This work presents systematic comparisons between classical molecular dynamics (cMD) and quantum dynamics (QD) simulations of 15-dimensional and 75-dimensional models in their description of H atom scattering from graphene. We use an experimentally validated full-dimensional neural network potential energy surface (NN-PES) of a hydrogen atom interacting with a large cell of graphene containing 24 carbon atoms. For the quantum dynamics simulations, we apply Monte Carlo Canonical Polyadic Decomposition (MCCPD) to transform the original PES into a Sum of Products (SOP) form and use the Multilayer Multi-configuration Time-dependent Hartree (ML-MCTDH) method to simulate the quantum scattering of a hydrogen or deuterium atom with an initial kinetic energy of 1.96 eV or 0.96 eV and incident angle of 0 o , i.e. perpendicular to the graphene surface. The cMD and QD initial conditions have been carefully chosen in order to be as close as possible.

Our results show little differences between the cMD and QD simulations when the incident energy of the H atom is equal to 1.96 eV . However, a large difference in sticking probability is observed when the incident energy of the H atom is equal to 0.96 eV , indicating the predominance of quantum effects. To the best of our knowledge, our work provides the first benchmark of quantum against classical simulations for a system of this size with a realistic PES. Additionally, new projectors are implemented in the Heidelberg MCTDH package for the calculation of the atom scattering energy transfer distribution as a function of the outgoing angles.

I. INTRODUCTION

Graphene is a bi-dimensional crystal material first defined by P. R. Wallace in 1947 1 and isolated for the first time in 2004 by K. S. Novoselov and A. K. Geim 2 . Graphene has unique electronic, magnetic, and chemical properties that make it a promising material for various applications such as electronics, energy storage, and sensing [3][4][5][6] . Due to its exceptional properties, Graphene is the subject of extensive research in various fields of science and technology. Besides, chemical modification of graphene can introduce new properties and, in turn, lead to potential applications 7 , for example, hydrogenated graphene can create a local band gap and make it possible to produce a graphene semiconductor 8 . In addition, the hydrogenation of graphene is also a promising model system for the study of mechanisms of vibrational redistribution reactions 9 .

The scattering of H atoms from the graphene surface is an active area of research 10 . The study of the interaction between hydrogen atoms and graphene can provide essential insights into the fundamental mechanisms of the formation of the C-H chemical bond and also into hydrogen storage 11 . The experiments on hydrogen scattering reported recently 9 provide a ground for understanding the adsorption of hydrogen atoms on the graphene surface as well as the mechanisms of the energy transfer at scattering and vibrational redistribution reactions. In the experiment, a beam of H atoms with narrow incidence energy distribution and well-defined incidence angle was scattered from a graphene surface, and the kinetic energy of the outgoing H atoms was measured using the Rydberg atom time-of-flight (TOF) techniques.

One of the most crucial components in the theoretical modelling of the atomic scattering from surfaces is a potential energy surface (PES), accurate enough to correctly describe chemically relevant properties (energy barriers, adsorption energies etc.). A full-dimensional neural network PES (NN-PES) for a H atom interacting with a graphene was constructed recently 12 using machine learning methods adapted to large condensed systems 13 . The NN-PES was trained on a set of over 75 000 configurations calculated with the GGA-DFT PBE functional for a hydrogen atom and 24 carbon atoms representing graphene surface. This resulted in a fit with root mean standard error of 0.6 meV /atom. The classical molecular dynamics (cMD) simulations of H scattering from graphene produced energy loss spectra and angular distributions of scattered H atoms in good agreement with the experimental data 12 .

While the cMD was largely successful in reproducing the experiment, H atom scattering from graphene is fundamentally a quantum system 14 , due both to the light mass of the H atom and the single-layer of C atoms. Interestingly, ring polymer molecular dynamics (RPMD) simulations addressing this issue showed little difference to cMD simulations 14 .

Unfortunately, due to the approximations used in its derivation, it is not clear whether RPMD is suitable for describing non-equilibrium scattering processes occurring on the shorttime (dozens to hundreds fs) scale. Quantum dynamics (QD) simulations are thus needed both to test the reliability of RPMD simulations and to rigorously reveal quantum effects in the scattering process.

Quantum dynamics is computationally challenging for such a high-dimensional system (24 graphene C atoms and a H atom add up to 75 DoFs), since the computational time and memory requirements for calculations increase exponentially with the dimensionality of the system. This is due to the fact that the wave function describing a quantum state of the system has to be represented in a high-dimensional configuration space, and the number of basis set functions to describe the system also increases exponentially with the dimensionality. To overcome these difficulties, we use multi-configuration time-dependent Hartree (MCTDH) [15][16][17][18][START_REF]Multidimensional Quantum Dynamics: MCTDH Theory and Applications[END_REF][START_REF] Meyer | [END_REF][START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF] approach to solve the time-dependent Schrödinger equation much faster and with much smaller memory demands than conventional methods. This method is extremely suitable for systems with the large number of degrees of freedom (DoFs). Unfortunately, to achieve the aforementioned effectiveness, it is necessary to represent the PES in a sumof-products (SOP) form. This can be achieved, for example, by refitting the existing PES using a tensor decomposition method [22][23][24][25][26] . That can be rather difficult because of the large number of parameters to be determined and the high computational cost associated with the process. There exists an alternative to refitting, the correlation discrete variable representation method 27-29 by U. Manthe, which, however, requires very many potential energy evaluations during propagation, so we do not consider it here.

In this work, we perform 75-dimensional QD simulations of the H scattering from graphene using as input the experimentally validated NN-PES 12 . The recently developed methods: Monte Carlo Canonical Polyadic Decomposition 30 (MCCPD) for PES transformation, and the advanced multi-layer MCTDH [31][32][33] propagator make that task quite realistic.

Besides, we assess these simulations with QD simulations for the system with reduced dimensionality. Initially, we have chosen to fix the positions of 20 of the 24 carbon atoms at their equilibrium geometry and allow the remaining 4 C-atoms and the H-atom to move. This reduces the dimensionality of the system from 75D to 15D, making it computationally much more robust and feasible. Figure 1 shows the structure of the graphene surface, where an H-atom impact site is labelled by 1, and C-atoms forming the first shell around the central C-atom are labelled by 2, 3, and 4. The labelled C-atoms are allowed to move in the model with reduced dimensions.

It is important to keep in mind that the model with the reduced number of dimensions introduced above may not capture all the details of the full-dimensional system and thus can fail to reproduce the experimental results. For example, in the reduced model, the incident H atom hits a C-atom 1 while the scattering from the other sites is not taken into account to prevent contributions from the fixed part of the graphene into the scattering amplitudes. So, the simulations in the reduced dimensions cannot substitute the full-dimensional quantum simulations. The latter are hence used to assess the relevance of the quantum-mechanical effects by comparison to the cMD simulations.

As main conclusion, we find that the results of QD simulations compare well with experimental angular and energy scattering distributions. The quantum effects display themselves in sticking probability even at incidence energies as high as 0.96 eV .

II. CLASSICAL MD AND QD SIMULATIONS DETAILS

The QD simulations were performed using the Heidelberg MCTDH Package 34 , the cMD simulations are realized by md tian2 [START_REF] Auerbach | Molecular dynamics tian xia 2 (mdt2); program for simulating the scattering of atoms and molecules from a surface[END_REF] . The initial conditions were chosen to reproduce the incidence energy value of 1.96 eV and the normal incidence angle for the H and D atoms, since at these conditions the deviation of the cMD simulations from experimental results is most pronounced.

In the classical MD simulations, the projectile has a sharp incidence kinetic energy and incidence angle. In case of QD, we have to deal with the corresponding distributions defined by the initial wavefunction. It is important, therefore, to bring the initial conditions for the classical and quantum simulations as close as possible to each other. In the following we introduce the methods that we used to extract the same information from both simulations.

A. Coordinates

The cMD simulations were done using Cartesian coordinates. However, for QD simulations, we opted to use normal mode coordinates for the graphene surface and Cartesian coordinates for the hydrogen atom. This choice was motivated by the fact that the potential energy of the graphene surface is approximately harmonic at room temperature, and the use of normal mode coordinates allows us to decouple the DoFs of the graphene in a good approximation. This approach facilitates the convergence of our calculations and leads to more efficient simulations.

The transformation from Cartesian x to (mass and frequency weighted) normal q coordinates (cf. Ref. 36),

q α = ω 1/2 α f n=1 (x n -x (eq) n )L nα , (1) 
is determined by the matrix L diagonalizing the mass-weighted Hessian matrix GF eq :

GF eq L = Lω 2 . (2) 
Here, G kn = 1/ √ m k m n is the mass matrix, F eq,kn = ∂ 2 V ∂x k ∂xn x=xeq is the Hessian matrix for the potential V calculated at equilibrium geometry x eq when the H atom is far from the surface, ω 2 is the diagonal matrix of eigenvalues of the Hessian, which are squares of the frequencies of the normal modes.

FIG. 2. Three most important normal modes participating in the energy transfer during the H atom collision with graphene: mode q 1 (a), mode q 4 (b),and mode q 10 (c).

In the case of the reduced 15-dimensional system with four movable C atoms, the normal modes have been computed for these four C atoms, while all other carbon atoms, not shown in Figure 1, are fixed at their equilibrium position at 0 K and the H atom is far from the surface. Consequently, there are a total of twelve normal modes used to describe the motion of the graphene slab. Three of them are of particular importance in the MD simulations of scattering, which will be discussed in detail in the next Section: modes q 1 (Figure 2a) and q 4 (Figure 2b) are transverse modes incorporating the motion of the central C atom in z direction and participating in the formation of a C-H chemical bond; q 10 (Figure 2c) is the breathing vibrational mode for the first shell C atoms.

In the case of the full-dimensional system, all 24 C atoms can move. The normal modes are determined by treating the graphene cell as periodic and the H atom is far from the surface, resulting in a total of 72 normal modes for the graphene surface. However, due to the periodic nature of the PES for the graphene cell, 3 translation normal modes exhibit nearly zero or negative frequencies. These three modes should be removed, resulting in a final count of sixty-nine normal modes necessary to characterize the behavior of the graphene surface.

B. PES refitting

In order to put the high-dimensional NN-PES into the sum of products (SOP) form necessary for MCTDH propagation, we used the MCCPD 30 method, which is briefly described below.

The PES V (q 1 , q 2 , . . . , q f ) is approximated by a canonical polyadic decomposition (CPD) form:

V CPD (q 1 , q 2 , . . . , q f ) = R r=1 c r f κ=1 v r κ (q κ ) , (3) 
or in the grid-representation after discretization of the coordinates q:

V CPD i 1 ,i 2 ,...,i f = R r=1 c r f κ=1 v r κ,iκ , (4) 
where index i κ numbers discretization points of the coordinate q κ , v r κ are basis functions with expansion coefficient c r , and R is the expansion order (the rank of the decomposition).

It should be noted here that, in general, no restrictions are enforced on the orthogonality of the basis functions v r κ and normalization can be arbitrary (coefficient c r could be absorbed into any of the basis functions). However, the basis functions are often restricted to be normalized to reduce ambiguity, so we adopted this restriction in this work.

Introducing the composite index I = {i 1 , . . . , i f } and the composite single-hole index This can be cast into minimizing the functional

I κ = {i 1 , i 2 , . . . , i κ-1 , i κ+1 , . . . , i f },
J = I W I V I -V CPD I 2 + I,r W I c 2 r f κ=1 v r κ,iκ 2 , ( 5 
)
where W is a positive weight function depending on all coordinates q, which imposes more weights on the regions the PES that should be fitted with elevated accuracy (for instance, low energy regions where the wavefunction resides). The second term in the r.h.s of Eq. ( 5)

proportional to serves as a regularization with being a small parameter which is set to the square root of machine precision, i.e., ≈ 1 • 10 -8 . It preserves the linear independence of the basis functions v r κ during the optimization process. A functional derivative of the functional J defined by Eq. ( 5) with respect to basis functions c r v r κ,iκ produces a system of linear equations which, in principle, can be solved. In practice, solving these equations is simplified by replacing the weight function W with a factorized approximation for every coordinate q κ :

W I ≈ w κ iκ W κ I κ , (6) 
and considering a set of the functionals J κ instead of J:

J κ = I w κ iκ W κ I κ V I -V CPD I + I,r w κ iκ W κ I κ f κ=1 v r κ,iκ 2 . ( 7 
)
Then calculating the functional derivative of Eq. ( 7) with respect to c r v r κ and setting them to zero leads to a system of linear equations for c r v r κ :

r S κ r,r c r v r κ,iκ = B κ r,iκ (8) 
with

S κ r,r = I κ W κ I κ κ =κ v r κ ,i κ v r κ ,i κ (1 + δ r,r ) , (9) 
B κ r,iκ = I κ W κ I κ V I κ =κ v r κ ,i κ . ( 10 
)
Note that w κ iκ drops out and W κ I κ is conveniently defined as W κ I κ = iκ W I . Standard linear algebra tools can now be used to solve Eq. ( 8). Note, that Eqs. ( 9) and (10) imply that the solution for mode κ depends on all other modes. So, one has to start with an initial guess for the CPD decomposition and to get solution for all modes consecutively, then to update the CPD tensor after solving Eq. (8), and finally, once all modes are updated, to iterate until either a convergence criterion is met or a maximum number of iterations is reached. This procedure is known as the alternating least squares (ALS) algorithm. A very efficient way to accelerate convergence is to start with a small rank R, perform a number of iterations and subsequently increase R, where the new coefficients c r are set to zero and the new basis functions v r κ are filled with random numbers. The ALS iterations defined by Eqs. (8-10) are computationally feasible only when the number of points I to be processed is not larger than 10 9 -10 10 , so that the matrices S κ and B κ can actually be computed. To tackle the system considered in this work the total number of points has to be of order of 10 20 , so we evaluate the sums in Eqs. ( 9) and (10) using a Monte-Carlo sampling with the distribution functions defined by W κ weights 30 . The sampling strategy proved to affect strongly the accuracy of the fit. For example, Metropolis sampling proved to lead to satisfying results 30,37 . Here, the distribution function is proportional to exp(-βV ) with β being a positive parameter and roughly resembles the ground state wavefunction if, in the harmonic approximation β = 1/ ω, and V = mω 2 x 2 /2 with m, ω being the mass and frequency of the harmonic oscillator, respectively. It emphasizes low energy regions and covers the area where the wavefunction mostly resides. However, the sampling distribution is derived only from the potential part of the total Hamiltonian and neglects the influence of the kinetic energy operator, which makes it not accurate enough.

Furthermore, for multi-dimensional surfaces usually each coordinate is approximated by a different harmonic oscillator such that one needs to find a single parameter β that establishes a compromise between the various harmonic frequencies.

Obviously, the sampling method described above is not well suited for systems with very different fundamental frequencies -and therefore not used in this work. In order to avoid the above deficiency and obtain a sampling distribution proportional to the ground state wavefunction, we performed two diffusion Monte-Carlo (DMC) 38 simulations. From them we obtained the vibrational ground state distributions for the graphene not interacting with a projectile (H atom is far away from the surface) and for the graphene with the H atom close to it. The sampling points obtained from both calculations were subsequently merged into a single set and each sampling point was mapped onto the nearest Discrete Variable Representation (DVR) point.

In total 250 291 sampling points were calculated in the regions with potential energy varying from the minimum of the PES to about 3.5 eV , since the energy accessible in the dynamic simulations was smaller than 3 eV . We began the ALS optimization with a rank R = 128, increasing it in every 10 iterations by 64 until the value of R = 512 was reached.

Figure 3 shows the improvement of the fit quality with ALS-iterations given by the root mean square error (RMSE) of the model's predictions. The final RMSE is 74.9 cm -1 .

Then we generated 401 758 sampling points from the DMC calculations to test and validate the refitted PES. The quality of refitting is shown in figure 4.

C. Initial conditions

Classically, the positions and momenta of particles can be defined precisely, while in the QD calculation, the state of the system is described by the wave function. This fundamental difference makes the comparison of results of cMD and QD simulations not straightforward. Thus, it is important to set the initial conditions for the classical and quantum simulations in such a way to be able to refer to them as similar. In case of the quantum dynamic simulations, we define the initial state of graphene as the ground state constructed as a solution of the Schrödinger time-dependent equation for a negative imaginary time propagation 39 :

Ψ(x, t) = c n ϕ n (x) e -Ent , (11) 
where ϕ n (x) is the nth eigenstate and E n is the corresponding eigenenergy and = 1 is assumed. Because of the exponential term in Eq.( 11), the eigenstates with higher energy will vanish faster during the relaxation, and the system converges towards the ground state with increasing propagation time. Using this method, we found the ground state energy value of 0.710 eV for the system with the reduced dimensions (4 movable C atoms). On the other hand, the corresponding vibrational ground state energy in the harmonic approximation 0.5 ω i = 0.698 eV , where frequencies were calculated in the normal mode section. The values agree well, which makes it reasonable to describe a free-standing graphene surface within harmonic approximation.

The initial wavepacket for an H atom has to move along the normal to the surface with the kinetic energy expectation value of 1.96 eV or 0.96 eV , and the position distribution of the incident H atom has to be narrow. To this end, we used a Gaussian wavepacket for the H atom in z direction and complex Gaussian wavepackets for the in-plane DoFs 40

Ψ(x, t = 0) = A exp -(a + ib)(x -x 0 ) 2 . ( 12 
)
to mimic the initial state of the H atom. The reason for using complex Gaussians is to prevent the wavepacket from the broadening during the propagation in the interaction-free region since a complex parameterized Gaussian wavefunction first narrows and then spreads, as can be seen from its variance dependence on time 40

σ(t) = a 2 + 2t m (a 2 + b 2 ) -b 2 4a(a 2 + b 2 ) . ( 13 
)
where m is the mass of the atom and = 1 is assumed. By varying the parameter b entering Eqs. (12) and ( 13) one can define the incident wavepacket to have the minimal width at the turning point, thus that an H atom 'hits' graphene at the well-defined site (C-atom labeled 1 in Figure 1). Here x stands for the X or Y coordinate, respectively, of the H-atom.

The variance of the Gaussian function for the H-atom or D-atom in the X or Y direction is around 0.37 Bohr when hitting the graphene surface. The wave function is, thus, well localized to the attacked C-atom as shown in figure 5.

D. ML-MCTDH

In the MCTDH method, the molecular wavefunction is written as the SOP of orthonormal time-dependent single particle functions (SPFs) of logical coordinates with SPFs defined as a linear combination of the primitive time-independent basis, for example,

Q 1 , Q 2 , ..., Q p : Ψ(Q 1 , . . . , Q p , t) = n 1 i 1 =1 • • • np ip=1 A 1 i 1 ,...,ip (t) ϕ 1;1 i 1 (Q 1 , t) • • • ϕ 1;p ip (Q p , t) (14 
ϕ 1;κ m (Q κ , t) = j 1 ,...,j d A 2;κ m,j 1 ,...,j d (t) χ κ,1 j 1 (q 1 m ) • • • χ κ,d j d (q d m ) . ( 15 
)
Here n p is the number of SPFs used for the pth combined mode, d DoFs are combined to form the mth logical coordinate, Q m = (q 1 m , . . . , q d m ). The logical coordinates are used to treat the correlation between the combined DoFs already on the SPF level, which improves the convergence of the calculation.

The type and the number of the primitive basis functions χ κ,d j d (q d m ) should be chosen carefully in order to adapt to the system and to converge the calculation. Table I lists the primitive basis used in the 15D QD simulation. We used a Fast Fourier Transform method (FFT) for Z coordinate of the H atom because the domain of this DoF is very large and so is the number of grid points needed, and a FFT accelerates a calculation for large grid sizes.

For convenience, we also used a FFT for the in-plane H atom coordinates (see Eq. ( 20) below). For the normal modes of graphene, we used the harmonic oscillator (HO) DVR to optimally adapt to the system. The frequency and mass used for HO basis function in Table I are equal to 1.0, because the normal modes calculated with the mentioned method are dimensionless, the mass and frequency are included into the coordinates. It's important give more details about the DVR. In the case of FFT, they correspond to the coordinates of the first (P1) and last (P2) grid points and if it is periodic, it is written in the column (P3). In the case of HO, they correspond to the equilibrium position (P1), frequency (P2) and mass (P3) of to note that the normal modes of graphene were calculated under when the H atom being far from the surface. However, when the hydrogen atom approaches, it strongly alters the harmonic behavior of the graphene structure, rendering the initially calculated normal modes less optimal for the system. Consequently, more primitive basis functions are required to achieve a converged calculation. This explains the larger number of basis functions necessary for q 1 , q 4 , and q 10 , as they exhibit a higher degree of correlation with the hydrogen atom.

Even for the reduced 15D system, the MCTDH calculations are still computationally very expensive. The Multi-Layer (ML) formulation of MCTDH helps to decrease the com-putational costs. Here, instead of directly expanding the SPFs in terms of the primitive basis, as in Eq. ( 15), several layers of the expansion are introduced. For more details see Refs. 31-33. The structure of a ML-wavefunction is conveniently visualized by an ML tree shown in Figure 6. The wavefunction in ML-MCTDH is more compact, but it is challenging to find the optimal structure of the multi-layer tree to minimize the computation time and the convergence of calculations. When constructing the ML tree we followed several guiding lines: (i) strongly coupled DoFs were combined as early as possible; (ii) the population of the last time-dependent function for each node should be smaller than 10 -3 to achieve good convergence of calculations.

Table II demonstrates that the last time-dependent functions for all nodes in the H atom scattering match the latter condition. We found that the structure of the ML tree displayed in Figure 6 is close to the optimum, so we used it to perform simulations of the H atom scattering from graphene. 

E. Quantum flux

In the case of classical MD simulations, the initial kinetic energy of the projectile has a sharp value. This allows to directly extract the energy distribution of scattered H atoms as a function of the incidence energy to compare with experimental results. In contrast, in the quantum case, the initial kinetic energy of a wavepacket is represented by a broad distribution, which means that additional analysis of the scattered wavepacket is necessary.

This task can be achieved by evaluating the quantum flux [START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF][START_REF] Jäckle | [END_REF] .

The quantum flux can be measured by analyzing the part of the wavefunction which is absorbed by a complex absorption potential (CAP) 42,43 . The main task of the CAP is to prevent the reflection of the wavefunction from the end points of the grid. Luckily, the CAP can also be used as an analysis tool. In our QD simulations, the CAP is activated after the H atom reaches the surface and starts to work at the distance of Z c = 6 Bohr above the graphene.

A flux correlation function is computed from CAP matrix elements with respect to the time-dependent wavefunction. A Fourier transform of this correlation function yields the energy-resolved flux, which in the time-independent picture has the following form [START_REF] Gatti | Applications of Quantum Dynamics in Chemistry[END_REF] :

F (E) = 2π Ψ 0 |δ(H -E) F δ(H -E)|Ψ 0 , (16) 
where Ψ 0 = Ψ(t = 0) is the initial state and

F = i[H, Θ] (17) 
is the quantum flux operator. Here Θ is a Heaviside step function, which is non-zero in the region where the CAP works, i.e., for Z > Z c . Therefore, the flux operator F measures the quantum flux through a hyperplane defined by equation Z = Z c . Despite the energy E in Eq. ( 16) is the total energy of the system, it deviates from the initial kinetic energy of the H atom only by a constant, since the graphene surface is initially in an eigenstate (the ground state). With that we obtain the incidence energy resolved information for H atom scattering from the QD simulations. It is noteworthy that Eq. ( 16) is useful for evaluating

sticking probabilities S(E) = 1 -F (E)/|∆E| 2 ,
where

|∆E| 2 = Ψ 0 |δ(H -E)|Ψ 0 = 1 π Re ∞ 0 e iEt Ψ 0 |Ψ(t) dt ( 18 
)
is the energy density function.

In order to extract the final kinetic energy distribution of the H atoms, the final kinetic energy resolved flux is to be determined. To this end we introduce an operated flux operator

FO = 1 2 ( F Ô + Ô F ), (19) 
where the Hermitian operator Ô is here chosen as a projector onto a momentum state |p of the H atom.

Ô = |p p| (20) 
The desired energy-resolved flux is obtained by substituting the operator F in Eq. ( 16) with FO defined by Eq. ( 19), where p is p X , p Y , or p Z . The transformation from momenta to the corresponding kinetic energies is straightforward.

As we work with grids of finite length, the momentum is discretized and its eigenfunctions read

x|p n = L -1/2 exp(ik n x) , ( 21 
)
where L is the length of the grid, k n = 2nπ/L with -N/2 < n < N/2, and N is the number of grid points (we use the equidistant FFT grid). The momentum resolution is thus limited by the length of the grid. Note that the Z-grid in Z direction is longer than the X-and Ygrids.

To determine the resolution of the projectors we performed a 3D QD simulation with graphene DoFs fixed. The H atom was sent to the rigid graphene surface along the normal with the incidence energy E = 1.96 eV. The initial wavefunction in X-and Y -directions was set to be a constant while accounting for periodic boundary conditions. We expect the outgoing kinetic energy of the H atom to be equal to its initial kinetic energy, since the collision with the rigid surface has to be elastic. The resolution of the projectors is demonstrated in Figure 7. As expected, the outgoing kinetic energy has some width due to the final grid length, as discussed above, producing the momentum resolution ∆p = 2π L . Plots in Figure 7 indicate that the resolution is good enough for the following theoretical studies of H scattering from graphene.

F. cMD simulations details

Unlike the QD simulation, in which the wavefunction is propagated, in the cMD simulation, each atom is considered as a particle that obeys the Newton equations. We need to perform several thousands of different trajectories calculations to have statistically converged results. As mentioned, the initial condition for the C-atoms is prepared by a relaxation calculation, which means that the slab temperature is equal to 0 K. However, in a full classical molecular dynamic simulation, 0 K means the C-atoms are at their equilibrium position, and there is only one geometry. The result of the corresponding simulation leads to very different results form the QD simulations. In order to have comparable results with the QD simulations, the cMD initial conditions should be as similar as possible to those of the QD simulation. We thus introduce a "quantum mechanical character" in the cMD initial condition for the Carbon atoms to mimic the vibrational ground state of the graphene surface.

We generated 20 000 cMD trajectories simulating H atom scattering from graphene. The initial positions and momenta of H atoms were sampled from the time-reversed propagation of the distribution obtained from the hydrogen wavefunction when it reaches the graphene surface in QD simulation. Since graphene is initially in the vibrational ground state, we applied the following procedure to mimic this in the cMD simulations. For each normal mode of graphene n we generated a half-Gaussian distribution in the energy domain E n with the average equal to the ground state energy 1 2 ω n . Then coordinates q n and momenta p n of the normal mode n were sampled as

q n = 2E n /ω n cos θ, p n = 2mE n sin θ, (22) 
where angles θ were picked up from the uniform distribution from 0 to 2π. Finally, We transformed the distributions for normal coordinates and momenta into Cartesian coordinates using Eq. (1).

We generated 1000 graphene initial states using the above procedure. The corresponding average total energy is 0.697 eV, which agrees with the ground state energy 0.710 eV of graphene calculated from the MCTDH. The small discrepancy is due to the harmonic approximation used to produce the distributions Eq. (22). Figure 8 compares the histogram of the classical sampling and the wavefunction in QD simulation for the normal coordinate q 1 and momentum p 1 . They show very good agreement. Thus, we produced the cMD initial conditions for H atom and graphene as close as possible to those of the QD simulation, which will allow us to compare their outcomes.

III. RESULTS AND DISCUSSION

A. Energy transfer

We calculated the expectation values of total energies for each normal mode during the collision in the QD simulation and, similarly the average values of trajectories in the cMD simulations for the H atom scattering with the initial kinetic energy of 1.96 eV.

The plots in Figure 9 illustrate the expectation value of the total energy in electron volts (eV). This total energy is the sum of kinetic energy and potential energy. To compute the potential energy, we use the approximation harmonic and calculate the expectation value of the position of the normal mode. Additionally, we subtract the zero-point energy (ZPE)

for each normal mode during the collision. The dashed black lines represent the distance between the hydrogen (H) atom and the graphene surface in Bohr units.

The QD and cMD simulations yield similar results. Before the hydrogen atom reaches its closest position, the energies of the normal modes q 10 and q 4 increase. This behavior indicates an attempt to capture the approaching H atom and form a C-H chemical bond.

Once the H atom reaches its minimum distance, a rapid heating process occurs between the H atom and the carbon (C) atom. Consequently, the energy of mode q 4 decreases, while the energy of mode q 1 increases.

However, there are slight discrepancies between the QD and cMD simulations. In the QD simulations, mode q 10 absorbs more energy compared to the cMD simulation. On the other hand, in the cMD simulation, modes q 11 and q 12 absorb more energy. This difference might arise due to the less accurate description of the decoupling of normal modes in the MD method in which the Cartesian coordinates are used for the C atoms in the simulations.

B. Sticking probability

The sticking probabilities for all simulations are shown in the table III. The sticking probability calculated in the QD simulations and the cMD simulations are close for the initial kinetic energy of 1.96 eV : this probability is very small for this energy. However, there exists a larger difference between these two types of simulations for the initial kinetic 

C. Scattering distribution

We studied the influence of collision at different positions of the graphene surface, figure 12 is the H atom outgoing kinetic energy distribution of attacking the center of C-C chemical bond and the center of carbon ring, Figure 13(A,C) is for attacking on the top of C atom.

The H atom transfers the most energy to the graphene surface in the case of attacking the top and the least on the center of the ring. The collision of the H atom with the initial kinetic energy of 0.96 eV at the center of the ring is quasi-elastic. Closer to the top of the C atom, more energy is transfered.

In the simulations of attacking the center of the carbon ring, the sticking probability con-sistently registers as zero, regardless of the varied initial kinetic energies. This is attributed to the absence of a chemisorption site at the central point of the ring. When directing the attack towards the center of the C-C bond with an initial kinetic energy of 1.96 eV , the sticking probability is found to be less than 0.1% in both cMD and QD simulations.

However, when the initial kinetic energy is 0.96 eV , the cMD simulation yields a 12.5% sticking probability, while the QD simulation records a 15% sticking probability. This nonzero sticking probability arises from the close proximity of the chemical bond center to the C atom, facilitating diffusion and attachment of the H atom to form the C-H chemical bond.

It's worth noting, however, that this probability remains lower than that observed when targeting the top of the C atom, where the H atom demonstrates a higher probability of forming a C-H chemical bond.

We studied the case of attacking the top of the C atom in more depth. Figure 14 depicts the scattering distribution for the H atom and the D atom in the QD and cMD calculations, respectively. Their results are coherent. The D atom transfers more energy to the graphene surface than the H atom, because with the same initial kinetic energy, the velocity of the D atom is smaller than that of the H atom, and the D atom has more time to interact with the C atoms and then transfers more energy to the C atoms.

D. Full dimensional simulation

We performed a full dimensional simulation (75D) for a H atom with 1.96eV initial kinetic energy and incident angle of 0 o . There is not much difference between QD and cMD simulations. We calculated the kinetic energy of C atoms during the collision as figure 15.

Both QD and cMD simulations can observe the energy transfer from the center C atom and first shell C atoms to the second shell C atoms. The center C atom received more energy in the Z direction than the XY plane, while the second shell C atoms received more energy in the XY plane than in the Z direction.

We calculated also the H atom outgoing kinetic energy distribution (figure 17) and the 2D scattering diagram (figure 16), and there are not many differences from the calculation of 15D. 

IV. CONCLUSION

In this work, we performed cMD and QD simulations under comparable initial conditions and with incident energies of 1.96 and 0.96 eV and an incident angle of 0 o . By comparing the results of the two simulations, we found that they are well coherent for both the H atom and the D atom especially for 1.96 eV , indicating that there is no evidence of a strong quantum effect in these collision conditions. This is likely due to the fact that the incident energy of 1.96 eV is high, which means that the system is in the classical regime where quantum effects are less pronounced. A close look at the results show some differences especially at 0.96 eV . The agreement between the results of the cMD and QD simulations also supports the validity of the methods used in the QD simulations for which we developped new numerical tools such as projectors along the different Cartesian directions. Thus, we can use those methods in the following full-dimensional simulations. In particular, it will be possible to start with a wave plane with all the degrees of freedom, the cell being considered as periodic. This will allow us to directly compare with experimental results, since one can then define easily the incident angle and the hydrogen atoms can reach all the parts of the surface. The possibility to treat such large systems is new and is possible thanks to the development of ML-MCTDH and more recently of the MCCPD method. 

FIG. 1 .

 1 FIG. 1. Graphene surface simulation cell: the impact site is labelled by 1; C-atoms forming the first shell around the 1st atom are labelled by 2, 3, and 4. The surface is in the X,Y plane, the Z direction is perpendicular to the surface.

  the decomposition is obtained by optimization of the weighted L 2 difference between the fitting potential V CPD I from Eq. (4) and the exact potential V I .

)

  FIG. 3. The RMSE dependance on the number of iteration during the CPD optimization.

FIG. 5 .

 5 FIG. 5. Reduced density of H-atom wave function in the X and Y direction when hitting the surface. The coordinates of 4 numbered C atoms are indicated.

13 FIG. 6 .Layer

 136 FIG.6. ML tree structure for 15D simulation. Squares represent primitive basis functions, the circles-also called nodes-stand for time dependent A-tensors, and the numbers on the edges are the number of functions used

FIG. 7 .

 7 FIG. 7. The H atom outgoing kinetic energy distributions along (a) Z direction and (b) X direction (blue connected circles) calculated with 3D MCTDH simulations. The initial kinetic energy of the H atom is indicated by the red vertical lines.

FIG. 8 .

 8 FIG. 8. The classical sampling histogram distribution (blue bars) and the MCTDH initial wavefunction density (orange curve) for (a) normal coordinate q 1 and (b) normal momentum p 1 .

ABFIG. 9 .

 9 FIG. 9. For the QD simulation (a) and the cMD simulation (b), average values of the total energy for some normal modes of the graphene surface during the collision minus their ZPE for 15D simulation with the initial kinetic energy of 1.96 eV. All other normal modes not shown in the figure have energy smaller than 0.02 eV. The dashed black curves are the distance between the H atom and the graphene surface, see the y-axis on the right.

FIG. 10 .

 10 FIG. 10. Sticking probability after the collision for the initial kinetic energy of 0.96 ev for H atom (left) and D atom (right) in 15D simulations. The red curves are the results QD simulations the black curves are the results of cMD simulations.

FIG. 11 .

 11 FIG.11. The 2D reduced wave function density for the Z directions of the H atom (x-axis) and the q 1 normal mode (y-axis) at 10fs, 38fs, 46fs, 58fs, 78fs, 82fs, 120fs, and 260fs during the simulation on the PES 2D cut from the DOFs correspondent for the simulation of H atom with initial kinetic energy of 0.96 eV .

FIG. 12 .

 12 FIG. 12. Outgoing kinetic energy distribution for H atom with initial kinetic energy of 1.96 eV (A and B) and of 0.96 eV (C and D) attacking the center of C-C chemical bond (A and C) and then the center of the carbon ring (B and D) in the MCTDH calculations (red curves) and the cMD calculations (black curves) for 15D simulations.

FIG. 13 .

 13 FIG. 13. Outgoing kinetic energy distribution for the H atom (A and C) and the D atom (B and D) with the initial kinetic energy of 1.96 eV (A and B) and 0.96 eV (C and D) for cMD simulations (black curves) and for QD simulations (red curves) for 15D simulations.

FIG. 14 .FIG. 17 .

 1417 FIG. 14. 2D scattering distribution diagrams for QD simulations (A, B, C, D) and for cMD simulations (E, F, G, H) for the H atom (A, C, E, G) and the D atom (B, D, F, H) with the initial kinetic energy of 1.96 eV (A, B, E, F) and 0.96 eV (C, D, G, H) for 15D simulations.

  

TABLE I .

 I The parameters for the definition of primitive basis functions. The second column indicates the kind of DVR, the third column gives the number of grid points, further parameters

TABLE III .

 III Sticking probability

	Conditions	H atom	D atom
		1.96 eV 0.96 eV 1.96 eV 0.96 eV
	cMD	0.1%	20%	0.9%	32%
	QD	0.2%	29%	1.6%	39%
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