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This work presents systematic comparisons between classical molecular dynamics (cMD)

and quantum dynamics (QD) simulations of 15-dimensional and 75-dimensional models in

their description of H atom scattering from graphene. We use an experimentally validated

full-dimensional neural network potential energy surface (NN-PES) of a hydrogen atom

interacting with a large cell of graphene containing 24 carbon atoms. For the quantum

dynamics simulations, we apply Monte Carlo Canonical Polyadic Decomposition (MCCPD)

to transform the original PES into a Sum of Products (SOP) form and use the Multi-

layer Multi-configuration Time-dependent Hartree (ML-MCTDH) method to simulate the

quantum scattering of a hydrogen or deuterium atom with an initial kinetic energy of 1.96

eV or 0.96 eV and incident angle of 0o, i.e. perpendicular to the graphene surface. The

cMD and QD initial conditions have been carefully chosen in order to be as close as possible.

Our results show little differences between the cMD and QD simulations when the incident

energy of the H atom is equal to 1.96 eV . However, a large difference in sticking probability

is observed when the incident energy of the H atom is equal to 0.96 eV , indicating the

predominance of quantum effects. To the best of our knowledge, our work provides the first

benchmark of quantum against classical simulations for a system of this size with a realistic

PES. Additionally, new projectors are implemented in the Heidelberg MCTDH package

for the calculation of the atom scattering energy transfer distribution as a function of the

outgoing angles.
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I. INTRODUCTION

Graphene is a bi-dimensional crystal material first defined by P. R. Wallace in 19471 and

isolated for the first time in 2004 by K. S. Novoselov and A. K. Geim2. Graphene has unique

electronic, magnetic, and chemical properties that make it a promising material for various

applications such as electronics, energy storage, and sensing3–6. Due to its exceptional

properties, Graphene is the subject of extensive research in various fields of science and

technology. Besides, chemical modification of graphene can introduce new properties and,

in turn, lead to potential applications7, for example, hydrogenated graphene can create a

local band gap and make it possible to produce a graphene semiconductor8. In addition, the

hydrogenation of graphene is also a promising model system for the study of mechanisms of

vibrational redistribution reactions9.

The scattering of H atoms from the graphene surface is an active area of research10. The

study of the interaction between hydrogen atoms and graphene can provide essential insights

into the fundamental mechanisms of the formation of the C-H chemical bond and also into

hydrogen storage11. The experiments on hydrogen scattering reported recently9 provide a

ground for understanding the adsorption of hydrogen atoms on the graphene surface as

well as the mechanisms of the energy transfer at scattering and vibrational redistribution

reactions. In the experiment, a beam of H atoms with narrow incidence energy distribution

and well-defined incidence angle was scattered from a graphene surface, and the kinetic

energy of the outgoing H atoms was measured using the Rydberg atom time-of-flight (TOF)

techniques.

One of the most crucial components in the theoretical modelling of the atomic scattering

from surfaces is a potential energy surface (PES), accurate enough to correctly describe

chemically relevant properties (energy barriers, adsorption energies etc.). A full-dimensional

neural network PES (NN-PES) for a H atom interacting with a graphene was constructed

recently12 using machine learning methods adapted to large condensed systems13. The NN-

PES was trained on a set of over 75 000 configurations calculated with the GGA-DFT PBE

functional for a hydrogen atom and 24 carbon atoms representing graphene surface. This

resulted in a fit with root mean standard error of 0.6 meV/atom. The classical molecular

dynamics (cMD) simulations of H scattering from graphene produced energy loss spectra and

angular distributions of scattered H atoms in good agreement with the experimental data12.

3



While the cMD was largely successful in reproducing the experiment, H atom scattering

from graphene is fundamentally a quantum system14, due both to the light mass of the

H atom and the single-layer of C atoms. Interestingly, ring polymer molecular dynamics

(RPMD) simulations addressing this issue showed little difference to cMD simulations14.

Unfortunately, due to the approximations used in its derivation, it is not clear whether

RPMD is suitable for describing non-equilibrium scattering processes occurring on the short-

time (dozens to hundreds fs) scale. Quantum dynamics (QD) simulations are thus needed

both to test the reliability of RPMD simulations and to rigorously reveal quantum effects

in the scattering process.

Quantum dynamics is computationally challenging for such a high-dimensional system

(24 graphene C atoms and a H atom add up to 75 DoFs), since the computational time and

memory requirements for calculations increase exponentially with the dimensionality of the

system. This is due to the fact that the wave function describing a quantum state of the

system has to be represented in a high-dimensional configuration space, and the number

of basis set functions to describe the system also increases exponentially with the dimen-

sionality. To overcome these difficulties, we use multi-configuration time-dependent Hartree

(MCTDH)15–21 approach to solve the time-dependent Schrödinger equation much faster and

with much smaller memory demands than conventional methods. This method is extremely

suitable for systems with the large number of degrees of freedom (DoFs). Unfortunately,

to achieve the aforementioned effectiveness, it is necessary to represent the PES in a sum-

of-products (SOP) form. This can be achieved, for example, by refitting the existing PES

using a tensor decomposition method22–26. That can be rather difficult because of the large

number of parameters to be determined and the high computational cost associated with

the process. There exists an alternative to refitting, the correlation discrete variable repre-

sentation method27–29 by U. Manthe, which, however, requires very many potential energy

evaluations during propagation, so we do not consider it here.

In this work, we perform 75-dimensional QD simulations of the H scattering from

graphene using as input the experimentally validated NN-PES12. The recently developed

methods: Monte Carlo Canonical Polyadic Decomposition30 (MCCPD) for PES transforma-

tion, and the advanced multi-layer MCTDH31–33 propagator make that task quite realistic.

Besides, we assess these simulations with QD simulations for the system with reduced di-

mensionality. Initially, we have chosen to fix the positions of 20 of the 24 carbon atoms at
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FIG. 1. Graphene surface simulation cell: the impact site is labelled by 1; C-atoms forming the

first shell around the 1st atom are labelled by 2, 3, and 4. The surface is in the X,Y plane, the Z

direction is perpendicular to the surface.

their equilibrium geometry and allow the remaining 4 C-atoms and the H-atom to move.

This reduces the dimensionality of the system from 75D to 15D, making it computationally

much more robust and feasible. Figure 1 shows the structure of the graphene surface, where

an H-atom impact site is labelled by 1, and C-atoms forming the first shell around the

central C-atom are labelled by 2, 3, and 4. The labelled C-atoms are allowed to move in the

model with reduced dimensions.

It is important to keep in mind that the model with the reduced number of dimensions

introduced above may not capture all the details of the full-dimensional system and thus can

fail to reproduce the experimental results. For example, in the reduced model, the incident

H atom hits a C-atom 1 while the scattering from the other sites is not taken into account to

prevent contributions from the fixed part of the graphene into the scattering amplitudes. So,

the simulations in the reduced dimensions cannot substitute the full-dimensional quantum

simulations. The latter are hence used to assess the relevance of the quantum-mechanical

effects by comparison to the cMD simulations.

As main conclusion, we find that the results of QD simulations compare well with experi-

mental angular and energy scattering distributions. The quantum effects display themselves

in sticking probability even at incidence energies as high as 0.96 eV .
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II. CLASSICAL MD AND QD SIMULATIONS DETAILS

The QD simulations were performed using the Heidelberg MCTDH Package34, the cMD

simulations are realized by md tian2 35. The initial conditions were chosen to reproduce the

incidence energy value of 1.96 eV and the normal incidence angle for the H and D atoms,

since at these conditions the deviation of the cMD simulations from experimental results is

most pronounced.

In the classical MD simulations, the projectile has a sharp incidence kinetic energy and

incidence angle. In case of QD, we have to deal with the corresponding distributions defined

by the initial wavefunction. It is important, therefore, to bring the initial conditions for the

classical and quantum simulations as close as possible to each other. In the following we

introduce the methods that we used to extract the same information from both simulations.

A. Coordinates

The cMD simulations were done using Cartesian coordinates. However, for QD simu-

lations, we opted to use normal mode coordinates for the graphene surface and Cartesian

coordinates for the hydrogen atom. This choice was motivated by the fact that the potential

energy of the graphene surface is approximately harmonic at room temperature, and the

use of normal mode coordinates allows us to decouple the DoFs of the graphene in a good

approximation. This approach facilitates the convergence of our calculations and leads to

more efficient simulations.

The transformation from Cartesian x to (mass and frequency weighted) normal q coor-

dinates (cf. Ref. 36),

qα = ω1/2
α

f∑
n=1

(xn − x(eq)n )Lnα , (1)

is determined by the matrix L diagonalizing the mass-weighted Hessian matrix GF eq:

GF eqL = Lω2. (2)

Here, Gkn = 1/
√
mkmn is the mass matrix, Feq,kn = ∂2V

∂xk∂xn

∣∣∣
x=xeq

is the Hessian matrix for

the potential V calculated at equilibrium geometry xeq when the H atom is far from the

surface, ω2 is the diagonal matrix of eigenvalues of the Hessian, which are squares of the

frequencies of the normal modes.
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FIG. 2. Three most important normal modes participating in the energy transfer during the H

atom collision with graphene: mode q1 (a), mode q4 (b),and mode q10 (c).

In the case of the reduced 15-dimensional system with four movable C atoms, the normal

modes have been computed for these four C atoms, while all other carbon atoms, not shown

in Figure 1, are fixed at their equilibrium position at 0 K and the H atom is far from the

surface. Consequently, there are a total of twelve normal modes used to describe the motion

of the graphene slab. Three of them are of particular importance in the MD simulations of

scattering, which will be discussed in detail in the next Section: modes q1 (Figure 2a) and

q4 (Figure 2b) are transverse modes incorporating the motion of the central C atom in z

direction and participating in the formation of a C-H chemical bond; q10 (Figure 2c) is the

breathing vibrational mode for the first shell C atoms.

In the case of the full-dimensional system, all 24 C atoms can move. The normal modes

are determined by treating the graphene cell as periodic and the H atom is far from the

surface, resulting in a total of 72 normal modes for the graphene surface. However, due to

the periodic nature of the PES for the graphene cell, 3 translation normal modes exhibit

nearly zero or negative frequencies. These three modes should be removed, resulting in a

final count of sixty-nine normal modes necessary to characterize the behavior of the graphene

surface.

B. PES refitting

In order to put the high-dimensional NN-PES into the sum of products (SOP) form nec-

essary for MCTDH propagation, we used the MCCPD30 method, which is briefly described

below.
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The PES V (q1, q2, . . . , qf ) is approximated by a canonical polyadic decomposition (CPD)

form:

V CPD(q1, q2, . . . , qf ) =
R∑
r=1

cr

f∏
κ=1

vrκ(qκ) , (3)

or in the grid-representation after discretization of the coordinates q:

V CPD
i1,i2,...,if

=
R∑
r=1

cr

f∏
κ=1

vrκ,iκ , (4)

where index iκ numbers discretization points of the coordinate qκ, v
r
κ are basis functions

with expansion coefficient cr, and R is the expansion order (the rank of the decomposition).

It should be noted here that, in general, no restrictions are enforced on the orthogonality of

the basis functions vrκ and normalization can be arbitrary (coefficient cr could be absorbed

into any of the basis functions). However, the basis functions are often restricted to be

normalized to reduce ambiguity, so we adopted this restriction in this work.

Introducing the composite index I = {i1, . . . , if} and the composite single-hole index Iκ =

{i1, i2, . . . , iκ−1, iκ+1, . . . , if}, the decomposition is obtained by optimization of the weighted

L2 difference between the fitting potential V CPD
I from Eq. (4) and the exact potential VI .

This can be cast into minimizing the functional

J =
∑
I

WI

(
VI − V CPD

I

)2
+ ε
∑
I,r

WI c
2
r

(
f∏
κ=1

vrκ,iκ

)2

, (5)

where W is a positive weight function depending on all coordinates q, which imposes more

weights on the regions the PES that should be fitted with elevated accuracy (for instance,

low energy regions where the wavefunction resides). The second term in the r.h.s of Eq. (5)

proportional to ε serves as a regularization with ε being a small parameter which is set to

the square root of machine precision, i.e., ε ≈ 1 · 10−8. It preserves the linear independence

of the basis functions vrκ during the optimization process.

A functional derivative of the functional J defined by Eq. (5) with respect to basis func-

tions crv
r
κ,iκ produces a system of linear equations which, in principle, can be solved. In

practice, solving these equations is simplified by replacing the weight function W with a

factorized approximation for every coordinate qκ:

WI ≈ wκiκW
κ
Iκ , (6)
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and considering a set of the functionals Jκ instead of J :

Jκ =
∑
I

wκiκW
κ
Iκ

(
VI − V CPD

I

)
+ ε
∑
I,r

wκiκW
κ
Iκ

(
f∏
κ=1

vrκ,iκ

)2

. (7)

Then calculating the functional derivative of Eq. (7) with respect to crv
r
κ and setting them

to zero leads to a system of linear equations for crv
r
κ:∑

r′

Sκr,r′cr′v
r′

κ,iκ = Bκ
r,iκ (8)

with

Sκr,r′ =
∑
Iκ

W κ
Iκ

[∏
κ′ 6=κ

vrκ′,iκ′v
r′

κ′,iκ′
(1 + εδr,r′)

]
, (9)

Bκ
r,iκ =

∑
Iκ

W κ
IκVI

∏
κ′ 6=κ

vrκ′,iκ′ . (10)

Note that wκiκ drops out and W κ
Iκ is conveniently defined as W κ

Iκ =
∑

iκ
WI . Standard

linear algebra tools can now be used to solve Eq. (8). Note, that Eqs. (9) and (10) imply

that the solution for mode κ depends on all other modes. So, one has to start with an initial

guess for the CPD decomposition and to get solution for all modes consecutively, then to

update the CPD tensor after solving Eq. (8), and finally, once all modes are updated, to

iterate until either a convergence criterion is met or a maximum number of iterations is

reached. This procedure is known as the alternating least squares (ALS) algorithm. A very

efficient way to accelerate convergence is to start with a small rank R, perform a number of

iterations and subsequently increase R, where the new coefficients cr are set to zero and the

new basis functions vrκ are filled with random numbers.

The ALS iterations defined by Eqs. (8–10) are computationally feasible only when the

number of points I to be processed is not larger than 109–1010, so that the matrices Sκ

and Bκ can actually be computed. To tackle the system considered in this work the total

number of points has to be of order of 1020, so we evaluate the sums in Eqs. (9) and (10)

using a Monte-Carlo sampling with the distribution functions defined by W κ weights30. The

sampling strategy proved to affect strongly the accuracy of the fit. For example, Metropolis

sampling proved to lead to satisfying results30,37. Here, the distribution function is propor-

tional to exp(−βV ) with β being a positive parameter and roughly resembles the ground

state wavefunction if, in the harmonic approximation β = 1/~ω, and V = mω2x2/2 with
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m, ω being the mass and frequency of the harmonic oscillator, respectively. It emphasizes

low energy regions and covers the area where the wavefunction mostly resides. However, the

sampling distribution is derived only from the potential part of the total Hamiltonian and

neglects the influence of the kinetic energy operator, which makes it not accurate enough.

Furthermore, for multi-dimensional surfaces usually each coordinate is approximated by a

different harmonic oscillator such that one needs to find a single parameter β that establishes

a compromise between the various harmonic frequencies.

Obviously, the sampling method described above is not well suited for systems with very

different fundamental frequencies - and therefore not used in this work. In order to avoid

the above deficiency and obtain a sampling distribution proportional to the ground state

wavefunction, we performed two diffusion Monte-Carlo (DMC)38 simulations. From them

we obtained the vibrational ground state distributions for the graphene not interacting with

a projectile (H atom is far away from the surface) and for the graphene with the H atom

close to it. The sampling points obtained from both calculations were subsequently merged

into a single set and each sampling point was mapped onto the nearest Discrete Variable

Representation (DVR) point.

In total 250 291 sampling points were calculated in the regions with potential energy

varying from the minimum of the PES to about 3.5 eV , since the energy accessible in the

dynamic simulations was smaller than 3 eV . We began the ALS optimization with a rank

R = 128, increasing it in every 10 iterations by 64 until the value of R = 512 was reached.

Figure 3 shows the improvement of the fit quality with ALS-iterations given by the root

mean square error (RMSE) of the model’s predictions. The final RMSE is 74.9 cm−1.

Then we generated 401 758 sampling points from the DMC calculations to test and vali-

date the refitted PES. The quality of refitting is shown in figure 4.

C. Initial conditions

Classically, the positions and momenta of particles can be defined precisely, while in the

QD calculation, the state of the system is described by the wave function. This fundamental

difference makes the comparison of results of cMD and QD simulations not straightforward.

Thus, it is important to set the initial conditions for the classical and quantum simulations

in such a way to be able to refer to them as similar.
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FIG. 3. The RMSE dependance on the number of iteration during the CPD optimization.

FIG. 4. The validation of the refitted PES calculated by the MCCPD calculation.

In case of the quantum dynamic simulations, we define the initial state of graphene as

the ground state constructed as a solution of the Schrödinger time-dependent equation for

a negative imaginary time propagation39:

Ψ(x, t) =
∑

cnϕn(x) e−Ent, (11)

where ϕn(x) is the nth eigenstate and En is the corresponding eigenenergy and ~ = 1 is

assumed. Because of the exponential term in Eq.(11), the eigenstates with higher energy will

vanish faster during the relaxation, and the system converges towards the ground state with
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increasing propagation time. Using this method, we found the ground state energy value of

0.710 eV for the system with the reduced dimensions (4 movable C atoms). On the other

hand, the corresponding vibrational ground state energy in the harmonic approximation∑
0.5ωi = 0.698 eV , where frequencies were calculated in the normal mode section. The

values agree well, which makes it reasonable to describe a free-standing graphene surface

within harmonic approximation.

The initial wavepacket for an H atom has to move along the normal to the surface with

the kinetic energy expectation value of 1.96 eV or 0.96 eV , and the position distribution of

the incident H atom has to be narrow. To this end, we used a Gaussian wavepacket for the

H atom in z direction and complex Gaussian wavepackets for the in-plane DoFs40

Ψ(x, t = 0) = A exp
[
−(a+ ib)(x− x0)2

]
. (12)

to mimic the initial state of the H atom. The reason for using complex Gaussians is to

prevent the wavepacket from the broadening during the propagation in the interaction-free

region since a complex parameterized Gaussian wavefunction first narrows and then spreads,

as can be seen from its variance dependence on time40

σ(t) =

√
a2 +

[
2t
m

(a2 + b2)− b
]2

4a(a2 + b2)
. (13)

where m is the mass of the atom and ~ = 1 is assumed. By varying the parameter b entering

Eqs. (12) and (13) one can define the incident wavepacket to have the minimal width at

the turning point, thus that an H atom ’hits’ graphene at the well-defined site (C-atom

labeled 1 in Figure 1). Here x stands for the X or Y coordinate, respectively, of the H-atom.

The variance of the Gaussian function for the H-atom or D-atom in the X or Y direction

is around 0.37 Bohr when hitting the graphene surface. The wave function is, thus, well

localized to the attacked C-atom as shown in figure 5.

D. ML-MCTDH

In the MCTDH method, the molecular wavefunction is written as the SOP of orthonormal

time-dependent single particle functions (SPFs) of logical coordinates Q1, Q2, ..., Qp:

Ψ(Q1, . . . , Qp, t) =

n1∑
i1=1

· · ·
np∑
ip=1

A1
i1,...,ip

(t)ϕ1;1
i1

(Q1, t) · · ·ϕ1;p
ip

(Qp, t) (14)
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FIG. 5. Reduced density of H-atom wave function in the X and Y direction when hitting the

surface. The coordinates of 4 numbered C atoms are indicated.

with SPFs defined as a linear combination of the primitive time-independent basis, for

example,

ϕ1;κ
m (Qκ, t) =

∑
j1,...,jd

A2;κ
m,j1,...,jd

(t)χκ,1j1 (q1m) · · ·χκ,djd (qdm) . (15)

Here np is the number of SPFs used for the pth combined mode, d DoFs are combined to

form the mth logical coordinate, Qm = (q1m, . . . , q
d
m). The logical coordinates are used to

treat the correlation between the combined DoFs already on the SPF level, which improves

the convergence of the calculation.

The type and the number of the primitive basis functions χκ,djd (qdm) should be chosen

carefully in order to adapt to the system and to converge the calculation. Table I lists the

primitive basis used in the 15D QD simulation. We used a Fast Fourier Transform method

(FFT) for Z coordinate of the H atom because the domain of this DoF is very large and so

is the number of grid points needed, and a FFT accelerates a calculation for large grid sizes.

For convenience, we also used a FFT for the in-plane H atom coordinates (see Eq. (20)

below). For the normal modes of graphene, we used the harmonic oscillator (HO) DVR

to optimally adapt to the system. The frequency and mass used for HO basis function in

Table I are equal to 1.0, because the normal modes calculated with the mentioned method

are dimensionless, the mass and frequency are included into the coordinates. It’s important
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TABLE I. The parameters for the definition of primitive basis functions. The second column

indicates the kind of DVR, the third column gives the number of grid points, further parameters

give more details about the DVR. In the case of FFT, they correspond to the coordinates of the

first (P1) and last (P2) grid points and if it is periodic, it is written in the column (P3). In the

case of HO, they correspond to the equilibrium position (P1), frequency (P2) and mass (P3) of

harmonic oscillator basis functions.

DoF Type Grid size P1 P2 P3

X FFT 60 0.0 16.152614301 periodic

Y FFT 60 0.0 13.988573798 periodic

Z FFT 144 0.5 12.0

q1 HO 35 0.0 1.0 1.0

q2 HO 13 0.0 1.0 1.0

q3 HO 13 0.0 1.0 1.0

q4 HO 30 0.0 1.0 1.0

q5 HO 13 0.0 1.0 1.0

q6 HO 13 0.0 1.0 1.0

q7 HO 13 0.0 1.0 1.0

q8 HO 13 0.0 1.0 1.0

q9 HO 13 0.0 1.0 1.0

q10 HO 23 0.0 1.0 1.0

q11 HO 13 0.0 1.0 1.0

q12 HO 13 0.0 1.0 1.0

to note that the normal modes of graphene were calculated under when the H atom being

far from the surface. However, when the hydrogen atom approaches, it strongly alters the

harmonic behavior of the graphene structure, rendering the initially calculated normal modes

less optimal for the system. Consequently, more primitive basis functions are required to

achieve a converged calculation. This explains the larger number of basis functions necessary

for q1, q4, and q10, as they exhibit a higher degree of correlation with the hydrogen atom.

Even for the reduced 15D system, the MCTDH calculations are still computationally

very expensive. The Multi-Layer (ML) formulation of MCTDH helps to decrease the com-

14



putational costs. Here, instead of directly expanding the SPFs in terms of the primitive

basis, as in Eq. (15), several layers of the expansion are introduced. For more details see

Refs. 31–33. The structure of a ML-wavefunction is conveniently visualized by an ML tree

shown in Figure 6. The wavefunction in ML-MCTDH is more compact, but it is challenging

to find the optimal structure of the multi-layer tree to minimize the computation time and

the convergence of calculations. When constructing the ML tree we followed several guiding

lines: (i) strongly coupled DoFs were combined as early as possible; (ii) the population of

the last time-dependent function for each node should be smaller than 10−3 to achieve good

convergence of calculations.

Table II demonstrates that the last time-dependent functions for all nodes in the H atom

scattering match the latter condition. We found that the structure of the ML tree displayed

in Figure 6 is close to the optimum, so we used it to perform simulations of the H atom

scattering from graphene.
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FIG. 6. ML tree structure for 15D simulation. Squares represent primitive basis functions, the

circles—also called nodes—stand for time dependent A-tensors, and the numbers on the edges are

the number of functions used
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Layer Node Mode Maximum population

0 1 1 5.457E-04

0 1 2 5.457E-04

1 2 1 2.106E-04

1 2 2 1.815E-05

1 2 3 1.799E-04

2 5 1 3.278E-05

2 5 2 4.190E-07

1 8 1 1.084E-05

1 8 2 6.700E-05

2 10 1 2.133E-05

2 10 2 3.455E-06

TABLE II. The convergence of the multi-layer tree, the number of layers, and node are shown in

Figure 6.

E. Quantum flux

In the case of classical MD simulations, the initial kinetic energy of the projectile has a

sharp value. This allows to directly extract the energy distribution of scattered H atoms

as a function of the incidence energy to compare with experimental results. In contrast,

in the quantum case, the initial kinetic energy of a wavepacket is represented by a broad

distribution, which means that additional analysis of the scattered wavepacket is necessary.

This task can be achieved by evaluating the quantum flux21,41.

The quantum flux can be measured by analyzing the part of the wavefunction which is

absorbed by a complex absorption potential (CAP)42,43. The main task of the CAP is to

prevent the reflection of the wavefunction from the end points of the grid. Luckily, the CAP

can also be used as an analysis tool. In our QD simulations, the CAP is activated after the

H atom reaches the surface and starts to work at the distance of Zc = 6 Bohr above the

graphene.

A flux correlation function is computed from CAP matrix elements with respect to the

time-dependent wavefunction. A Fourier transform of this correlation function yields the
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energy-resolved flux, which in the time-independent picture has the following form21:

F (E) = 2π〈Ψ0|δ(H − E) F̂ δ(H − E)|Ψ0〉 , (16)

where Ψ0 = Ψ(t=0) is the initial state and

F̂ = i[H,Θ] (17)

is the quantum flux operator. Here Θ is a Heaviside step function, which is non-zero in the

region where the CAP works, i.e., for Z > Zc. Therefore, the flux operator F̂ measures

the quantum flux through a hyperplane defined by equation Z = Zc. Despite the energy E

in Eq. (16) is the total energy of the system, it deviates from the initial kinetic energy of

the H atom only by a constant, since the graphene surface is initially in an eigenstate (the

ground state). With that we obtain the incidence energy resolved information for H atom

scattering from the QD simulations. It is noteworthy that Eq. (16) is useful for evaluating

sticking probabilities S(E) = 1− F (E)/|∆E|2, where

|∆E|2 = 〈Ψ0|δ(H − E)|Ψ0〉

=
1

π
Re

∫ ∞
0

eiEt〈Ψ0|Ψ(t)〉dt (18)

is the energy density function.

In order to extract the final kinetic energy distribution of the H atoms, the final kinetic

energy resolved flux is to be determined. To this end we introduce an operated flux operator

F̂O =
1

2
(F̂ Ô + ÔF̂ ), (19)

where the Hermitian operator Ô is here chosen as a projector onto a momentum state |p〉

of the H atom.

Ô = |p〉〈p| (20)

The desired energy-resolved flux is obtained by substituting the operator F̂ in Eq. (16) with

F̂O defined by Eq. (19), where p is pX , pY , or pZ . The transformation from momenta to the

corresponding kinetic energies is straightforward.

As we work with grids of finite length, the momentum is discretized and its eigenfunctions

read

〈x|pn〉 = L−1/2 exp(iknx) , (21)
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where L is the length of the grid, kn = 2nπ/L with −N/2 < n < N/2, and N is the number

of grid points (we use the equidistant FFT grid). The momentum resolution is thus limited

by the length of the grid. Note that the Z-grid in Z direction is longer than the X- and Y -

grids.

To determine the resolution of the projectors we performed a 3D QD simulation with

graphene DoFs fixed. The H atom was sent to the rigid graphene surface along the normal

with the incidence energy E = 1.96 eV. The initial wavefunction in X- and Y -directions

was set to be a constant while accounting for periodic boundary conditions. We expect the

outgoing kinetic energy of the H atom to be equal to its initial kinetic energy, since the

collision with the rigid surface has to be elastic.
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FIG. 7. The H atom outgoing kinetic energy distributions along (a) Z direction and (b) X direction

(blue connected circles) calculated with 3D MCTDH simulations. The initial kinetic energy of the

H atom is indicated by the red vertical lines.

The resolution of the projectors is demonstrated in Figure 7. As expected, the outgoing

kinetic energy has some width due to the final grid length, as discussed above, producing

the momentum resolution ∆p = 2π
L

. Plots in Figure 7 indicate that the resolution is good

enough for the following theoretical studies of H scattering from graphene.

18



F. cMD simulations details

Unlike the QD simulation, in which the wavefunction is propagated, in the cMD simula-

tion, each atom is considered as a particle that obeys the Newton equations. We need to

perform several thousands of different trajectories calculations to have statistically converged

results. As mentioned, the initial condition for the C-atoms is prepared by a relaxation cal-

culation, which means that the slab temperature is equal to 0 K. However, in a full classical

molecular dynamic simulation, 0 K means the C-atoms are at their equilibrium position,

and there is only one geometry. The result of the corresponding simulation leads to very

different results form the QD simulations. In order to have comparable results with the

QD simulations, the cMD initial conditions should be as similar as possible to those of

the QD simulation. We thus introduce a ”quantum mechanical character” in the cMD ini-

tial condition for the Carbon atoms to mimic the vibrational ground state of the graphene

surface.

We generated 20 000 cMD trajectories simulating H atom scattering from graphene. The

initial positions and momenta of H atoms were sampled from the time-reversed propagation

of the distribution obtained from the hydrogen wavefunction when it reaches the graphene

surface in QD simulation. Since graphene is initially in the vibrational ground state, we

applied the following procedure to mimic this in the cMD simulations. For each normal

mode of graphene n we generated a half-Gaussian distribution in the energy domain En

with the average equal to the ground state energy 1
2
ωn. Then coordinates qn and momenta

pn of the normal mode n were sampled as

qn =
√

2En/ωn cos θ, pn =
√

2mEn sin θ, (22)

where angles θ were picked up from the uniform distribution from 0 to 2π. Finally, We

transformed the distributions for normal coordinates and momenta into Cartesian coordi-

nates using Eq. (1).

We generated 1000 graphene initial states using the above procedure. The correspond-

ing average total energy is 0.697 eV, which agrees with the ground state energy 0.710 eV

of graphene calculated from the MCTDH. The small discrepancy is due to the harmonic

approximation used to produce the distributions Eq. (22). Figure 8 compares the histogram

of the classical sampling and the wavefunction in QD simulation for the normal coordinate

q1 and momentum p1. They show very good agreement.
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FIG. 8. The classical sampling histogram distribution (blue bars) and the MCTDH initial wave-

function density (orange curve) for (a) normal coordinate q1 and (b) normal momentum p1.

Thus, we produced the cMD initial conditions for H atom and graphene as close as

possible to those of the QD simulation, which will allow us to compare their outcomes.

III. RESULTS AND DISCUSSION

A. Energy transfer

We calculated the expectation values of total energies for each normal mode during the

collision in the QD simulation and, similarly the average values of trajectories in the cMD

simulations for the H atom scattering with the initial kinetic energy of 1.96 eV.

The plots in Figure 9 illustrate the expectation value of the total energy in electron volts

(eV). This total energy is the sum of kinetic energy and potential energy. To compute the

potential energy, we use the approximation harmonic and calculate the expectation value

of the position of the normal mode. Additionally, we subtract the zero-point energy (ZPE)

for each normal mode during the collision. The dashed black lines represent the distance

between the hydrogen (H) atom and the graphene surface in Bohr units.

The QD and cMD simulations yield similar results. Before the hydrogen atom reaches

its closest position, the energies of the normal modes q10 and q4 increase. This behavior
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A B

FIG. 9. For the QD simulation (a) and the cMD simulation (b), average values of the total energy

for some normal modes of the graphene surface during the collision minus their ZPE for 15D

simulation with the initial kinetic energy of 1.96 eV. All other normal modes not shown in the

figure have energy smaller than 0.02 eV. The dashed black curves are the distance between the H

atom and the graphene surface, see the y-axis on the right.

indicates an attempt to capture the approaching H atom and form a C-H chemical bond.

Once the H atom reaches its minimum distance, a rapid heating process occurs between the

H atom and the carbon (C) atom. Consequently, the energy of mode q4 decreases, while the

energy of mode q1 increases.

However, there are slight discrepancies between the QD and cMD simulations. In the

QD simulations, mode q10 absorbs more energy compared to the cMD simulation. On the

other hand, in the cMD simulation, modes q11 and q12 absorb more energy. This difference

might arise due to the less accurate description of the decoupling of normal modes in the

MD method in which the Cartesian coordinates are used for the C atoms in the simulations.

B. Sticking probability

The sticking probabilities for all simulations are shown in the table III. The sticking

probability calculated in the QD simulations and the cMD simulations are close for the

initial kinetic energy of 1.96 eV : this probability is very small for this energy. However,

there exists a larger difference between these two types of simulations for the initial kinetic
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Conditions H atom D atom

1.96 eV 0.96 eV 1.96 eV 0.96 eV

cMD 0.1% 20% 0.9% 32%

QD 0.2% 29% 1.6% 39%

TABLE III. Sticking probability

FIG. 10. Sticking probability after the collision for the initial kinetic energy of 0.96 ev for H atom

(left) and D atom (right) in 15D simulations. The red curves are the results QD simulations the

black curves are the results of cMD simulations.

energy of 0.96 eV, and the difference is smaller for the D atom than the H atom. This

difference approves the enhancement of sticking probability by quantum effects, which shows

an isotopic effect.

More details for the simulations with the initial kinetic energy of 0.96 eV are shown in

figure 10. At the beginning of collision, all the projectile atoms are on the surface, thus

the sticking probability decreases from 1. There are several plateaus before the sticking

probability is stable and arrives at the minimum. The projectiles leave the surface wave

after wave, as shown in figure 11. We observed the double nodes of the wave function in the

Z direction of the H atom, which signifies the vibrational excited of the formed C-H chemical

bound. The nodes of the wave function remain until 90 fs. Thus the quantum interference

may explain this difference of sticking probability.
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FIG. 11. The 2D reduced wave function density for the Z directions of the H atom (x-axis) and the

q1 normal mode (y-axis) at 10fs, 38fs, 46fs, 58fs, 78fs, 82fs, 120fs, and 260fs during the simulation

on the PES 2D cut from the DOFs correspondent for the simulation of H atom with initial kinetic

energy of 0.96 eV .

C. Scattering distribution

We studied the influence of collision at different positions of the graphene surface, figure

12 is the H atom outgoing kinetic energy distribution of attacking the center of C-C chemical

bond and the center of carbon ring, Figure 13(A,C) is for attacking on the top of C atom.

The H atom transfers the most energy to the graphene surface in the case of attacking the

top and the least on the center of the ring. The collision of the H atom with the initial

kinetic energy of 0.96 eV at the center of the ring is quasi-elastic. Closer to the top of the

C atom, more energy is transfered.

In the simulations of attacking the center of the carbon ring, the sticking probability con-
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sistently registers as zero, regardless of the varied initial kinetic energies. This is attributed

to the absence of a chemisorption site at the central point of the ring. When directing

the attack towards the center of the C-C bond with an initial kinetic energy of 1.96 eV ,

the sticking probability is found to be less than 0.1% in both cMD and QD simulations.

However, when the initial kinetic energy is 0.96 eV , the cMD simulation yields a 12.5%

sticking probability, while the QD simulation records a 15% sticking probability. This non-

zero sticking probability arises from the close proximity of the chemical bond center to the C

atom, facilitating diffusion and attachment of the H atom to form the C-H chemical bond.

It’s worth noting, however, that this probability remains lower than that observed when

targeting the top of the C atom, where the H atom demonstrates a higher probability of

forming a C-H chemical bond.

We studied the case of attacking the top of the C atom in more depth. Figure 14 depicts

the scattering distribution for the H atom and the D atom in the QD and cMD calculations,

respectively. Their results are coherent. The D atom transfers more energy to the graphene

surface than the H atom, because with the same initial kinetic energy, the velocity of the D

atom is smaller than that of the H atom, and the D atom has more time to interact with

the C atoms and then transfers more energy to the C atoms.

D. Full dimensional simulation

We performed a full dimensional simulation (75D) for a H atom with 1.96eV initial

kinetic energy and incident angle of 0o. There is not much difference between QD and cMD

simulations. We calculated the kinetic energy of C atoms during the collision as figure 15.

Both QD and cMD simulations can observe the energy transfer from the center C atom and

first shell C atoms to the second shell C atoms. The center C atom received more energy in

the Z direction than the XY plane, while the second shell C atoms received more energy in

the XY plane than in the Z direction.

We calculated also the H atom outgoing kinetic energy distribution (figure 17) and the

2D scattering diagram (figure 16), and there are not many differences from the calculation

of 15D.
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FIG. 12. Outgoing kinetic energy distribution for H atom with initial kinetic energy of 1.96 eV (A

and B) and of 0.96 eV (C and D) attacking the center of C-C chemical bond (A and C) and then

the center of the carbon ring (B and D) in the MCTDH calculations (red curves) and the cMD

calculations (black curves) for 15D simulations.

IV. CONCLUSION

In this work, we performed cMD and QD simulations under comparable initial conditions

and with incident energies of 1.96 and 0.96 eV and an incident angle of 0o. By comparing the

results of the two simulations, we found that they are well coherent for both the H atom and

the D atom especially for 1.96 eV , indicating that there is no evidence of a strong quantum

effect in these collision conditions. This is likely due to the fact that the incident energy of

1.96 eV is high, which means that the system is in the classical regime where quantum effects

are less pronounced. A close look at the results show some differences especially at 0.96 eV .
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FIG. 13. Outgoing kinetic energy distribution for the H atom (A and C) and the D atom (B and

D) with the initial kinetic energy of 1.96 eV (A and B) and 0.96 eV (C and D) for cMD simulations

(black curves) and for QD simulations (red curves) for 15D simulations.

The agreement between the results of the cMD and QD simulations also supports the validity

of the methods used in the QD simulations for which we developped new numerical tools

such as projectors along the different Cartesian directions. Thus, we can use those methods

in the following full-dimensional simulations. In particular, it will be possible to start with

a wave plane with all the degrees of freedom, the cell being considered as periodic. This will

allow us to directly compare with experimental results, since one can then define easily the

incident angle and the hydrogen atoms can reach all the parts of the surface. The possibility

to treat such large systems is new and is possible thanks to the development of ML-MCTDH

and more recently of the MCCPD method.

26



FIG. 14. 2D scattering distribution diagrams for QD simulations (A, B, C, D) and for cMD

simulations (E, F, G, H) for the H atom (A, C, E, G) and the D atom (B, D, F, H) with the initial

kinetic energy of 1.96 eV (A, B, E, F) and 0.96 eV (C, D, G, H) for 15D simulations.
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34G. A. Worth, M. H. Beck, A. Jäckle, O. Vendrell, and H.-D. Meyer, The MCTDH Package,

Version 8.2, (2000). H.-D. Meyer, Version 8.3 (2002), Version 8.4 (2007). O. Vendrell and

H.-D. Meyer Version 8.5 (2013). H.-D. Meyer, Version 8.6 (2021). Versions 8.5 and 8.6 con-

tain the ML-MCTDH algorithm. Used versions: 8.6.3 (Jan 2023). See http://mctdh.uni-

hd.de/.

35D. J. Auerbach, S. M. Janke, M. Kammler, A. Kandratsenka, and S. Wille, “Molecular

dynamics tian xia 2 (mdt2); program for simulating the scattering of atoms and molecules

from a surface (github repository). available at https://github.com/akandra/md tian2,”

(2020).

36G. Pasin, F. Gatti, C. Iung, and H. D. Meyer, Journal of Chemical Physics 124 (2006),

10.1063/1.2192499.
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