the dihedral corner is Stokesian, the dynamics of the particle can be computed using the quasi-steady approximation. Hence, the sphere does not experience any acceleration and the resultant of all the forces, as well as of all the torques, exerted by the fluid on the particle must be null. Following Ref. [START_REF] Romanò | Stokesian motion of a spherical particle near a right corner made by tangentially moving walls[END_REF], we can write the translational and rotational equilibria for the particle centroid formulating the equations in terms of force and torque coefficients F = (F x , F y , F z ) and T = (T x , T y , T z ), where the forces and torques have been scaled by the Stokes drag 6πρ f νa p U and the couple 8πρ f νa 2 p U. Owing to the symmetries of the problem, U = (U, 0, W) and Ω = (0, Ω y , 0) and the linear system governing the particle dynamics reads:

              F IIa x F IIb x F I x F IIa z F IIb z F I z T IIa y T IIb y T I y               :=M •               U W Ω y               = -               U w F III x U w F III z U w T III y               +               0 2/9(1 -ρ)Fr -2 0               = -(A 1 A 2 A 3 ) T . ( 8 
)
where ρ = ρ p /ρ f is the particle-to-fluid density ratio,

Fr = ν/ √ ga 3 p is the Froude number, U g = (2/9)(1 -ρ)Fr -2 = 2(1 -ρ)ga 3
p /9ν 2 is the dimensionless settling velocity (with U g > 1 if ρ < 1 and vice versa), and the superscript identify the respective sub-problem of Fig. 2 for the force and torque coefficients that only depend on the position x p of the particle.

The solutions of Eq. ( 8) can be derived explicitly computing the translational and rotational velocity of the particle as done by Ref. [START_REF] Romanò | Stokesian motion of a spherical particle near a right corner made by tangentially moving walls[END_REF], i.e., assuming that the fit functions of Ref. [START_REF] Romanò | Forces and torques on a sphere moving near a dihedral corner in creeping flow[END_REF] hold:

              U W Ω y               = α 1               F I z T IIb y -F IIb z T I y F IIa z T I y -F I z T IIa y F IIb z T IIa y -F IIa z T IIb y               + α 2               F IIb x T I y -F I x T IIb y F I x T IIa y -F IIa x T I y F IIa x T IIb y -F IIb x T IIa y               + α 3               F I x F IIb z -F IIb x F I z F IIa x F I z -F I x F IIa z F IIb x F IIa z -F IIa x F IIb z               , (9) 
where 

α i = A i /det(M).

Phase space reconstruction

A meshless interpolant will be employed to numerically reconstruct the phase space of the particle dynamics. Following Ref. [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF], we carry out a multiquadratic radial basis interpolation with radial basis functions ϕ(r) and scalar radius r = ||rr i || 2 measured from the i-th generalized coordinate of the phase space, r i . Our multivariate function f (r) to interpolate is each particle flow component in the (x, z)-plane, i.e., U and W. As they depend on the location of the particle centroid x, on the wall velocity U w , and on the characteristic settling velocity U g , the generalized phase space coordinates are r = (x, z, U w , U g ), and the basis function interpolant f RBF (r) ≈ f (r) yields

f RBF (r) = L ∑ l=1 β l p l (r) + N ∑ n=1 λ n ϕ(||r -r n || 2 ), ( 10 
)
where N denotes the amount of nodes to interpolate, p l are the elements of a hierarchical polynomial functional basis made use of for conditioning the interpolant f RBF to be positive definite, and L = 2 is here used as the maximum polynomial order. For more details about the choice and optimization of all the remaining coefficients, we refer to Ref. [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF].

Results and discussion

As recently demonstrated by Romanò et al. [START_REF] Romanò | Stokesian motion of a spherical particle near a right corner made by tangentially moving walls[END_REF], the particle dynamics near a corner flow results from a dissipative system that admits a non-trivial attractor in (x, z) ∈

[1.1, 2] × [1.1, 2] for U g ∈ [-1.6, -0.7],
if U g is aligned with the z-direction as in our case. This is demonstrated in Fig. 3 for U w = -1, and U g = -1 (Fig. 3a) and U g = -1.5 (Fig. 3b). The blue lines denote the particle trajectories converging to the attractor (pink bullet). Owing to the linearity of the creeping flow solution, an equivalent repeller would emerge if we considered sign-inverted driving effects, i.e., for U w = 1 and U g = {1, 1.5}. The dynamics observed for the particle is dominated by gravitational and particle-boundary interaction effects. This is made clear by comparing Fig. 3a andb, which in turn are topologically different from the unperturbed flow streamlines (see light-blue square in Fig. 2). As a result, the strong sensitivity of the particle dynamics to the ratio between U w and U g renders very challenging to correct the particulate flow field for sedimentation effects. In fact, we will generalize the approach of Romanò [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF] demonstrating that it can be used not only for the reconstruction of the unperturbed fluid flow, but also for robustly correcting the particulate flow field from sedimentation effects. We will therefore reconstruct the dynamics of neutrally buoyant particles (U g = 0) in the whole domain by tracking only a few density mismatched particles.

To test our approach for reconstructing the flow of neutrally buoyant particles, we consider two tracking data sets, i.e., a few density-mismatched particle trajectories initialized: (i) at the same location (x, z) = (2, 1.1), and (ii) along a vertical line at x = 2. Figure 4a depicts the particle trajectories corresponding to case (i) for U g ∈ [-2, 2] and U w = -1. The corresponding particle velocity U = (U, W), unperturbed flow velocity u f = (u f , w f ) and particle-to-fluid velocity difference are depicted in Fig. 4b from right to left, respectively. The particle trajectories are sampled with a constant time step of ∆t = 0.01 and integrated for t = 150 or until the particle leaves the domain (x, z) = [1, 2] × [START_REF] Hinds | Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles[END_REF][START_REF] Burtscher | Characterization of particles in combustion engine exhaust[END_REF]. As we vary the characteristic settling velocity U g , the particles init- Trajectories a and velocities b for twenty-one particles with U g ∈ [-2, 2] and initialized at (x, z) = (2, 1.1). The right panels denote the particle-to-unperturbed-fluid-flow velocity difference (Uu f ,Ww f ), the unperturbed fluid velocity (u f ,w f ), and the particle velocity (U,W) as a function of time along the particle trajectory. ialized at (x, z) = (2, 1.1) gets attracted to a spiral sink, as shown for the lightest pink trajectories in Fig. 4a, while they exit the domain of interest for large enough U g , i.e., U g > -0.7. In the spirit of the approach developed by Romanò [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF], different dissipative dynamics are combined by computing particle trajectories for various U g /U w . On the one hand, varying U g /U w allows to probe the domain by taking advantage of the spectrum of the dissipative systems considered; on the other hand, enlarging the absolute value of the control parameter |U g /U w | leads to systems with a less pronounced spiralling character that either quickly converges to the spiral sink or quickly exits the domain of interest. We therefore decided to test the robustness of our approach by considering a limited subset of trajectories, U g = {-0.8, -0.4, -0.2, -0.1, 0.1, 0.2, 0.4}, that include both the qualitative behaviours (attracted and domainexiting trajectories) and that are used to correct the particulate flow for sedimentation effects. Figure 5a depicts the seven trajectories considered to sample the particle velocity U(x, z, U w = -1, U g ) in the domain, and Fig. 5b shows the target flow to reconstruct computed using Eq. ( 9) for U g = 0. The interpolation function ( 10) is used to reconstruct the particulate flow U in phase space (x, z, U w = -1, U g ), deriving the interpolant U RBF (x, z, U w = -1, U g ) = (U RBF , W RBF ). The robustness of the interpolant is tested by undersampling the original data set and computing the interpolation error. Comparing the interpolant reconstructed using a data sampling ratio of 0.5, 0.2, 0.1, and 0.05, a maximum relative error of less than 1% is found for the particle velocity probed along the trajectories shown in Fig. 4. Taking the limit for U g → 0 of the interpolated particle velocity in the hyperspace (x, z, U w = -1, U g ), an approximation of the flow field for neutrally buoyant particles Û(x, z, U w = -1, U g = 0) is derived over the whole domain, i.e., Û(x, z, U w = -1, 5c, where the former is depicted by pink arrows, while the latter is shown by green arrows. The good agreement between the original flow velocity for neutrally-buoyant particles and the reconstructed one is quantified by the absolute value of the error |(U -Û) U g =0 | shown by the color map.

U g = 0) = lim U g →0 U RBF ≈ U(x, z, U w = -1, U g = 0). A com- parison between Û(x, z, U w = -1, U g = 0) and U(x, z, U w = -1, U g = 0) is depicted in Fig.
The second benchmark for the flow reconstruction approach proposed in this study considers particle trajectories initialized along x = 2 and shifted one another along the zdirection, i.e., z = 1.1 + 0.2 × (U g + 2) for U g ∈ [-2, 2]. The same values of U w = -1 and U g depicted in Fig. 4 are shown for this second test, and the corresponding particle orbits, velocities and unperturbed flow velocities are depicted in Fig. 6 with the same color coding and panels layout used for Fig. 4. This second benchmark is even more challenging than the first one as most of the particle trajectories considered do not provide any information about the flow near the vertical and horizontal walls. We however restrict even further the data set employed for demonstrating the robustness of our reconstruction algorithm by selecting only the trajectories for U g = {-0.8, -0.4, -0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.4}. We stress that the corresponding flow reconstruction over the whole target domain, i.e., for (x, z) ∈ [1, 2] × [1, 2], will mainly rely on a bundle of trajectories located at x ∈ [≈ 1.9, 2] and z ∈ [≈ 1.5, 2] (see Fig. 7a). The target particulate flow to reconstruct (Fig. 7b) is the same as in the first benchmark (Fig. 5b). Despite the increased difficulty, the flow reconstruction (pink arrows in Fig. 7c) keeps being in good agreement with the target flow (green arrows in Fig. 7c) as also quantified by the reconstruction error map |(U -Û) U g =0 | shown in the background of Fig. 7c. In spite of the challenges of the two benchmarks, the reconstruction error is kept below 0.06 for most of the two-dimensional domain. The highest absolute error is localized near the bottom and left boundaries where the forces exerted by the wall on the particle tend to infinite, naturally ill-conditioning whatever form of reconstruction. We further stress that classic extrapolation algorithms applied for reconstructing the neutrally-buoyant dynamics are associated to a very significant absolute error, more than double in comparison to our method (not shown).

Summary and conclusion

The reconstruction of the velocity field for a neutrallybuoyant particle moving near a singular corner has been tackled by generalizing the approach firstly proposed by Romanò [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF]. A few density-mismathed particle trajectories have been used to probe the flow field and the robustness of the algorithm has been demonstrated by considering two increasingly challenging benchmarks. At first, seven trajectories initialized from the same location have been considered. The orbits were relatively well-conditioned to probe a significant area of the near-corner flow, however, two qualitatively different dynamics have been included in this data set: (i) a particle getting attracted to a non-trivial spiralling sink, and (ii) six particles exiting the domain without any spiralling dynamics. Even if the quantitative and qualitative disagreement of the particle trajectories could ill-condition the reconstruction of the neutrally-buoyant particle flow U over the whole domain, our algorithm has been proven robust. This same satisfactory result has been obtained for the second test, in which a further element of ill-conditioning of the system has been included. In fact, all the trajectories supposed to well condition the reconstruction operator have been gathered in a narrow bundle that could provide little information about the particles velocity in most of the domain. These two tests proved that the method proposed by Romanò [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF] could well be adapted to correct for sedimentation effects by starting from the trajectory of density-mismatched particles and deriving the flow for a neutrally-buoyant particle all over the domain. Still, the largest errors of the reconstruction technique are distributed along the bottom and left edge of the particle centroid domain.

This consideration opens up to potential improvements of the reconstruction method that could take advantage of theoretical boundary conditions applied near each wall, as done for the background flow reconstruction [START_REF] Romanò | Reconstructing the fluid flow by tracking of large particles[END_REF]. The natural counterpart of the reconstructed flow for a neutrally-buoyant particle in Stokes flow is represented by the leading-order particle-boundary interaction dynamics predicted by the lubrication theory (see e.g., Refs. [START_REF] Brenner | The slow motion of a sphere through a viscous fluid towards a plane surface[END_REF], [49] or [START_REF] Cox | The slow motion of a sphere through a viscous fluid towards a plane surface-II Small gap widths, including inertial effects[END_REF]). Moreover, when the unperturbed flow reconstruction is aimed, the approach proposed in this study can well be used to correct for a dissipative effect at a time (sedimentation/density mismatch, particle-boundaries interaction, inertial effects) leading to the tracer equation. This same asymptotic limit can be approached from different directions either correcting for density mismatch at first and then for particle-boundaries interaction, or viceversa. That could help to approach the ultimate limit of inertia-less tracer particles and estimate the error committed by reconstructing the flow field.

The method proposed in this study is complementary to the classic theories of sedimentation [START_REF] Kynch | A theory of sedimentation[END_REF][START_REF] Williams | The theory of sedimentation analysis[END_REF] and has potential applications to micron-sized centrifugation devices for particles in rotating cavity flows [START_REF] Mason | Forces on bodies moving transversely through a rotating fluid[END_REF][START_REF] Mark | Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications[END_REF][START_REF] Ducrée | The centrifugal microfluidic Bio-Disk platform[END_REF][START_REF] Candelier | Time-dependent force acting on a particle moving arbitrarily in a rotating flow, at small Reynolds and Taylor numbers[END_REF][START_REF] Bluemink | A sphere in a uniformly rotating or shearing flow[END_REF], to particle trapping/sorting [START_REF] Nilsson | Review of cell and particle trapping in microfluidic systems[END_REF][START_REF] Tanyeri | A microfluidic-based hydrodynamic trap: Design and implementation[END_REF][START_REF] Karimi | Hydrodynamic mechanisms of cell and particle trapping in microfluidics[END_REF], to particle attraction/repulsion in cavities [START_REF] Romanò | Limit cycles for the motion of finite-size particles in axisymmetric thermocapillary flows in liquid bridges[END_REF][START_REF] Tsorng | Behaviour of macroscopic rigid spheres in lid-driven cavity flow[END_REF] and junction flows [START_REF] Chan | Microscopic investigation of vortex breakdown in a dividing T-junction flow[END_REF][START_REF] Hur | High-throughput size-based rare cell enrichment using microscale vortices[END_REF][START_REF] Sollier | Size-selective collection of circulating tumor cells using Vortex technology[END_REF][START_REF] Volpe | A computational approach to the characterization of a microfluidic device for continuous size-based inertial sorting[END_REF]. In general, within the framework of the creeping flow approximation and based on the definition of U g , i.e., U g = 2(1 -ρ)ga 3 /9ν 2 , the flow considered in this study applies to small particles suspended in liquids, i.e., a ∈ [10 -4 , 10 

Figure 2

 2 Figure 2 Decomposition of the general problem into elementary sub-problems. The arrows in a, b and c show the rotational and translational motion of the particle, the arrow in d denotes the sliding direction of the moving wall, while the arrow in e refers to the non-dimensional settling velocity U g .

Figure 3

 3 Figure 3 Particle attractor for U w = -1 and U g = -1 a and U g = -1.5 b. The blue lines denote the particle flow streamlines and the pink bullet show the location of the attractor.
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 4 Figure 4Trajectories a and velocities b for twenty-one particles with U g ∈ [-2, 2] and initialized at (x, z) = (2, 1.1). The right panels denote the particle-to-unperturbed-fluid-flow velocity difference (Uu f ,Ww f ), the unperturbed fluid velocity (u f ,w f ), and the particle velocity (U,W) as a function of time along the particle trajectory.
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 5 Figure 5 Set of particle trajectories selected for reconstructing the neutrally-buoyant particulate flow a, particle velocity field for U g = 0 b, and reconstructed flow absolute error c. The green arrows show the target flow and the pink arrows denote the reconstructed particle flow.

Figure 6

 6 Figure 6Trajectories a and velocities b for twenty-one particles with U g ∈ [-2, 2] and initialized at (x, z) = (2, 1.1 + 0.2 × (U g + 2)). The right panels denote the particle-to-unperturbed-fluid-flow velocity difference (Uu f ,Ww f ), the unperturbed fluid velocity (u f ,w f ), and the particle velocity (U,W) as a function of time along the particle trajectory.

Figure 7

 7 Figure 7 Set of particle trajectories selected for reconstructing the neutrally-buoyant particulate flow a, particle velocity field for U g = 0 b, and reconstructed flow absolute error c. The green arrows show the target flow and the pink arrows denote the reconstructed particle flow.

  -3 ] m and ν ∈ [10 -6 , 10 -3 ] m 2 /s. For typical microfluidic flows, a 3 /ν 2 ∈ [0.1, 10] s 2 /m and our range of U g ∈ [-2, 2] leads to |1 -ρ| ∈ [0.1, 10].