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Monolayer two-dimensional transition metal dichalcogenides (TMDs) have invoked great 

interest for potential applications because of their strong light-matter interactions and direct 

energy gap. However, the external environment heavily influences the optical properties of 

TMD monolayers. Encapsulating TMDs in h-BN is recognized as the most effective way to 

preserve their intrinsic optical properties [1,2], and to obtain narrow excitonic linewidths. It has 

been proven that h-BN encapsulation can reduce the roughness of graphene from 114 ± 1 to 12 

± 5 pm [3]. Besides roughness, surface protection [1], charge disorder [2], and variations of 

dielectric environment [4] are also believed to be key factors that could induce inhomogeneous 

excitonic linewidth broadening of TMDs. However, no such study has comprehensively 

compared and disentangled the various proposed factors that contribute to excitonic linewidth 

broadening exists, because few techniques can address all factors single-handedly.  

 

In order to explore the role of these factors, we investigated the roughness and absorption 

behavior by electron energy loss spectroscopy (EELS) of WS2 monolayers either supported or 

encapsulated by two different nanosheets (h-BN and Si3N4) in a scanning transmission electron 

microscope (STEM) [5]. Using this technique, the factors leading to exciton absorption 

linewidth inhomogeneity can be ranked in increasing order of importance: monolayer 

roughness, surface cleanliness, and substrate induced charge trapping. In Fig. 1., the EELS 

spectra of WS2 monolayers in different configurations are illustrated.  

Experiments were done on the ChromaTEM microscope, a modified Nion HERMES 200 

equipped with an electron monochromator. The electron beam energy is set at 60 keV with a 

spread down to below 10 meV. The convergence half-angles for the EELS and diffraction 

measurements are 10 mrad and 1 mrad. Roughness was measured with the sample tilted with 

respect to the electron beam from 0 to 385 mrad as shown in Fig. 2, which is similar to previous 

experiments for graphene [3,6]. Corrugated monolayers are expected to show diffraction spots 

blurring as the tilt angle increases, whereas a flat monolayer does not. Additionally, numerical 

calculations for the diffraction patterns under different roughnesses are performed in QSTEM 

[7] to ascertain the corrugation of the monolayers in each configuration. 
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Figure 1. EELS spectra of WS2 monolayers in various configurations at 110 K. The linewidth of the 

A exciton increases in order: h-BN encapsulated, h-BN supported, freestanding CVD-grown, Si3N4 

supported and Si3N4/h-BN encapsulated WS2 monolayers. 

 

Figure 2. (a) and (b) are the diffraction patterns of a WS2 monolayer on a 15-nm Si3N4 membrane, 

corresponding to the reciprocal space of a corrugated monolayer and Ewald sphere geometry in (d) 

and (e). The intensity profiles of the diffraction spots are plotted in (c), which are indicated in (a) and 

(b) by the purple and yellow box. 
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