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on Nonlinear dynamics for design of mechanical systems across different length/time scales

During the last decades, we have witnessed various micro systems revolutionized fundamental and applied science. Due to their small size and low damping, these devices often exhibit significant nonlinearity and thus the operational range of these impressive applications shrinks. Therefore, understanding the mechanisms leading to nonlinearity in such systems will eliminate obstacles to their further development and significantly enhance their performance. Motivated by the need to advance current capabilities of micro systems, our research has been focused on the implementation of intentional intrinsic nonlinearity in the design of micro resonators and proved that harnessing intentional strong nonlinearity enables exploiting various nonlinear phenomena, not attainable in linear settings, such as broadband resonances, dynamic instabilities, nonlinear hysteresis, and passive targeted energy transfers.

We developed a comprehensive analytical, numerical, and experimental methodology to consider structural nonlinearity as a main design factor enabling to tailor mechanical resonances and achieve targeted performance. We investigated the mechanism of geometric nonlinearity in a non-prismatic microresonator and suggested strategies to tailor the various types of nonlinear resonance. Our more recent works focus on exploiting nonlinearity and multimodality simultaneously by internally coupling two or more modes through the mechanism of internal resonance or combination resonance. This talk will introduce various types of nonlinear phenomena realized in micro systems and discuss their unique behavioral features that can be exploited in the field of Micro-Electro-Mechanical Systems (MEMS) and Atomic Force Microscopy (AFM).

Greetings from The Symposium Chair

Dear colleagues, It is our pleasure to welcome you to International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Nonlinear dynamics for design of mechanical systems across different length/time scales held in Tsukuba.

Nonlinear phenomena arise in a variety of mechanical and physical systems. Also, the experimental analyses for nonlinear dynamics, together with theoretical analyses, confirm only the reliability of the theoretical results, but also deliver meaningful hints on realizing high-performance machines, which exhibit features of high-accuracy, highspeed, high-flexibility, high-reliability and so on. In fact, the positive utilization of resonant vibrations and their nonlinear characteristics can be found in various devices such as auto-parametric vibration absorbers, gyroscopic dampers, ultra-sonic vibrational machine tools, atomic force microscopes, ultrasensitive mass sensors, in the fields across diverse length scales, i.e., from macroscopic applications to micro/nanoscopic ones. This symposium, while shedding light onto state-of-the art knowledge and advancements, is eminently expected to pave the way towards future directions and perspectives in the field. Share of the knowledge on theoretical and experimental approaches to nonlinear dynamics by extensive discussions and exchange of ideas in the symposium may help to devise novel comprehensive methods to understand nonlinear phenomena much more deeply and lead to paradigm shifts in mechanical system design towards next-generation design by positive exploitation of nonlinear phenomena.

The symposium begins with a tutorial on Nonlinear dynamics for design of mechanical systems across different length/time scales by Professor Giuseppe Rega (Sapienza University of Rome). The keynote lectures of the symposium are on some relevant paradigmatic topics as follows:

• Day one: Constructive Utilization of Nonlinear Dynamics in Micro-scale Systems, by Professor Hanna Cho (The Ohio State University).

• Day two: Koopman as a gate to Hill: a quest for a stability criterion, by Professor Dr. ir. habil. Remco Leine (University of Stuttgart) and M.Sc. Fabia Bayer.

• Day three: Forecasting Critical Transitions Using Data-Driven Methods, by Professor Bogdan I. Epureanu (University of Michigan).

• Day five: Melnikov's methods and nonintegrability of forced nonlinear oscillators, by Professor Kazuyuki Yagasaki (Kyoto University).

Though most presentations are related to more than one topic, the regular presentations have been categorized into following sessions:

• Day one: Duffing oscillator; Nonlinear dynamical systems in practical systems.

• Day two: Stochastic dynamics; Nonlinear fluid mechanics and fluid-solid interactions; Sports dynamics; Synchronization.

• Day three: Large deformation and soft robotics; Analysis and reduction of multi-degree-of-freedom nonlinear systems; Design of resonators and sensors; Multistability.

• Day four: Vibration control and energy harvesting; Materials and soft matter.

• Day five: Fractional calculus; Energy transfer; Wave and propagation in practical systems.

Unfortunately, presentation opportunities are not available to all, owing to the large number of valuable abstracts which have been received.

The name of Tsukuba is originated from Mt. Tsukuba which is one of Japan's hundred traditional mountains.

Numerous historical shrines and temples exist here. On the other hand, the presence of many of Japan's cuttingedge science and technology institutes, both national and private, gives it the name Tsukuba Science City. Amidst the rapid development of new paradigms based on artificial intelligence, this symposium held in Tsukuba, where cutting-edge science and technology coexist with traditional culture, will serve as an opportunity to envision the future of analysis and control of nonlinear dynamical systems. To conclude, I thank the keynote lectures and participants. I am grateful to the members of the Scientific Committee for their valuable suggestions in organizing this symposium, and the Local Committee for assistance with preparation. I thank the IUTAM for their financial grant and Tsukuba City and the Tourism and Conversion Association for funding this symposium.

Tsukuba, July 2023

Hiroshi Yabuno

Koopman as a gate to Hill: a quest for a stability criterion

Abstract

The Koopman framework has gained immense popularity in recent years as a versatile tool for various engineering applications, such as system identification, model order reduction and feedback control. This is due to an auspicious promise: A linear (but infinite-dimensional) operator to globally represent a nonlinear system. Classically, the Koopman framework has been developed for time-autonomous systems, whereas nonautonomous systems can generally only be represented with considerable compromises.

The application of the Koopman framework to time-nonautonomous systems therefore remains a major challenge.

The Hill stability method is a well-known frequency-based method to obtain stability information of linear time-periodic systems, e.g. systems with parametric excitation such as the Mathieu equation or, more generally, the linearization of systems around a periodic solution. The Hill method is closely related to the Harmonic Balance Method and uses the frequency content of the system to form an infinite dimensional matrix. Its eigenvalues, called Floquet exponents, determine the stability of the linear time-periodic system or, correspondingly, of the periodic solution. An approximation is obtained by truncating the size of the infinite dimensional Hill matrix to a finite dimension. The truncation, however, comes at a price as it may compromise an accurate stability analysis.

This talk is a journey with a demanding mission: Where can we find structural similarities between these two concepts and how can we apply the Koopman framework to nonautonomous time-periodic systems -all with the goal to understand (or even improve) the Hill stability method? Bayer, F. and Leine, R.I., Sorting-free Hill- 

Forecasting Critical Transitions Using Data-Driven Methods

Abstract

A variety of large dimensional systems, ranging from engineering to climate sciences and ecology, are at risk of critical transitions. These systems can shift abruptly from one state to another when parameters that slowly and smoothly drift cross a threshold. It is exceedingly difficult to know if a system comes close to critical transitions because typically there are no easily noticeable changes in the system dynamics until it is too late and the transition has occurred. Furthermore, accurate models of many natural and engineered systems are often not available, and predictions based on incomplete models have limited accuracy. Thus, a significant challenge emerges. How could we forecast such transitions before they occur? The answer lies in a combined use of invariants in nonlinear dynamics and data-driven methods that together can predict such catastrophic events.

In this talk, we introduce a unique set of data-driven approaches developed to forecast critical points and postcritical dynamics using measurements of the system response collected only in the pre-transition regime. The forecasting approach is based on the phenomenon of critical slowing down, namely the slow dynamics systems exhibit near a tipping point. Based on observations of the system response to natural or controlled perturbations, the method discovers system s stability, resilience, and equilibria in current and upcoming conditions. The application of this finding in physical experiments and computational methods is demonstrated for a variety of natural and engineered systems including microsensors (vibration-based mass detectors), aeroelastic systems (flutter of 2D airfoils and 3D wings), traffic flow systems (onset of traffic jams), and population dynamical systems (yeast populations, ecological systems).

Profile

Arthur F. He is the Director of the Automotive Research Center, which leads the way in areas of autonomy of ground systems, including vehicle dynamics, control, and autonomous behavior, human-autonomy teaming, high performance structures and materials, intelligent power systems, and fleet operations and vehicle system of systems integration.

His research focuses on nonlinear dynamics of complex systems, such as teaming of autonomous vehicles, enhanced aircraft safety and performance, early detection of neurodegenerative diseases, forecasting tipping points in engineered and physical systems such as disease epidemics and ecology. His research brings together interdisciplinary teams and consortia such as Government (NIH, NSF, DOE, DOD), Industry (Ford, Pratt & Whitney, GE, Airbus), and Academia. He has published over 350 articles in journals, conferences, and books. 
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Introduction

The huge development of nonlinear dynamics in mechanics and engineering occurred around the turn of the new millennium has brought enormous and distributed knowledge on a rich variety of related methodological and phenomenological issues. One might even argue that, after such intense and long-lasting growth, research activity and outcomes of nonlinear dynamics in mechanics and engineering has now attained a kind of plateau, corresponding to a stage of intrinsic full maturity of the area, from which moving towards its full exploitation in a wide variety of technological areas across different space and time scales. This being a feature worthily and timely reflected also in the scope of this IUTAM Symposium. This certainly holds also for the sub-area of global nonlinear dynamics, whose adequate consideration, in combination with that of local bifurcation/dynamics, may bring nontrivial benefits in the analysis, control and design of mechanical systems and structures, mostly in the presence of strong nonlinearities. This presentation aims at providing an overview of some main open research issues and related challenges, with also a flavour of introductory tutorial.

Exploiting global dynamics: A few items/challenges

The overview moves from an outline of asymptotic, geometrical-computational, and experimental stages of development of nonlinear dynamics in mechanics in about the last forty years [1], ending up to the current stage of marked hybridization with other scientific/technological areas, where nonlinear dynamics concepts, methods, and phenomena can fruitfully contribute to interpreting and governing major issues of application interest [2]. Within such framework, the use of geometrical/computational techniques and tools, properly enriched by the predictive capability of analytical methods and the validating role of experimental investigations, may allow to exploit global dynamics, too, for analysing, controlling and designing reduced order models (ROMs) of systems in macro-to micro/nano-mechanics, even in multi-physics and/or nondeterministic contexts (Fig. 1) [3]. Global analysis of dynamical systems relies on the knowledge and aware use of sophisticated theoretical concepts (e.g., invariant manifolds, attractor-basin portraits, global bifurcations, a huge variety of topological events), on one hand, and of advanced computational techniques/tools for their characterization, construction, and geometrical representation, on the other hand. When suitably used in conjunction with local analysis of bifurcation/response features, global analysis of systems not only enhances understanding of their dynamics in incremental terms, but also allows unveiling specific important phenomena, along with the need for their proper control. A few sample items are addressed in the presentation, as outlined in the sequel.

• Detecting non-trivial effects possibly induced in the long-term dynamics of a given system by the coupling between two (or more) coexisting physical fields (e.g., mechanical and thermal) evolving over different time scales [3]. • Characterizing, possibly predicting, and quantifying some main topological phenomena of global response in phase space (e.g., basins' erosion, escape from potential well, basins' mixing/intertwining), along with their evolution in parameter space [4]. • Evaluating comparative robustness and overall stability of specific attractors/responses of technical interest in mechanical and structural applications across different space scales, via systematic (e.g., dynamical integrity) [4] or sample-based (e.g., basin stability) [3] computational methods/tools. • Exploiting global concepts/phenomena (e.g., manifolds intersection) for control purposes aimed at either stabilizing some specific solution or modifying an overall region of stability for a given system [4,5]. • Interpreting/predicting global safety mismatches between theoretical and practical results originating from ever-existing disturbances/uncertainties in real systems, as well as possible global safety deficiencies induced in a system by a solely localized control which, although being effective, may substantially affect its local and global bifurcation scenarios [3,4].

• Dealing with the actual non-deterministic global framework of the real world by means of sophisticated operator approaches and suitable algorithmic implementations providing stochastic attractors, basins of attraction, and invariant manifolds in the presence of noise and/or parameter uncertainty, along with a revisited definition/use of deterministic global concepts/tools (e.g., dynamical integrity) [6]. • Assessing a possibly enhanced load carrying capacity of systems and structures via a novel, global dynamics-informed, paradigm for engineering design [3,4], by also taking consciously into account the effect of uncertainties/perturbations occurring in practical applications. • Facing the enormous complications of the global dynamics of multidimensional systems, taking full advantage of recent and ongoing advancements in different fields. (i) Nonlinear model reduction, to formulate refined ROMs of engineering systems also accounting for higher-order modal interactions, and allowing extended exploitation of the potential of global dynamics for analysis and safety purposes. (ii) Data-driven approaches, using numerically generated data sets or experimental measurements both for direct computational investigation of the global properties of high-dimensional systems or for formulating low-dimensional models more comprehensive [2].

Figure 1: Framing the exploitation of global dynamics within historical stages of development of nonlinear dynamics in mechanics.

Introduction

Relaxation and bursting oscillations belong to the so-called mixed-mode oscillations [1], which are characterised by alternations of slow and fast flows. The former consists of slow motion along outer curves, followed by jumps -fast changes of the amplitude (Figure 1a). Relaxation oscillations appear in a classical unforced van der Pol oscillator [2], which is an autonomous system governed by: 𝑥̈-𝜀(1 -𝑥 2 )𝑥̇+ 𝑥 = 0.

(1) where 𝜀 ≫ 1. In bursting oscillations, however, fast oscillations appear along periodically changeable slow flows (Figure 1b). Besides in neuro-dynamics, bursting oscillations occur also in autonomous systems in biology, chemistry and physics [1], while recent investigations demonstrated that they can occur in nonautonomous systems as well [3][4][5][6], such as a bistable Duffing oscillator excited by low-frequency harmonic excitation (Model 1):

𝑥̈+ 𝛿𝑥̇-𝑥 + 𝛽𝑥 3 = 𝑓 0 cos(Ω𝑡),

(2) or pure cubic one (Model 2):

𝑥̈+ 𝛿𝑥̇+ 𝛽𝑥 3 = 𝑓 0 cos(Ω𝑡).

(

) 3 
Given the potential of these nonlinear systems for mechanical realizations and use in engineering systems [4,5], this work has a twofold aim: i) to provide insights into dynamics of non-autonomous Models 1 and 2 in which bursting oscillations emerge; ii) to provide methods for the quantification of such responses on different time scales. 

Dynamic insight

Global behaviour of the system governed by Eq. ( 2) is investigated numerically by fixing f0 and  and varying the parameters  and . Three qualitatively different responses are captured, as illustrated in Figure 2: bursting oscillations (depicted by blue dots), relaxation oscillations (green dots) and oscillations around a non-trivial equilibrium (red dots). The influence of the change in a low-valued  on the appearance of the corresponding regions with these responses is illustrated in Figure 2a and b: three regions still exist but the one associated with bursting oscillation becomes smaller. Further, to quantify bursting oscillations in Model 1 and 2, Eqs. ( 2) and ( 3) can be transformed into the ones for the slow and fast flow [3,5]. The former can be solved by following the same approach in both cases, while the latter needs to be approached in different ways. For Model 1, the slow flow is assumed to be a constant, while the fast flow is modelled by the Helmholtz-Duffing equation and solved by adjusting the method of multiple scales [3]. For Model 2, the slow flow is treated as slowly varying in time and the Krylov-Bogoliubov method is utilized to find the corresponding response [5]. Thus, a different type of nonlinearity required a different technique for its treatment, but when compared with numerical solutions, both have acceptable accuracy, as seen in Figure 3a andb. 

Conclusions

This study has been concerned with bistable and pure cubic Duffing-type oscillators driven by low-frequency external excitation that exhibit bursting and relaxation oscillations to determine when each of them appear. Quantitative treatments of bursting oscillations in such systems have been conducted as well, separating them into a periodic upper and lower slow flow and damped fast flow around them. Analyses and insight gained into their dynamics pave a way for mechanical design and the use of these forced systems either as counterparts of unforced van der Pol oscillators since they both exhibit relaxation oscillations [3] or for energy harvesting from bursting oscillations [7].

Introduction

Asymptotic development methods [1][2] are commonly used in engineering, in particular mechanics and civil, and science. Among many other applications, we mention gear systems, rotating pendulum, internal resonances, nonlinear vibration of beams and cables, inclined risers, galloping problems, wave propagation in metamaterials, electrostatically actuated resonators, shells and Atomic Force Microscopy. They are used also to solve approximately the Duffing equation, which is the archetypal model for nonlinear symmetric oscillators [3], and which is considered in this work. Classical asymptotic methods are based on the introduction of a smallness parameter 𝜀, that can be physical or introduced artificially, and by a Taylor expansion with respect to 𝜀 of the governing equations. This leads to a series of problems, that must be solved sequentially, and the larger the number of the considered problems the better will be the accuracy. The drawback of having approximate solutions is compensated by the fact that they are analytical and often sufficiently simple, and thus can be easily managed for different purposes, from parametric analyses to preliminary design. In classical approaches the problems at all orders are linear. This is welcome, from the one side, since allows to solve the problems with classical tools of linear algebra, but represents a limitation, from the other side, since it restrains the validity of the solution in a neighbourhood of the linear approximation, and thus often loses accuracy for large amplitudes. To overcome the previous point, and in particular to have accurate approximate solution for large amplitudes in a neighbourhood of the peak of the Frequency Response Curve (FRC), a different approach is proposed, still remaining in the realm of asymptotic methods. It is based on the development around a nonlinear zero order problem. Although the proposed method can be used for any kind of nonlinear oscillator [4], in this work it is applied to the Duffing equation [3] because of its historical, theoretical and practical relevance. It differs from other methods applied to the same problem, in particular that proposed by Hsu [5] that used elliptic functions also in the excitation. An interesting review of methods is reported in Sect. 5 of [6].

The proposed approach

Let us consider the classical Duffing equation, already adimensionalized: 𝑥̈+ 𝛿𝑥̇+ 𝑥 + 𝑥 3 = 𝐹 cos(𝜔𝑡) .

(1)

In classical approaches it is alternatively assumed: (i) 𝑥̈+ 𝜀𝛿𝑥̇+ 𝑥 + 𝑥 3 = 𝜀 2 𝐹 cos(𝜔𝑡) and the solution is sought after in the form 𝑥(𝑡) = 𝜀𝑥 0 (𝑡) + 𝜀 2 𝑥 1 (𝑡) + ⋯ ; the nonlinear term is not small, but the solution has small amplitude, or (ii) 𝑥̈+ 𝜀𝛿𝑥̇+ 𝑥 + 𝜀𝑥 3 = 𝜀𝐹 cos(𝜔𝑡) and the solution is sought after in the form 𝑥(𝑡) = 𝑥 0 (𝑡) + 𝜀𝑥 1 (𝑡) + ⋯ ; the nonlinear term is small, but the solution has not a small amplitude to the first order. Both approached lead to the same linear first order equation 𝑥̈0 + 𝑥 0 = 0. Here a different scheme is proposed.

It is assumed that 𝑥̈+ 𝜀𝛿𝑥̇+ 𝑥 + 𝑥 3 = 𝜀𝐹 cos(𝜔𝑡) and that the solution is sought after in the form 𝑥(𝑡) = 𝑥 0 (𝑡) + 𝜀𝑥 1 (𝑡) + ⋯, i.e. the nonlinear term is not small and the solution has not a small amplitude to the first order. No slow times are used, as in Multiple Time Scale Method (MTSM). This gives the first order nonlinear problem:

𝑥̈0 + 𝑥 0 + 𝑥 0 3 = 0, ( 2 
)
whose solution is (𝑐𝑛 is the Jacobian Elliptic function):

𝑥 0 (𝑡) = 𝑐𝑛 (𝑎𝑡 + 𝛽, 𝑏), 𝑎 2 = 1 + 𝐴 2 , 𝑏 2 = 1 2

𝐴 2 1 + 𝐴 2 .

(

) 3 
The second order problem is given by:

𝑥̈1 + (1 + 3𝑥 0 2 )𝑥 1 = -𝛿𝑥̇0 + 𝐹 cos(𝜔𝑡) , (4) 
which is linear. One of the two independent solutions of the homogeneous equation is 𝑦 1 (𝑡) = 𝑥̇0(𝑡), while the other is given by 𝑦 2 (𝑡) = 𝑦 1 (𝑡) ∫ 𝑑𝑡 𝑦 1 2 (𝑡) . The particular solution of ( 4) is then: 𝑥 1,𝑝 = -𝑦 1 (𝑡) ∫[-𝛿𝑥̇0 + 𝐹 cos(𝜔𝑡)]𝑦 2 (𝑡)𝑑𝑡 + 𝑦 2 (𝑡) ∫[-𝛿𝑥̇0 + 𝐹 cos(𝜔𝑡)]𝑦 1 (𝑡)𝑑𝑡 , (5)

Results

Elaborating the expressions (2) and ( 5), and looking for periodic solutions (details can be found in [4], which consider a generic nonlinear oscillator) we obtain the FRC reported in red in Fig. 1, which is compared with its numerical counterpart (in black), and with that obtained with the classical MTSM [1]. The superior performances of the proposed method in the neighbourhood of the peak of the curve are evident. The zoom of Fig. 1b show how the proposed method allow to exactly detect the peak point of the FRC, which is a very welcome result per se and because requires simple computations, as shown in [4]. Actually, the coordinated (amplitude the frequencies) of the peak point for varying 𝐹/𝛿 are reported in Fig. 2. The jet-engine compressor gives pressure rise to the upstream flow and sends it into the plenum through the downstream duct. The throttle controls the averaged mass flow through the system at the rear of the plenum. The stall is such that the upstream non-uniform disturbance generates a locally higher angle of attack, and propagates along the blade row without mitigation. The deterministic Moore-Greitzer PDE model captures the dynamical evolution of this disturbance [9], and is given explicitly as

∂ t v = Av + f (γ, v), (1) 
where the states v(t) = [u(t), Φ(t), Ψ(t)] T . The physical meaning of the states are as follows: u(t, θ) ∈ R represents the velocity of upstream disturbance along the axial direction at the duct entrance, Φ(t) ∈ R is the averaged mean flow rate, Ψ(t) ∈ R is the averaged pressure. We require that u(t, 0) = u(t, 2π), u θ (t, 0) = u θ (t, 2π) and 2π 0 u(t, θ)dθ = 0. Equivalently, by defining H := u ∈ L 2 (0, 2π) : u(0) = u(2π), u θ (0) = u θ (2π), 2π 0 u(t, θ)dθ = 0 , we also have u(t) ∈ H and v(t) ∈ U := H × R × R. The operator matrix A and the vector field f in (1) are given as

A =   K -1 ( ν 2 ∂ 2 ∂θ 2 -1 2 ∂ ∂θ ) 0 0 0 0 0 0 0 0   and f (γ, v) =   aK -1 (ψ c (Φ + u) -ψ c ) 1 lc (ψ c -Ψ) 1 4lcB 2 (Φ -γ √ Ψ)   ,
where the operator K is a Fourier multiplier, a is the internal compressor lag. The compressor characteristic ψ c is given in a cubic form ψ c (Φ) =

ψ c0 + ι 1 + 3 2 Φ Θ -1 -1 2 Φ
Θ -1 3 , where ψ c0 , ι and Θ are real-valued parameters that are defined by the compressor configuration. We also define ψ c := 1 2π 2π 0 ψ c (Φ + u)dθ. As for the other coefficients, l c > 0 is the compressor length, B > 0 is the plenum-to-compressor volume ratio, ν > 0 is the viscous coefficient. We choose coefficients properly such that ∆ :=

ψc 0 +ι 1+ 3 2 √ 1-νΘ 3aι -1 2 √ 1-νΘ 3aι 3 Θ 1+ √ 1-νΘ 3aι
a 4B 2 ν < 0, which implies that a stall (Hopf bifurcation) can occur in H [9].

To simplify the analysis, we assume that the states Φ, Ψ quickly converges to the equilibrium points for every γ in the neighborhood of the quasi-static stall bifurcation point γ c (of the unperturbed system). To investigate the local exponential almost-sure stability of the trivial solution u = 0 under small multiplicative noise, we linearize the system around the equilibrium point for γ = γ c + ε 2 q with some q ∈ R and concern the perturbation, then we obtain the following abstract form of linear parabolic stochastic PDE,

du(t) = [A(γ c ) + ε 2 qA ′ (γ c )]u(t)dt + εG(u(t)) • dW t , ′ = d dγ (2) 
where A(γ c ) = [A + Df ue (γ c )]| H and generates an analytic compact C 0 semigroup on H. The operator G(u) is a linear Hilbert-Schmidt operator for each u ∈ H and G(0) = 0. The noise W is a cylindrical Wiener process with intensity of small ε > 0. Note that the point spectrum {ρ k (γ)} k∈Z0 of A(γ) is complex, where ρ k (γ) := a k (γ) + ib k (γ) ∈ C and ρ -k (γ) = ρ k (γ) for all k ∈ Z 0 . The almost-sure asymptotic stability of u = 0 is determined by the sign of the maximal Lyapunov exponent λ(γ) in the presence multiplicative noise.

Background

The Hopf bifurcation in stochastic partial differential equations (SPDEs) is not well understood in contrast to the deterministic model [1,2]. The concepts of phenomenological bifurcation and dynamical bifurcation are defined in [1]. A phenomenological bifurcation is where the structure of the density of a unique invariant measure changes, whereas the dynamical bifurcation captures changes of stability of the invariant measure as the maximal Lyapunov exponent λ(γ)

changes sign. While it remains difficulties to quantitatively describe the random invariant manifolds and dynamical bifurcation for SPDEs driven by multiplicative noise [4][8] [3], we approximate the maximal Lyapunov exponent to capture the stability change of the trivial solution when the parameter slowly moves through a deterministic (quasi-static) bifurcation point. The investigation in this paper is a necessary step to the study the dynamical bifurcation.

We start with the abstract evolution equation (2) and assume that the eigenvectors {e k } k∈Z0 form a complete orthonormal basis of H such that A(γ)e k = ρ k (γ)e k , ⟨e -k , e k ⟩ = 1 for all k ∈ Z 0 , and ⟨e i , e j ⟩ = 0 for all i + j ̸ = 0. Let γ c be the Hopf bifurcation point of the unperturbed system. Then, a ±1 (γ c ) = 0 as well as a ′ ±1 (γ c ) ̸ = 0, b ±1 (γ c ) ̸ = 0, whilst the rest of the spectrum stays in the left half-plane.

Methodology and Results

For two-dimensional linear stochastic system with small intensity real noise, fundamental analysis has been done in [5]. A four-dimensional version has been investigated in [6]. Instead of obtaining a dimension reduction using homogenization, the formula of top Lyapunov exponent was provided explicitly, which contains the terms from the stochastic components in the stable heavily damped modes to that of the critical modes. As for infinite-dimensional case, the almost-sure stability of scalar stochastic delay differential equation has been studied in [7]. The formula was obtained by an asymptotic approximation. We adopt a similar strategy for the asymptotic approximation of the invariant measure as well as the top Lyapunov exponent as in [7]. In contrast to the real noise case, the generator of SPDEs driven by cylindrical Wiener processes only exists under certain assumptions. We provide a stability analysis by assuming necessary conditions, and show the existence of the invariant measure. The ergodicity of the invariant measure, however, relies on the property related to G. The analytical approximation of Furstenberg-Khasminskii formula for the top Lyapunov exponent can be further referred as a comparison with industrial experiment data. The final approximation is as follows:

λ ε = 1 2π 2π 0 Q(ϕ, 0)dϕ + ε 2 2π 2π 0 Q(ϕ, 0)κ(ϕ)dϕ + ε 2 2π 2π 0 Q ′′ ϕ, 0; k∈Zs (χ R k (ϕ) + χ I k (ϕ))e k , k∈Zs 1 2 |k|+2 (1 -ρ k ) e k dϕ + O(ε 3 ), (3) 
where 

Q(ϕ, η) := qa ′ 1 (γ c ) + Ξ(ϕ, η), κ(ϕ) = -Γ(ϕ) + 1 2 Tr[P c G ϕ (D ϕ P c G ϕ ) * + (D ϕ P c G ϕ )(P c G ϕ ) * ](ϕ, 0), ϕ ∈ (0, 2π), η ∈ P s H; Q ′′ (ϕ
(χ R k , χ I k ) solve χ R k χ I k (ϕ) = a k -1 -b k b k a k -1 -1 e ϑ k cos(w k ) -sin(w k ) sin(w k ) cos(w k ) - G R k G I k , ϑ k := (a k -1)ϕ b c c , w k := (b k -1)ϕ b c c .

Introduction

Structures in any engineering field, such as civil, mechanical structures or others, are basically designed to prevent nonlinear behaviours during their service lives under expected design loads. Those structures thus normally behave as the linear systems under normal operations within the elastic ranges of materials and mechanisms; however, they show any nonlinearity in case that large displacement occurs under extreme loadings, or that any damage is caused by aging effects or extreme events during their operations.

One of significant nonlinearities is the material nonlinearity, which is often discussed in the structural nonlinearity. This nonlinearity is locally emerged in most cases due to yielding caused by large displacement, stress concentration in local damages such as fatigue crack, and failures at movable members. On the other hand, the geometric nonlinearity is associated with large deformations, which cause changes in structural stiffness owing to a change in the shape or reconfiguration of loads. It should be noted that when the geometric nonlinearity is caused in the structure, the material nonlinearity often occurs simultaneously because the large structural deformation usually causes the material to enter the plastic range. The structural nonlinearities also emerge owing to the nonlinear boundary conditions, such as structural members with hysteresis characteristics or with mechanism with friction. In addition, more undesirable nonlinearity occurs in the extreme events with failures in members; for instance, the impact phenomena of multiple members, or collapse phenomena in which a single component is split into two or more separate components.

Those nonlinearities are unexpected events from the viewpoint of structural operation; however, detection and evaluation of early-stage nonlinearity in response is helpful for safe and reliable operations of structures. In the dynamic responses of structures, those structural nonlinearities cause nonlinear and non-stationary stochastic process. The detection and evaluation of those nonlinearity in dynamic response is one of effective strategies to detect and evaluate structural damages and structural conditions in the structural health monitoring (SHM). This paper aims to introduce nonlinearity detection from structural dynamic data and our recent approach for contribute those techniques to safe and reliable operation of civil structures.

Detection of nonlinearity in dynamic measurement data

Structural vibration can be measured by various sensor technologies, and the accelerometer has been most used in the field of SHM, that is the process of diagnosis current structural condition from acquired data installed in operating structures. The approaches to detect nonlinearities in damaged structures has been discussed [1], where there are two approaches in nonlinear detection and evaluation, the one is outlier detection from the process of linear system, and the other is evaluation of singularity in time-or frequency-domains. For instance, the author evaluated some feature extraction techniques for evaluating nonlinear system in the previous study [2]. Figure 1 shows the frame structure for the vibration test with a bumper mechanism to introduce the geometric nonlinearity, which varies stiffness between the 3rd and top floors depends on displacement. One of features extractions to detect the singular points in acceleration data is the Holder exponent, which is a technique that provides information about the discontinuity of the signal. Because the singularity points have no continuous derivatives, they can be identified when the Holder exponent suddenly drops to a value of zero or below. The singularity points detected from the Holder exponent plot are indicated by the black circles in the above figure of Fig. 1 (b). Also, in the acceleration time-history below, the moments, when the bumper contacted the suspended column, are indicated. The detected points in the Holder exponent show good agreements to the moments of contact events occur; therefore, it can be said that the nonlinearity in the time-history are appropriately extracted. While SHM for detecting damages and evaluating structural conditions using the structural vibration data acquired by accelerometers with using wireless system, fibre-optics, and MEMS technologies, are discussed for these two decades, the application of noncontact measurement, such as image or video data, is recently highly paid attention. Authors are now challenging to the study of nonlinearity detection and evaluation from video data, which is dynamic image data including time-and spatial-domains information. Our current approach is the feature extraction based on the optical flow method. As a basic study, the shake table tests that use the frame structures introducing the nonlinearities with contact events and boundary condition changes, are conducted as shown in Fig. 2 (a). By processing video data by the Farneback algorithm of the optical flow method, the velocity and orientation of all pixel points for each frame can be obtained. And then, the node strength is calculated from obtained velocity vectors in each pixel as the feature to be evaluated. The results for two frames, before and the exact moment of one of contact events, are shown in Fig. 2 (b). In the right frame image, which is the moment when the contact event occurs, the contact event can be captured by visualizing the area with pixels of high node strength, indicated by a yellow circle.

Conclusions

In the viewpoint of structural vibration in engineering fields, most nonlinearities are unexpected and undemanded events; therefore, they are worth detecting as the outliers in the linear dynamics. Although the singularity detections have been approached only in time-and frequency-domains in the SHM field, the spatial domain using video data is also expected to realize novel approach. Authors are going to apply this method to evaluate structural condition and recognizing barely-visible damage occurrence in the post-earthquake evaluation of civil structure conditions.

Intermodal targeted energy transfer
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Introduction

The dynamical responses of structures subjected to extreme loads (such as blast, earthquakes, shock) poses a significant challenge and has attracted great interest among researchers and engineers [1]. One of most important issues here is rather limited suppression achieved for the first few (but most intensive and dangerous) cycles of the structural response to the excitation. Consequently, many new and innovative structural protection fully passive concepts have been proposed, developed, and even implemented, being classified as linear, and nonlinear passive mitigation strategies [1,2]. Specifically, load mitigation based on irreversible (directed) passive nonlinear vibration energy transfers, known as targeted energy transfers (TETs) has been widely explored for passive vibration control and energy harvesting purposes. This approach is based on transferring energy from a directly excited primary structure to a set of secondary strongly nonlinear structures (referred to as nonlinear energy sinks -NESs), where it is localized and locally dissipated without scattering back to the primary structure [2]. The dynamical mechanisms governing such TET mechanism are isolated or multiple (i.e., cascades of) transient resonance captures. However, such resonant energy transfers to the NESs are achieved through relatively slow modulations of the structural modal amplitudes, which, for some applications involving extreme loads, e.g., blast or seismic excitations, prove not to be fast enough. Recent studies [3,4], however, has shown that nonlinear resonance is not the only fundamental mechanism for achieving TET, since it can also be realized through a non-resonant fast scale mechanism involving non-smooth effects. This has been employed to explore the concept of intermodal targeted energy transfer (IMTET) to mitigate the effect of blast loading on a nine-story steel structure [4]. In this presentation, we discuss the implementation of the IMTET strategy for seismic passive protection of tall buildings (in particular, twenty-story) subject to strong earthquakes, as well as experimental evidence of the IMTET in simple benchmark model systems [5].

Seismic mitigation through the IMTET

The primary structure considered here is the benchmark 20-story steel building designed by Brandow & Johnston Associates for the SAC Phase II Steel Project. To achieve seismic mitigation using the IMTET concept, a flexible internal core structure is introduced, with distributed clearances with respect to the floors of the primary twenty-story building, as shown in Figure 1 Figure 1 Seismically excited 20-story primary building with internal flexible core structure: Schematic of (a) the integrated building-core, and (b) the flexible core structure.

The computational results provide a preliminary demonstration of the effectiveness of IMTET for rapid seismic mitigation of the primary building response subjected to Kobe (1995) ground motion. Figure 2(left) shows an extremely rapid attenuation of the overall structural response, compared to the linear case of no core (i.e., infinite gaps). The governing nonlinear mechanism responsible for the drastic enhancement in seismic mitigation is shown in Figure 2(right), where the percentage of input seismic energy eventually dissipated by the inherent (modal) dissipation of each of the ten leading structural modes of the primary building (with no core) is depicted. Indeed, compared to the linear case of no corewhere the energy dissipation is dominated by the fundamental structural mode, in the case of optimized clearance gaps the seven leading modes participate in energy dissipation. Hence, there is a noteworthy, rapid, and irreversible nonlinear targeted energy transfer (or IMTET) from the low structural modes to the higher ones, causing rapid reduction of the structural response.

Figure 2. Primary building with optimized core and no core subject to the Kobe earthquake: Maximum floor displacement (left); Input seismic energy (%) dissipated by the inherent damping of the leading modes of the primary building (right)

IMTET experiment in a forced cantilever beam

To test the IMTET phenomenon, an experiment is constructed where a steel cantilever beam is clamped at one end and excited at the other, and steel tips with clearances anchored to a host fixture serve as vibro-impacts (VIs) which induce non-resonant energy redistribution within the modal space of the beam [5]. The fixture is illustrated in Figure 3a. The result, clearly demonstrating the IMTET effect resulting in substantial decrease of the characteristic damping time in the system, is presented in Figure 3b. Periodic structures are attracting a great deal of attention thanks to their capability of suppressing or attenuating the propagation of elastic waves. The possibility of manipulating the band gaps allows to exploit the advantageous characteristics of these periodically materials for vibration or sound attenuation purposes. In previous works by the same authors [1,2], the effects of the local nonlinear resonators features on the dispersion relations of the honeycomb were investigated, to ensure stop band behavior and to find the optimal design of the resonators. These works provided analytical and numerical evidence of the beneficial effects of the suitably designed nonlinear resonators on the enhancement of the stop bands size. In the present work, metamaterial honeycombs hosting membrane-shaped resonators with center masses are studied analytically and experimentally, with the purpose of creating multiple stop bands to suppress wave propagations within certain frequency ranges. Moreover, the tuning of the membrane properties thanks to the piezoelectric effect, in the material constituting the metamaterial turns it into a become a programmable metamaterial, which can be tuned according to the different excitation scenarios. 

Theory and experiments

The goal is to study metamaterial lattices with a 2D-array of equally spaced membrane-shaped resonators (See the experimental sample shown in Figure 1). By assuming the validity of Floquet-Bloch's Theorem, the wave solution of the considered metamaterial is assumed to be periodic in space and amplitude-modulated by the wave number vector. The equations governing wave propagation can be obtained via a projection method, as [1,2]:

M H ẅ0 (t) + K H w 0 (t) + N i=1 M i ( ẅ0 (t) + zi0 (t)) = 0, (1a) 
M i (z i0 (t) + ẅ0 (t)) + K i z i0 (t) + N

(3)

i z 3 i0 (t) = 0, i = 1, . . . , N (1b) 
where M H and K H are the effective mass and stiffness of the primary metamaterial structure, both functions of the wave number vector, M i and K i are the ith mass and stiffness of the resonators respectively, w 0 (t) is the hosting structure deflection at the center of the cell while z i 0(t) is the resonator ith modal motion at the origin, N

is the ith modal nonlinearity, N is the number of retained modes. The nonlinear modal equation of the nonlinear membrane is reduced via the Galerkin method and described by means of its modal parameters, i.e. the modal mass, the modal stiffness and the nonlinear modal stiffness. In order to increase the modal mass of the membrane, a center mass is introduced. Finally, the equation of motion (1b) for the nonlinear membrane is reduced to the modal equation of motions which read, for the mn-th mode, M mn (z mn (t) + ẅ0 (t)) + K mn z mn (t) + N (3) mn z 3 mn (t) = 0.

(

) 2 
where M mn is the modal mass , K mn is the modal stiffness, N

mn represents the nonlinear coefficient of the stretching nonlinearity reduced to the mn-th mode, and z mn is the modal coordinate of the mn-th mode. The membrane properties can be tuned by the piezoelectric effect, which affects the membrane prestressed n (0) by adequately changing the applied voltage. This, in turn, will change the modal stiffness K mn of the membrane. In particular, the membrane is made of PVDF (polyvinylidene Difluoride) fibers subject to a constant voltage V (t) = V . The piezoelectric effect in the PVDF fibers gives rise to a strain in both directions, which, in turn, creates forces given by

n (0) = E P hm 0 d 0 V h m dz = E P d 0 V (3) 
where E p is the Young's modulus of the PVDF fibers, d 0 is the coupling piezoelectric coefficient and h m is the thickness of the membrane. Thanks to the method of multiple scales [3], the nonlinear frequency of the nth mode of the coupled system is expressed as

ω (n) nl = ω n + 3( N +1 i=2 [N (3) 
(i-1) (ϕ 4 i,n a 2 n + 2ϕ 2 i,n N +1 s=1 [ϕ 2 i,s (1 -δ sn )a 2 s ])]) 8ω n . ( 4 
)
where a j are the jth modal coordinates and ϕ i,j is the ith component of the jth eigenvectors which depend on the resonator's mass and stiffness, ω n donates by linear dispersion functions, δ ij is the Dirac-delta function. The analytical results will be corroborated by an experimental campaign of dynamic testing involving honeycomb metamaterial samples (See figure 1). In particular, both Experimental Modal Analysis (EMA) and frequency response analysis will be performed in order to understand in-depth the honeycomb metamaterial lattice feature when subject to an excitation source.

Results and discussion

Numerical examples are performed to ensure the sensitivity of the bandgap behavior and to test the effects of the pre-stress of the membrane on the dispersion functions, and to offer guidance towards the optimization of the resonators within the metamaterials. Some preliminary analytical results are reported in Figure 2 which shows the linear stop band size S A , the central frequency P , and the relative stop band size S R with respect to different choices of resonator modal parameters M and K in the context of a single-mode reduction of the membrane. Figure 3 present the dispersion properties of an exemplary honeycomb system. It is found that the nonlinear stop bands (represented as blue and red curves) are larger than the linear counterparts (described by black dashed curves). The dispersion curve for the bare honeycomb without resonators (green) are also shown for comparison purposes.

Figure 3: The nonlinear dispersion functions of the metamaterial system with the three different modal amplitudes. G is the ratio of the width of the nonlinear stop band to that of the linear stop band.

Non-linear characteristics of a two-DOF shaft-system coupled by a universal joint with clearance

The driveshafts interconnected with a series of U-Joints at non-zero operating angles produce second-order torsional accelerations due to the inherent non-linearities from the kinematics of the U-Joint. Parametric instabilities caused by the operating angle and phasing of the U-Joints have been studied in the literature. Asokanthan and Meehan [1] obtained conditions for parametric instability for a 2-DOF driveline model and determined the quasi-periodic route to chaos for the full nonlinear model utilizing the maximal Lyapunov exponent. Bulut and Parlar [2] studied the linear time-dependent dynamics of a 2-DOF shaft system interconnected with a U-Joint using the monodromy matrix method. Strutt diagrams were generated utilizing the Floquet theory to determine regions of parametric instabilities. SoltanRezaee et al. [3] performed a similar study but on a multi-U-Joint driveline using the monodromy matrix method and identified regions of sub-harmonic and combination type resonances. Most other literature has mainly focused on developing equations of motion and studying the parametric dynamical behavior of U-Joints without clearances. However, clearances naturally arise in practical mechanisms due to manufacturing tolerances and to allow for relative motion between components. Wang and Li [4] studied a 2-DOF shaft system connected by a joint with clearance and observed that the presence of clearance could impact the resonance frequency of the system. The system parameters such as stiffness and clearance size affect the dynamical characteristics. The nature of motions range from periodic orbits, limit cycles, quasi-periodic motions, and for large clearances chaotic motions. Similar conclusions were drawn by Chen et al. [5] as they investigated non-linear characteristics of the slider-crank mechanism with joint clearance. The literature on the non-linear characteristics of U-Joints with clearances is scarce. In this research effort, we are studying the non-linear phenomena arising due to the clearances in U-Joint for a 2-DOF driveline model interconnected through U-Joint coupling with clearance between input and output yokes. We derive the governing nonlinear equations of motions describing the torsional dynamics. The effects of size of clearance and the U-Joint angles on the overall dynamics of the driveline are discussed using phase portraits, Poincare sections and bifurcation diagrams. 

Equations of Motion

Consider a shaft system interconnected through a U-Joint misaligned with angle β as shown in Figure 1 (a). The inertia of the input and output shaft is J 1 and J 2 . The torsional stiffness of the input and output shaft is k 1 and k 2 . The damping coefficients of the input and output shaft are c 1 and c 2 . Let x 1 and x 2 are the relative torsional displacements, their first time-derivatives are the relative angular velocities of inertia J 1 and J 2 with respect to the right end of torsional springs.

The clearance between the input yoke and output yoke of U-Joint is represented by δ as shown in Figure 1 (b). The system is driven by a sinusoidal torque input with forcing frequency Ω on one end whilst the other end being fixed. The governing equations are derived using Lagrange's equation of motion and are given by, 

J 1 d 2 dt 2 x 1 (t) + η(t) d 2 dt 2 x 2 (t) + d dt η(t) d dt x 2 (t) + k 1 f (x 1 , δ) + c 1 d dt x 1 (t) = T (t) (1) 
J 2 d 2 dt 2 x 2 (t) -η(t) k 1 f (x 1 , δ) + c 1 d dt x 1 (t) + k 2 x 2 (t) + c 2 d dt x 2 (t) = 0 (2)
f (x 1 , δ) =    x 1 -δ x 1 > δ 0 -δ ≤ x 1 ≤ δ x 1 + δ x 1 < -δ (4) (3) 

Results and Discussion

The non-linear equations of motion shown in ( 1) and ( 2) are numerically integrated using the Runge-Kutta 45 routine in MATLAB. The system parameters chosen for the investigation are shown in Table 1. The phase portraits shown in Figure 2 (a) illustrate the effect of clearance size on the dynamic behaviour of the system. It can be observed the motion trajectories are periodic for small values of clearance and become chaotic for large values of δ. Similar conclusions can be drawn from the Poincare maps shown in Figure 2 (b), motion is periodic for δ = 0 and δ = 0.001 mm clearance size whereas motion is chaotic for the value of δ ≥ 0.055 mm. Moreover, the above results conform with the bifurcation diagram shown in Figure 2 (c), for values of 0 ≤ δ ≤ 0.0509, the system exhibits period-1 (1T) motion. At δ = 0.0509, the system undergoes a continuous jump in the attractor and leads to a sequence of 2T,4T, and 8T bifurcations for values of δ between 0.05091 and 0.0850. And δ ≥ 0.0850, the system's behaviour becomes complex and is characterized as chaotic. Thus, the system exhibits a period-doubling cascade leading to chaotic dynamics. Additionally, the calculation of the largest Lyapunov exponent (LLE) for various clearance sizes revealed a transition from periodic motion (with negative LLE) to chaotic motion (with positive LLE) as the clearance size increases. Additional analysis has been conducted on other system parameters in addition to the results presented in the above analysis regarding the solution's dependence on δ. Specifically, at the values of 1 Nm/rad for parameters k 1 and k 2 , the system demonstrates an attractive limit cycle behaviour.

Introduction

Auto-parametric systems are vibrating systems that consist of two physical components: an oscillator that is directly excited and coupled nonlinearly to a subsystem which is parametrically excited by the response of the forced component, in such a way that it can be at rest while the oscillator is vibrating. Equations of motion of auto-parametric systems model the dynamics of a number of structural and mechanical systems. There is a large literature on autoparametric systems with periodic forcing, but comparatively little on the same systems with random forcing. This work examines the stationary motion and stability properties of the stationary motion of a two degree-of-freedom, stochastically forced, nonlinear auto-parametric vibration absorber. To keep things as simple as possible, we shall consider an auto-parametric vibration absorber as shown in Figure 1a with randomly excited base (block), where the primary system consists of a linear spring-mass-damper with the mass attached to a simple damped pendulum [1]:

η(t) + 2ζ 1 η(t) + χ 2 η(t) -R θ(t) sin θ(t) + θ2 (t) cos θ(t) = Ξ(t) θ(t) + 2ζ 2 θ(t) + κ 2 -η(t) sin θ(t) = 0, (1) 
where θ is the angle of the pendulum, η = y/l represents the dimensionless height of the mass, the constants ζ 1 and ζ 2 are scaled damping coefficients, the parameter R := m 2 /(m 1 + m 2 ), 0 < R < 1 represents the mass ratio, κ 2 = g/l determines the frequency of the pendulum,

χ 2 = k 1 /(m 1 + m 2 )
determines the frequency of the locked block, and the frequency ratio is κ/χ. As shown in Figure 1a, m 1 and k 1 are the mass and the spring constant of the spring-mass system and m 2 and l are the mass and the length of the pendulum. Here, the base excitation Ξ(t) is a stationary white noise process, that is, Ξ(t) = ν Ẇ (t), where W is a standard Wiener process and ν represents the noise intensity. For the pendulum suspended below the vibrating block with white noise forcing, the solution in which the pendulum remains vertical is called the single mode stationary solution with an invariant measure µ ν ('reference measure'). The stability of this solution ( θ = 0, η(t)) is governed by the linear variational equation of the pendulum (θ(t) = θ + φ(t)):

φ(t) + 2ζ 2 φ(t) + κ 2 + 2ζ 1 η(t) + χ 2 η(t) φ(t) = νφ(t) Ẇ (t), (2) 
where η(t) + 2ζ 1 η(t) + χ 2 η(t) = ν Ẇ (t), t ≥ 0. Although several papers [3,4,5] have dealt with some aspects of this question, much of the treatment of such systems with random forcing is non-rigorous, involving moment closure techniques and localization assumptions which are unwarranted in a stochastic setting. This is primarily due to the interactions between the noise and nonlinearities. The novelty of the variational equation ( 2) is that it is parametrically excited by the original white noise process, Ξ(t) and the colored noise processes, η(t) and η(t). We first treat the almostsure stability of (2), then explore the existence other stationary solutions when the 'reference measure' µ ν is unstable.

2 Almost-sure stability of the single mode solution

The almost-sure stability of the single mode solution is given by the exponential growth rate of (2), expressed precisely as the Lyapunov exponent of the solution generated by (2) under the stationary measure µ ν ,

λ ζ 1 , ζ 2 , ν := lim t→∞ 1 t log ∥ (φ(t), φ(t)) ∥. (3) 
A precise asymptotic analysis for the maximal Lyapunov exponent for such a system excited by a multivariate Ornstein-Uhlenbeck process that represents a generic parametric real noise is presented in [2]. Under the assumption of small random perturbations ν → ϵν, and small damping ζ 2 → ϵ 2 ζ 2 (for small noise intensity, the instability boundary may not exist when ζ 2 is of order 1) the maximal Lyapunov exponent which determines the almost-sure stability of (2) is given by

λ := lim t→∞ 1 t log ∥ (φ(t), φ(t)) ∥ = -ζ 2 + 4πκ 2 S ηη (2κ) ϵ 2 + O(ϵ 4 ), (4) 
where 2 1 ω 2 is the power spectral density of η(t). The focus of this paper is to rederive the approximation (4) using a method different from the one developed in [2]. Putting λ = 0 in (4) provides the second order approximation of the almost-sure stability Although no particular attention was given to the 1 : 2 resonance in the stochastic analysis of the linearized system, the stability boundaries in Figure 1b clearly show the significance of internal resonance, χ ≈ 2κ, in determining the almost-sure instability region in the (κ, ν) parameter space, which is of significance in applications. When χ = 1, as in Figure 1b, all the curves have a characteristic "V" shape that mimics that of the instability tongues and transition curves in the stability chart of Mathieu's equation with linear viscous damping and cosine-type periodic forcing of the stiffness coefficient.

S ηη (ω) = 1 2π ν 2 (χ 2 -ω 2 ) 2 + 4ζ
k c 1 m 1 Ξ(t) y(t) l m 2 c 2 θ(t) ( 

Existence of coupled mode solutions

The single mode stationary solution with an invariant measure µ ν described above is the known 'reference measure'. The natural question is, do the spring-mass oscillator and the pendulum together undergo random vibrations when the top exponent (4) becomes positive, i.e., λ ζ 1 , ζ 2 , ν > 0? There may or may not be other stationary solutions. We conjecture the existence of other "nonlinear" stationary solutions, which we call the coupled mode solutions (with an invariant measure ρ ν ), depends on the stability of the single mode solution µ ν . Since the almost-sure stability boundaries indicate the strong effect of internal resonance, it is natural to look for the existence of the bifurcating stationary solutions close to χ = 2κ in the original nonlinear equations (1). This section concentrates on the well-posedness and evaluation of ρ ν , and involves statements about the behavior of the original nonlinear system (1) for λ ζ 1 , ζ 2 , ν > 0, but close to λ ζ 1 , ζ 2 , ν 0 = 0. More precisely, (ν 0 , µ ν0 ) is called a D-bifurcation point if in each neighborhood of ν 0 there exists ν with an invariant measure ρ ν ̸ = µ ν for which ρ ν ⇒ µ ν0 weakly as ν → ν 0 . We conjecture the existence of a coupled mode solution ρ ν , for small positive λ(ζ 1 , ζ 2 , ν), in the neighborhood of the D-bifurcation point (ν 0 , µ ν0 ) shown by the shaded region in Figure 2. 

ν µ ν , ρ ν λ ζ 1 , ζ 2 , ν 0 = 0 ρ ν µ ν ν 0

Introduction

Several noise sources are found in micro-electro-mechanical systems (MEMS) [1], having a substantial influence on their behavior. Their reduced dimensions intensify all noise effects and instabilities that are negligible in macro-scale devices, as corroborated by experiments [2]. Many MEMS structures display coexisting solutions possessing distinct basins of attraction. Noise in such structures may cause jumps between competing attractors and global bifurcations like basins' merging, time-dependency and instability. The interaction between previously separated basins is the focus of stochastic resonance in global dynamic terms, being the coexisting attractors and their basins the main tools to understand the system behavior and evaluate their dynamic integrity [3]. However, the effects of noise and parameter uncertainty on the global dynamics of engineering systems have been rarely conducted in literature. Here, instead of a time consuming algorithmicbased description such as Monte Carlo or generalized cell-mappings [4], an adaptative phase-space discretization strategy based on an operator approach is proposed for both deterministic and stochastic cases. The Ulam method, a classical discretization of flows in phase-space, is extended here to nondeterministic cases. A unified description is formulated based on the Perron-Frobenius, Koopman, and Foias linear operators. Also, a procedure to obtain global structures in the mean sense of systems with parametric uncertainties is presented (see the detailed review and description of the proposed numerical tools in [5,6]).

Microcantilever formulation

Here, a slender clamped-free, imperfect, electrically actuated microbeam is considered. The planar flexural imperfect Rayleigh beam has been previously addressed in [4], which can be referred to for mechanical modelling and more details. In this section, the basic equations are briefly recalled since they represent the starting point of the forthcoming numerical investigations. The considered nonlinear equation of motion in the transversal direction of the beam of width b, thickness h, and length L is expressed as

( ) ( ) ( ) ( ) ( ) 2 2 2 0 0 0 0 2 2 2 2 0 1 2 2 1 , w s s L b V w mw c w D w w w w w w w w w w w d w J w w w w mw w w w ds ds η η ε  ′     ′ ′′ ′′ ′′ ′ ′′ ′ ′′′ ′ ′ ′′′ + - = - + + + + + +        -    ′      ′ ′ ′ ′ ′ ′ ′ ′ + + + - +           ɺɺ ɺ ɺ ɺɺ ɺ ɺɺ (1) 
where s measures the undeformed arc length, ( )

d ds ′ = , t is time, ( ) d dt • =
, m and Jη are the linearly distributed mass and rotational inertia, respectively, w is the transversal displacement, w0 the transversal geometric imperfection, , Dη the flexural stiffness, cw the viscous damping coefficient, d the initial gap for a perfect system and ε the free space permittivity. ( ) ( )

dc ac V t V V t = +
is the total applied voltage, being Vdc the direct current and

( ) cos , ac ac V V t ≡ Ω
the time-dependent alternate current, where V̅ ac is the forcing magnitude and Ω the forcing frequency. The Galerkin discretization method, using as interpolating functions the linear vibration modes, is used to obtain a 1dof equation. A stochastic differential equation of Itô type is obtained by adding a white noise term, which is solved by the stochastic Runge-Kutta method. The adopted geometric and material parameters are the same employed in [4,7]. 0 w w w = +

Results and discussion

The global stochastic dynamic analysis of the microcantilever with added noise is addressed by considering an additive white noise W σ ɺ , where W ɺ is the generalized derivative of the standard Wiener process and σ is a scaling parameter. The phase-space window

[ 1,1] [ 2, 2] = -⊗ - X
is considered and initially discretized into 32x32 cells. Then, by applying the proposed refinement algorithm, see [5,6], each box to be refined is subdivided into two new ones, until the desired final refinement of basins and attractors is archived. The timestep for the stochastic Runge-Kutta is Δt = T/4000, where T is the period of excitation. For the stochastic cases, each initial condition is integrated 10 times. At each refinement step, a new stochastic matrix pij is constructed and probability density distributions of attractors' and basins' observable functions are obtained. The microbeam exhibits a softening behavior [7] with coexisting nonresonant and resonant attractors in a frequency range lower than the fundamental frequency. For Vdc = 45, V̅ ac = 5, Ω = 2.8, w0 = 0, and time-horizon 1/ε = 10 T, Figure 1 exemplifies the effect of noise over attractors' densities and basins of attraction of the two coexisting attractors and the variation of the basin's area of the resonant attractor as a function of the noise intensity σ , for various probability thresholds (color bar). Escape (pull-in) is represented by the intersection of black regions of both basins. The noise causes diffusion of both attractors' densities and basins' boundaries, and large noise amplitudes break the clear distinction between the two attractors, with basins no longer presenting regions with 100% of certainty of convergence to one of them. An interesting instability is observed: for noise intensity σ ≥ 0.013, the resonant solution vanishes for long time-horizons [4]. The attractors concentrate around the deterministic position, where higher densities are observed. As noise increases and the basin diffuses, increasing areas with probability values between 0 and 1 are observed, as illustrated in Fig. 1c. Therefore, the decrease of the safe region due to noise must be considered for reliable quantification of the dynamic integrity and safety of the system. In all cases, the proposed operator methodology for the global analysis of stochastic dynamical systems has shown a high efficiency (see [5,6]). The Ulam method, modified to accommodate random dynamical systems, results in a discretization of the Foias transfer operator, which, together with the proposed refinement strategy, has shown to be a computationally efficient tool and a most reliable approach to the global analysis of random dynamical systems. A novel pair of non-dimensional measures to predict the order-to-chaos wake transition in the flow-field of a flapping foil Dipanjan Majumdar * , Chandan Bose * * , and Sunetra Sarkar *

Introduction

A proper understanding of nonlinear dynamical behaviour in the wake of flapping foils can directly contribute towards improving the development of futuristic bio-inspired micro-aerial vehicles. Chaotic transition in the flow-field can make the aerodynamic loads unpredictable in the long-term, posing significant design challenges for human-made flapping wing devices. Therefore, identifying appropriate transition route and onsets, and determining a stable operating regime for such devices are crucial. A wide range of recent studies have highlighted the interesting transition from periodicity to aperiodicity in the wake of flapping foils for different canonical kinematics [1,2,3,4,5,6]. Small time delay in the formation of primary leading-edge vortex (LEV) in successive flapping cycles plays the key role in triggering chaos in the flow-field [4]. At high plunge velocities, the LEV sheds aperiodically, and subsequently, its irregular interactions with the trailing-edge vortex (TEV) gives way to chaos in the far-wake [4,5]. The aperiodic transition is extremely sensitive to LEV behaviour, and any discrepancy in its growth may lead to a very different dynamical state [5]. It is likely that the LEV separation and near-field vortex interactions, and in turn, the dynamical signature of the flow-field may be altered significantly by varying different system parameters, such as the amplitude, frequency, phase offset, pivot location, profile shape, kinematic pattern etc. This leads to the interesting question of whether there exist suitable non-dimensional quantities that can capture the effects of different parameters together and draw generalised bifurcation boundaries to demarcate distinct nonlinear dynamical regimes. The existing non-dimensional parameters, A D and St D [3], St c [7], St A [8] and κh [2,4] (indicating normalised trailing-edge amplitude, different definitions of Strouhal numbers and nondimensional stroke amplitude) are not comprehensive enough to account for the combined effects of these parameters [9]. This brings out the need for developing a robust measure to demarcate the regimes of aperiodic transitions considering the combined effects of all relevant system parameters. To that end, we propose a novel pair of non-dimensional quantities encompassing the combined effects, and present an order-to-chaos map demarcating the periodic, transitionary and chaotic regimes.

Simulation set-up and parameter space

A rigid elliptic foil was considered to undergo flapping as a simultaneous pitching-plunging motion inside uniform inflow (see Figs. 1a,b). The unsteady flow around the flapping foil was simulated by numerically solving the 2-D incompressible Navier-Stokes equation. A discrete forcing type immersed boundary method (IBM) based in-house flow solver [5] was employed. Details of flow solver algorithm, computational domain, boundary conditions, convergence and validations results are available in our earlier studies [5,9]. The flow-field was simulated for an extensive range of parametric variations to study their individual and combined effects on the flow-field dynamics. The parametric variation (in their non-dimensional form) were as follows: plunge (up-down) amplitude (h = 0.25, 0.375, 0.475 and 0.625), pitch (rotation) amplitude (θ 0 = 5 o , 15 o and 25 o ), pivot location (x 0 = 0.25, 0.5 and 0.75), flapping frequency (κ = 2.0, 4.0 and 8.0), phase-offset between plunge and pitch (in the range of 0 ≤ φ ≤ 2π, in steps of π/8) and foil thickness to chord ratios (t h /c = 0.06, 0.12 and 0.18). Qualitatively different kinematic models (sinusoidal and trapezoidal) were also studied. The flow Reynolds number was kept constant at Re = U ∞ c/ν = 300 (ν, U ∞ and c being the kinematic viscosity, free-stream velocity and chord length, respectively). The dynamical states of the flow-fields and loads were identified by analysing them using several nonlinear time series analysis tools based on dynamical systems theory.

Dynamical transition behaviour and an order-to-chaos map

A periodic-to-chaotic transition was seen to take place in the flow-field through a quasi-periodic (presence of incommensurate frequency bands and closed loop Poincare map) route. Although the bifurcation route remained unchanged qualitatively, the transitional onsets of different dynamical regimes got changed significantly along h for the variation in other parameters; e.g., for 2π/8 ≤ φ ≤ 6π/8, the flow-field remained periodic even for higher h (h = 0.475) whereas it became chaotic even at lower h values (h = 0.375) for 3π/2 ≤ φ ≤ 2π. Thus, aperiodic onset got advanced or delayed. This can be attributed to the modification in LEV separation behaviour induced by the variation in different kinematic parameters mentioned above. The primary LEV was seen to be the key near-field structures to dictate the dynamical state of the flow field. In the high κh regime, strong LEVs were shed from the body aperiodically and the subsequent LEV-TEV interactions led to spontaneous formation and destruction of series of secondary vortices, which propagated chaos in the wake. Any of the kinematic parameters listed above can potentially influence the near-field vortex interactions, and in turn, alter the dynamical transition mechanisms. The LEV separation depends mainly on the speed and relative orientation with which the leading-edge interacts with the incoming flow. The effective angle of attack is a powerful measure in this regard to define the relative foil orientation. A novel and efficient mathematical model is proposed here to represent the entire parametric space in terms of the maximum effective angle of attack in one cycle (α max eff ) and a leading-edge amplitude-based Strouhal number (St A,LE = f e A LE /U ∞ , with A LE and f e denoting the peak-to-peak amplitude of the leading-edge and the flapping frequency in Hz, respectively). The α max eff and St A,LE are indicative of the critical aspects discussed above -the angle and speed with which the foil interacts with the inflow. The mathematical definitions [9] of these two quantities include the effects of all the key kinematic and flow parameters that affect the wake dynamics. Thus, changes in any of these parameters directly reflect on the α max eff -St A,LE pair, which is not true for the conventionally used non-dimensional numbers defined for specific kinematic situations. When the (St A,LE , α max eff ) pair corresponding to all the above-mentioned parametric conditions were plotted on the α max eff vs. St A,LE plane, the data points belonging to the periodic and chaotic states were seen to individually cluster in two distinct regions; see Fig. 1c. A best fit curve, α max eff = 61.1St -0.22 A,LE , was obtained from the boundary data of the chaotic cases using a power-law equation. This was considered as the lower boundary of the chaotic regime since all the data points belonging to the region above this curve exhibited robust chaos. Similarly, another best fit curve, α max eff = 45.8St -0.2 A,LE , was obtained from the boundary data of the periodic points, and all the data points below this curve displayed the periodic signature. Thus the latter curve was considered as the upper boundary of the periodic regime. The philosophy behind the development of these two boundaries was based on the motivation of identifying the loss of periodicity and the onset of chaos. Interestingly, all the parametric data exhibiting quasi-periodicity (transition state) fell in the region bounded by the two above mentioned boundary curves. Therefore, the α max eff vs. St A,LE plot in Fig. 1c efficiently demarcated the three distinct dynamical regimes; note that these boundaries were also validated with data from available literature. The main contributions here is to identify effective nondimensional parameters to track the qualitative changes in the flow-field, and a transition regime where all transition states could be accommodated between order and chaos. Above this transition regime, robust chaos can be expected and below, regular periodic dynamics. For further understanding of the philosophy behind the development of the order-to-chaos map, please refer to our recent work [9]. 
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Introduction

Fluid flow can be an important energy source for continuous operations of remote autonomous systems. Energy harvesting from fluid flows has been examined in the literature. Akaydin et al. [1] conducted experiments with a self-excited piezoelectric energy harvester, consisting of a large aspect ratio cylinder attached to the free end of a unimorph piezoelectric cantilever beam. This system was subjected to a uniform steady flow and studied for a range of flow speeds. The vortex shedding from the cylindrical bluff body led to periodic lift generation, resulting in nonlinear deformation of the attached beam and electric power generation from straining of the piezoelectric element. This design resulted in significant improvement in the aeroelastic efficiency of the harvester compared to an earlier design consisting of a piezoelectric cantilever placed in the vortex trail of a stationary cylinder. With this design, only a linear structural response was observed and there was peak energy generation close to the first resonance frequency. The response of a pair of piezoelectric energy harvesters, which were placed side by side as shown in Figure 1(a), was experimentally investigated by Azadeh-Ranjbar et al. [2]. Dai et al. [3] presented a nonlinear reduced order model (ROM) for these energy harvesters, and this model was benchmarked by using the experimental results of Akaydin et al. With this model, one combines the well-known wake oscillator model for determining the lift force, proposed by Facchinetti et al. [4] with the linear eigenmode based structural dynamic model of a cantilever beam with a tip mass. In reference [2], the authors determined that for an array of harvesters with a large gap to diameter ratio (G/D ratio), the harvesters behaved like isolated, independent harvesters with limited interaction. However, on decreasing the G/D ratio, the authors noted an increase in the operating velocity range and the highest generated power became 10 times that of an individual oscillator for G/D ≈ 0.

Here, the authors model and computationally study single and coupled oscillator systems. The models and simulations from this work can be used to design and optimize the configurations and associated nonlinear dynamics for maximum energy harvesting. 

System Modeling and Numerical Studies

In the present study, the authors utilize the finite element software Abaqus [5] to simulate the dynamic behaviour of a vibration energy harvester. A two-dimensional (2D), fluid-structure interaction (FSI) based model of the harvester was considered, to keep the computation tractable. The structure was considered as an elastic solid, with large deformation effects taken into account, while the fluid (air) was modelled as an in-compressible Newtonian fluid. A rectangular fluid domain as shown in Figure 1(b) was considered with boundaries at least 15 D away from the FSI interface to avoid boundary effects. Implicit dynamic simulations were performed for a flow speed of U 0 = 0.1 ms -1 , corresponding to a Reynolds number Re ≈ 270, until a steady state is realized. The ROM used to compare and verify the finite element method based results is given by:

ri + 2ζ i ω i ṙi + C D ρ 0 DU 0 L 0 2 φ i (L b ) + D 2 φ ′ i (L b )   n j=1 φ j (L b ) + D 2 φ ′ j (L b ) ṙj   + ω 2 i r i = α i q (1) q + λω s (q 2 -1) q + ω 2 s q = A D n i=1 φ i (L b ) + D 2 φ ′ i (L b ) ri (2) 
where the displacement of the center of the cylinder is w(x, t) = n i=1 r i (t)φ i (x), φ i (x) are the cantilever eigen modes, r i (t) are the generalized displacement coordinates, and q(t) is the lift force. 
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Results and discussion

The steady-state vortex shedding pattern, obtained for the case of a single oscillator is given in Figure 2(a). A 2D analysis is performed, which approximates the system as flow over cylinder and the cantilever beam of the same width, while the experimental system had a wider cylinder compared to the beam. This results in discrepancy in mass of the cylinder as well as the lift force generated. The density of cylinder is artificially corrected so as to match the first structural natural frequency with the experiments. Similarly, the Strouhal number is modified to 0.0756 as opposed to 0.135 for the case considered for the experiments, to correct the vortex-shedding frequency. The comparison of steady-state FEA results with ROM for the single oscillator case is given in Figure 2(b). The generated limit cycles are found to be in good agreement. The vortex shedding pattern for the case of two oscillators with G D = 0.1 is shown in Figure 2(d). Significant changes in the vortex shedding pattern are observed in the coupled oscillator case. The amplitude of the response for the oscillators in this case is higher than that in the case of the individual oscillator. Unlike in the case of a single oscillator, the response is aperiodic. The transient response also suggests that initially the oscillators are exactly out of phase, before the response approaches a chaotic state. 

Introduction

Inducers are often used in rocket engine turbopumps to improve suction performance. It is known that fluid flow instabilities such as cavitation surge, rotating cavitation (RC), and attached asymmetric cavitation (AAC) may occur in inducers [1]. Many studies using CFD, experimental, and analytical methods on RC have been reported. However, there are few studies on the transition phenomena from RC to AAC. Yoshida et al. [2] reported a detailed investigation of the transition from RC to AAC when the cavitation number, namely inlet pressure, was decreased in an experiment on a three-blade inducer. Yoshida et al. [3] considered that this transition from RC to AAC is one of the self-excited oscillations caused by the coupling of the fluid and rotor systems. Kobayashi et al. [4] conducted experiments on a three-blade inducer with changing the magnitude of rotor imbalance and clarified the effect of the amplitude of synchronous whirling motion of the inducer on the occurrence of AAC.

The authors have attempted to explain this RC to AAC transition phenomenon theoretically by considering the interaction between the fluid and rotor systems [5]. A coupled 1D flow path model of an inducer and a rotor model was used, and the transition was investigated. They assumed the sign change of the pump dynamic coefficient, which consists of cavitation compliance and mass flow gain factor, in one of the three flow paths between the blades based on the Yoshida's result [2], and showed that the transition from RC to AAC can be reproduced. However, a theoretical explanation of this assumed sign change has not yet been given. 

Theoretical Model and Analysis

In this paper, the pump dynamic characteristics of each flow path are investigated theoretically to explain the validity of the assumptions made in the previous paper [5]. For this purpose, the two-dimensional flow model in a cascade constructed by Horiguchi et al [6] is introduced, and an extended coupled system is constructed as shown in 

Results and discussion

Figure 2 shows the variation of the cavity length and the pump dynamic coefficients consisting of cavitation compliance and mass flow gain factor for each path with respect to the cavitation number when the amplitude of synchronous whirling motion of the inducer is about 50% of the tip clearance. It can be seen that the cavity length in one flow path changes negatively (shown with symbol •) as the cavitation number decreases. The cavitation compliance and mass flow gain factor can become negative at this time, which explains the validity of the assumption made in the previous paper [5].

The coupled 1D flow path model and rotor model were analysed taking into account the change in sign of the pump dynamic characteristics due to the change in cavity length and pump dynamic coefficients shown in Figure 2. Figure 3(a) shows the experimental results [5] and Figure 3 

Introduction

Rayleigh-Bénard convection, which has been well known as an essential model of atmospheric and oceanic circulation, is a natural convection in a horizontal fluid layer that is sandwiched by two immiscible fluids where the lower fluid is heated and the upper one is cooled. For the case in which the temperature difference between the two fluids is small, steady Rayleigh-Bénard convection appears in the layer, which can be modeled by a Hamiltonian system, see [2]. However, when the temperature difference becomes larger and the Rayleigh number is raised above a critical number, the velocity fields begin to slightly oscillate by even oscillatory instability [1]. In particular, it was studied in details by [3] that there exists a Lagrangian chaotic fluid transport in the perturbed Rayleigh-Bénard convection by using a model of the two dimensional perturbed Hamiltonian system where the Hamiltonian is given by H(x, z, t) := H 0 (x, z) + εH 1 (x, z, t), and where H 0 (x, z) is a stream function for the steady Rayleigh-Bénard convection, H 1 (x, z, t) denotes the part of the perturbation and ε the strength of perturbation which is related to the Rayleigh number. In this research, we first explore the nonlinear phenomena of the two dimensional perturbed Rayleigh-Bénard convection by focusing on the bifurcation of periodic orbits that appears in the perturbed Hamiltonian system. Second, in order to experimentally clarify the structure of the fluid transports, we observe the velocity fields on cells to compute the scalar filed of Finite Time Lyapunov Exponents and then we detect Lagrangian coherent structures (LCSs). By investigating the LCSs in unstable and stable regions of fluid transports of cells, we finally propose a novel Hamiltonian model for simulating the nonlinear phenomena observed in experiments.

Bifurcations of periodic orbits

Consider a flow φ ε t : M → M; (x, z, θ) → φ ε t (x, z, θ) on the extended phase space M = R 2 × S 1 , where θ = θ 0 + 2πt/T for some fixed θ 0 and T is a period. For each periodic time t = kT, k ∈ Z + , we may identify θ = θ 0 + 2πk with fixed θ 0 (usually we choose θ 0 = 0) to define a Poincaré section Σ θ0 on the quotient space M/S 1 = M as

Σ θ0 := (x, z, θ 0 ) ∈ M/S 1 | (x, z) ∈ M, θ 0 ∈ [θ] .
Then, for some fixed parameter ε ∈ R, we define a Poincaré map P θ0 ε on Σ θ0 by

P θ0 ε := φ ε T Σ θ 0 : Σ θ0 → Σ θ0 .
In Fig. 1a, we show the bifurcation of periodic points associated to the periodic orbits with period one and three, while Figs.1b and 1c respectively illustrate the images of the Poincaré map P θ0 ε on the Poincaré section for the cases ε = 0.1 and ε = 0.4. As can be seen, the islands of KAM tori, which correspond to stable transport regions, clearly exist for the case ε = 0.1. However, increasing the parameter ε, they are shrunk and mostly disappear for the case ε = 0.4. In Fig. 2, we illustrate the experimental apparatus, which consists of three experimental tanks filled with water, i.e., the upper tank, lower tank, and test tank, and the temperature of water in the lower and upper tanks are controlled by two chillers. To observe the fluid transport of the perturbed Rayleigh-Bénard convection, we consider the time-dependent vector field dx(t) dt = v(x(t), t), where x = (x, z) denotes a point in R 2 and we detect the flow ϕ : R 2 × R → R 2 ; (x 0 , t) → ϕ t t0 (x 0 ) for x 0 = x(t 0 ) associated with the vector fields, where t = t 0 + T . The Finite-time Lyapunov exponent (FTLE) is defined as

σ T t0 (x) = 1 T ln λ max (∆(x, t 0 ; T )),
where λ max (∆(x, t 0 ; T )) denotes the maximum eigenvalue of ∆(x, t 0 ; T ), and ∆(x, t 0 ; T ) =

dϕ t 0 +T t 0 (x) dx * dϕ t 0 +T t 0 (x) dx
is the finite-time Cauchy-Green tensor. The FTLE denotes how much the distance of two points initially in the neighborhood varies in finite time. In Fig. 3a, we show the velocity vector fields, which are obtained by PIV (Particle Image Velocimetry) method in the experiments, and from which we compute the FTLE field in Fig. 3b to detect the hyperbolic LCSs in Fig. 3c. In the presentation, we will show a novel Hamiltonian model by introducing another Hamiltonian H = H(x, z, t) that can reproduce nonlinear behaviors similar to those observed in experiments. 

Head speed generating mechanisms during turning phases of athletic hammer throwing
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Introduction

The hammer, used in athletics, consists of three parts: a grip handle, a flexible wire, and a metal ball -usually called the hammer head -whose mass is 7.2 kg for men and 4.0 kg for women. The individual parts are connected to their adjacent parts via passive joints which do not exert torque. The hammer thrower grasps the handle with both hands and swings the hammer around the body several times before moving into three or four turning motions. During each individual turn, the thrower constructs a fixed triangular structure with the upper limbs and the handle and maintains that shape against the large tensile force applied along the wire during the turning motions.

The dynamics of high-speed sporting motions can be very complex, and the head speed generating mechanisms in hammer throwing are still poorly understood from the viewpoint of dynamics of a multi-body system that includes passive joints and a flexible wire. The purpose of this study was to quantify the hammer head-speed generating mechanisms of male hammer throwers, including nationally high-ranked athletes, in order to show the differences in the skills of the throwers based on simplified modelling of the thrower and the hammer.

Theory and Experiments

Fourteen male hammer throwers participated in this study, performing maximum effort hammer throws in an indoor experimental facility. Three-dimensional coordinate data for 59 reflective markers, attached to the individual participant's body (47 markers) and the hammer (12 markers), and the ground reaction forces exerted by the legs were measured with a motion capture system with 26 infrared cameras (VICON-MX, 250 Hz, Vicon Motion Systems Ltd) and six force platforms (Kistler Inc, 1000 Hz, Winterthur, Switzerland). A simplified model of the thrower's upper extremities plus hammer was created as follows.

1) The upper arms and handle form a rigid segment (Figure 1a) whose inertial parameters were determined from body segment parameters for the thrower's upper limbs. The proximal end of the virtual rigid segment 1 (in Figure 1b) is constrained by the acceleration of the centre point of the shoulder joints.

2) The flexible wire (segment 2 in Figure 1b) is assumed to be a lightweight rigid segment because the wire is highly tensive during the turning motion, due to the large centrifugal force exerted along the wire. 3) Joints 2 and 3 are assumed to be passive joints that do not exert joint torques at these joints due to the structure of the hammer. Dynamic contributions to the generation of hammer head CG speed from (1) the joint torque term, (2) a gravitational term, (3) a generalized velocity initial state term, and (4) an acceleration constraint term regarding the proximal end of the simplified system at the centre point of the shoulder joints were derived from the combination of (1) the equations of motion for the individual segments, and (2) the equations for the constraint conditions for joint accelerations arising from the connection of adjacent segments (Koike, 2019b).

The equation of motion for the target simplified system shown in Figure 1 can be expressed as follows:

𝑽 ̇= 𝑨 𝑻𝒂 𝑻 𝒂 + 𝑨 ̅ 𝑽 𝑽 + 𝑨 𝑮 𝑮 + 𝑨 𝒏 𝒓 𝒏 𝒓 + 𝑨 𝜼 𝜼̈+ 𝑩𝒙̈𝒔 𝒉𝑪 (1) where 𝑨 𝑻𝒂 is the coefficient matrix for active joint torque vector 𝑻 𝒂 , and 𝑨 ̅ 𝑽 is the coefficient matrix for vector 𝑽 , the generalized velocity vector consisting of linear velocity vectors and angular velocity vectors for all the segments. The contribution of each term to the hammer head speed is calculated by extracting the hammer head CG acceleration 𝒂 𝒉 from Equation 1, taking its inner product with the unit vector 𝒆 𝒗 representing the tangential direction of the hammer head speed, and then integrating Equation 1 with respect to time to yield the contributions to the generation of the generalised velocity vector 𝑽 from the individual terms (𝑨 𝑻𝒂 𝑻 𝒂 , the joint torque term; 𝑨 ̅ 𝑽 𝑽, the motion-dependent term; 𝑨 𝑮 𝑮, the gravitational force term; 𝑨 𝒏 𝒓 𝒏 𝒓 , the residual joint moment term; 𝑨 𝜼 𝜼̈, the segment length fluctuation term; 𝑩𝒙̈𝒔 𝒉𝑪 , the shoulder centre point acceleration constraint term).

When the motion-dependent term (MDT) showed significant contributions to the generation of the hammer head CG speed, a conversion algorithm (Koike, 2019b) was applied to divide the MDT into its components. The MDT was the dominant contributor to the generation of the hammer head speed for all throwers (Figure 2.1). As the sum of the individual contributions matched the measured hammer-head speed, it can be said that the forward dynamic contribution analysis was successful (Figure 2.1). Decomposition of the MDT showed that its main contributor was the component arising from the centrifugal force.(Figure 2.1.1a,b) In conclusion, the direct effects of a virtual mid-shoulder joint torque term made a smaller contribution to the increase in head speed than the indirect effects from the same joint torque. These results indicates that a nonintuitive mechanism involving nonlinear effects plays an important role in hammer throwing. The MDT, which is a nonlinear term consisting of centrifugal force, Coriolis force and gyroscopic effect moment components, is the largest contributor to the generation of hammer head speed during the turning phases, and the individual components of the MDT are key factors in distinguishing between throwers of different skill level. Modelling the body-hammer system as a multi-body system has revealed that a motion-dependent term associated with the centrifugal force contributes significantly to the mechanism of increasing hammer head speed. 

Results and Discussion

Introduction

The impact phenomenon of hitting a tennis ball with a racket is a complicated engineering issue for developing high performance equipment. The impact duration is around 0.005s [1], and both the ball and the racket deform as the ball rebounds from the racket. The material properties of the deforming tennis ball and the racket are nonlinear, as the ball is made from rubber core and outer felt, and the racket is made from fiber-reinforced plastics and polymer strings. To understand the dynamic phenomenon of tennis racket and ball impact in detail, dynamic nonlinear analysis is required. In this study, finite element analysis (FEA) of the impact between the tennis racket and the tennis ball, considering the nonlinear properties, was conducted. A detailed tennis ball model, considering the nonlinearities of both the material and the ball impact, was used. A rectangular string-bed model was created as a racket model for this research. This was to compare the result of the analysis with the laboratory testing of the tennis ball and steel-made racket frame jig, made to reduce the effect of the racket fame on the impact. FEA of the tennis ball and tennis racket impact was conducted using LS-Dyna, and the results were compared against the results of the laboratory test to understand the mechanism of the impact and how each mechanical property affect the rebound spin on the ball.

Dynamic FEA and nonlinear mechanical properties

Multiple FEA of the string-bed jig described later in the paper and the tennis ball impacting at an angle was performed. The inbound angle 𝜃 was set at 0°, 20°, 30°, and 45° angles, with 𝜃 = 0° representing a perpendicular impact relative to the racket surface. At each angle, a fixed string-bed model was impacted with 5 different ball inbound velocities from 10m/s to 30m/s with 5m/s intervals. Figure 1 shows the spin-time relationship of 20°, 30°, 45° impact at 30m/s ball inbound velocity while Figure 2 shows the Von-Mises stress on the ball at 45° and 30m/s inbound velocity, and the laboratory experiment. From nonlinear dynamic analysis results, spin was found to increase while still in contact with the racket and gradually decrease as the ball contact comes to an end and rebounds. This suggests that the initial string-bed deformation allows the ball to roll on the slanted string-bed, creating more spin on the ball. However, after the spin peak, where the ball is almost perpendicular to the string-bed surface, the slope of the string-bed caused by the deformation acts to decrease the ball spin since the surface is slanted in the opposing direction to the current spin on the ball. This idea is also supported by the increase of angle i.e., increase in vertical force and string-bed deformation, results in more rebound spin on the ball. These results highlight the key role of string deformation and how the change in the contact surface during each phase of the impact can affect the rebound spin on the ball. In this study, original rectangular-shaped string-bed jigs for dynamic impact tests were developed to investigate interactive relationships between tennis ball and string-bed (Figure 2(b)). The FE model of the string-bed was made with a rectangular-shaped outline to compare the results with the dynamic impact tests. The string-bed of the tennis racket is created by weaving the strings. In the FE model this structure was not considered. The material parameter of the polymer string was derived from the uniaxial tensile test. Since the polymer strings on the string-bed have initial tension, which contribute to the overall stiffness of the string-bed, the initial stress set on the FE model was fitted to match the stiffness of an actual string-bed jig used in the laboratory testing.

The FE model of the tennis ball was made using the parameters and the testing results by Allen, Goodwill, and Sissler [1][2] [3]. The detailed material modeling allowed for a good representation of the nonlinear impact force of the ball.

The dynamic solver of LS-Dyna uses an explicit solver to solve dynamic and highly nonlinear problems. The equation of motion is solved by using a timestep about a millionth part of the termination time of the simulation. Figure 3 shows the FEA results of the impact forces of the ball at 20° with different inbound velocities on the string. The results showed that the ball applies a force with high-frequency vibration and this vibration effect becomes bigger as the inbound velocity increase. The impact force at a lower inbound speed is close to a sine curve, due to less deformation of the ball and the string-bed, therefore the nonlinearities of these models have less effect on the impact. It also showed along with the deformation and stress distribution of the ball, that the top of the ball bends downwards during impact and creates a second peak of impact force during impact. This means that the ball pushes the string-bed again after the initial contact is made. Figure 4 shows the result of the impact force of the ball at 0°, 20°, 30°, and 45° angles with an inbound velocity of 30m/s. This shows that an increase in impact angle results in a decrease in a peak at the beginning of the impact. This suggests that the deformation on the top of the ball is causing the two peaks of impact. Finally, since the ball deformation will result in more dissipation of energy, a string-bed construction to reduce the deformation on the ball may be key to achieving high-energy returning tennis rackets.

Discussion

From the dynamic FEA results and dynamic impact test results, the impact phenomenon of hitting a tennis ball with a racket is investigated. The ball spin performance is an important development factor for developing modern tennis rackets. The spin of the ball impacting a string bed will increase further than the rebound spin in the first half of the contact and decrease as the contact reaches the end. Also, the tennis ball was found to have an impact force with high frequency of vibrations. Furthermore, high frequency vibration on the impact force was found to be more noticeable as the inbound velocity increase and the inbound angle decrease. The results from this research suggest that the nonlinear properties and the force vibration in tennis impact can be key factors in achieving high-energy returning tennis rackets. Soft robots have compliant mechanisms to realize large and geometrically nonlinear deformations. One of the typical examples of soft robots is driven by actuators that can convert air pressure into physical motion. Utilizing the bulk soft materials or slenderness of structures, they can easily realize complex motions by stretching and bending the body as programmed. Given that conventional "hard" robots are made of rigid parts, grasping fragile objects is a difficult task for them, while the soft robots induce the distributed load against the objects, which enables us to operate soft robots across society, such as food technologies, life science, and surgery [1,2]. In recent years, developments in fabrication technology have made it easier to design flexible arms, as in the study of the bubble-casting method [3]. However, designing soft robots that realize motions on demand is still challenging to date. This is because soft robots have a continuous degree of freedom, which requires us to disentangle complex interplay between mechanics and nonlinear geometry. Hence, the current designing principle often needs to be empirical and optimization principles are still lacking [4,5].

Here, to build the predictive framework for soft robots, we study gripping-sliding experiments of soft arms. Our soft arms are designed based on the previous bubble casting technique [3], enabling us to study the geometric role of deformation in gripping phenomena systematically. Our arms are pneumatic slender actuators with simple geometry made of silicone elastomer. Despite the simple geometry, we find that the sliding phenomena upon unwrapping are complex but still predictive.

Design of pneumatic flexible actuators by the bubble casting method

We rely on the bubble casting method proposed in Ref. [3] very recently, to fabricate the flexible arm. The idea of bubble casting is as follows. We pour the liquid state of the silicone-based elastomer (Vinyl polysiloxane(VPS), Zhermack, Italy) inside the mold and then inject the air such that the part of liquid silicone is excluded (Fig. 1(a)(b)). The injected air bubble inside the liquid elastomer "floats" near the top surface as the elastomer cures. As a result, a thin layer of elastomer is made at the upper side of the mold. The size of the cavity can be controlled by adjusting the time prior to injecting the bubbles. To follow this protocol and fabricate our flexible arm, we 3D-print the mold for a slender beam.

The mold consists of two-part; the bottom mold has a rectangular cross-section, while the top mold has a semi-elliptic one(Fig. 1(a)). The semi-elliptic cross-section is aimed to trap the air bubble along the beam in a controlled manner. The schematic of the cross-section perpendicular to the centerline of the arm is shown in Fig. 1(c). Given that the arm has an asymmetric cross-section, as we pressurize the cavity, the cavity-side stretches and the arms bend (Fig. 1(d).). 

Gripping-sliding experiments of flexible arms

To clarify how the arm grips the object and unwraps, we perform gripping-sliding experiments for the flexible arm. The protocol is as follows. We place a rigid cylinder (SUJ2, Monotaro, Japan) horizontally and pressurize the arm to grip the cylinder. And we translate the cylinder vertically to unwrap the arm (Fig. 1(e)). We measured the force-displacement curve during the vertical translation (TrapeziumX, SHIMAZU, Japan). We perform several experiments with different distance h 0 between the fixture and the shaft, gripping angle ϕ, and pressure P . To realize the reproductive frictional measurement, we apply talc powder (Baby Powder, Johnson-and-Johnson, USA) to the contact surface of the arm. Fig. 2(a) shows the force-displacement curve when the internal air pressure P is varied as P = 170, 180, 190, 200 kPa.

Each experiment was conducted five times, and the average value was taken. The change in shape with increasing pressure and the non-monotonic increase/decrease in Fig. 2(a) suggests that the frictional force on the contact surface, the force due to the strain energy of the arm body, and the elastic force generated by the curvature of the arm is involved in the grasping of the object by the silicon actuator arm. In addition, the maxima F * , which corresponds to the critical force for the global sliding of the arm, that appear in the first half of the curve in Fig. 2(a) are linearly aligned, suggesting that parameters that depend on atmospheric pressure also affect grasping. These results demonstrate that materials, fluids, and mechanics are closely related in arms with actuator characteristics.

Mechanical effects of internal pressure and associated curvature

To quantify how the curvature κ of the entire arm changes against the air pressure inside the arm P , we perform image analysis for the bending deformation of the arm (Fig. 2(b)). We fit the centerline of the beam near the tip to compute the curvature of the arm κ, in the absence of the rigid cylinder. Introducing the total length of the arm, L and Young's modulus of the elastomer E, we find that the radius of the curvature κ -1 decreases (arm bends largely) as we increase P (Fig. 2(c)). Interestingly, by rescaling P by E, the experimental data almost collapse onto a single curve, where we adopt 1/(κL) ∼ exp(-αP/E) with a dimensionless positive fitting parameter α = 0.3. Although the collapse is not perfect in particular when P/E is large, this formula will help us to estimate the characteristic curvature of the flexible arm. We further try to predict the maxima of the gripping-sliding experiment F * , using the fitting curve obtained above.

Given that the curvature of the arm is κ as above, the typical bending force of the arm will be estimated as ∼ EIκ 2 , with the moment of inertia I computed numerically. In Fig. 2(d), we plot F * = EIκ * 2 as a function of obtained κ * . Still, our prediction does not necessarily predict the experimental results quantitatively. The failure of naive scaling prediction implies that further characterization of the arm will be necessary to build the predictive framework of this even simple flexible arm. Finally, it is also known from prior research that the cross-sectional shape can be adjusted by adjusting the time between the polymer melt and air injection when forming the arm. The experimental values shown in the figure are expected to be greatly affected by this cross-sectional shape, but this issue has not yet been addressed. We believe that a more detailed investigation focusing on various arm parameters such as cross-sectional shape, friction, material properties, and shape of objects to be grasped is essential to elucidate the mechanical function of arms with actuator functions.

Reaction-diffusion model for the tape-peeling trace by deformed adhesives Keisuke Taga * , Hiroya Nakao * * , and Yoshihiro Yamazaki *

Introduction

Many kinds of patterns appear around us, and some of them have been discussed with reaction-diffusion equations. The reaction-diffusion equation is a nonlinear partial differential equation that is composed of nonlinear local dynamics term and linear spatial interaction term as follows,

∂u ∂t = F (u) + ∆ x u. ( 1 
)
The reaction-diffusion equation can exhibit many kinds of patterns and are discussed as models for the patterns of fish, BZ reaction etc. Among those reaction-diffusion models, it is known that some models can show Sierpinski-gasket pattern. This pattern formation is reported with Bonhoffer-van der Pol type equation [2], Gray-Scott equation [4] and complex Ginzburg-Landau equation [3]. In this talk, we propose a reaction-diffusion model for tape-peeling trace, which shows Sierpinski-gasket like fractal random pattern [5,6].

Looking closely at the peel front, there occurs two types of states, with tunnel structure state (state A) and without tunnel structure state (state B). Each state is stable for a slow peeling and a fast peeling. And at the intermediate speed, these two states switch chaotic. The peel trace corresponding to the state A and B are different from each other thus such chaotic switching give intermittent spatiotemporal pattern as shown in Fig. 1. Some models are proposed to explain this pattern formation [6,7,9,8,10]. The characteristic point of these models is an asymmetric interaction which is introduced from the asymmetric properties in the experimental observation, such that the state A which adjacent to the state B is easy to transit to state B. These models consider the state dynamics of the peel front, however, if we consider the relationship between the state dynamics and the mechanical dynamics of the peel front structures, the asymmetric interaction contradict with the law of action-reaction. Therefore, we consider a new model based on the Newton equation of the peel front.

A tape-peeling model

We propose the following equation of motion as a tape-peeling model.

d 2 u i dt 2 = -3(u i -1) 2 (u i -2) - ( V + du i dt ) + 2 1 + 20(u i -1) 2 du i dt + (u i+1 + u i-1 -2u i ) + 0.1 ( du i+1 dt + du i-1 dt -2 du i dt ) , i = 1, . . . , N.
(

This model describes the dynamics of the peel front. From the experimental observation, the deformation of the peel front in state A is larger than that of state B [7]. Therefore u corresponds to the deformation of the peel front and we consider u ≈ 2 as the state A and u ≈ 1 as the state B.

The meanings of each term in the right-hand side are following. -3(u i -1) 2 (u i -2) corresponds to the double-well potential each bottom of well corresponds to the state A and B. V is the peel speed, -dui dt is the viscous term, and 2 1+20(ui-1) 2 dui dt is negative dissipation which gives an effect to unstabilize the state B. Interaction terms are introduced from the property of the viscoelasticity of adhesives. Detailed discussion for these terms is in ref. [1].

Rusult and Discussion

For the numerical simulation, we impose u i = 0 and dui dt = 0 as an initial condition, the periodic boundary condition is adapted and the size of the system is N = 1000. We used 4th Runge-Kutta method with dt = 0.01. And to represent the spatial inhomogeneity of the adhesives, we reset u i (t) = 0 with a probability p = 0.001dt. Fig. 2 shows the results we obtained from eq. 2. As shown in Figs. 2(a) and (e), the state A is stable at small V and the state B is stable at large V . And as shown in Figs. 2(b),(c) and (d), the state A and B switch chaotic and we obtained Sierpinski-gasket like fractal random patterns at intermediate V . In ref. [1], we investigate the scaling properties of these patterns and compared them to the experimental result. We also discuss the relation to the previous reaction-diffusion model [2] which shows Sierpinski-gasket patterns by transforming eq.( 2) to the Liénard system. 

Summary

We propose a new model for the pattern formation in the peeling trace of adhesive tapes. The pattern with the model is similar to the patterns in the previous experiment and also, the scaling properties obtained with our model are consistent with the experiment. It looks that there is a relation between the spatiotemporal patterns of our model and directed percolation universality class [11]. The detailed discussion of this relation is a future work.

Theory and computation of weakly nonlinear ultrasound propagation in a viscoelastic bubbly liquid Takeru Hasegawa * and Tetsuya Kanagawa * * University of Tsukuba, Japan

Abstract. Aimed toward medical applications of ultrasound propagation in biological soft tissues such as viscoelastic media, weakly nonlinear wave (KdV-Burgers) equation for ultrasound propagation in liquids containing microbubbles, incorporating firstly the effect of the viscoelasticity of the liquid phase, is theoretically derived and numerically solved. From theoretical result, we found that the newly incorporated rigidity of liquid phase decreased nonlinear and dissipation effects of ultrasound and increased dispersion effect of ultrasound. From computational result, we found that the liquid rigidity affected the waveform of propagating ultrasound, especially suppressed the attenuation of the ultrasound.

Introduction

In recent years, medical ultrasounds combining microbubbles such as high intensity focused ultrasound and histotripsy have attracted attention, and various experiments by using gels and phantoms simulating biological soft tissues have been widely conducted [1,2]. Correct and precise understanding of ultrasound propagation in soft tissues, it is necessary to model appropriately the feature of soft tissues that are often regarded as viscoelastic bodies in some models. In previous proposed nonlinear wave equations in bubbly liquids, however, the viscoelasticity of the liquid phase has not been incorporated. In a long range propagation process, ultrasound in bubbly liquids have three important effects, i.e., nonlinear, dissipation, and dispersion effects. The balance of these three effects changes waveform of ultrasound into shock wave, soliton, or otherwise [3]. Since the properties of shock waves and solitons are quite different, it is important to evaluate the balance of the three effects in order to accurately predict the evolution of waveform. This is made possible using the Korteweg-de Vries-Burgers (KdVB) equation, whose coefficient of each term in the KdVB equation represents each effect. In this study, we derive the KdVB equation for the ultrasound in viscoelastic bubbly liquids from the set of the basic equations such as the conservation laws of mass and momentum for gas and liquid phases, and clarify the effect of rigidity of liquid phase on nonlinear, dissipation, and dispersion effects of ultrasound.

Problem statement

We consider the propagation of one-dimensional ultrasounds in a viscoelastic medium uniformly containing a large number of bubbles (Fig. 1). The bubbles are assumed to be spherical and oscillate spherically, and their coalescence, collapse, appearance, and disappearance are not considered, and the interaction between bubbles is neglected. Initial sizes of each bubble are the same. The phase change and mass transportation across the bubble-liquid interface and the viscosity of the gas inside the bubble are neglected, and the viscosity of the liquid phase is considered only at the gas-liquid interface.

In addition, we used the Zener model [4] as the constitutive equation to represent the properties of viscoelastic liquids, which has been widely utilized in experiments using gels and phantoms that imitate soft tissues [1,2], as follows:

τ + λ τ = 2G * γ + 2µ γ, (1) 
where τ is the deviatoric stress, γ is the strain, λ is the relaxation time of the liquid, G * is the rigidity of the liquid, and µ is the viscosity of the liquid. Superscript dot denotes the material derivative.

3 Results [5] By using singular perturbation analysis, the set of the basic equations was reduced to the KdVB equation via second order of approximation:

∂f ∂τ + Π 1 f ∂f ∂ξ + Π 21 ∂ 2 f ∂ξ 2 + Π 22 f + Π 3 ∂ 3 f ∂ξ 3 = 0, ( 2 
)
where τ is the time, ξ is the space coordinate, f is first-order perturbation of bubble radius, Π 1 is the nonlinear coefficient, Π 21 is the dissipation coefficient due to viscosity and acoustic radiation of the oscillating bubbles in a compressible liquid, Π 22 is the dissipation coefficient due to thermal conduction at the bubble-liquid interface, and Π 3 is the dispersion Figure 1: Schematic of the model. coefficient; all the symbols are nondimensionalized. The value of the coefficients depend on various physical quantities and initial conditions such as the initial bubble radius and the initial void fraction. Figure 2 shows the values of coefficient Π i (i = 1, 21, 22) versus the initial void fraction α 0 for the five cases of liquid phase, i.e., skin, fat, liver, muscle, breast cancer tissue, and "Without G * " in Fig. 2 corresponds to the case where G * is set to zero. The largest rigidity G * is breast cancer, followed in order by muscle, liver, fat, and skin. We found that the liquid rigidity decreases the nonlinear and dissipation effects and increases the dispersion effect of ultrasound, and this tendency becomes prominent for the case that the liquid rigidity increases. Figure 3 shows the numerical solution of Eq. (2) at the time τ = 0.0, 0.5, and 4.0. The red waveform represents the case of breast cancer tissue and the black waveform does that of "Without G * ". In particular, around the center of Fig. 3(c), a pulse-like waveform was confirmed in the tissue with liquid rigidity, whereas a flattened waveform was observed in the tissue without rigidity. This suggests that attenuation of the ultrasound is suppressed owing to the liquid rigidity; this is consistent with the decrease in the magnitude of the dissipation coefficients.

Summary

In order to clarify the effect of the elasticity (i.e., rigidity) of the liquid phase on weakly nonlinear ultrasound propagation in a viscoelastic liquid containing microbubbles, we applied Zener constitutive equation for viscoelastic body to apply biological soft tissue, and derived the KdVB equation as a nonlinear wave equation. From theoretical result, we found that the newly incorporated rigidity of liquid phase decreased nonlinear and dissipation effects of ultrasound and increased dispersion effect of ultrasound. From computational result, we found that the liquid rigidity affected the waveform of propagating ultrasound, especially suppressed the attenuation of the ultrasound.

Introduction

Porous materials are widely used in everyday manufactural equipment, for example, in car seats and the soles of sports shoes. The influence of voids on the mechanical deformation behaviour of porous materials is a significant engineering issue. There are two main research approaches to this issue. One is to generate stressstrain curves through experiments to clarify the effect of porosity on the mechanical behaviour of porous materials [1]. However, this method extensive many samples, and it is difficult to provide an approximate solution with sufficient accuracy. The second is to develop a constitutive model of foam materials [2]. The constitutive model can solve the former problem of low accuracy by obtaining a theoretical solution for the effect of porosity on mechanical behaviour based on the theory of continuum mechanics. The effect of the air inside the voids on the mechanical properties of porous materials has not been fully investigated in previous studies. Therefore, quantitative evaluation of the influence of compressible voids on the mechanical behaviour of hyperelastic porous materials is still insufficient. In this study, a constitutive model applicable to porous materials was developed that considers the influence of compressible voids. The Cauchy stress-strain behaviour in hyperelastic foam materials with compressible voids was proposed. A special deformation state was calculated as an example, and the difference between this constitutive model, which considers the effect of air, and the prior research, which does not consider the effect of air [2], was compared.

Representative volume element

To study the deformation and mechanical properties of foam materials, a spherical shell is established to represent the volume element as shown in Fig 1 and Fig 2 . The shell with the inner diameter 𝐴 and the outer diameter 𝐵,whose matrix is considered as pointwise incompressible, is identified by an initial void volume fraction 𝑓 0 , given by 𝑓 0 = 𝐴 3 𝐵 3 . Three pairs of mutually perpendicular principal macroscopic stretches 𝜆 ̅ 1 , 𝜆 ̅ 2 , 𝜆 ̅ 3 are operated on the representative volume element, the macroscopic state of deformation can then be deduced as {𝜆 ̅ 1 , 𝜆 ̅ 2 , 𝜆 ̅ 3 }. In conjunction with the study by Hou et al [3], the deformation gradient tensor 𝑭 ̅ can be derived as followings: , with respect to the inner air pressure P and and the bulk modulus k of the air, the volume change rate of the hollow sphere containing air is identified as:

[𝑭] 𝑖𝑗 = 𝜕𝑥 𝑖 𝜕𝑋 𝑖 = 𝑋 𝑖 𝑋 𝑗 𝑅 ⅆ𝜓 𝑖 ⅆ𝑅 + 𝜓 𝑖 𝛿 𝑖𝑗 (1)
𝐽 ≡ det 𝑭 = 1 + 𝑃𝐴 3 𝑘𝑅 3 (2)
which allows to solve for the deformation gradient tensor of the representative volume element and the first and the second invariants of stretch of the form:

[𝐹 𝑖𝑗 ] = 𝜆 ̅ 𝑖 𝐽 ̅ 1 3 ⋅ ( (𝐽 ̅ -1)𝐵 3 𝑅 3 -𝜓 3 𝜓 2 ⋅ 𝑋 𝑖 𝑋 j 𝑅 2 + 𝛿 𝑖𝑗 𝜓) (3) 𝐼 1 = 1 𝐽 ̅ 2 3 { ( ( (𝐽 ̅ -1)𝐵 3 𝑅 3 ) 2 𝜓 4 -𝜓 2 ) ⋅ 𝜆 ̅ 1 2 𝑋 1 2 + 𝜆 ̅ 2 2 𝑋 2 2 + 𝜆 ̅ 3 2 𝑋 3 2 𝑅 2 + 𝐼 ̅ 1 𝜓 2 } (4) 𝐼 2 = 𝐽 ̅ 2 3 { 𝐼 ̅ 2 𝐽 ̅ 2 𝜓 2 ( (𝐽 ̅ -1)𝐵 3 𝑅 3 ) 2 + 1 𝑅 2 ( 𝑋 3 2 𝜆 ̅ 3 2 + 𝑋 2 2 𝜆 ̅ 2 2 + 𝑋 1 2 𝜆 ̅ 1 2 ) ⋅ ( 𝜓 4 - ( (𝐽 ̅ -1)𝐵 3 𝑅 3 ) 2 𝜓 2 ) } (5) 
where 𝜓 = 𝜆 ̅ 𝑖 𝐽 ̅ 1 3

(1 + (𝐽̅ -1)𝐵 3 𝑅 3

(1 + 𝑙𝑜𝑔 𝑅 3

𝐵 3 )) 1 3 .

Cauchy stress-strain behavior

To compare the constitutive model with the former research [2] which does not consider the impact of air pressure, the Neo-Hookean model is adopted as the matrix material of the representative volume, while a special deformation state {𝜆 ̅ 1 = 𝜆, 𝜆 ̅ 2 = 1, 𝜆 ̅ 3 = 1} is calculated. The Cauchy stress 𝑻 ̅ can be expressed as a function of the initial porosity 𝑓 0 and deformation state 𝐽 ̅ , by:

𝑻 ̅ = 2 𝐽 ̅ 𝜕𝑊 ̅ 𝝏𝑩 ̅ 𝑩 ̅ = 2 𝐽 ̅ 𝜕 { 𝜇 2 𝐼 ̅ 1 3𝐽 ̅ 2 3 (1 -𝑒 𝑓 0 ) ( 𝐴𝑒 𝐵 𝐵 + 𝐶𝑒 𝐷 𝐷 )} 𝝏𝑩 ̅ 𝑩 ̅ (6)
where A, B, C, D are functions of the deformation state 𝐽 ̅ and e is the Napier's constant. Figure 3 shows the non-linear relationship between the true stress and the true strain of the constitutive model for three different level of initial porosity, 𝑓 0 = {0.5, 0.6, 0.8}. The solid line shows the true stress-strain relationship in the axial direction, where the principal macroscopic stretch is defined as 𝜆 ̅ 1 = 𝜆, while the dashed line shows the stress-strain relationship in the other two constraint direction, where the principal macroscopic stretch is defined as 𝜆 ̅ 2,3 = 1. The strain constraint results in a tensile stress in the constraint direction due to the Poisson effect. In a relatively small deformation range, the true stresses in both axial direction and constraint direction increase sharply due to the air pressure in the void, which clarifies that the constitutive model for the representative volume element can describe the effect of compressible air. Then the stress in the axial and constraint directions both decrease, with an increasing level of initial porosity, as the elastic compliance of the porous elastomer increases.

Introduction

The pursuit of soft robotics usually employs some kind of softness in the mechanics and dynamics. There are typical elastomers and gels used in the studies of soft robotics, but they are usually treated as pure elastomers or gels. In other words, the physical state of the material itself is fixed and stable. In contrast, we use a kind of state transition as another option for functionality as sensors and actuators with softness in this study. Besides elastomers and gels, many kinds of papers are flexible materials, and so-called nanopapers are promising materials in the flexible device and printed electronics. We employ the hydrogels emerged from cellulose nanopapers [1] .

In particular, we focus on the drying of gelated nanopaper as a nonlinear transient response. Since the tensile residual stress accompanies the drying of aqueous dispersion of CNFs to form nanopaper [2] , the drying of gelated nanopaper may also undergo the state transition that bridges the scales of nanofibers and sheet structures.

Experiments

The nanopapers were fabricated by drying the aqueous solution of CNFs. The aqueous solution of CNFs was prepared from TEMPO-oxidized CNFs. To prepare specimens with different thicknesses, nanopapers of 3.0×10 -2 and 6.0×10 -2 kg/m 2 of CNF per unit area were prepared from 0.30 and 0.60 wt% aqueous solution of CNFs, respectively. The thickness of each nanopaper L t was 22 µm and 42 µm, respectively. The nanopaper specimens were cut into rectangular pieces, and mending tapes were applied on the two ends of the long side of the nanopaper. The shape memory of nanopaper clamped under bending condition was demonstrated by drying after swelling.

The specimen was the nanopaper with a thickness of L t = 22 µm. The size of the exposed area of the nanopaper was 15×5 mm. Tool clips were used to clamp the specimen. The distance between the two ends of the nanopaper was set so that the long edge of the exposed area of the nanopaper was bent and clamped over the mending tapes. After clamping, the nanopaper was soaked in purified water for t w = 20 s for swelling. After swelling, the process of drying the nanopaper was captured in time series. The contractile forces of swollen nanopapers with a fixed length by clamping at both ends during drying were evaluated. The size of the exposed area of the nanopaper of the specimen was 30×15 mm. After the nanopaper was allowed to swell for a certain period of time, it was suspended vertically and clamped with chucks over the mending tape. The lower chuck was fixed to the base, and the upper chuck was fixed to the post via a force gauge to measure the contractile force. The nanopaper was fixed at its swollen natural length. From this state to the completion of drying, the tensile force on the chuck as the nanopaper dried was measured using a force gauge. The time between the swelling of the nanopaper and the start of measurement was 3 min. The standard conditions for the initial thickness and swelling time of nanopaper are L t = 42 µm and t w = 20 s. The dependence of the contractile force on the initial thickness and swelling time of nanopaper was examined with a thin nanopaper (L t = 22 µm) and with a short swelling time (t w = 10 s). The room temperature and humidity at the time of the experiments were 25.2~25.7 • C and 23~27 %, respectively.

Results and discussion

Figure 1 shows a time sequence of photographs indicating the shape memory of nanopaper that experienced swelling and then drying. Comparison of the bottom position of the nanopaper shows that the nanopaper has shrunk during drying. When one end of the nanopapers was released from the clamp, it maintained the bending state. This indicates that the nanopaper becomes more stiff and maintains its shape when it dries after swelling. The shrinkage and stiffening of the nanopaper suggest an increase in density and strengthening of hydrogen bonds due to fiber reorientation in the CNF network during drying after swelling. This finding is useful for the application of nanopaper as a structural material that can memorize shape when wetted by water.

Figure 2 shows the photographs and the time evolution of the measured contractile force during drying when the swollen nanopaper was fixed at both ends in straight. Each nanopaper reached dry state in 80~100 min.

The contractile force increased nonlinearly with time, reaching a maximum value when drying was completed, although the nanopaper was fixed on two sides and the area variation of the interface where water evaporates was moderate. The nonlinear increase in contractile force can be attributed to the following stepwise drying process. In the first stage of drying, when the nanopaper contains sufficient water, the water in the gel decreases linearly with time, and the volume of the nanopaper decreases predominantly in the thickness direction. In the second stage, when sufficient water evaporates, the contraction in the in-plane direction becomes dominant over the thickness direction. When the swelling time t w was short compared to the standard condition, the peak value of the contractile force was reduced by 10%, but the time when the contractile force reached 0.1 N halved. On the other hand, when the initial thickness L t of nanopaper was about half of the standard condition, the peak value of the contractile force decreased by 28%, but the time until the contractile force reached 0.1 N and the increase rate thereafter were almost the same. This insensitivity to the initial thickness is consistent with the dominant factor of the contractile force being attributed to the volume change in the width direction. Thus, the contractile force during drying of the swollen nanopaper fixed at both ends increases nonlinearly until the entire nanopaper is completely dried, and the onset time of the contractile force can be controlled by the time when the nanopaper is exposed to water. The combination with the above-mentioned shape memory effect can be useful for the adaptive mechanism against surrounding environment. The coupling of volume change and shape memory effect is a consequence of hydrogen-bond reformation in the CNF network during water evaporation. This is a microscopic interpretation of the phenomena. On the other hand, shape memory suggests the importance of boundary condition, and the nonlinearity and the parameter dependence is partly attributed to the macroscopic configuration of the sample. These clues will be incorporated into the modeling of the phenomena.

Introduction

Recent developments in fabrication technology have made it possible to design soft actuators made of soft components inexpensively and easily. For example, soft actuators driven by the deformation of elastomers with the inflow of fluid can achieve complex motions with only a single source of pressure. Furthermore, by incorporating elastic instability, such as snap-through instability in slender structures, the soft actuator can instantly generate large deformations and forces [1]. Snap-through instability is the rapid deformation of a structure from one stable state to another stable state, which can be found as fast nastic motions of carnivorous plants and children's toys (jumping poppers). When a hemispherical cap shell is pressurized (depressurized) from the outside (inside), it snaps and quickly flips over. In previous research, a soft robot utilizing a jumping mechanism has been developed using this property [2].

While soft robots with a wide variety of mechanisms have been proposed, the guidelines for optimizing their mechanisms are still largely unexplored. Here, in order to build the predictive framework to optimize the dynamic functionality of soft robots, we elucidate the jumping mechanism of a hemispherical thin shell, as a model system of pneumatically-driven soft robots. In particular, we aim to uncover the mechanism of jumping on granular substrates for operations under unpaved grounds. We envision situations such as robot operation on unstable ground or unmanned extraterrestrial exploration.

Experimental protocols

Our elastic thin shells are made of silicone elastomer (Elite Double 32, Zhermack, Italy). We pour the liquid into the 3Dprinted mold and demold it after curing. We systematically fabricate shells of different radii of curvature R and thickness h, while fixing the polar angle α = 80 • (See inset of Fig. 1(c)). The experimental sample is glued to the top panel of an acrylic container, connected with a shaft that translates along the vertical directions only. A syringe and valve are connected to the container to control the inner pressure p and we measure p with a barometer (Wireless Pressure Sensor B 400 kPa, Narica, Japan). The container is also coupled with a counterweight via a pulley to reduce the net weight. The jump height H is recorded by a laser displacement meter (IL300, KEYENCE, Japan)(See Fig. 1(a)).

The protocol for jumping experiments is as follows (Fig. 1(b)). When the air pressure in the container, p is lowered, the shell is subjected to a pressure difference from the atmosphere, δp. When the pressure difference reaches the critical buckling pressure p * , the shell snaps and reverses. At the same time, the internal volume decreases and then p increases.

We then ground the shell to the base and open the valve so that p instantaneously reaches the atmospheric pressure. The shell undergoes snap-through instability (to recover the natural shape) and kicks the ground to jump. The value of the pressure difference upon jump, δp j , and relative thickness h/R are changed, and the jumping height, H is measured on an acrylic plate and alumina beads (diameter d = 0.5, 5mm) substrate. To eliminate the influence of air trapping upon shell-rigid substrate contact, holes are drilled in the acrylic plate. 

Jumping mechanisms of hemispherical shells

First, to understand the shell jumping mechanism, we study jumping experiments on a rigid substrate. Through careful observation of jumping motions, we find that the jumping height H has two contributions: H ℓ , representing the lift of the shell as it recovers to its natural state, and H j , the jump of the shell after it leaves the substrate (See insets of Fig. 2(a)(b) for schematics). Fig. 1(c) shows the results of an experiment with (h, R) = (1.5, 30) mm shells on the acrylic plate with different δp j . The horizontal axis is rescaled by the critical buckling pressure p * . We find that the value of H ℓ is nearly constant in the range δp j /p * ≳ 0.4 and changes steeply in the range 0.2 ≲ δp j /p * ≲ 0.4. On the other hand, the value of H j remains constant throughout. The lifting height, H ℓ is, by definition, a geometric contribution and it would be related to how much the shell is indented prior to the jump. To validate this scenario, we measure the vertex displacement, w, upon depressurizing the shell and superpose the data onto H ℓ -δp j /p * curve (Fig. 1.c). After snapping from the natural state to the inverted state, we continue depressurizing the shell. We find that w increases sharply at 0.2 ≲ δp/p * ≲ 0.4 and then w becomes constant at δp/p * ≳ 0.4, which follows a similar trend of H ℓ . To fully validate the mechanism behind H ℓ , we measure H ℓ for different values of h/R, while limiting the pressure δp j /p * ≳ 0.4 such that the shells are inverted completely. Through simple geometric argument, we get the prediction as H ℓ /R = 1 -cos α, which is in excellent agreement with our experimental results (Fig. 2(a)). The jumping contribution, H j is the kinetic contribution and is related to the dynamics of the shell quickly repelling the substrate. In other words, H j depends on the fast inertia effects at the snap onset. In other words, the kinetic energy upon snapping is triggered by the elastic bending energy. Such a snapping time scale t b has been studied in the previous literature [3] as t b ∼ R 2 /hv s with the speed of sound v s of the material. Note that, after the valve is released, the pressure in the device, p returns to almost atmospheric pressure immediately within ∼ 0.1 second, but the shell restores its natural state slowly in ∼ 1 second. Assuming that the kinetic energy of the shell is fully converted to gravitational potential energy, the scaling equation for H j is H j ∼ (h/R) 2 v 2 s /g, where g is the gravitational acceleration. Interestingly, our simple scaling argument can reproduce the high sensitivity of H j in h/R (Fig. 2(b)). We note that the fitting curve of H j ∼ (h/R) 2.5 is slightly off the prediction, implying that further experimental and theoretical studies are necessary to fully predict this simple jumping behavior. Lastly, to elucidate the changes that occur when the shell jumps on granular substrates, the shell is grounded on a granular substrate (alumina beads of diameters d = 0.5, 5 mm) and we measure H as above. The results for shells with different relative thicknesses h/R are shown in Fig. 2(c). The jumping height on the granular substrates is normalized by the corresponding jump height H on a rigid substrate, H 0 . On the granular substrates, the jumping height decreases as 0.75 ≲ H/H 0 ≲ 1. The jumping height is nearly insensitive with the diameter of the beads d or h/R. We do not find a clear trend in the jump height, which we believe is due to the varying grounding conditions between the shell and the granular substrates. Further experimental studies on other granular beads such as silica or glass will enable us to build the predictive framework of soft robots under unpaved grounds.

Conclusion

In this study, we have studied the jumping mechanism of hemispherical shells. We find that the jump of the height has two contributions; lift H ℓ and jump H j . The (total) jump height H decreases on a granular substrate compared with that on a rigid one. Although the hemispherical shell has a seemingly simple geometry, its dynamical performance primarily relies on a complex interplay between the elasticity, geometry, and the interaction with the ground. When hemispherical shells are used for mobility mechanisms, our framework would help to optimize the geometry of the shells and the pressure differences before and after jumping, which are suitable for the required conditions.

Introduction

Wheeled rovers have mainly conducted lunar and planetary exploration in the past. Their activities have been limited to flat areas with few obstacles due to safety concerns. However, recent discoveries of evidence suggesting the presence of water in steep landscapes such as craters and cliffs on the Moon and Mars [1,2] have highlighted the importance of exploration in scientifically valuable areas with challenging terrain. The wheeled rovers with limited maneuverability hardly access such challenging terrain, and alternatively, jumping rovers capable of overcoming large obstacles have been a promising approach. Common jumping mechanisms exploit internal torquer, gas cylinder, gas jet, and spring mechanisms. Spring mechanisms, in particular, have been extensively studied for their ability to store energy with low power and to facilitate repeated jumping. However, their inefficient weight-and-energy ratio and complex mechanisms remain open issues [3].

This study focuses on a novel jumping mechanism that utilizes snap-through buckling, where an elastic body transitions dynamically from one stable buckling shape to another. In particular, snap-through buckling of elastic strips can generate high acceleration with a lightweight and simple mechanism [4], making it suitable for jumping rovers for planetary exploration. Additionally, the lunar and planetary surfaces are soft ground covered with fine granular media called regolith. jumping behavior on such a sandy surface is expected to differ from that on a rigid surface. Therefore, this study aims to develop a jumping mechanism utilizing snap-through buckling of an elastic strip and experimentally analyze jumping behavior on rigid and sandy surfaces.

Development and experiment of jumping mechanism

A schematic illustration of the jumper we developed is shown in Fig. 1(a). A stainless steel (SUS304) flat spring is used for the elastic strip. Both ends of the elastic strip are fixed to clamps, each of which connected to the servomotor, respectively. The strip initially takes an upward arched buckling shape and starts deforming with storing elastic energy as the servomotors symmetrically rotate. Once the elastic strip reaches a critical buckling phase, it snaps and lets the mechanism jump. The jumper's body is designed to be able to attach the clamps to different positions. The weight of the jumper without the strip is 387 g.

To analyze the behavior this jumper, we designed an experimental apparatus as shown in Fig. 1(b). The jumper is fixed to a linear guide that limits the motion of the jumping in the vertical direction. A laser displacement sensor is attached to the upper part of the linear guide, and an inertial measurement unit (IMU) is attached to the jumper, enabling measurement of the displacement and acceleration of the jumper. These sensors are connected to the microcontroller Arduino Mega and measured at intervals of approximately 4 ms and synchronized with the measurement time. A rigid metal plate is used for the rigid ground, and Toyoura Standard Sand filled in the acrylic case is used for the sandy surface. We tested four types of elastic strips, each with a length L = 180 mm, thicknesses T = 0.15 mm and 0.20 mm, and widths W = 30 mm and 60 mm. The end-shortening, ∆L (See Fig. 1(a)), was varied between 10 mm, 26 mm, 42 mm, and 58 mm.

In each experimental condition, the servo motors first rotated 2 • every second to let the strip gradually deform as the jumper's displacement and acceleration were measured. Once the elastic strip snapped and the jumper jumped, the servo motors stopped their rotation. The microcontroller measured the jumping height h as the height relative to the position just before the strip snapped. Each condition was tested three times.

Results and discussion

Fig. 2 shows the displacement and acceleration of the jumper on the rigid and sandy surfaces with T = 0.20 mm, W = 60 mm, and ∆L = 42 mm. The horizontal axis denotes the elapsed time since just before the snap-through buckling generated. In both cases, the acceleration reaches its maximum where the slope of the displacement graph is steep, confirming that the laser displacement sensor and the IMU were sufficiently synchronized. Compared to the rigid surface, the acceleration on the sandy surface gradually increases, and the jumping height decreases. This is because the elastic energy of the snap-through buckling was used for soil deformation and shear failure.

Fig. 3 shows the relationship between the end-shortening rate ∆L/L, and the jumping height h. As the ∆L/L increases, h increases, but the growth rate decreases. On the sandy surface, specifically with T = 0.20 mm and ∆L/L = 0.32, the increase in h growth rate decreases significantly. To investigate this, we recorded the moment of jumping in slow motion. As a result, we found that when ∆L/L = 0.32 compared to when ∆L/L ≤ 0.27mm, the elastic strip pushed more sand out because of the difference in the shape of the strip when it came into contact with the sand. This suggests that more elastic energy of snap-through buckling was used for soil deformation.

Increasing the thickness T or width W of the strip increases h owing to the increase in bending stiffness. However, on the sandy surface, we found that increasing W is more effective than increasing T . This is because the increase in W results in an increase in the contact area with the sand, thereby reducing the vertical stress on the sand. This reduction is considered to suppress the shear failure of the sand as well as the penetration of the elastic strip into the sand.

In this study, we developed a jumping mechanism using the snap-through buckling of an elastic strip and analyzed its behavior on rigid and sandy surfaces. The result shows that the jumping behavior on the sandy surface differs from that on the rigid surface because of the varying shape and area of the elastic strip in contact with the sand, resulting in different soil deformation. These findings provide valuable insights for the design of future jumping rovers. However, the degree of sand deformation is also considered to depend on the type of sand and its bulk density, therefore, further experiments are required to explore different sand conditions.

Introduction

The control of Pneumatic Inflatable Actuators (PIAs) with high power-to-weight ratio is fundamental to the development of soft robots. Methods have been explored to adjust actuators to an arbitrary pressure at an arbitrary time, such as a method to control air pressure using fluid friction [1] and a mechanism to create multiple pressures in a system from the same air pressure source have been proposed [2]. A mechanism to passively inflate multiple PIAs in sequence by utilizing the pressure drop of flow resistors has been proposed in the literature [3,4]. However, the theoretical background of the actuators' inflation speed and internal pressure changes in this mechanism has not been clarified, and mathematical models of the inflation characteristics are yet to be developed. In this study, the inflation characteristics of the inflatable actuators and the pressure drop characteristics of the flow resistors are mathematically modeled by analyzing changes in the inflation characteristics due to multi-stage pressure drop and the interaction between multiple connected actuators. The model describes the relationships between different pressure points, each point flow rate, and each actuator volume inside the system. The goal of the proposed model is to be able to analyze the pressure and volume inside each actuator during the operation of the system.

Theoretical Formulation

The force of the actuator is due to the elasticity of the high pressure air and essentially depends only on the internal pressure and the change of volume state. The inflation characteristics of a soft actuator can be described based on the Boyle-Charles law of thermodynamics. The mass of the gas inside the actuator can be expressed as the time integral of the flow rate flowing in unit time multiplied by the density. From the equation of the state of an ideal gas, the equation relating the internal pressure P out , volume V, and flow rate Q out is described as follows:

(𝑃 out (𝑡) + P e )𝑉(𝑡) = P e ∫ 𝑄 out (𝜏) 𝑡 0 𝑑𝜏 (1) where t is time, P out is the gauge pressure and P e is the atmospheric pressure. The equation was simplified by converting the actual flow rate to a normal flow rate Q out , which is converted to a volumetric flow rate under reference conditions of 0°C and 1 atm. Yamamoto et al. [3] designed a flow resistor with multiple orifices in a tube. Since the volume of the actuator increases proportional to the internal pressure, sequentially connected actuators inflate in order proportional to the number of orifices. The pressure drop ΔP o of the gas passing through one orifice can be derived by the following equation [5]:

𝛥𝑃 o (𝑡) = 0.5𝜉(𝑅𝑒)𝜌(𝑡)𝑢(𝑡) 2 (2)
where ξ is a coefficient representing the inflation characteristics and varies depending on the Reynolds number Re when Re is sufficiently small [6]. ρ is the gas density upstream of the orifice and u is the flow velocity. The pressure drop across the resistor is calculated from eq. ( 2) multiplied by a constant η that depends on the number of orifices. From the state equation of an ideal gas, ρ is rewritten as P out , and the actual flow rate obtained by dividing u by the cross-sectional area A o of the orifice is rewritten as the normal flow rate Q res . Therefore, the pressure drop can be expressed by the normal flow rate and input pressure as follows: 

where P res is the gauge pressure of the gas flowing into the flow resistor, T is the ambient temperature, R is the gas constant, and T e = 273 K.

Experimental Methods and Results

The experimental circuit shown in Figure 1 was constructed using flow resistors with 0, 4, and 10 orifices. Input pressure, pressure in the actuator, and flow rate into the actuator were measured in each circuit. The pressure at each point in the single circuit turned from linear to exponential change (Figure 2(a)), indicating that eq. ( 1) becomes a linear differential equation when V reaches an upper limit (becomes constant). The unknown function ξ in eq. ( 3) was identified using the pressure difference and flow rates in the circuit in Figure 1(a) and was found to be approximated by a quadratic expression for u (Figure 2(b)).

V was calculated based on eq. ( 1) from the experimental results for the parallel and series circuits and compared with the results for a single circuit using a resistor with 0 orifices, and all characteristics were approximately in agreement (Figures 3(a 

Conclusion and future works

The inflation principle was mathematically modeled based on the inflation characteristics of PIAs and the pressure drop characteristics of the flow resistance, and the model was experimentally validated. Future work is to build a more practical model by incorporating pressure changes due to load on the actuator into the model. 

Introduction

Understanding the mechanical properties of biological soft tissues is important in biomechanics, medical engineering, and rehabilitation. These findings can also contribute to the design of artificial muscles and joints [2][3]. The soft tissues in the body are made up of closely packed tissue fibers with different fiber directions and its muscle contraction allows the body to advance and restrict movements. Therefore, to understand the mechanical properties of skeletal muscles in a movement, a material model considering both the fiber orientation and the muscle activity is necessary. Various material models have been proposed to describe the passive and active behavior of skeletal muscle more accurately. The modeling of the skeletal muscles started with Hill's model, where elastic and contractile elements are treated in series [4], and other modeling techniques such as addition of strain energy functions [5][6], and separation of the active and passive deformation [7] followed. In this study, the model proposed by Arya and Singh was used to develop equations for finite element analysis and to derive theoretical solutions. The theoretical solution was obtained not only for the fiber direction as calculated by Arya and Singh but also for different fiber orientation angles with respect to the tensile direction.

Material model

The deformation gradient tensor representing nonlinear muscle contraction was proposed by Riccobelli and Ambrosi [7]. The gradient tensor was multiplicatively decomposed into an elastic deformation gradient tensor 𝑭 𝑒 and an active deformation gradient tensor 𝑭 𝑎 . 𝑭 = 𝑭 𝑒 𝑭 𝑎 (1) The active deformation gradient tensor 𝑭 𝑎 was proposed as following equation:

𝑭 𝑎 = (1 -𝛾)𝑴 + 1 √(1 -𝛾) (𝑰 -𝑴) (2) 
Here, 𝛾 is the activation parameter and 𝑴 is the structure tensor, determined by the muscle fiber orientation vector 𝒎 and written as 𝑴 = 𝒎⨂𝒎. The strain energy density function was adopted from the research by Ehret et al [6]. To consider the two separate deformations of the tissue that doesn't contribute to muscle activity and the contribution of muscle fibers, the strain energy function consisting isotropic and anisotropic parts was calculated as

𝑊 𝑖𝑠𝑜 (𝑭) = 𝜇 4 [ 1 𝛼 {𝑒 𝛼(𝐼 ̃𝑖𝑠𝑜 (𝑭)-1) -1} + 1 𝛽 {𝑒 𝛽(𝐾 ̃𝑖𝑠𝑜 (𝑭)-1) -1}] (3) 𝑊 𝑎𝑛𝑖 (𝑭 𝑒 ) = 𝜇 4 [ 1 𝛼
{𝑒 𝛼(𝐼 ̃(𝑭 𝑒 )-1) -𝑒 𝛼(𝐼 ̃𝑖𝑠𝑜 (𝑭 𝑒 )-1) } + 1 𝛽 {𝑒 𝛽(𝐾 ̃(𝑭 𝑒 )-1) -𝑒 𝛽(𝐾 ̃𝑖𝑠𝑜 (𝑭 𝑒 )-1) }] (4)

where 𝜇 > 0, 𝛼 > 0, and 𝛽 > 0 are material parameters, and the invariants 𝐼 ̃ and 𝐾 ̃ are expressed using the right Cauchy-Green deformation tensor 𝑪 as follows: 

𝐼 ̃𝑖𝑠𝑜 (𝑭) = 𝑤 0 3 tr(𝑪) (5) 
Arya and Singh obtained the first Piola-Kirchhoff stress tensor 𝑷 and only the theoretical solution for the nominal stress in the fiber direction. For finite element analysis, the second Piola-Kirchhoff stress tensor 𝑺 is more suitable than first Piola-Kirchhoff stress tensor 𝑷 due to it being asymmetric matrix. In this study, the second Piola-Kirchhoff stress tensor 𝑺 is obtained to derive and analyze the theoretical solution considering directions other than the fiber direction.

Calculation results

In this research, theoretical solutions of the nominal stress when the muscle is stretched in various directions with different degrees of muscle activations were calculated with above equations. The material parameters used were 𝜇 = 19.80kPa, 𝛼 = 0.71, 𝛽 = 7.48 and 𝑤 0 = 0.68 identified by Arya and Singh [1] from the experiments by Lim et al. [8]. The angle between the tensile direction and the fiber orientation vector 𝒎 was defined as 𝜃. Fig. 1 shows the stress-strain relationship for different values of 𝜃. Fig. 2 shows the stress-strain relationship when the activation parameter 𝛾 is varied as 𝜃 = 0°. Fig. 1 and Fig. 2 show that the mechanical properties change as the fiber orientation angle and the activation parameter are varied. These results show that this model can account for the anisotropy and activation of the muscle. By implementing this model to finite element analysis, a simulation of muscles considering both the muscle activity and the fiber orientation can be achieved. This finite element analysis allows to consider arbitrary boundary conditions and the force exertion characteristics of muscle. 

Introduction

Pole vaulters bend long flexible poles as much as possible and use large elastic forces to raise their bodies and clear the bar. Pole vaulters grip the pole at different points and vary the distribution of upper and lower hand forces during the vault to achieve large deformations. However, the forces exerted by each hand on the pole during the vault cannot be determined by inverse dynamics because the upper limb and pole constitute a mechanical closed-loop system [1]. Previous studies of the dynamics of the vault have used a model in which the vaulters applied a force and a moment that were the resultants from the two limbs combined [2,3]; this approach does not permit analysis of the magnitude and timing of application of the right and left hand forces. Knowledge of the individual hand forces exerted on the pole would provide us with new technical insights into pole vaulting. The purpose of this study was to develop a method for measuring the forces exerted by the individual hands during a pole-vaulting motion, with strain gauges.

Theory and experiments

Two sets of two-sided two-active strain gauges were located 7 cm apart along the pole's longitudinal axis for detection of the bending moment exerted about the xpl axis of the pole coordinate system (Figure 1), and two further sets for detection of the bending moment exerted about the ypl axis (UCS Sprit, 14f145lbs). Two additional sets of strain gauges were used for longitudinal force detection, consisting of a four-gauge method using eight strain gauges with two gauges connected in parallel to reduce the errors due to interference. Two wireless data loggers type multi-channel miniature strain amplifiers (Tech-Gihan, Kyoto, Japan, 6-CH,100~1000 Hz), fixed near the lower grip part and electrically synchronised, were used to record those strain gauge signals. The matrix 𝑹 used to calculate forces and moments from strain gauge output signals, which consists of 7×5 components, was estimated using an extended Kalman filter. An extended Kalman filter is a non-linear Kalman filter that corresponds to optimal value estimation by partially linearisation in a non-linear function using partial derivatives. The non-linear state equation of the extended Kalman filter can be iteratively computed as a constant estimate for estimating unknown parameters and is robust against sensor noise because it can consider the covariance values of the observation noise. Parameter estimation can be performed by taking each element of the sensitivity and interference correction matrix as a state quantity, the right-hand side of the correction equation as the system matrix of the non-linear observation equation, and the forces and moments calculated from the force plate output as observed values.

Figure 2: Setup for static pole calibration. Figure 3: A photo of the experimental trial. A pole vaulter performed three vaults with sub-maximal approach runs in an indoor experimental setup (Figure 3). Kinematic data (47 markers on the body; 24 markers on the poles) was captured with a motion capture system (Vicon; 24-Camera; 250 Hz). The ground reaction force at the pole end was recorded by a force plate (Kistler, 1000Hz). The vaulter used the instrumented pole, to allow measurement of the longitudinal forces and the bending moments. Data were analysed from 0.01 seconds after the box contact through to pole release. (e) M y,1 Figure 5: Results of the estimated forces/moments obtained from outputs of strain gauges located on the lower grip part during pole vaulting. These values are expressed in a pole-segment coordinate system.

Results and discussions

The forces and moments estimated from the strain gauge output signals through the extended Kalman filter agreed well with those calculated from the pole tip (plug) forces measured with the force plate in the static calibration of the strain gage under large pole-deformation condition (Figure 4a~d), except for the pole longitudinal axial force (Figure 4e). The cause of the error is the non-linear interference of the sensor output of the other axes with the sensor outputs for the longitudinal axial force, which increases when the longitudinal axis force changes significantly. Reducing this interference is a future challenge. Next, the estimated forces and moments through the filter also matched well with those calculated from the plug force obtained with the force plate settled below pole-vault box (Figure 5). From these results, it is possible to estimate the acting forces and moments exerted with both hands during pole-vaulting motion even without force plate on the box in the field when using this proposed instrumented pole. Furthermore, estimating the forces and moments exerted by top-side hand, measured with this strain gauge system set on the pole midgrip position, would enable us to obtain the kinetics of each hand. The sagittal stiffness of the human foot is nonlinear, varying between tasks and between subjects. Previous studies showed that providing subject-specific sagittal torque-angle behaviours can improve the metabolic cost and biomechanical variables such as load distribution [1,2]. This has been achieved by the use of active or semi-active devices as a cam-based transmission ankle joined with a leaf spring [3], human in the loop optimization based on respirometry [1], and through dynamic simulations of the foot [2]. Instead, we propose to model and optimize the geometric parameters of the sagittal mechanism of a prosthesis to generate various representative nonlinear torque behaviours of foot prostheses of different mobility levels while using predefined components.

Theory or experiments

The sagittal mechanism of our three degree of freedom prosthesis was modeled as the closed 3-link mechanism shown in Figure 1. It provides passive dorsiflexion and plantarflexion moments through a spring placed inside the foot that is attached to both the shank and forefoot segments [4]. In the design, Points A and C are fixed (L 3 = AC is also constant) while point B rotates around A and C with fixed radius L 1 = AB and variable radius L 2 = BC that represents the spring's length. We calculated deformation of L 2 and the subsequent force and torque applied to A as a function of the dorsiflexion and plantarflexion angle x. α and β are the initial angles with respect to the y and x axis respectively, when x = 0 and the spring is not deformed. The geometric model and the base design, where α = 0, β = 0 and L 2 is exactly the nominal length of the spring are shown in Figure 1. Given a dorsiflexion (positive) or plantarflexion (negative) angle x, the length of L 2 , L ′ 2 , will be given by the euclidean distance between the B and C at x ̸ = 0.

L ′ 2 = (C x -B x (x)) 2 + (C y -B y (x)) 2 (1) 
Where C i and B i , (i ∈ [x, y]) represent the x or y coordinates of points B and C.

C x -B x (x) = L 1 cos(270 + β) + L 2 cos(180 + α) -L 1 cos(270 + β + x) (2) C y -B y (x) = L 1 sin(270 + β) + L 2 sin(180 + α) -L 1 sin(270 + β + x) (3) 
Correspondingly, the new value of α, α ′ at x ̸ = 0 will be described by

α ′ = cos -1 ( L 2 3 + L ′2 2 -L 2 1 2L 3 * L ′ 2 ) (4) 
Which results in a prosthesis whose sagittal torque-angle function is given by equation 5 which is entirely dependent on the physical parameters of the prosthesis α, β, L 1 and the nominal spring length L 2 and elastic constant k. by minimizing the MSE between f and the torque-angle curve of each prosthesis. The angular stiffness data for each commercial model was obtained from Halsne (2021) [5]. The set of parameters that offer the closest behavior to each commercial device and their torque angle functions are presented in Table 1 and Figure 2a. Additionally, the expected designs of the prosthesis corresponding to each set of parameters are shown in Figure 2b. The upper and lower bounds for the parameters were determined by the dimensions of the prosthesis. k remained constant as the spring used in the original design has a nominal elastic constant of 150 N/mm.

f (α, β, L 1 , L 2 , k, x) = k * cos(β + x -α ′ )(L2 ′ -L2) * L 1 (5)

Results and discussion

Exploiting the geometrical parameters of the prosthesis's sagittal mechanism offers the advantage of generating a family of nonlinear mechanical behaviours from linear components. The optimized solutions match that of prostheses for various activity levels including K2 (Walk-tek), K3 (Vari-Flex) and K4 (All Pro). This variability is important as the selection of a sagittal angular stiffness behaviour affects the time to foot flat, the range of motion at terminal stance and contributes to push off, affecting gait stability. As shown by the MSE, the mechanism seems to be able to fit less steep curves as the one of Vari-Flex, Rush-Pro and All Pro's devices. On the other hand, disadvantages include the limitations to fit steeper curves, such as the Walk tech. In addition, the method does not respect the physical limits imposed by the materials and components into the optimizer: Aspects like the rate of compression, friction, mechanical interference, changes in range of motion and geometrical dimensions might be overridden in certain parameter sets as in the case of the nonviable CAD generated from the parameter set to fit the All Pro behaviour. Dropped Head Syndrome (DHS) corresponds to a set of conditions that affects the strength of the neck muscles specially present in persons over 60 years old. This weakness causes excessive cervical kyphosis, where the patient's head is abnormally leaned forward, making a challenge for him to make eye contact, talk, swallow, or breath [1]. The most accepted practice for reverting this deformity in physical therapy is the use of a neck brace to support the head posture. In case the patient does not recover after this intervention, the deformity is corrected by fixating the cervical vertebrae through surgical procedures [1]. Given that the use of neck braces is linked with weaknesses of neck muscles, and the abundant evidence of the level of discomfort to the user caused by the neck fixation, there is a clear need in this community for an orthopedic device that assists the posture of the head while enabling neck mobility. Such a contribution could increase the recovery expectancy of the non-invasive approach avoiding the risks of surgery, especially in elderly people.

To address this problem, several researchers have recently proposed diverse rigid links based on compliant mechanisms to assist the head. The most prominent works are a passive head support system for wheelchair users [2] and a neck orthosis whose mechanism consists of multiple parallel mechanical linkage chains [3]. Both devices have proven through EMG signal analysis the reduction of healthy users' neck muscle effort for holding the head in different positions ( [2], [3]).

Although the previous works significantly contribute to a feasible device that overcomes the limitations of the fixed brace, they do not cover all the requirements of degrees of freedom, range of motion, and portability for the support of DHS.

To cover such requirements, a novel elastic mechanism for neck orthosis was proposed, which is based on flexible bars with adjustable stiffness that permits neck flexion in multiple directions, whose actuation principle was experimentally verified in a previous study [4]. This work presents an alternative mechanism for the system that simplifies the design and improves mechanical behavior for compensating the user's head weight.

Theory and Experiments

The proposed device consists of a set of parallel flexible bars that connect the head to the thorax of the user and acts as a leaf spring. When the patient flexes the head in a given direction, the mechanism will bend in a shape compatible with the cervical spine curvature generating the extending force that counteracts the neck weight as shown in Figure 1. This assistive moment is regulated by an adjustment mechanism. Additionally, a prismatic joint between the top of the mechanism and the head attachment makes the neck and system motion compatible.

In the new design, the adjustment mechanism was simplified to a rigid cylinder and an adjustment plate attached to the middle bar while the original system uses springs in every bar and a platform that increases the volume, weight, and load capacity of the system, as shown in Figure 1.

As shown in Figure 1, the new system has two elastic modes where the flexible stiffness of the bar array is controlled by restricting the ascendant movement of the central bar's lower end. The vertical and bending motions are tightly coupled as explained in the original work [4]. The sliding mechanism transmits normal forces to the bars deflecting them like a cantilever beam. For a low bending angle θ 1 , the stiffness is relatively low as the central bar can move freely, but when the component touches the cylinder at the angle θ 2 the vertical motion is restricted leading to a sudden stiffness increase. The bending angle where the mode transition occurs will depend on the initial gap between the cylinder and the plate which is δ. The smaller the value of δ is, the earlier the elastic transition will occur. This behavior is closer to the ideal assistive moment, as the results suggest. The mechanical stiffness of the new prototype was characterized by conducting a bending test for different values of the distance δ. For this test the device was mounted in a standard motorized test stand from IMADA with a force gauge and a displacement sensor (IMADA MX2-2500N-FA, ZTA-50N). The test stand was used to apply controlled loads perpendicular to the upper attachment of the elastic mechanism which imitates the normal function of the entire system. From the measurement, the moment about the upper face of the guide is determined, which is the same reference used in the previous prototype. The lever is calculated from displacement recording of the test stand and the bars' bending angle, which was measured with an IMU (LP-research LPMS-B2). The experimental setup is presented in Figure 2a. 

Results and discussion

The experimental bending stiffness of the elastic mechanism for different values of δ is contrasted with the maximum stiffness of the previous version and the required assistive moment in Figure 2b. It can be observed that both systems present a hysteresis during the mechanical cycle which is linked to friction between the sliding parts. The new device plots show both elastic modes clearly differentiated where the low-stiffness linear response occurs first followed by a sudden stiffness increase indicated by the magenta dots. It can be noted that the transition occurs earlier as the distance δ is smaller. This effect alters the separation between the high-stiffness region and the required assistive torque which is fairly uniform along the device's range of motion. This suggests that the user may perceive continuous assistive support during the full range of motion that can be adjusted according to their neck weakness in contrast to the original version where the assistive force surpasses the reference value for low bending angles and after 10 degrees the situation reverses.

Weakly nonlinear ultrasound propagation in liquids containing multiple ultrasound contrast agents with shell in buckled or ruptured states Quoc Nam Nguyen * and Tetsuya Kanagawa *

Introduction

As one of the second-generation ultrasound contrast agents (UCAs), phospholipid-shell ultrasound contrast agents have promising potential for various medical applications and have received much attention. Previous studies on the interaction between phospholipid-shell encapsulated microbubbles and ultrasound focused on the behavior of a single phospholipidshell encapsulated microbubble. However, in applications, multiple UCAs are used in medium and the intrinsic complexity of their oscillation under ultrasound enhances the complication of ultrasound propagation. Thus, a better understanding of the propagation of ultrasound in liquid containing multiple encapsulated microbubbles has been required to improve accuracy and safety. Louisnard [1,2], has constructed a nonlinear Helmholtz equation for wave propagation in liquids with uncoated bubbles from fully nonlinear Caflish equation. Sojahrood et al. [3,4,5] first introduced a full nonlinear model capable of simultaneously calculating the pressure dependence of sound speed, which affected local acoustic pressure amplitude, and attenuation for coated bubbles case. The novelty of this study is the inclusion of buckling and rupture of the phospholipid membrane [6] by incorporating the Marmottant-Gompertz model [7] into the multiple scale analysis based on two-phase flow model. Buckling occurs when the bubbles are compressed and the phospholipid molecular density becomes high, signified by the appearance of wrinkles on the shell. Rupture happens when bubbles expand, resulting in low molecular density, and the interaction between shell molecules weak. It should be noted that both buckling and rupture indicated here refers to reversible phenomena and therefore different from irreversible buckle or collapse phenomena in solid mechanics. As a result, a KdVB (Korteweg-de Vries-Burgers) equation as a weakly nonlinear wave equation for onedimensional ultrasound in phospholipid-shell encapsulated bubbly liquid is successfully derived. The result shows that, the properties of ultrasound propagation change with the initial surface tension, particularly near the transition of buckledlinear regime and the linear-ruptured regime of phospholipid-shell, where the first-order derivative and the second-order derivative of initial surface tension (i.e., surface elasticity and its first derivative) change rapidly.

2 Theory

Basic equations

We focus on the nonlinear propagation of an ultrasound in liquid containing multiple phospholipid-shell encapsulated microbubbles. The main assumptions are summarized as follows: (i) The liquid is slightly compressible; (ii) The initial flow velocities of gas and liquid phases are negligible; (iii) The number of bubbles is constant; (iv) Initially, bubble distribution are spatially uniform; (v) Bubble-bubble interaction, the mass transport across the bubble-liquid interface, the translation of bubbles, and drag force acting on bubbles, are neglected; (vi) The surface tension of shell obeys the Marmottant-Gompertz model [7]. The basic equations for a averaged volume [8] comprises of mass conservation, momentum conservation, equation of state, conservation law of mass inside a bubble of gas/liquid phase, modified Rayleigh-Plesset equation for spherical oscillations of bubbles in a slightly compressible liquid [6], the equation for balance of the normal stress across bubble-liquid interface (Eq. 1) and Marmottant-Gompertz model surface model (Eq. 2).

p * G -(p * L + P * ) = 2σ * (R * ) R * + 4µ * R * D G R * Dt * + 4κ * s R * 2 D G R * Dt * , (1) 
σ * = σ * c exp ln σ * 0 σ * c × exp 2χ * e σ * c 1 + σ * c 2χ * R * 0 R * buck - R * R * buck , (2) 
where p * G is gas pressure, p * L + P * liquid pressure outside of the shell, σ * surface tension, R * bubble radius µ * liquid viscosity, κ * s shell dilatational viscosity, σ * 0 is the initial surface tension at R * = R * 0 , σ * c is the surface tension of the clean gas-liquid interface, χ * is the surface elasticity of the lipid monolayer. The total derivatives are defined as follows:

D G Dt * ≡ ∂ ∂t * + u G ∂ ∂x * , D L Dt * ≡ ∂ ∂t * + u L ∂ ∂x * , (3) 

Multiple-scale analysis

For weakly nonlinear problems, the nonlinear effect becomes apparent at a large distance from the sound source relative to the wavelength, denoted far-field. The far-field (i.e., the temporal and spatial scales of O(1/ϵ)] is described as

t 1 = ϵt, x 1 = ϵx, (4) 
where ϵ is the nondimensional wave amplitude under the assumption (0 < ϵ ≪ 1). The nondimensionalization of independent and dependent variables can be found in the recent paper [9]. Following Eq. 2, The surface tension σ * can be expanded as follows:

σ * = σ * 0 1 + ϵN 1 R 1 + ϵ 2 (N 22 R 2 + N 21 R 2 1 ) , (5) 
where the explicit forms of N 1 , N 22 and N 21 are given in original paper [9].

Result and discussion

From the multiple scale analysis, the KdVB equation for weakly nonlinear wave equation for one-dimensional ultrasound in liquid containing multiple UCAs is derived:

∂f ∂τ -Π 1 f ∂f ∂ξ -Π 2 ∂ 2 f ∂ξ 2 + Π 3 ∂ 3 f ∂ξ 3 = 0. (6) 
Here, Π 0 , Π 1 , Π 2 and Π 3 represent advection, nonlinear, attenuation, and dispersion effects, respectively. Each of the coefficients can be calculated from the initial values such as initial void fraction, initial gas pressure, initial surface tension, etc. As a demonstration of the theoretical result, nonlinear coefficient -initial surface tension Π 1 (σ * 0 ) curves and attenuation coefficient -initial surface tension Π 2 (σ * 0 ) curves of different void fraction are showed in Fig. 1. It can be seen from Fig. 1 that buckling of shell increases nonlinearity and attenuation, while rupture of shell decreases nonlinearity and increases attenuation and the difference between different void fractions is not prominent. The contribution of the first-order derivative and the second-order derivative of initial surface tension will be discussed in the presentation. Thermal effects on bubble dynamics under long-term ultrasound irradiation in a gel Satoshi Kusakabe * and Keita Ando * * Keio University, Japan

Abstract. From the perspective of ultrasound-based medical applications, it is important to investigate the temperature rise of the viscoelastic medium around a bubble oscillating under long-term ultrasound irradiation. In this study, a Rayleigh-Plesset-type model of a spherical gas bubble and its numerical modeling are proposed, which take the temperature rise of the surrounding medium into account. We also devise an experimental system that allows for measuring the temperature rise of the gelatin gel around a 100-µm-order bubble oscillating under 28-kHz ultrasound with a thermocouple for 2 seconds together with the visualization of bubble oscillations. It is observed in experiments that the decrease in viscoelasticity of the surrounding medium due to temperature rise causes the increase in fluidity of the medium, thus leading to translational motions and fissions of the bubble. It follows from comparisons of the experimental and simulation results that the temperature rise depends significantly on the behavior of bubbles (spherical/non-spherical, with/without bubble fission).

Introduction

In the cancer treatment employing High-Intensity Focused Ultrasound (HIFU), MHz-frequency ultrasound (called megasonic wave) is irradiated for a few seconds to a tumor in order to ablate the target site with heating [1]. Most of the past studies focus on short-term bubble oscillation and the temperature rise of the surrounding medium is limited. When it comes to the aforementioned medical applications using long-term ultrasound irradiation, however, the temperature rise of the surrounding medium is of significance but the investigations on it, especially experimental investigations, are significantly lacking. The present work aims to investigate the temperature rise of a gelatin gel with ultrasound-induced bubble oscillation and its effects on bubble dynamics through both experimental and numerical approaches: the temperature rise of the gelatin gel around a 100-µm-order bubble oscillating during 28-kHz ultrasound irradiation for 2 seconds is experimentally measured with a thermocouple whose diameter is 80 µm and the temperature rise is numerically evaluated with a spherical bubble dynamics model accounting for the thermal effects.

Theoretical and experimental approaches

Bubble oscillation is modeled as in Fig. 1 under the following assumptions: the bubble always keeps spherical, the bubble is composed only of perfect gas, the vapor inside can be neglected, the inside-bubble pressure is spatially uniform, and the surrounding medium is incompressible. The governing equation for radius is Rayleigh-Plesset equation (1) with the stress integral derived from Kelvin-Voigt model, where R is the bubble radius, R 0 is the initial radius, p b is inside-bubble pressure, p ∞ is the atmospheric pressure, p a is ultrasound pressure, σ is the surface tension of the surrounding medium, and G and µ are the rigidity and viscosity of the surrounding medium, respectively. R can be numerically computed by determining p b , which is given by Eq.( 2), where T G is the temperature of inside-bubble gas, and γ is the specific heat ratio of air. The temperature fields inside and outside of the bubble are determined by energy equations for the inside and outside of the bubble, which are given by Eqs.( 3) and ( 4), respectively, where T L is the temperature of the surrounding medium, C p and λ L are the specific heat at constant pressure and the heat conductivity of the surrounding medium, respectively, and λ G is the (temperature-dependent) heat conductivity of air [3]. The boundary conditons at the bubble center, the bubble surface and the infinity are imposed according to reference [1,2,3].

R R + 3 2 Ṙ2 = 1 ρ p b - 2σ R - 4µ Ṙ R - 4G 3 1 - R 3 0 R 3 -p ∞ + p a sin ωt (1) ṗb = 3 R (γ -1) ∂T G ∂r r=R -γp b Ṙ (2) γ γ -1 p b T G ∂T G ∂t + 1 γp b (γ -1)λ G ∂T G ∂r - 1 3 γ ṗb ∂T G ∂r -ṗb = 1 r 2 ∂ ∂r λ G r 2 ∂T G ∂r ( 3 
)
ρC p ∂T L ∂t + R 2 Ṙ r 2 ∂T L ∂r = λ L r 2 ∂ ∂r r 2 ∂T L ∂r (4)
The numerical computation is carried out by solving the Eqs.( 1)-( 4) simultaneously. The spatial discretizaton is implemented with second-order central finite difference method after the coordinate transformation, non-dimensionalization and the introduction of equidistant grid points [2]. Time marching is carried out with the use of MATLAB's built-in function, ode15s.

In experiments, a spherical gas bubble is generated by focusing a laser into a gelatin gel (Fig. 2(a)) and the temperature rise of the gel surrounding the bubble under ultrasound irradiation is measured together with the visualization of bubble oscillations (Fig. 2(b)). A gelatin gel made of gelatin powder (G2500, Sigma-Aldrich) keeps cooled for 24 hours at 4 • C. A small cavity is generated by focusing the laser pulse from Q-switched Nd: YAG laser into the gelatin gel which returns at room temperature and is made to grow by the influx of dissolved air to become a bubble whose radius is at resonance, about 117 µm [4]. The temperature rise of the gel around a bubble is measured during 28-kHz ultrasound irradiation for 2 seconds with a thermocouple whose diameter is 80 µm (T32, OKAZAKI) and is recorded by data logger (LR8431, HIOKI) as in Fig. 2(b) by setting three parameters: the concentration of gelatin gel (c = 3, 6 wt%), the amplitude of ultrasound pressure (p a = 6.51, 8.80 kPa), and the distance from the bubble center to the thermocouple nondimensionalized by the initial radius (1.5 ≤ ϵ ≤ 3.5). The bubble oscillations are simultaneously recorded by a high-speed camera (FASCAM SA-X2, Photron, framerate 200 kfps). 

Results and dicussion

An example of determinations of the mechanical properties of gelatin gels is shown in Fig. 3(a). Since the rigidity and viscosity of gelatin gels at such a high frequency range as 28 kHz should be determined to carry out numerical computations, these values are determined by fitting the experimental data with the simulation in the least squares method. The experiments are conducted three times without the existence of a thermocouple and the values obtained from the fitting out of three which minimizes residual sum of squares are adopted for simulation. Experimental 2-second temperature rise shift in case of 3 wt% and p a = 6.51 kPa and the corresponding numerical results are shown in Fig. 3(b) as a representative example. The bubble experiences three types of oscillations in total. During the periods of spherical and non-spherical bubble oscillations, it is observed that the temperature monotonously increases and has a good agreement with the simulation results. Unless the fission occurs and the bubble oscillates as a cloud, it is confirmed that the temperature rise of the surrounding medium can be realized with the single spherical gas bubble model. Once the bubble results in fission due to shape instability and oscillates as a cloud of small fragments, on the other hand, the monotonus temperature rise comes to an end. As in Fig. 3(c), the bubble is shifted to a bubble cloud in case of 3 wt% gels, and the bubble cloud has a vertically translational motion. The temperature rise of the surrounding gel results in the liquefaction of the gelatin gel, facilitating the bubble to have a translational motion.

In summary, we proposed the theoretical and experimental approaches that allow us to examine the temperature rise of the gelatin gel in the vicinity of a bubble under long-term ultrasound irradiation. The temperature rise is found to be sensitive to whether the bubble oscillates with or without fission. In the upcoming conference, we will more carefully examine the bubble dynamics and its thermal effects with varying gelatin concentration and ultrasound intensity. Effect of an anisotropy of shell coating microbubble on ultrasound propagation in liquid containing multiple coated microbubbles Ryoki Kawahata * , Tetsuya Kanagawa * and Georges Chabouh * *

Introduction

Image resolution is drastically improved when microbubbles are used as a contrast agent in ultrasound diagnosis. The contrast bubbles are usually covered with a thin shell composed of phospholipids and other substances. From a mathematical perspective, Church [1] and Hoff et al. [2] proposed equation of motions, assuming the shell to be a visco-elastic body (i.e., continuum), and established a pioneering theory of nonlinear oscillations of ultrasound contrast agent. However, as a critical disadvantage of many previous models including Refs. [1,2], only single contrast agent is considered. The acoustic properties of multiple contrast agents are necessary because the large number of contrast agent are used in a clinical practice. Recently, our group proposed a mathematical model [3] that can represent the nonlinear acoustic properties of a large number of contrast agents based on mathematical model for the single contrast agent [1,2].

In general, the shell is composed of various materials such as polymers and phospholipids, which are distributed in a layered, an anisotropy thus naturally occurs and contributes to acoustic properties of bubble oscillation and ultrasound. However, all previous models (e.g., Refs. [1,2,3]) have assumed shell as isotropic material for simplicity. Recently, up-date equation of motion describing the oscillation of a single bubble with shell anisotropy was proposed, and the contribution of shell anisotropy to the oscillations was shown [4]. The purpose of this study is to extend the equation of motion for a single contrast agent incorporating shell anisotropy [4] to the case of multiple contrast agents and to clarify how shell anisotropy affects the ultrasound propagation. 

Basic equations

The equation of motion for a bubble coated with an anisotropic shell and the balance of normal stress across the bubbleliquid interface are as follows:

ρ * L0 1 - 1 c * L0 D G R * Dt * R * D 2 G R * Dt * 2 + 3 2 ρ * L0 1 - 1 3c * L0 D G R * Dt * D G R * Dt * 2 = 1 + 1 c * L0 D G R * Dt * P * + R * 0 c * L0 D G Dt * (p * L + P * ) , (1) 
P * = -4µ * L 1 R * D G R * Dt * -p * L - 2σ * 2 R * + p * G - 2σ * 1 R * -d * 0 -U * 2 ρ * L0 K ani 1 - R * 0 R * , ( 2 
)
where t is the time, p is the pressure, c L0 is the speed of sound in a pure liquid, R is the bubble radius, ρ is the density, d 0 is the initial shell thickness, µ L is the viscosity, U is the typical propagation speed of a wave, and σ 1 and σ 2 are the surface tensions at the internal and external boundaries of the shell, respectively. The subscripts G and L denote the volume-averaged variables corresponding to the gas and liquid phases, respectively, and the subscript 0 denotes the bubbles at rest in the initial uniform state, and the superscript * donotes a dimensional quantity. Here, the anisotropic elastic constant K ani is a constant that is determined from the various elastic constants of the shell (e.g E * ∥ , E * r , ν ∥ , ν θr ), where, in Fig. 1,E * r is Young's modulus in the radial direction, ν θr is Poisson's ratio with the radial load, and E * ∥ and ν ∥ are Young's modulus and Poisson's ratio in the orthoradial plane, respectively [4]. Further, the mass and momentum conservation equations for bubbly liquids and some constitutive equations are used (detailed forms are shown in Refs. [3,5]).

3 Result and summary [5] We derived the KdV-Burgers equation including the effect of shell anisotropy in terms of the variation of bubble radius R 1 :

∂R 1 ∂τ -C 1 R 1 ∂R 1 ∂ξ -C 2 ∂ 2 R 1 ∂ξ 2 + C 3 ∂ 3 R 1 ∂ξ 3 = 0, (3) 
where the constant coefficients C i (i = 0, 1, 2, 3) represent advection, nonlinearity, attenuation, and dispersion, respectively. Because Eq. ( 3) is represented as a linear sum of nonlinearity coefficient, attenuation coefficient, and dispersion coefficient, we can perform a quantitative comparison of the magnitude of these coefficients. All the coefficients in Eq. ( 3) were affected by shell anisotropy. We here consider the following three cases of E * || to express shell anisotropy 

Introduction

Carbon fiber-reinforced plastics (CFRP) are increasingly being used as structural materials for aircraft because of their high specific strength, high specific stiffness, and high corrosion resistance. Recently, some jet engine manufacturers have attempted to use CFRP for fan blades of jet engines. The dovetail joints, which are the connecting parts between fan blades and rotating shafts (Fig. 1), are subjected to large and cyclic loads due to centrifugal force during engine operation. Hence, it is important to understand the nonlinear inelastic deformation behavior of dovetail joints when adopting CFRP for fan blades, because it can cause the stiffness degradation and inelastic deformation-induced damages such as fatigue damages, nonlinearly affecting static and dynamic responses of CFRP fan blades. Numerical analyses of dovetail joints of composite laminates were conducted [2,3], but they targeted only unidirectional laminates with the assumption that the plies are linearly elastic. In recent years, our research group has succeeded in simulating deformation behaviors of CFRP laminates using an inelastic two-scale analysis method based on a homogenization theory [4]. This method enables to simulate macroscopic and microscopic mechanical behaviors of multi-directional laminates considering material nonlinearity of resins. In this study, two-scale tensile analysis of a CFRP dovetail joint is conducted using the inelastic two-scale analysis method to investigate macroscopic and microscopic behaviors of the dovetail joint.

Inelastic two-scale analysis method based on homogenization theory

As shown in Fig. 2, let us consider a macroscopic CFRP structure  on the macroscopic Cartesian coordinates i

x , and its microscopic unit cell Y consisting of a fiber and a polymer matrix on the microscopic Cartesian coordinates i y . Solving the following macroscopic boundary value problem, the elastic-viscoplastic behavior of  can be analyzed through the two-scales [4]:

  , , , , , , ( ) ( ) 
q l j q l j kl kl ijpq pk ql p y k x i x ijpq pk ql p y kl j i ijkl kl k y i x c U U d c E n U d c U d                           , (1) 
where i U , ij E , and ijkl c respectively indicate macroscopic displacement, macroscopic strain, elastic stiffness of the fiber and matrix. Also, ij  indicates viscoplastic function, considering nonlinear inelastic deformation. In addition, 

   vv , ( 2 
)
where i v indicates an arbitrary variation of perturbed velocity field in Y . This formulation is implemented in the finite element analysis software Abaqus with its user subroutine function to enhance computational convenience, enabling to easily deal with various analysis conditions including contact boundary conditions.

Figure 1: Dovetail joints in jet engine [1]. Figure 2: Schematic illustration of two-scale analysis.

Two-scale analysis of CFRP dovetail joint

In this analysis, a half model of a CFRP dovetail and a dovetail slot made of steel were considered as a macroscale analysis model (Fig. 3(a)). A contact boundary condition was appropriately defined between the dovetail and the dovetail slot. Blue elements in the dovetail are [0] plies with fibers oriented in the 2 x -direciton, and elements in light blue are [90] plies with fibers oriented in the 3

x -direction. On the other hand, a micro-scale analysis model is shown in Fig. 3(b), which was defined as a 2D half unit cell with a hexagonal fiber array (60% fiber volume fraction) by assuming the generalized plane strain state. Material properties of the carbon fiber and epoxy are shown in Table 1. The epoxy was regarded as an isotropic elastic-viscoplastic material with harding function. Forced displacement ( 0.1[mm/ min] ) was applied to the top surface of the dovetail with target displacement of 0.2[mm]. Figure 4 shows the macroscopic and microscopic distributions of shear stress in the 1

x -2 x plane, and the distributions of the macroscopic equivalent stress and microscopic equivalent viscoplastic strain. Macroscopic stresses concentrate on the [0] plies at the top of the contact surface. Also, regarding microscopic distributions, it is revealed that the shear stress concentrates on the fibers in the [0] plies, while the viscoplastic strain concentrates on the epoxy in the [90] plies. This can cause plastic strain-induced damages such as fatigue damages during engine operation, which affect not only static but also dynamic responses of CFRP fan blades. x -2

x plane, (b) equivalent stress in macroscale and equivalent viscoplastic strain in micro-scale.

Vibration characteristics of curvilinear CFRP prepared by electrodeposition resin molding manufacturing method

Md Tansirul Islam * , Shinya Honda ** , Kazuaki Katagiri 

Introduction

The growth of composite materials over the last few decades are very significant. Their applications are becoming wider because of their excellent properties such as higher specific strength and specific rigidity than metal materials [1]. As of that, the demand for the composite materials is increasing worldwide. Among other composites, carbon fibre reinforced polymer (CFRP) is getting utmost attention from the scientist as it is widely used in making the aircraft and automobiles bodies [2]. In other words, because of the need to increase fuel efficiency in vehicles and aircraft due to the rise in crude oil costs and the effects of global warming, the application of CFRP to vehicle bodywork for weight reduction is particularly significant. However, there are some disadvantages in manufacturing the CFRP with conventional methods which led the researchers to improve the fabrication methods to make them easily. Katagiri et al [2] introduced an easy and efficient composite manufacturing method, electrodeposition resin molding (EDRM), which can prepare less void CFRP without any requirement of vacuum bag or autoclave. Various kind of preforms were prepared by this method, and it was also applied for curvilinear fiber arrangement [2]. Pedro et al [3] looked on the impact of curvilinear path angles on both linear and nonlinear flutter behavior. However, the studies on vibration characteristics of the curvilinear fiber arrangement prepared by using this method was not conducted. This present work basically focuses on fabricating nonlinear carbon fiber-based composite by using the EDRM method. An optimum electrical condition of EDRM was applied for fabricating the composites. The natural frequency as well as the modal shape of the composites of different curvilinear pattern had been obtained, and compared with those acquired by finite element analysis.

Experiments

In this study, a curvilinear CFRP had been prepared by using the electrodeposition resin molding (EDRM) method and its vibration properties were evaluated. The electrodeposition method had been adopted to impregnate the resin onto the carbon fiber in this method. The carbon fiber was used as a cathode, and while the resin was contained in a steel meshed glass beaker. The steel mesh was connected to the positive side of the battery to make it as anode. Two different curve patterns had been chosen for this experiment: sine and parabola pattern. The first step was to prepare a curvilinear preform. The curvilinear preform was prepared by using a Tailored Fiber Placement (TFP) sewing machine. The fiber orientation that had been used in this experiment was a four layer of carbon fiber where the base two layers are plain weave 0 o and 45 o respectively, and on top of the base layers, there were two layers of TFP ([PW0/PW45/TFP/TFP]). The two TFP layers was based on the pattern, for example sine and parabola. After the preparation of the curvilinear preform, EDRM of the fiber was carried out. The schematic diagram of EDRM is shown in Fig. 1. After the EDRM, the specimen for vibration test was prepared by using a rotary cutter. The specimen size for sine and parabola was 160 mm ´ 100 mm and 150 mm ´ 80 mm respectively. Then for sine preform, 99 nodes and for parabola pattern, 81 nodes were marked as shown in figure 2. In this study, the CFRP is hit with a hammer during the vibration tests, allowing the specimens to oscillate in their natural vibrations. The CFRP has an acceleration sensor attached to quantify the free vibrations while accounting for specimen displacement.

In each node, the specimens are struck by the hammer five times, and the average reaction value of each hit is recorded. The acceleration sensor was mounted to Node Position 30 in order to conduct this vibration test using DS0320 software (Ono Sokki). MEscope software (Vibrant Technology) had interpreted the findings. For analysis, ANSYS Mechanical APDL 18.1, a general-purpose finite element analysis software, was used for numerical analysis. The interpreted results are discussed in the next topic.

Results and discussion

The natural frequency and modal shape of the free vibration of the prepared specimen were determined by experimental mode analysis. In this experiment, two different sewing patterns had been chosen to make the curvilinear preform. The average thickness of the sine and parabola pattern were 1.85mm and 1.62mm respectively. Six modes had been extracted from both experiment and analysis, 1 st mode for both of the model is shown in figure 3 and4. The absolute amount of out-of-plane displacement is color-coded in the contour diagram used to show the mode shape, and the displacement rises as it gets closer to red. As blue gets closer, the displacement gets smaller. Though all other modal shapes obtained from the experiment matched quite well with those obtained from the analysis, the third mode of the sine model had little difference. However, it was possible to confirm that both of the fiber model has a curved mode shape. The natural frequencies of both the models are portrayed in the figures 5 & 6. The largest difference in the parabola model was as much as -24.6% and the lowest difference was -2.4% when comparing the natural frequencies of the experiment and analysis. For sine model, it was 18.2% and 9.3% respectively. Abstract. Experimental results are presented on nonlinear and chaotic vibrations of a rectangular unsymmetrically laminated CFRP (Carbon Fiber Reinforced Plastics) plate. The CFRP plate is fixed at the center with bolts. The CFRP plate has two stable equilibrium configurations which is an upward convex and a downward convex. Natural frequencies and natural modes of vibration are measured applying infinitesimal acoustic pressure. Next, the CFRP plate is excited with periodic acceleration by an electromagnetic shaker. Sweeping the excitation frequency, responses of the plate at multiple positions are simultaneously measured by laser displacement sensors. Under relatively small uniform lateral periodic excitation, principal resonance response is observed in large amplitude showing the characteristics of a softening spring. When the amplitude of excitation is increased, chaotic responses are generated in a specific frequency region, which is inspected by Fourier spectrum,the maximum Lyapunov exponent and principal components analysis.

Introduction

After CFRP laminated plate is made at high temperatures, and the temperature drops to room temperature, each layer expands in the fiber direction and contracts in its orthogonal direction due to the difference in thermal expansion coefficient between the resin and carbon fiber. Therefore, when the layers are laminated asymmetrically, the plate may have a curved shape due to morphing deformation at room temperature. There are two possible stable shapes of the plate with different direction of curvatures i.e., the plate is bistable [1].

Since the transition between stable equilibrium states is accompanied by nonlinear characteristics of restoring force, nonlinear vibratory system can be easily made without any complex mechanisms, and the bistability of asymmetric laminated CFRP plates might be utilized as nonlinear and chaotic dynamic absorbers and so on.

In this study, experiments on nonlinear and chaotic vibrations were conducted using a CFRP laminated plate with a 60° difference in the directions of the carbon fibers in each layer with respect to the rectangular boundary.

In particular, the vibration modes induced by typical nonlinear and chaotic vibration responses were investigated in detail by simultaneously measuring the responses at multiple positions on the plates.

Experiments

A rectangular CFRP plate and its fixture are shown in Fig. 1. The center of the CFRP plate was fixed using bolts, nuts, and washers. The x-and y-axes are introduced along the two edges of the CFRP plate, and the zaxis is introduced in the vertical direction perpendicular to the x-and y-axes. In the experiments, a "60/-60" laminated plate was used, in which the fiber direction relative to the y-axis direction was 60° for the first layer and -60° for the second layer as shown in Fig. 

Results and Discussion

Fig. 3 shows the initial shape of plate at the two stable states, measured by scanning a laser displacement senser. Corresponding Fourier spectrum is shown in Fig. 7. Fig. 8 shows the maximum Lyapunov exponent λmax related to the embedded dimension e. As the embedding dimensions e is increased, the maximum Lyapunov exponent converges to a positive value, which shows that the response is chaos. In the result of principal component analysis shown in Fig. 9, the vertical axis is the contribution ratio of the ith principal component and the horizontal axis is the number (i=1,2,3,4) of the principal component.

The result of principal component analysis confirmed that the principal component with the mixed shape of the lowest and second modes contributes significantly to the chaotic vibration response, with the contribution ratio ranging from 75% to 79% in the frequency range of 46. 

Introduction

Laser welding has been utilized in industry for half a century. After that, many studies were dedicated to improve, depict, or control welding process by using monitoring-technologies [1]. Using multiple sensors is one of effective method to grasp the welding process [2]. There seem to be few studies to use same type sensors to monitor laser welding except for optical cameras [3]. Using dual or multiple photo diodes has a possibility to detect laser welding point, condition, and welding mechanism by using simple apparatus with low cost. In this study, simple monitoring apparatus for laser welding was produced and a series of experiments was performed to detect the welding positions. Also new emitting energy distribution model was proposed to explain experimental results.

Experimental set-up

Figure1 shows experimental set-up of optical monitoring system for laser welding. TRUMPF TruDisk2002, fiber laser system which has 1030nm of wavelength and 60W to 2000W of power was used for laser welding light source. The nominal laser spot is 0.3mm. FANUC M-10iD12 as welding robot holds a laser torch at end effector and moves it to weld materials. Dual photo diodes named PD-R and PD-L which faced each other were set at a near place of laser head to detect emitting light and reflecting light from welding point. The photo detector is ThorLabs DET50B/M, and the lens tube system holds a lens and aperture to focus emitting light on the photo diode. A laser line filter with CWL = 1064nm also set in the lens tube system to select wavelength of incident light. As transmission wavelength is longer than laser light source, the photo diode detects mainly emitting light from plume. A series of experiments were conducted for laser welding monitoring. 1000W laser power of continuous wave was selected for experiments. Two flat section SUS304 stainless steel plates with 80mm square and 3mm thickness were put on the baseplate. The robot moves laser torch along y-direction in 65mm with scanningspeed of 10mm/sec. At each 0.5mm different x position, similar experiment was performed and outputs of two photo diode were collected by data acquisition system with 1msec sampling. Typical welding results are shown in right side of Figure1.

Experimental results and discussion

Before having experiments, two photo diodes outputs were calibrated by monitoring emitting light from blank specimen. As same as monitoring experiments, the robot moves the laser torch in 10mm/sec scanning for blank stainless plate and average value of each photo diode outputs were compared. The ratio between two photo diodes was 1.11 in this case. The reason of difference is thought that mechanical setting error of monitoring system. Since each photo diodes were fixed in same direction while experiments, this setting error was able to correct just by multiplying this ratio. Two photo diodes outputs while laser welding is shown in Figure 2. In this figure, welding displacement from center position of groove was s=0.63mm from picture image analysis of actual welded specimen while setting position was 0.5mm. Time at 0 second is start time of laser light emission. Because of the robot stopped at start position while 1second to get stable welding laser power, the outputs became higher than residual welding. After moving laser torch, the outputs fell to a stable state gradually until laser stopped the emission. In this experiment, the outputs from 2 second to 7 second were used to get average value and calculation as

𝑅𝑅(𝑠𝑠) = 𝑃𝑃𝑃𝑃 𝐿𝐿 (𝑠𝑠)-𝑃𝑃𝑃𝑃 R (𝑠𝑠)
𝑃𝑃𝑃𝑃 𝐿𝐿 (𝑠𝑠)+𝑃𝑃𝑃𝑃 R (𝑠𝑠) × 100 gave difference ratio between two photo diodes outputs at s=s. Figure 3 shows variation of the difference ratio in each distance from the groove. The difference ratio with distance from groove varies nonlinearity, which has the increment area, the dead zone, and the decrement area. To explain these results, an emitting energy distribution model for laser welding is shown in Figure 4. In this model, some suppositions are set as follows: 1) Photo diode detects the emission along parallel light with each photo diode direction. 2) Welding light emission from blank surface is "Top-hat" energy distribution I(x) and this distribution is changed with multiplied detection ratio J(x) decided by surface condition. 3) Because of the edge of welded specimen, the detection ratio of PD-R is denoted as: and it is continuous while welding process. The ratio of PD-L is positive in 2nd term of eq. ( 1). Therefore, the output of PD-R in groove s=s is denoted as:

Figure 5 shows results of experiment and simulation calculated from above model. In this simulation, p0=0.5, Δp=0.3, w=0.2 were set. Although discussion is necessary about these parameters setting, this simulation shows well corresponding to experimental results and suggests that the model having validity to explain this mechanism.

Conclusion

This study is summarized as follows: 1. Optical monitoring system for laser welding with two photo diodes was produced. It intends to detect in process welding point, condition, and welding mechanism by using simple apparatus. 2. Monitoring experiments were conducted in each distance from groove. The results show non-linearity, which has the increment area, the dead zone, and the decrement area. 3. To explain non-linearity, an emitting model for laser welding was proposed. Although this model has several suppositions and uncertain parameters, the simulation results well corresponded to experimental results. 
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Feasibility studies of using vibration sensor to monitor tool wear progress during finishing step of hardened steel machining Jonny Herwan * , German Herrera-Granados * , Ichiro Ogura * , Yoshiyuki Furukawa * , Takashi Misaka * , and Hitoshi Komoto *

Introduction

High-speed machining (HSM) of hardened steel promises a more efficient process such as in mold and die manufacturing. HSM technique eliminates the heat treatment and surface grinding process which are required after conventional machining (in the annealed state of steel). Furthermore, HSM also provides a better surface roughness [1].

Tool wear become a serious issue during HSM of hardened steel, thus requiring robust control and monitoring.

The tool monitoring itself is more challenging in the case of finishing step of hardened steel machining for mold and die where HSM is usually conducted with a very low depth of cut (around 20 microns), which makes it more difficult to conduct indirect monitoring using embedded sensors. Based on the latest review about tool wear monitoring during the milling process [2,3], only a few works focus on finishing step of HSM of hardened steel with a maximum depth of cut of 0.1 mm [4][5][6][7]. Three of them [4][5][6] are in micro milling where acoustics emission (AE) and dynamometer (force sensor) are used as the sensors. Meanwhile, another paper [6] used indexable and solid ball end mills (each type with diameters of 8 and 12 mm), and a dynamometer is also used to monitor the tool wear. The capability of dynamometer and acoustic emission sensor on monitoring tool wear in high cutting speed with very small depth of cut has been reported in the above works. However, in the real application, it is difficult to use a dynamometer under the workpiece in 5-axis machine due to the workpiece movement and rotation during free-form machining. On the other hand, the AE sensor results in large data and is very sensitive. The noise from surrounding machine tools such as maintenance work can create unexpected signals that results in a false decision. Furthermore, in the above-reported works, the AE sensor was installed close to the workpiece which is also not feasible in real applications. Therefore, a more feasible sensor system is required. This work is addressed to investigate the capability of accelerometer (vibration sensor) on detecting the progress of tool wear during finishing step of hardened steel machining using high-speed machining technique. The accelerometers are embedded at feasible positions called machine Y-axis slideways (outside the cutting area), spindle housing, and under the workpiece as a reference position.

Experimental method

The experiment is conducted using a 5-axis machining center (Makino D200Z). The workpiece material is SKD11 (cold work tool steel) with a hardness of 62 HRC. Coated carbide endmill with a diameter of 4 mm and corner radius of 0.1 mm from Moldino (EPDRF4040-12-01-TH) is used with cutting conditions; 70 m/min cutting speed (v), 0.03 mm/tooth feed rate (f), 0.2 mm radial depth of cut (ae) and 0.02 mm axial depth of cut (ap). The workpiece cutting area is 50x50 mm and divided into four areas (size of 12.5x50 mm). The tool wear length and workpiece surface roughness are measured after finishing each area which equals to 64 cutting cycles/laps. The accelerometers from Bruel & Kjaer type 4520-001 with a sensitivity of 1.02 mV/ms -2 are used in this work. The data is recorded using the National Instrument data acquisition module type NI-9230 with a sampling rate of 12.8 kHz. LabVIEW software is used for signal recording and processing. The signals are first extracted into features called maximum value, root means square, mean, standard deviation, kurtosis, skewness (all in the time domain), and peak spectral amplitude (in the frequency domain).

Results and discussion

The experiment is conducted from the new tool until the tool flank wear reaches 0.15 mm which is decided as the end of tool life. The samples of tool wear measurement results are shown in Figure . 1. The extracted features from the vibration signals are first analyzed using Pearson correlation analysis to determine which feature has strong relationships with the progress of tool wear, and the result is presented in Figure 2. Unlike the features from slideways, there are many features with Pearson coefficients above 0.95 from the sensor under the workpiece. Furthermore, Figure 3. is presented to visualize the relationship between the best features with the tool wear progress. Experimental study of the nanoscale cutting using the self-excited microcantilever Linjun An * , Ichiro Ogura * * , Kiwamu Ashida * * , and Hiroshi Yabuno *

Introduction

Nowadays, to meet the needs for high sensing accuracy, high calculation speed, etc., mechanical and electrical products tend to be designed in micro/nanoscales, such as mass sensors [1], microfluidic chips [2] and so on. Therefore, several kinds of micro/nanoscale processing methods have been established, like laser [3], and etching [4]. However, there are some limitations to higher processing accuracy.

To overcome the limitations, a cutting method using a microcantilever in the atomic force microscope (AFM) was proposed [5]. Equipping the microcantilever with a diamond abrasive grain on its tip and applying self-excited oscillations to the microcantilever improve the cutting efficiency [6]. The cutting amount depends on the preloaded pressing load, but it is difficult to change the pressing load precisely in the cutting process to the accurate cutting amount control. Thus, we proposed the cutting amount control method by adjusting the steady-state amplitude of the self-excited microcantilever [6]. In this presentation, we experimentally investigate the relationship between the mode shape of the self-excited microcantilever and the cutting amount.

To figure out the behavior of the microcantilever while the cutting process, we measure the oscillation mode of the self-excited microcantilever at a series of discrete measurement points on the microcantilever. From the motion of the microcantilever's tip, the motion of the diamond abrasive grain can be identified. Under the same pressing load, the relationship between the motion of the microcantilever's tip with different amplitudes of the self-excited microcantilever and the depths of the cutting holes is clarified. 

Experimental setup

We carry out the amplitude control according to the method [7]. The diamond abrasive grain on the microcantilever's tip is pressed on the workpiece for cutting. The tube scanner can move the workpiece in x -y -z axes. The laser Doppler vibrometer can detect the velocity signal of the microcantilever. The signal is integrated, phase-shifted, and amplified via the self-excited circuit and is output to the piezo actuator. The piezo actuator excites the microcantilever by the displacement proportional to the input voltage for producing the self-excited vibration in the microcantilever. + c dz dt + kz = 0, where m, k, and c are the mass, stiffness, and damping coefficient of the microcantilever. z and z e are the displacements of the microcantilever and the piezo-actuator. And the vibration will achieve the steady state because of the nonlinearity in the cutting device. The phase shifter can change the phase difference between the input and output to achieve amplitude control of the self-excited microcantilever. The phase frequency characteristic of the phase shifter is described by the transfer function: 

G(iω) = arctan(-2ωR0C 1-ω 2 R 2

Experimental results

We estimate the vibration shape by the displacement of each point with respect to time. Figures 2(b)-(h) show the displacements of every point at the times of 0, 1/6, 1/3, 1/2, 2/3, 5/6, and 1 of a period, respectively when the R is set at 75 Ω. During the cutting the microcantilever's tip is constantly pressed against the workpiece.

The cutting holes I-IV are cut with the R 0 set at 75 Ω, 100 Ω, 125 Ω, and 150 Ω, respectively. The depth of each hole is determined by the difference between the average height of the surface of the workpiece and the lowest point of the hole. Furthermore, each hole is measured 4 times from 4 different directions as shown in the lower right corner in Fig. 3(a), and makes an average. Figure 3(b) shows the cross-sectional view of the hole I from direction 1. As the microcantilever's tip is constantly pressed against the workpiece, which means the holes are cut by the pressing load and rub from the diamond abrasive grain. Thus, we estimate the deflection angle with respect to the time of the microcantilever's tip by the displacements of the two points closest to the microcantilever's tip as shown in Fig. 3(c) during the cutting of hole I. In addition, the relationship between the magnitude of the deflection angles under different values of the R 0 , i.e., different amplitudes and the depths of the corresponding holes is shown in Fig. 3(d). 

④ ① ② ③ 1μm (a) (d) (c) (b) ×10 -3

Conclusion and discussion

In this research, the cutting amount control by changing the amplitude of the self-excited microcantilever is investigated. The vibration shape of the microcantilever is measured. The tip of the microcantilever keeps to be pressed against the workpiece during the cutting process, and the holes are cut by the diamond abrasive grain pressing and rubbing the workpiece surface. Therefore, the mechanism of the cutting amount control is that when the amplitude of the microcantilever changes, the deflection angle of the microcantilever's tip is changed which allows the diamond abrasive grain to rub the workpiece with different amplitudes of rotation, resulting in cutting holes of different depths. As shown in Fig. 3(d), the depths of the holes are very correlated with the amplitude of the deflection angle of the microcantilever's tip.

Introduction

Collective dynamics of networked systems are commonly observed in the real world as described in [8,4,6]. Recently, a generalization of the conventional phase reduction, which is a dimensionality-reduction method for limit cycles that projects the dynamics of the system only on the phase direction of the autonomous limit cycle orbit, has gained attention. This method, called phase-amplitude reduction, involves the addition of amplitude equations that describe the deviations of the system from the limit cycle, which are characterized by Floquet exponents with negative real parts. The method simplifies the network behavior by describing both the phase and amplitude evolution of the system, through a pair of coupled one-dimensional equations, by keeping the slowest decaying amplitude modes of the system [7,1,5]. Unlike the phase reduction method, which relies on the assumption that the perturbation to the system is weak, the phase-amplitude reduction method can appropriately describe the underlying dynamics, even under moderately strong perturbation. As a demonstration of our method, we consider a locally coupled network of FitzHugh-Nagumo elements, and study its synchronization properties through the phase-amplitude reduction framework. The derived phase and amplitude equations can be used to derive the optimal injection signal by means of amplitude suppression methods in order to achieve improved phase locking.

Collectively Oscillating network

We consider a network of N coupled oscillatory elements that are described by:

ẋi (t) = f i (x) + N j=1 g ij (x j , x i ). (1) 
Here, x i (t) ∈ R ni represents a n i (≥ 1)-dimensional state of element i at time t, the ⟨˙⟩ represents the time derivative. f i : R ni → R ni represents individual dynamics of element i, and g ij : R ni × R nj → R ni describes the effect of element j on element i, respectively. We assume that there is no self coupling, i.e., g ii = 0 for all i (this is always possible by appropriately defining the individual dynamics), and no element is isolated, i.e., the interaction network is a connected graph. We denote the total dimension of the whole dynamical system by M = N i=1 n i . The dimensionality of each node of the network can differ and the coupling of the network can be arbitrary as long as it displays an exponentially stable limit cycle dynamics. We represent the system state by a M -dimensional vector, X(t) = (x 1 (t), x 2 (t), . . . x N (t)) ∈ R M , and the limitcycle solution by X0 (t) ∈ R M satisfying X0 (t) = X0 (t + T ), where T is the natural period of the limit cycle. The natural frequency of the limit cycle is given by ω = 2π/T . We also denote the limit cycle as X 0 (θ) = X0 (θ/ω) as a function of the phase θ ∈ [0, 2π). The linear stability of the limit cycle solution is characterized by its Floquet exponents λ 0 , λ 1 , . . . , λ M -1 , sorted in decreasing order of their real parts. The first Floquet exponent is λ 0 = 0 and is associated with the tangent direction on the limit cycle of the oscillator. The other exponents λ 1 , . . . λ M -1 are associated with the amplitude deviations from the limit cycle and possess negative real parts, and are in general complex.

Phase-amplitude reduction theory

For the limit cycle, we can introduce a phase function Θ : B → [0, 2π), satisfying dΘ/dt = ∂Θ/∂X • (dX/dt) = ω and amplitude functions r m : B → C satisfying dR m /dt = ∂R m /∂X • (dX/dt) = λ m R m (m = 0, ..., M -1) on the limit cycle X 0 and in its basin of attraction B, where ∂/∂X represents a gradient with respect to X and ⟨•⟩ represents a scalar product of two vectors, which map a network state X = (x 1 , . . . , x N ) ∈ B to a phase and (real or complex) amplitudes. The phase function and amplitude functions are closely related to the Koopman eigenfunctions of the system [5]. By keeping only the n (< M -1) slowest decaying modes of the system, we can effectively reduce the dimensionality of the system to a couple of equations without loss of generality:

θ(t) = ω + N i=1 z i (θ) • p i (t), (2) 
ṙm (t) = λ m r m (t) + N i=1 I m,i (θ) • p i (t), m ∈ [1, n], (3) 
where p i (t) ∈ R ni represents a weak perturbation given to the element i and z i ∈ R ni and I m,i ∈ R ni are the i-th vector components of phase sensitivity function (PSF)

Z(θ) = ∂Θ ∂X | X=X0(θ) = (z 1 (θ), . . . , z N (θ)
) and amplitude sensitivity functions (ISFs) I m (θ) = ∂Rm ∂X | X=X0(θ) = (I m,1 (θ), . . . , I m,N (θ)) evaluated at X = X 0 (θ/ω) on the limit cycle, respectively. These functions characterize the linear response properties of the phase and amplitude to small perturbations and can be numerically evaluated by solving the adjoint equations [2,3].

Optimal Synchronization of Oscillatory Networks

Figure 1a shows a ring network of FitzHugh-Nagumo elements exhibiting collective oscillations, and Figs. 1b, c, andd show the limit-cycle solution, PSF, and ISF for the slowest amplitude, respectively. The limit cycle solution of this ring network corresponds to a rotating pulse that travels through each of the elements of the network in one period of oscillation as shown in Fig. 1b. In Figs. 1b, c, andd, each graph plots the u i and v i components of x i , z i , or I 1,i (i = 1, . . . , 10). Reflecting the discrete translational symmetry of the dynamics along the ring, the PSF and ISF are also translationally symmetric as shown in Figs. 1c and1d. By retaining only the phase and the slowest amplitude, we can reduce the M -dimensional network to two and approximately describe the network dynamics by the simple phase and amplitude equations ( 3), which can be used for the analysis and control of the network. As an example, we will illustrate three different methods for optimizing the entrainment of the system to a periodic external force, namely phase-only, amplitude suppression, and amplitude-feedback methods in the presentation. 

x i = (u i , v i ), f (x i ) = (δ(v i + a + bu i ), v i - v 3 i 3 -u i + I i ), g ij = K ij (0, v j -v i )
, where a = 0.7, b = 0.8, δ = 0.08, I i = 0.32, and K i,i+1 = 0.3, K i,i-1 = -0.3 represents the ring coupling of the network (i = 1, ..., 10). Each vertex color represents the value of the v i state at θ = π. (b) One period evolution of the limit-cycle solution

x i (t = θ/ω) = (u i , v i ) (i = 1, ..., 10) is plotted as a function of the phase θ. (c) PSFs z i (θ) = (z i,u , z i,v ). (d) ISFs I i (θ) = (I i,u , I i,v ).

Introduction

Synchronization of rhythmic systems is widely observed in the real world and often plays important functional roles [1]. It is therefore important to ensure desired synchronization dynamics from arbitrary initial conditions. Limit-cycle oscillators provide a fundamental mathematical model of stable periodic dynamics in rhythmic systems. When two or more limit-cycle oscillators are coupled, they can exhibit mutual synchronization. The phase reduction is a useful method for analyzing synchronization phenomena of weakly coupled limit-cycle oscillators [2,3], which enables us to reduce the nonlinear multidimensional dynamics of a limit-cycle oscillator to a single-variable phase equation characterized by the natural frequency and phase response properties of the oscillator. Recently, we proposed a method to design a limit-cycle oscillator with a desirable periodic trajectory and phase-response properties based on phase reduction [4]. In this study, we design an artificial limit-cycle oscillator that does not possess high-harmonic components in the phase-response properties and show that such oscillators can exhibit global in-phase synchronization when linearly coupled.

Model of mutual synchronization

We consider a pair of identical limit-cycle oscillators with linear coupling, described by

Ẋ1,2 = F (X 1,2 ) + εX 2,1 , (1) 
where F : R N → R N is a smooth vector field of individual oscillators, X 1,2 (t) ∈ R N is the state of each oscillator, and Ẋ is the time derivative of X. We assume that the individual oscillator described by Ẋ = F (X) has an exponentially stable limit-cycle solution X0 (t) = X0 (t + T ) with period T and natural frequency ω = T /2π. The parameter ε is the coupling strength that takes a sufficiently small positive value satisfying 0 < ε ≪ 1.

Here, we briefly explain the phase reduction theory [2,3]. We first introduce the asymptotic phase function Θ(X) : B → [0, 2π) for the limit-cycle oscillator described by Ẋ = F (X) in the basin B so that it satisfies θ(t) = Θ(X(t)) = ∇Θ(X(t)) • F (X(t)) = ω, where θ = Θ(X) is the phase value of the state X ∈ B of the oscillator. Here, the phase values 0 and 2π are considered identical. The state of the oscillator on the limit cycle can be expressed as X 0 (θ) = X0 (t = θ/ω) as a function of the phase θ, where X 0 (θ) is a function of period 2π (i.e., X 0 (θ) = X 0 (θ + 2π)). If the perturbation applied to the oscillator is sufficiently weak and of O(ε), the state of each oscillator can be approximated as X 1,2 (t) = X 0 (θ 1,2 ) + O(ε), resulting in the following phase equations:

θ1,2 = ω + εZ(θ 1,2 ) • X 0 (θ 2,1 ), (2) 
where Z : [0, 2π) → R N is the phase sensitivity function (PSF) defined by Z(θ) = ∇Θ(X)| X=X0(θ) . The PSF represents the linear response of the phase when a weak input is applied to the oscillator state near the limit cycle. It can be obtained as Z(θ) = Z(t = θ/ω), where Z is calculated as a T -periodic solution to the following adjoint equation [5]:

Ż(t) = -J ( X0 (t)) ⊤ Z(t), (3) 
where J (X) : R N → R N ×N is the Jacobian matrix of F at X, i.e., J (X) = ∇F (X). The PSF should satisfy Z(θ) • dX 0 (θ)/dθ = 1 as the normalization condition.

We next analyze mutual synchronization by using the averaging approximation [2,6]. Introducing the relative phase ϕ 1,2 (t) = θ 1,2 (t) -ωt and averaging the right-hand side of Eq. ( 2) over one period of oscillation, we obtain φ1,2 = εΓ(ϕ 1,2 -ϕ 2,1 ), where Γ(φ) is the phase coupling function (PCF), which is a 2π-periodic function defined by

Γ(φ) = ⟨Z(φ + ψ) • X 0 (ψ)⟩ ψ .
Here, we denote the averaging of a function f (ψ) over one period of oscillation as ⟨f (ψ

)⟩ ψ = 1 2π ∫ 2π 0 f (ψ)dψ.
Introducing the phase difference φ = ϕ 1 -ϕ 2 , we obtain the dynamics of the phase difference as

φ = εΓ a (φ), (4) 
where Γ a (φ) = Γ(φ) -Γ(-φ) is the antisymmetric part of the PCF (APCF), which is a 2π-periodic function.

If the time derivative of the phase difference is zero (i.e., φ = 0), the two oscillators are synchronized. The phase-locking point φ * is stable if it satisfies the phase-locking condition Γ a (φ * ) = 0 and stability condition Γ ′ a (φ * ) < 0, where

Γ ′ a (φ * ) < 0 is the derivative of Γ a (φ) at φ * .
In the case of in-phase synchronization (i.e., φ * = 0), the phase-locking condition is obviously satisfied from the antisymmetric property of the APCF. 4) and the red dots represent the phase difference φ = θ 1 -θ 2 measured from directly-simulated X 1,2 every cycle.
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Design of stable limit-cycle oscillators with desired periodic trajectories and PSFs

We briefly explain the method for designing stable two-dimensional limit-cycle oscillators with desired periodic trajectories and PSFs [4]. We approximate the vector field of the oscillator by polynomials up to pth order and obtain the coefficients ξ * of the polynomials by solving the following convex optimization problem:

ξ * = argmin ξ 1 2 ∥Aξ -b∥ 2 + γ∥ξ∥ 2 s.t. Cξ ≤ λ tol , (5) 
where ∥Aξ -b∥ 2 represents the discrepancy of the realized limit-cycle dynamics Ẋ0 = F ( X0 ) and the adjoint equation (3) from the target, γ is the weight of the regularization term ∥ξ∥ 2 , and Cξ ≤ λ tol represents the stability condition of the periodic trajectory.

Design of an oscillator for global in-phase synchronization

We designed the vector field of a stable limit-cycle oscillator with the following properties:

X 0 (θ) = [ 1 2 cos(θ) -1 6 cos(3θ) 3 2 sin(θ) -1 6 sin(3θ) ] , Z(θ) = [ -sin(θ) cos(θ) ] , (6) 
where X 0 (θ) and Z(θ) satisfy the normalization condition explained previously. By using our method, we could successfully design such a limit-cycle oscillator when p = 9, γ = 10 -3 , and λ tol = -2, which is shown in Fig. 1. In this case, the APCF between a linearly coupled pair of such oscillators as given by Eq. ( 1) can be calculated as

Γ a (φ) = -2 sin(φ), (7) 
which is shown in Fig. 2(a). Because this APCF has only a single stable fixed point at φ = 0, it is expected that the oscillators globally converge to the in-phase synchronized state. We note here that the trajectory of the above oscillator is not simple and possesses high-harmonic components, which typically yields PSFs with high-harmonic components, leading to APCFs with multiple fixed points that hamper global in-phase synchronization. This result shows that we can artificially design an oscillator with a complex trajectory and PSF without high-harmonic components. We performed numerical simulations of two designed oscillators with the coupling strength ε = 10 -2 . The dynamics of the phase difference is shown in Fig. 2(b). We can confirm that the designed oscillator can achieve global in-phase synchronization.

Synchronization in Switching Networks of Nonlinear Systems

Shuma Kamo * and Toshiki Oguchi * * Tokyo Metropolitan University, Japan

Abstract. This paper deals with the synchronization problem in switching networks of chaotic systems. We attempt to derive a synchronization condition for nonlinear systems in time-varying networks using local information on possible network structures. We assume that the network systems have at least one system that is connected to all other systems, even if non-simultaneously. First, we divide the modes of the switching network depending on the presence or absence of the connection with the hub system. Then, we derive a sufficient condition for synchronization under conditions where the dwell time in each mode satisfies a specific relation. The derived condition uses only the possible degrees of each node for both cases of the presence or absence of the connection with the hub node in the network. However, it does not require information on the entire network structure. Finally, a numerical example illustrates the validity of the obtained result.

1 Introduction Most of these results use information about all the possible network structures to derive synchronization conditions. In this study, we attempt to derive a synchronization condition for nonlinear systems in time-varying networks using local information on possible network structures. The derived condition is based on the idea of the leader-follower structure in networks. By switching systems connecting with the leader system, all the systems in time-varying networks can achieve synchronization. The synchronization condition uses only the possible degrees of each node system. A numerical example illustrates the validity of the derived condition.

Synchronization in Switching Networks of N identical Chaotic Systems

Consider the following N identical nonlinear systems.

ẋi (t) = Ax i (t) + f (x i (t)) + Bu i (t) y i (t) = Cx i (t) (1) 
for i ∈ I := {1, 2, • • • , N }, where x i ∈ R n is the state, and u i , y i ∈ R m are the input and output for system i, respectively, A,B and C are constant matrices with appropriate dimensions, and f : R n → R n is a nonlinear vector field such that there exists a non-negative diagonal matrix

Γ ∈ R n×n satisfying [f (v) -f (w)] ⊤ [f (v) -f (w) -Γ(v -w)] ≤ 0
for any v and w ∈ R n . Then, each system (1) is coupled with other systems via the following coupling:

u i (t) = c N j=1 a ij (t)(y j (t) -y i (t)), i ∈ I := {1, 2, • • • , N } (2) 
where c > 0 is the coupling strength, and a ij (t) is a coupling function denoting the existence of coupling between systems i and j. This function means that system i is connected with system j at time t if a ij (t) = 1, and system i is not directly connected with system j if a ij (t) = 0. Particularly, in this paper, we focus on the coupling functions a 1i (t) between system 1 and other systems for i ∈ I

2 := {2, . . . , N }. Then, if a 1i (t) is constant for t ∈ [t i k , t i k+1 ), we call τ i k := t i k+1 -t i
k the dwell time for the connection between systems 1 and i, where

0 = t 0 < t i 1 < • • • < t i k < t i k+1 < • • • < ∞.
In addition, the maximum of τ i k denotes as τ i max . Then, the system consisting of systems (1) with couplings (2) constitutes the following network system with a switching network structure.

ẋ(t) =(I N ⊗ A)x(t) + F (x(t)) -c(L σ(t) ⊗ BC)x(t) (3) 
where

x(t) = col(x 1 (t), x 2 (t), • • • , x N (t)) ∈ R nN , F (x(t)) = col(f (x 1 (t)), f (x 2 (t)), • • • , f (x N (t)
)), and L σ(t) denotes the graph Laplacian at the mode σ(t) : R + → M := {1, • • • , M } at time t. Here, we note that the mode set M can be divided into two sets consisting of M - i and M + i with respect to i, where M - i is a set of modes such that a 1i = 1, and M + i is a set of modes such that a 1i = 0. Now, we consider the synchronization problem of the coupled system (3). Defining the synchronization error as e(t) = col(e 2 (t), . . . , e N (t)) = col(x 1 (t) -x 2 (t), . . . , x 1 (t) -x N (t)), the synchronization error dynamics is given as follows.

ė(t) = (I N -1 ⊗ A)e(t) + Θ(x 1 (t), x(t)) -c(H 0 L σ(t) H + 0 ⊗ BC)e(t) (4) 
where 1) denotes a pseudo inverse of H 0 . Since the origin of the error dynamics ( 4) is an equilibrium point, the synchronization problem can be reduced into the stability problem of the origin of (4). Now, we assume that time-varying couplings between systems 1 and i for i ∈ I 2 satisfy the following assumption. Assumption 1. Concerning the time-varying coupling a 1i (t), i ∈ I 2 , there exist positive constants λ -> λ * , λ + , and τ i max satisfying

H 0 = [1 N -1 , -I N -1 ], Θ(x 1 (t), x(t)) = col(f (x 1 (t)) -f (x 1 (t) -e 2 (t)), • • • , f (x 1 (t)) -f (x 1 (t) -e N (t))), H + 0 ∈ R N ×(N -
t i k+1 -t i k ≤ τ i max , T -(t i 2k , t i 2(k+1) ) T + (t i 2k , t i 2(k+1) ) ≥ λ + + λ * λ --λ * (5)
for any k. Here T + (t 1 , t 2 ) denotes the total time of a 1i = 0 during the period [t 1 , t 2 ), and T -(t 1 , t 2 ) denotes the total time of a 1i = 1 during the period [t 1 , t 2 ).

Under this assumption, we obtain the following sufficient condition for synchronization in switching networks (3).

Theorem 1. Consider the network system (3). All the systems in the network synchronize under time-varying coupling functions satisfying Assumption 1 if there exist positive constants η and 0 ≤ µ ≤ 1, and positive definite matrices P i satisfying the following conditions.

a)

1 η I n < P i < µI n , b) Φ - p + λ -P i < 0 if a 1i = 1 Φ + p -λ + P i < 0 if a 1i = 0 c) (N -2)ηe 2(λ + +λ * )τ i max λ M (P j ) λ * λ m (P i ) < 1, j ̸ = i
where λ m (•) and λ M (•) denote the minimum and maximum eigenvalue of matrix, respectively, and

Φ - p = {A + Γ -c(l p ii + 1)BC} ⊤ P i + P i {A + Γ -c(l p ii + 1)BC} + (N -2)c 2 µ 2 (BC)(BC) ⊤ , ∀p ∈ M - Φ + p = (A + Γ -cl p ii BC) ⊤ P i + P i (A + Γ -cl p ii BC) + (N -2)c 2 µ 2 (BC)(BC) ⊤ , ∀p ∈ M +
in which l p ii denotes the (i, i) element of the graph Laplacian L p . Note that this theorem uses only the possible degrees of each nodes for both cases of a 1j = 0 or = 1, but it does not require information about the entire graph. Finally, we show a numerical example to the validity of Theorem 1. We consider a network consisting of mutually coupled five Chua systems.The parameters of each Chua system are given as follows.

A = -9.00 9.00 0 1 -1 1 0 -14.00 -0.01

, B = I, C = I, f (x i (t)) = 6.426x i,1 (t) + 1.917(|x i,1 (t) + 1| -|x i,1 (t) -1|, 0, 0) ⊤ .
In addition, setting the coupling strength c = 500 and τ i max = 1.0 × 10 -5 , there exist η, µ, and P i for i = 2, . . . , 5 in Theorem 1 if

T -(t i 2k ,t i 2(k+1) ) T + (t i 2k ,t i 2(k+1) ) ≥ 12.4
, and as a result, the network synchronization occurs. Figure 1 shows the change of values of coupling functions, and Figure 2 shows the behavior of the Euclid norm of e(t). As shown in Figure 2, the synchronization error converges to zero. Therefore, we can conclude that all the systems in the networks synchronize. In this study, we consider a weakly coupled system using two delayed Duffing equations (1) as a model for brain waves in the cortex and thalamus [1]. Previous studies by Kotani et al. [2] have shown that two brain waves can be synchronized and that there are three synchronous solutions. It is known that brain waves are normally synchronized, but can become desynchronized due to diseases such as epilepsy. Also, the computational verification of nonlinear delay models can provide useful reliability for nonlinear models, and offer foundational techniques to improve reliability. By performing rigorous numerics for the two synchronous brain wave solutions, we aim to clarify the mechanism of brain wave synchronization. More precisely, we consider the following coupled Duffing equations with time delay:

{ ẍ1 = γ ẋ1 + αx 1 + βx 1 (t -τ ) + ϵx 3 1 + L( ẋ2 -ẋ1 ) ẍ2 = γ ẋ2 + αx 2 + βx 2 (t -τ ) + ϵx 3 2 + L( ẋ1 -ẋ2 ). (1) 
The method to solve the synchronized solutions involves expressing the solutions as a Fourier series expansion, deriving a formula for the Fourier coefficients, and solving the zero-finding problem for these coefficients to obtain an approximate solutions. Then, we apply the Newton-Kantorovich type theorem to determine the existence of exact solutions in the neighborhood of the approximate solutions. We show the results of numerical verification of the synchronized solutions

Numerical results

The periodic solutions of the delayed Duffing equation was approximated by the finite truncation of the Fourier series. By the Newton iterations, a high accuracy approximate periodic solutions was obtained (see Figure 1). The three obtained solutions are synchronized periodic solutions that was shown by previous study by Kotani et al. [2]. The differences among the three solutions are due to their phase differences. Also, each parameters are α = -0.1, β = -5.0, γ = -2.0, ϵ = -10.0, τ = 2.5, L = 0.02. The obtained three periodic solutions were validated using the Newton-Kantorovich type theorem with rigorous numerics [3]. Here, we introduce the Newton-Kantorovich type theorem as follows:

Theorem 1 Let X and Y be Banach spaces, and let L(X, Y ) be the set of bounded linear operators from X to Y . Let F : X → Y also be a C 1 -Fréchet differentiable mapping. Suppose that x ∈ X, A † ∈ L(X, Y ) and A ∈ L(Y, X). Moreover, assume that A is injective. Let us also assume that are Y 0 , Z 0 and Z 1 positive constants and

Z 2 (r) (r > 0) is a non-negative function such that ∥AF (x)∥ X ≤ Y 0 ∥I -AA † ∥ L(X) ≤ Z 0 ∥A(DF (x) -A † )∥ L(X) ≤ Z 1 ∥A(DF (b) -DF (x))∥ L(X) ≤ Z 2 (r)r, ∀b ∈ B(x, r). Define p(r) := Z 2 (r)r 2 -(1 -Z 1 -Z 0 )r + Y 0 .
If there exits r 0 > 0 such that p(r 0 ) < 0, then there exists a unique x ∈ B(x, r 0 ) :

= {x ∈ X : ∥x -x∥ < r 0 } satisfying F (x) = 0.
The result of the fully synchronized solution (Figure 1 (c)) in the three periodic solutions is shown in the following table and figure (see Table 1 and Figure 2). These values are upper bounds calculated by interval arithmetic. In particular, r 0 is the minimum value of r that satisfies p(r) < 0. For these results, the fourier coefficients of the fully synchronized solution uniquely exist in the neighborhood of approximately 4 × 10 -9 of those of the approximate solution. Table 1: Upper bounds of Y 0 , Z 0 , Z 1 , Z 2 (r). 

Upper bounds Values

Y 0 4.3143652054134616 × 10 -9 Z 0 7.775872669515562 × 10 -11 Z 1 0.024592983372274058 Z 2 (r) := Z (3) 2 r 2 + Z (2) 2 r Z (3) 2

Conclusion

By using the same theorem, we calculated phase-shifted synchronized periodic solutions. As a result, we proved that three synchronized periodic solutions appearing in the coupled system of delayed Duffing equations uniquely exist in the neighborhoood of the approximately synchronized periodic solutions obtained by numerical computations.

A case study of applying virtual node approach to multiple oscillators for reservoir computing Takeshi Shibuya

University of Tsukuba, Japan

Abstract. Reservoir computing is a computational framework that aims to achieve highly efficient machine learning for temporal data processing. We focus Duffing oscillator that can be found in MEMS resonator and is used as a reservoir.

In this paper, we conduct numerical experiments to confirm the effectiveness of combining the virtual node approach and employing multiple oscillators as a case study. We showed that the virtual node approach can improve even to the coupled Duffing oscillators not only to the single oscillator by simple signal regeneration task.

Introduction

Reservoir computing is a computational framework that aims to achieve highly efficient machine learning for temporal data processing [1]. In general, the reservoir computing model consists of three layers: an input layer, an intermediate layer called the reservoir, and an output layer called the readout. The most distinctive feature is that only weights in the readout are learned, not in the reservoir. The reservoir is required to have a nonlinearity on the input signal and to output a multi-dimensional vector. Many types of physical systems are available as reservoirs. In this paper, we focus on reservoir computing with Duffing oscillator. Duffing oscillator can be found in MEMS resonator and is used as a reservoir [2]. Dion et.al. report one Duffing oscillator performs as the reservoir [3]. They use the virtual node technique [4] which enables single output dynamical system to be used as a reservoir to satisfy the constraint of multi-dimensional output. On the other hand, several studies employ multiple oscillators as a reservoir [5,6]. However, based on our best knowledge, no study reports about using both of them.

In this paper, we conduct numerical experiments to confirm the effectiveness of combining the virtual node approach and employing multiple oscillators as a case study.

2 Models

Reservoir with coupled Duffing oscillators

Based on [6], we modeled the reservoir with coupled Duffing oscillators by

d 2 x dt 2 + γ dx dt + x + βx •3 = W T res x + W in s, (1) 
where

x = (x 1 , x 2 , • • • , x N )
T is a vector of displacements of Duffing oscillators, s = s(t) is the input signal, W res is a weight matrix of the resonators in the reservoir, W in is the weight vector in the input layer, and x •3 denotes the cubic operation which gives

(x 3 1 , x 3 2 , • • • , x 3 N ) T .
Each oscillator has nonlinearity but is linearly coupled to each other. The output y is given by

y = W T out x, (2) 
where W out is the weight vector in the readout, that is to be learned. Suppose that we have training data set

D = {s[k], ỹ * [k]} K k=1
in the discrete time format. Let T s be the sample time. The continuous input signal s(t) can be generated by s[k] through zero-order hold. Let X be the all outputs of reservoir which element Xkj = x j (kT s ). Then we have

W out = ( XT X) -1 XT ỹ * (3) 
as the least squares solution, where ỹ * is

(ỹ * [1], • • • , ỹ * [K]) T .

Virtual nodes

The virtual node technique is a common method to enable single output dynamical system to be used as a reservoir to satisfy the constraint of multi-dimensional output [4]. In this technique, a series of time-delay units is set after the reservoir, and all of the time-delay units are regarded as the output of the reservoir. We remark that the output of the reservoir is extended in such a way, but the state of the oscillators is not changed by this operation. The original technique includes feedback structure and the masking technique to improve learning performance. However, this paper just uses a series of time-delay units but does not use feedback structure and mask technique because this model already has feedback structure.

Numerical experiments and results

In this paper, we conducted a simple task of restoring and outputting a signal identical to the input signal. We used a sinusoidal wave whose frequency changes on time as the input signal. The angular frequency is chosen by uniform random in [0, 0.1]. ) based on the [6]. The sample time of input and output of the model is set to 0.1. We used four virtual nodes by three zero-order holds with 0.1/4 = 0.025 time delay. We name the reservoir with virtual nodes as reservoir A, and the reservoir without the virtual node as reservoir B. The reservoir B is same as [6]. Firstly, we inputted the input signal to the reservoir A and B and obtained each output X.

Then, we obtain W out by (3) and output of the readout in discrete time ỹ by (2). The result is shown in Figure 1. Figure 1 (b) provides an enlarged view of (a). The mean squared error (MSE) of the reservoir A case is 1.4 × 10 -6 and one of the reservoir B case is 1.1 × 10 -3 . Figure 2 shows the result of the test phase. The frequency of the signal is not included in the training data set. The MSE of the reservoir A case is 5.9 × 10 -6 and one of the reservoir B case is 2.5 × 10 -3 . We confirmed that the reservoir A case performs well than the reservoir B case. In Figure 1 (b) and 2 (b), we can see that the reservoir A case approximated more precisely especially at the top of the wave than the reservoir B case.

Conclusion

We confirmed that the virtual node technique can improve even to the coupled Duffing oscillators not only to the single oscillator. Because applying the virtual node technique that we used in this paper does not require any mechanical change of the resonator device, we can easily apply it to improve the performance. The future work includes to evaluate freqency dependance and to apply real MEMS resonators.

Introduction

The accurate characterization of complex mechanical systems is important in various fields to predict and control their dynamics. When mechanical structures involve repetitive opening and closing of components, they can be classified as piecewise-linear (PWL) systems. They are known to show strong nonlinearities. Furthermore, a PWL system switches its governing equation at a certain point in the phase space. This complicates the derivation of the governing equations of realistic PWL systems. With the recent development of data-driven modeling methods, automatic generation of governing equations using measurement data has been attempted. Brunton et al. proposed sparse identification of nonlinear dynamics (SINDy) [1], which uses general multiple regression analysis to approximate the polynomial equation followed by a threshold value to remove coefficients that do not contribute to the polynomial equation. This enables a fast and accurate derivation of the governing equations. Mangan et al. then extended the method to hybrid systems, where the governing equations change depending on their states at discrete time instants [2]. This method has the potential to be extended to PWL systems. However, the analysis is time-consuming compared to the original SINDy. This study proposes a novel method that can derive the governing equations of PWL systems using sparse regression in an efficient manner. Moreover, a method to identify the switching point is also proposed.

A piecewise-linear system

This study focuses on a PWL system where a mass is connected to a spring and a damper, which can be in contact with the wall as shown in Figure 1. The governing equation of the system can be represented as follows:

m𝑥+c𝑥+𝑘 1 x = -F, ( 1 
)
where 𝑚, 𝑐, and 𝑘 1 are mass, damping, and spring constants, 𝐹 is a force applied when 𝑥 exceeds 𝐿, i.e., 𝐹 = 0 , 𝑥 < 𝐿, 𝑘 2 (𝑥 -𝐿), 𝑥 ≥ 𝐿.

(

𝐿 is an initial gap between the mass and the wall. In addition, 𝐿 is generally unknown.

Sparse regression of PWL systems

The sparse regression method proposed in Ref. [1] is not suitable for general PWL systems where the equation changes depending on the range of the dependent variable. To overcome this issue, we introduce an extension to the algorithm, as follows. First, the state equation under consideration is designated as 𝐗 ̇= 𝐟(𝐗(𝑡)) where the state variables 𝐗 and 𝐗 ̇ are measurable. Note that the force expressed as Eq.( 2) can also be written as 𝐹 = 𝑘 2 max{0, 𝑥 -𝐿} .

(3) Second, we construct a library 𝚯(𝐗) consisting of candidate functions of the columns of 𝐗. Now we propose that multiple max functions with different gap lengths be included in the library, i.e.,

𝚯 1 (𝐗) = [ | 𝟏 | | 𝐗 | | 𝐗 𝑝2 | | 𝐗 𝑝3 | | ⋯ | | max{𝟎, 𝑥 -𝐿 0 } | | ⋯ | | max{𝟎, 𝒙 -𝐿 𝑛 } | ] , (4) 
where 𝐗 𝑃2 , 𝐗 𝑝3 , …, denote polynomials with 𝐗 𝑝2 meaning the quadratic nonlinearities in the state 𝐗. Next, the following sparse regression problem is solved to determine the coefficients 𝚵 = [𝜉 1 ⋯ 𝜉 𝑚 ]: 𝐗 ̇= 𝚯(𝐗)𝚵.

(5)

Figure 1: The piecewise-linear model. By solving Eq. ( 5), the active variables can be determined. In sparse regression, the threshold is set after a polynomial approximation by general multiple regression. The sparse vectors of coefficients that are smaller than the threshold are forced to be zero and the remaining variables are used to solve the subsequent least squares problem. In this case, the multiple max functions are sparse only when 𝐿 = 𝐿 𝑖 . Otherwise, all max functions contribute to the dynamics, which results in an inaccurate representation of the true 𝐹 by multiple max functions. Here, this study focused on the coefficients assigned to the max functions because of the regression. Defining the coefficients of the max functions as 𝑘 𝑖 * , it was observed that the sum of the coefficients approaches 𝑘 2 . Also, the sum of each coefficient 𝑘 𝑖 * multiplied by the gap 𝐿 𝑖 approaches 𝑘 2 𝐿. Thus, it is proposed that equivalent spring constant and equivalent gap length can be calculated as:

𝑘 𝑒𝑞 = ∑ 𝑘 𝑖 * 𝑛 𝑖=1 , 𝐿 𝑒𝑞 = 1 𝑘 𝑒𝑞 ∑ 𝑘 𝑖 * 𝐿 𝑖 𝑛 𝑖=1 (6) 
In this case, the library 𝚯 2 (𝐗) consists of constants, polynomial, and a single max function with Leq

𝚯 2 (𝐗) = [ | 𝟏 | | 𝐗 | | 𝐗 𝑝2 | | 𝐗 𝑝3 | | ⋯ | | max{𝟎, 𝒙 -𝐿 𝑒𝑞 } | ] ( 7 
)
The second sparse regression uses reconstructed 𝚯 2 (𝐗) to determine the sparse vectors of coefficients 𝚵.

Results and discussion

Combining and transforming Eqs. . 𝐗 and 𝐗 ̇ were collected from 𝑡 = 0 to 𝑡 = 10 with a timestep of Δ𝑡 = 0.01 by using numerical integration. To investigate the effects of measurement noise, plain data and noisy ones were prepared. A zero-mean Gaussian noise with a standard deviation of 1 was injected to the data as an artificial measurement noise. 𝑛 was set to 4. Table 1 shows the coefficients of PWL equation discovered by the proposed method, where 𝑥̈𝑝, 𝑥̈𝑛 denote coefficients derived with plain and noisy data, respectively. For the plain data, the error mean of the coefficients was 0.003%. For the noisy data, the error increased up to 0.013%, but it is still small. Also, the error of gap 𝐿 was 0.13% for plain data whereas 0.47% for noisy data. These results show that the equations derived by the proposed method are highly accurate even with the measurement noise. Figure 2 shows the trajectories of the obtained systems. It is shown that the ones obtained by the proposed method agree well with the ones obtained by the original equation. 

Introduction

For the design of loud mechanical systems, such as musical instruments, it is important to consider the nonlinearity of sound waves. With nonlinearity taken into account, the speed of sound changes depending on the particle velocity, and this change leads to distortion of the sound waveform [1]. For example, the brassy timbre of brass instruments is due to the nonlinearity of sound waves [2]. Therefore, the nonlinearity of sound waves cannot be ignored in the design of certain mechanical systems.

Since most nonlinear partial differential equations cannot be solved analytically, numerical analysis is used in design. In recent years, many machine learning methods have been proposed for speeding up numerical analysis. However, in data-driven approaches, simulation results may not satisfy the governing equations.

To solve this problem, Raissi et al. proposed Physics-Informed Neural Networks (PINNs) [3]. PINNs are machine learning models that learn governing equations, and in recent years, there have been many reports of fluid dynamics simulations performed using PINNs. However, because the dynamics of sound waves in the audible range can be very complex, it is not easy to analyze sound waves using PINNs [4], and there are few reports on the analysis of nonlinear sound waves using PINNs.

In this paper, we present a method for analysis of nonlinear sound waves using PINNs for application to the design of loud mechanical systems such as musical instruments. As a fundamental study, a one-dimensional nonlinear traveling wave is analyzed to confirm the validity of the analytical model.

Methods

The governing equation for the one-dimensional traveling wave [1] analyzed in this paper is given by

𝜕𝑢 𝜕𝑡 + (𝑢 + 𝑐 0 + 𝛾 -1 2 𝑢) 𝜕𝑢 𝜕𝑥 = 0 ( 1 
)
where 𝑥 is the spatial coordinate, 𝑡 is time, and 𝑢 is the particle velocity. The speed of sound 𝑐 is given by

𝑐 = 𝑐 0 + 𝛾 -1 2 𝑢 ( 2 
)
where 𝛾 is the specific heat ratio and 𝑐 0 is the speed of sound when 𝑢 = 0.

The structure of the analytical model used in this paper is shown in Fig. 1. The inputs of the neural network are 𝑥 and 𝑡, and the output is the particle velocity 𝑢. Automatic differentiation is performed on the output 𝑢 of the neural network, and the loss function 𝐸 𝑓 with respect to the governing equations is given by Fig. 1. Structure of the analytical model. (3) where 𝑁 𝑓 is the number of evaluation points for the governing equation and 𝑢 𝑖 is the output of the neural network for inputs 𝑥 𝑖 and 𝑡 𝑖 . 𝑐 𝑖 is obtained from 𝑢 𝑖 using Eq. ( 2). The loss function 𝐸 𝑐 for the initial and boundary conditions is given by

𝐸 𝑐 = 1 𝑁 𝑐 ∑(𝑢 𝑖 -𝑢 ̂𝑖) 2 𝑁 𝑐 𝑖=1 ( 4 
)
where 𝑁 𝑐 is the number of evaluation points for the initial and boundary conditions, and 𝑢 ̂𝑖 is the particle velocity given as the initial and boundary conditions. The loss function 𝐸 for the entire network is given by 𝐸 = 𝐸 𝑓 + 𝐸 𝑐 , and the neural network learns Eq. ( 1) by minimizing 𝐸.

Analysis of one-dimensional traveling wave

In this section, 1D traveling wave analysis is performed to validate the analytical model. If nonlinearity is not considered, the waveform of the traveling wave will not change. However, when nonlinearity of sound waves is considered, the waveform changes as the sound wave propagates. In this section, we confirm the waveform change.

We analyze a sine wave generated at x = 0 m in the 1D space shown in Fig. 2. We set 𝑐 0 to 340 m/s and 𝛾 to 1.4. For the analytical model, we used a fully connected neural network with 6 hidden layers, 1200 neurons.

For training, we created a dataset with 5000 pairs of 𝑥 and 𝑡 using MATLAB's random number generator.

Fig. 3 shows a particle velocity waveform at x = 80 m obtained from the analytical model. The time of 0 s on the horizontal axis is when the sine wave arrives. From the figure, it is confirmed that the results of the analytical model are consistent with the exact solution.

The PINN training time was 18 s, which is about 10 times longer than the finite difference method (Lax-Wendroff method, time step = 5×10 -5 s). This is because the waveform analyzed in this study is a simple waveform of 2 Hz, which requires less computation time for the time discretization of the FDM. Because PINNs are a mesh-free method, they are expected to require less computation time than FDM for complex waveforms in the high-frequency range, but the computational costs are an issue for future study. Fig. 2. Sound field to be analyzed. Fig. 3. Analyzed particle velocity waveform.

Conclusion

In this paper, we presented an algorithm for analyzing nonlinear sound waves using PINNs, with the aim of applying it to the design of mechanical systems that produces high sound pressure. The obtained results are consistent with the exact solution, and the validity of the analytical model is confirmed. In the future, we aim to apply the model to more complex sound fields. A GPU-based multi-sphere DE-FE method and its application in the simulations of tire-terrain interaction Xiaobing Guo * , Shunhua Chen ** , Mengyan Zang *** and Naoto Mitsume *

Introduction

Up to now, extensive efforts of numerical methods have been proposed to investigate the tire-terrain interactions, such as discrete element method (DEM), finite element method (FEM) and discrete element-finite element method (DEM-FEM). Among them, the granular particles were usually modeled by the circular or spherical DEs, requiring an artificial rolling resistance moment or a shape parameter to address the interlocking mechanism between irregular granular particles [1,2]. In recent years, Zang's team presented a multi-sphere DE-FE method [3] for the traveling analysis of an off-road tire on gravel terrain in natural way. For this method, the computational accuracy can be improved, whereas the computational cost are obviously reduced because of the great number of contact calculations between multi-sphere DEs and FEs or between sub-spheres and FEs. Thus, a GPU-based multi-sphere DE-FE method is necessary for improving the computational efficiency of numerical simulation.

Theory and experiment

In this work, a GPU-based multi-sphere DE-FE method is developed by using the CUDA FORTRAN programming model, where the CUDA FORTRAN programming model is a hybrid programming model performed on the CPU and the GPU [4]. Figure 1 shows the computational flowchart of the GPU-based multi-sphere DE-FE method, including contact detection, force calculation and information update. Note that, the detailed theory of the multi-sphere DE-FE method can be found in Ref. [3].

Figure 1: The computational flowchart of the GPU-based multi-sphere DE-FE method.

Furthermore, an indoor soil-bin experiment facility [5] is introduced to analyze the tractive performance of off-road tire on gravel terrain, and it is mainly composed of three parts, i.e., single wheel test device, soil mixing and compacting device, and soil-bin and control system.

Results and discussion

In this section, the numerical models, parameters and conditions of an Off-road tire on gravel terrain are taken from Ref. [3], and the simulation and experimental results of the ruts of the off-road tire on gravel terrain are illustrated in Figure 2. As can be seen from the figure, the particle displacements are positive on both sides of Off-road tire because of the extrusion of the tire, whereas the displacements are negative under the Off-road tire owing to the vertical force. In addition, the numerical results are in good agreement with that of soil-bin experiment, which demonstrate the effectiveness of our developed method in this work. Parallel Implementation of a rigorous contour integral based eigensolver and its performance evaluation Shota Seto * , Akitoshi Takayasu * * University of Tsukuba, Japan

Abstract. In this paper, we introduce a parallel implementation of a verification method for generalized Hermitian eigenvalue problems to compute rigorous error bounds of for eigenvectors and eigenvalues in a prescribed domain. The verification method is based on the Sakurai-Sugiura method (SS method). The SS method has hierarchial parallelism and fully utilize the preformance by parallel implementation. We implement a rigorous version of the SS method using the Julia language and evaluate its performance. The generalized eigenvalue solution method is used in the fields of mechanics and electromagnetics to obtain extreme values such as variational methods. This paper contributes to the development of the fields because it reduces the computation time, while compute error bounds rigorously for eigenvectors and eigenvalues.

Introduction

We implement a parallel implementation of a verification method for Sakurai-Sugiura method(SS method). The SS method is presented in [1] for solving generalized eigenvalue problems to find

(λ, x) ∈ Ω × C n \ {0} such that Ax = λBx, A, B ∈ C n×n , ( 1 
)
where Ω is a given prescribed domain. The SS method is a projection method that generates a subspace containing only eigenvectors corresponding to eigenvalues contained in the domain Ω by integrating around the domain, and extracts eigenpairs from the subspace. Let Γ be a closed curve along Ω clockwisely. Let L be a block size and suppose that L is greater than or equal to the largest degree of multiplicity of eigenvalues contained in Ω. Let M be a moment order and LM greater than or equal to the number m of eigenvalues in Ω (m ≤ LM ). For a given matrix V ∈ C n×L , we define a matrix S using on integration around Γ as follows:

S := [S 0 , S 1 , ..., S M -1 ] ∈ C n×LM S k := 1 2πi Γ z k (zB -A) -1 BV dz, k = 0, 1, ..., M -1, (2) 
where i = √ -1 is an imaginary unit. The column vector of S is represented by a linear combination of eigenvectors corresponding to the eigenvalues in Ω. That is, span S = span{x 1 , ..., x m } holds. As a method for extracting eigenvalues and corresponding eigenvectors from a matrix S, we use the Rayleigh-Ritz procedure introduced in [2]. The SS method is designed on the basis of contour integrals around the domain, but since it is difficult to compute the contour integrals rigorously on a computer, numerical quadrature is used to approximate the contour integral. Let us assume that Γ is an ellipse centered at γ with radius along the real axis ρ and the ratio of the radii along the imaginary and real axes α. The numerical quadrature is performed by the N-point trapezoidal rule Γ. Therefore, (2) is approximated by

S k ≈ Ŝk = ρ N N j=1 ω j ρ k ζ k j (z j B -A) -1 BV , ( 3 
)
where z j = ρ(cos(θ j ) + iα sin(θ j )), ω j = α cos(θ j ) + i sin(θ j ), ζ j = cos(θ j ) + iα sin(θ j ), and θ j = 2π N j -1 2 , (j = 1, . . . , N ). In the computation of numerical quadrature, it is necessary to solve a large scale linear equations, and a large part of the computation time of the SS method is spent in solving the linear equations.

Verified numerics

Verified numerics for the SS method were proposed in [3]. The verification method evaluates all the errors in the computations of the contour integral defined in (2), which reduce the size of eigenvalue problem to LM and rigorously includes the eigenvalues in Ω with corresponding eigenvectors. The errors in computing the complex moment are split into truncation errors in numerical quadrature and rounding errors in numerical computations. An interval arithmetic based formula is derived to evaluate the truncation error. This idea enables the verification of eigenvectors and eigenvalues in Ω.

It is known that the SS method has hierarchial parallelism and fully utilize the preformance by parallel implementation. First, the Sakurai-Sugiura method can place multiple regions, and all computations in each region can be performed independently. This is called the Top Layer parallelism. Second, in the approximate calculation of the integrals around the contour in each region, N quadrature points are used. The calculations at N quadrature points can be performed simultaneously, since the coefficient matrices of each linear system are independent. This is called the Middle Layer parallelism. Finally, it is possible to employ a parallel linear equation solver to compute the solution of each linear system. This is called the Bottom Layer parallelism. A parallel implementation of the SS method were proposed in [4]. It proposed contour integral based eigensolvers for efficiently exploiting the performance of massively parallel computational environments. It also considers applying a contour-integral based method to a large dense problem in conjunction with a block Krylov subspace method as an inner linear solver. Consequeatly, the author evaluated the performance of the SS method on a massively parallel computational environments. In this study, we used process parallelism and thread parallelism in the Julia language for the parallel implementation in the computation of each quadrature point and in the computation of the linear equations, respectively. Prior to implementation of the verified version of the SS method, we implement a non verified version as a test case. Table 1 shows the computation time of the contour integral when the number of threads and processes is varied from 1 to 6. The implementation environment is shown in Table 2 As shown in Table 2, an appropriate control of process parallelism and thread parallelism improves the computation speed. This trend is also valid for the verified version, and it is expected to be successful in parallel implementation. As a next step, we compute error bounds rigorously for eigenvectors and eigenvalues using this parallel implementation of the SS methods. We implement a rigorous version of the SS method using the Julia language and evaluate its performance. The present result lacks consideration of numerical errors and censoring errors in numerical integration, and thus, it cannot be deemed mathematically rigorous. To attain computationally rigorous error bounds for both eigenvectors and eigenvalues, we adopt a parallel implementation of the exact inclusion of eigenvalues ( [3]) through the use of rigoroous numerics.

Introduction

The Chebyshev interpolation is introduced in a bunch of textbooks on numerical analysis, e.g., [1]. It is well known that approximating a function using the Chebyshev polynomial is the best possible foundation for work on many topics on numerical analysis [2]. Recently, from the view poit of regarding approximation theory as exceedingly close to computing, Trefethen has introduced a paradigm of numerical computing with Chebyshev interpolations (called Chebfun [3]). In his works with the Chebfun, classical computations by numbers are beautifully replaced by the Chebyshev functions, and many computations in numerical analysis is conducted function-based computations. This is our main motivation of this study. On the other hand, the Chebfun paradigm still ignores the errors in numerical computing. No matter how accurate a function approximation is, it is not possible to get out of the classical framework of "approximation". In this study, we implement rigorous numerical computing framework using the Chebyshev interpolation and attempt to free ourselves from the approximation. Our implementation is based on the Julia language, which is a high-level dynamic programming language widely used in scientific and numerical computing. Like other scientific computing languages such as MATLAB and Python, Julia allows for fast computations with simple syntax. As an proceding work, there is a numerical analysis package called "ApproxFun.jl" [4] in the Julia language. This package is in a similar vein to the Chebfun, which provides fast interpolation by approximating functions and implements many functions, including differentiation, integration, and calculation of maximum and minimum values of the Chebyshev interpolations. Therefore, our main contribution is developing a computational tool for performing mathematically rigorous computations using the Chebyshev interpolation.

Chebyshev interpolation. Let T n (x) := cos(nθ) (θ = arccos(x)) be a Chebyshev polynomial of the first kind of the n th order. The Chebyshev interpolation is given by a linear combination of the Chebyshev polynomials, that is

p(x) = a 0 + 2 M -1 ∑ n=1 a n T n (x), (1) 
where a n is called the Chebyshev coefficients. Since the Chebyshev series is the cosine Fourier series with the transformation x = cos θ, the Chebyshev coefficients are numerically given via the FFT

a n = 1 2M -2 2M -3 ∑ j=0 f (cos θ j )e -πi nj M -1 , θ j = πj M -1 , h = π M -1 , 0 ≤ n < M.
The Chebyshev interpolation is used to approximate a given function f (x) by interpolation at the Chebyshev points x j = cos θ j , which are the points most often used in practical computation.Chebyshev interpolation is also used to handle data obtained through polynomial approximation more efficiently. Using polynomial approximation, it is possible to approximate numerical solutions of complex equations or differential equations. This can be applied to the solutions of equations modeling phenomena in engineering and other fields.

Derivative. Let the derivative of the Chebyshev interpolation (1) be denoted by

p ′ (x) = b 0 + 2 M -2 ∑ n=1 b n T n (x).
The relationship between a n and b n is obtained [1] by reversing a process in the integration of the Chebyshev polynomials.

Resulting relation is given by the form b

n-1 = b n+1 + 2na n with b M +1 = b M = 0 for n = M -1, M -2, . . . , 1.
Therefore, the coefficients b n are derived from a n . More precisely, we have

b n = M -1 ∑ k=n+1 k-n: odd 2ka k . ( 2 
)
It is worth noting that this operation can be computed rigorously based on interval arithmetic.

Rootfinding. It is well known that the roots of a linear combination of monomials x k are equal to the eigenvalues of a certain companion matrix formed from its coefficients. Similarly, the roots of the Chebyshev interpolation of the form

p(x) = M -1 ∑ n=0 c n T n (x), c M -1 ̸ = 0, c n = { a 0 (n = 0) 2a n (n ≥ 1)
are the eigenvalues of the matrix

C =         0 1 1 2 0 1 2 1 2 0 1 2 . . . . . . . . . 1 2 1 2 0         - 1 2c M -1        c 0 c 1 c 2 • • • c M -2 c M -1        ,
where entries not displayed are zero, see, e.g., [2,Theorem 18.1]. This matrix C is called the Colleague matrix. Rigorous inclusion of each eigenvalue is obtained by using the following theorem [5]:

Theorem 1 Given matrices A, B ∈ C n×n , define the mapping F : C n+1 → C n+1 as F (λ, x) := [ x H x -1 Ax -λBx ] .
Let x ∈ C n and λ ∈ C be an approximate solution satisfying F ( λ, x) ≈ 0, and let R ∈ C n+1×n+1 be an approximate inverse of the Jacobian matrix (R ≈ DF ( λ, x)) of the map F at ( λ, x). Let y ∈ IC n and d ∈ IC be an interval vector and an interval, respectively. Let us also define w := (d, y T ) T ∈ IC n+1 , where T denotes the transpose of the vector. Moreover, let us define

g(w) := z + ( I -R • DF ( λ + d, x + y )) w, DF (λ, x) := [ 0 2x T -Bx A -λB ] , z := -R [ x2 1 + x2 2 + • • • + x2 n -1 Ax -λB x ] .
If g(w) ⊂ int(w) holds, then the exact eigenvalue λ of the generalized eigenvalue problem Ax = λBx exists uniquely within the interval λ + d.

Maxima and minima.

Combining with the methods for computing the derivative and rootfinding of the Chebyshev interpolation, the maxima and minima are rigorously obtained via interval arithmetic. The following procedure introduces the steps to calculate the maximum and minimum values of a given Chebyshev interpolation:

Step1. Compute the derivative p ′ (x) of the Chebyshev interpolation p(x) using the relation (2) that derives the Chebyshev coefficients of the derivative.

Step2. Finding real eigenvalues of the Colleague matrix formed from the Chebyshev coefficients of the derivative, one can calculate the root of p ′ (x), and then rigorously compute the extreme values of p(x).

Step3. Compare the function values at the endpoints with the extreme values, the maximum and minimum values of the Chebyshev interpolation are obtained.

In the presentation, we will demonstrate several examples of our rigorous implementation of the Chebyshev interpolation using the Julia language, which is expected to develop in new ways by breaking away from the classical approximation framework.

Introduction

The study of purely elastic slender structures dates back to Euler in 1744 [2]. Euler discovered that the deformation of an elastic planar rod can be represented by a remarkable family of curves on a plane. These have famously come to be known as Euler's elastica". Euler's elastica made far-reaching connections between mechanics, dynamical systems and mathematics. On the one hand, all these remarkable efforts have been made towards developing mathematical models for purely elastic slender structures, but very little is known about magnetic slender structures and modelling MAPs.

On the other hand, magnetic slender structures and MAPs are finding exceedingly unparalleled applications in space tethers, actuators and solar sails among others. This motivates us to understand, analyse and exploit these magnetoelastic structures to their fullest. As a first step in this understanding, we study the planar deformations of magnetic ribbons. Euler studied the planar elastic ribbons by minimising the appropriate elastic energy. We plan to study the deformation of magnetic ribbons by minimising the sum of the elastic and magnetic energy. Equipped with modern tools from calculus of variations, we have found out an appropriate energy of magnetic ribbons. Our computed energy captures the complex coupling between magnetism and elasticity. Furthermore, our results point out that the critical buckling load is strongly dependent on the orientation of the externally applied field: a transverse external field decreases the critical buckling load, whereas a longitudinal external field increases the buckling load. ✏ ! 0 ✏ ! 0 < l a t e x i t s h a 1 _ b a s e 6 4 = " g M T g j s 7 J 9 T 7 t f l 8 A recently discovered class of materials known as magnetoactive polymers (MAPs) have made it possible to actuate magnetoelastic materials at small external magnetic fields [3]. MAPs are soft materials that consist of a elastomer matrix filled with magnetic particles, typically sub-micron sized iron particles, see Figure 1. MAPs are multi-scale materials whose mechanical response can engineered. They offer various advantages over traditional ferromagnets (Iron and Nickel) such as: mould-ability into complex shapes, corrosion resistance and more importantly very large actuation strains at relatively low external magnetic fields. Incorporating MAPs in actuators will find interesting applications in remote actuators including space tethers and and solar sails. Unfortunately, existing models for MAPS are not based on the mechanics and physics of these materials and there is urgent need to develop models that can accurately predict and exploit these materials.
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Theory

The first strategy involves use of ferromagnetic plates, ribbons and rods. We are analysing the deformation of ferromagnetic slender structures by minimising the sum of elastic and magnetic energy for slender structures. The magnetic energy ( demag. energy) strongly depends on the shape of the body and is computed by solving Maxwells equations of magnetostatics. The magnetostatic (demag.) energy is computationally expensive and is difficult to calculate for general 3D bodies but takes simpler forms for slender structures. This gives us an opportunity to explore these problems (semi) analytically. We have been able to use this simplification to obtain closed form analytical expressions of the energy in certain scenarios. Equilibrium equations and their solutions for some ferromagnetic slender structures will be presented. Furthermore, a novel loading device for verifying our predictions has been designed, comparison of our experiments and theoretical predictions will be presented, see Figure 2(a). The second strategy involves the use of MAPs. MAPs are essentially multi-scale materials-at the micro-scale (∼ µm) it consists of a periodic distribution of magnetic particles and at the macro-scale (∼ cm) it behaves as a large effective ferromagnet. We have developed a homogenised model for MAPs using 2-scale asymptotic expansions. The 2-scale expansion is a homogenisation technique used to understand heterogeneous materials with highly oscillating heterogeneities at the microscopic level via a homogeneous material. In MAPs, the magnetic particles serve as the heterogeneity in a homogeneous polymeric matrix. In our model, the effective energy of the MAP is based on material physics rather than constitutive assumptions. The total energy of a MAP is given by the sum of the elastic and magnetic energy. For the elastic energy, we use the standard Saint Venant -Kirchhoff model. We use an appropriate convex combination of the elastic moduli of the magnetic particles and the polymeric matrix as the effective moduli of the MAPs. The magnetic energy is the sum of the demag. energy and the Zeeman energy. Our model accounts for the magnetostatic interactions between the particles at the micro-scale and also accounts for the magnetostatic energy due to the overall shape or geometry of the body. The later is well known in the classical theory of micromagnetics and is accounted by what are known as the demag factors, see [2].

Results and Discussion

Firstly, we have derived the effective energy of magnetic slender structures primarily using matched asymptotic expansions. The first variation of the total energy provided us with the governing or equilibrium equations for ferromagnetic rods and ribbons, see Figure 2 (b). Our analysis on planar ribbon shows a new mode of deformation that has not been observed in purely elastic planar ribbons, see Figure 2 (c,d). The equilibrium equations for rods contains new terms that highlights the coupling between elasticity and magnetism. Higher order mode shapes and stability analysis of these ferromagnetic slender structures for various boundary conditions will be presented. These mode shapes that are seen in quasi-static loading will serve as the first step in understanding the dynamics of the magnetic slender structures. Secondly, our homogenised model for MAPs is based on material physics rather than constitutive assumptions. The total energy of a MAP is given by the sum of the elastic and magnetic energy. One of the main achievements of our model is that it captures the magnetostatic energy correctly. Our model accounts for the magnetostatic interactions between the particles at the micro-scale and also accounts for the magnetostatic energy due to the overall shape or geometry of the body. The magnetisation and magnetostriction curves for various ellipsoidal specimens with different unit cell configurations will highlight the importance of shape of the specimen at the macro-scale and the importance of the microstructure at the micro-scale in these materials. 
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Two-scale damage propagation analysis of CFRP considering randomness of fiber distribution

Yukinobu Shimura * , Kazuma Akashi * and Tetsuya Matsuda *

Introduction

Carbon fiber-reinforced plastics (CFRP) are used as structural materials in aerospace and energy applications, because of their higher specific strength, specific stiffness, and corrosion resistance compared to common metal materials. When designing industrial products using CFRP such as airplane components, it is extremely important to accurately predict the nonlinear behavior of CFRP due to damages, because it can markedly affect static and dynamic responses of CFRP products.

For CFRP, micro-scale damages such as matrix cracking, fiber breakage, and delamination lead to macro-scale stiffness degradation and failure. Hence, analysis that considers both macroscopic and microscopic behaviors is necessary. Therefore, this research group has developed a two-scale damage analysis method [1] that can analyze damage propagation behavior of CFRP by introducing damage criteria into a two-scale analysis method based on a homogenization theory [2]. However, it did not consider the effects of randomness of fiber distribution that occur in real CFRP, and thus did not accurately capture actual damage behavior of CFRP.

In this study, two-scale damage propagation analysis of CFRP that takes into account randomness of fiber distribution is performed.

Two-scale damage analysis method based on homogenization theory

Let us consider a CFRP structural member  as a macrostructure, and its unit cell Y consisting of a fiber and a polymer matrix as a microstructure (Fig. 1). The Cartesian coordinates ( 1, 2,3) i xi and ( 1, 2,3) i yi are defined for the macro-and micro-scales, respectively.

Based on the two-scale analysis method, the following macroscopic and microscopic boundary value problems are obtained, and the mechanical behavior of the CFRP structural member can be analyzed through the two scales [1,2]:
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Figure 1: Schematic illustration of two-scale analysis.

Using the stress distributions and the Hoffman's criterion, damages occurring in unit cells are determined according to the following damage parameter F : C are parameters determined by strength of the fiber or matrix, and the subscripts L, T, and Z denote orthogonal directions, respectively. If 1 F  , the element is to be damaged. This formulation enables us to analyze the macroscopic and microscopic damage behaviors of CFRP simultaneously.

( ) ( ) ( ) 2 2 2 2 2 2 1 T Z 2 Z L 3 L T 4 L 5 T 6 Z 7 TZ 8 ZL 9 LT F C C C C C C C C C             = - + - + - + + + + + + , (4) 

Two-scale damage propagation analysis of unidirectional CFRP

Damage propagation of two types of unidirectional CFRP ([0] and [90]) under uniaxial tension in the 3

xdirection was analyzed. A macro-model shown in Fig. 2 was considered, and three micro-models with random fiber distributions shown in Fig. 3 were prepared. One micro-model among three was randomly selected and given random rotation with respect to the 3 y -direction, then assigned at every integration point in the macromodel. This analysis was performed three times with different randomness. The obtained axial stress-strain relationships are shown in Fig. 4. This figure shows that the randomness of fiber distribution little affects the tensile strength of [0] CFRP. By contrast, the tensile strength of [90] CFRP is strongly affected by the randomness of fiber distribution; the strength is about 35% smaller than that of the regularly arranged case (hexagonal fiber array). Next, Figs. 5(a) and (b) respectively show the axial stiffness reduction ratio of the macro-model of [90] CFRP without randomness (hexagonal array) and with random fiber distribution. As seen from the figures, the damages occur simultaneously across the entire macro-model when without randomness, while damages gradually propagate with variability when with random fiber distribution. Finally, Fig. 6 shows the microscopic damage distribution near the center of the macro-model at 0.67% macrostrain. It can be seen that the matrix damage propagates like a crack. In the context of improving medical therapy based on bubble dynamics (such as histotripsy), it is favorable to clarify the physics of bubbles oscillating in viscoelastic human tissue. The dynamics of spherical bubbles in viscolelastic solids can be described in the framework of the classical Rayleigh-Plesset model together with a constitutive equation (e.g., the Kelvin-Voigt model) for the surrounding medium. In principle, one can obtain viscosity and rigidity of gels from comparisons of the bubble dynamics model to exprimentally measured evolution of bubble radii for free oscillation of laser-induced bubbles [1] and ultrasound-induced oscillation of bubbles [2]. The benefit of this approach is that one can locally obtain rheological properties of gels under very high strain rates.

In this study, we select Tetra-PEG, as a gel sample, which is formed by covalent bonds and has highly homogeneous structure [3]. While it is difficult to control molecular structure of existing gels, we can control structural parameters of Tetra-PEG, independently. This study will be beneficial to explore its dynamic rheological properties that cannot be obtained by commercial rheometers. We perform visualization experiments of free oscillation of laser-induced bubbles in the gel sample and compare the evolution of the bubble radii to a spherical bubble dynamics model that accounts for rigidity and viscosity of the gel. To obtain the fitted rigidity and viscosity from the comparison, we propose a physicsbased method of performing a fitting procedure for rigidity and viscosity separately, while the previous studies [1,2] implemented two-parameter fitting procedures.

Theory and experiments

We employ the spherical bubble dynamics model used in [2] with the assumption of undisturbed temperature in the medium surrounding bubbles [4]. The evolution of bubble radius R is described by the Keller-Miksis equation for bubbles in a compressible and viscous neo-Hookean solid:

R R 1 - Ṙ c∞ + 3 2 Ṙ2 1 - Ṙ 3c∞ = 1 ρ 1 + Ṙ c∞ + R c∞ d dt p b -p∞ - 2σ R - 4µ Ṙ R - G 2 5 -4 Req R - Req R 4 ( 1 
)
where ρ is the density of the surrounding medium, p b is the bubble pressure, p ∞ is the ambient pressure (one atmosphere), c ∞ is the sonic speed, σ is the surface tension, µ is the viscosity, G is the rigidity, and R eq is the equilibrium radius. The pressure (uniform) inside the bubble, p b , is determined by the perfect gas law and its evolution can be written as follows:

ṗb = 3 R -γp b Ṙ + (γ -1)K(T ) ∂T ∂r r=R ( 2 
)
where γ is the ratio of specific heats (1.4 for air), K(T ) is the temperature-dependent thermal conductivity, and r is the radial coordinate measured from the bubble's center. The temperature field T (r, t) can be obtain by solving the heat equation in one dimension with spherical symmetry.

As in the schematic of the experimental setup(Fig. 1), we irradiate an infrared laser pulse (Nd:YAG, 1064 nm, 6 ns, 4.6±0.3 mJ), through a 10× objective lens (Nikon, W.D. = 16 mm), into Tetra-PEG (polymer concentration per unit volume of aqueous solution: 80 g/L; molecular weight between cross-links: 10 kg/mol) as a gel sample and visualize free oscillation of the laser-induced bubble by a high-speed camera (Shimadzu HPV-X2, 2 Mfps) with back illumination (CAVILUX smart, 10 ns). The area-equivalent radius of the bubble is computed by MATLAB's image processing [2]. The equilibrium radius R eq is experimentally defined as the radius of the bubble whose oscillation is damped out due to viscosity.

The rigidity G and the viscosity µ are treated as fitting parameters in comparison between the theory and experiment. Since the viscosity does not come into play in the evolution of laser-induced bubbles up to the first collapse time, we first perform a fitting procedure for the rigidity based on the experimental data between the maximum radius and first collapse, with the inviscid assumption, and next perform it for the viscosity based on those between the maximum radius and second collapse. In the fitting procedure, we apply the simulation method of [2] to solve the system of the bubble dynamics equations consisting of ordinary and partial differential equations. 

Results and discussion

As a representative example, we present the case with p = 1 (p means coupling ratio of gels) of Tetra-PEG [3]. As visualized in Fig. 2, the bubble shows spherical oscillation overall, validating the use of the spherical bubble dynamics model. The comparison between the theory and experiment is made in Fig. 3, leading to the fitting results: rigidity G = 17.3 kPa and viscosity µ = 0.055 Pa • s; these fitted values are on the same order of predictions based on commercial rheometers.

In short, we proposed a physics-based fitting procedure in comparison between laser bubble experiments and the spherical bubble dynamics simulations, which allows for calculating rigidity and viscosity of the gel sample (Tetra-PEG). In the upcoming conference, we also presents for the case with gelatin gels to examine the difference between chemical and physical gels. 

Introduction

It is well-known that periodic arrangements of structural constituents or properties possess band gaps, allowing them to filter certain frequencies from propagating within the medium. Recently, the topological characterization of such systems has directed researchers to view them in a new light. It is observed that two periodic systems can be topologically distinct, even when they exhibit similar band gaps. This difference is measured in terms of the topological invariant, calculated from band dispersion. Physically, the difference is reflected as robust corner/edge/surface states in a topologically nontrivial system. These states are localized in space and are "topologically protected" since small impurities in the system do not impact their presence [1].

While most studies on topological mechanical lattices have focused on linear wave dynamics, several questions remain unanswered. For instance, the influence of nonlinearity on the characteristics of topologically-robust corner/edge states is less known to the community. Moreover, the role of topology in serving as a novel tool for interpreting purely nonlinear states is not analyzed properly in the literature. To address these questions, this work examines the interplay between topology and nonlinearity in a Kagome lattice with onsite nonlinearity. 

Nonlinear Kagome lattice

In Fig. 1(a), we show the Kagome lattice consisting of masses and springs. Each mass is attached to the ground with a nonlinear spring, such that the force (F ) -deformation (u z ) profile is

F = k 0 u z + Γu 3 z ,
where k 0 is the linearized ground stiffness and Γ is the parameter for nonlinearity. We consider only the out-of-plane (z-direction) motion of the masses, in that, shear waves are simulated in the lattice. In the linearized limit (Γ = 0), the system has a dispersion curve shown in Fig. 1(b). We notice a flat band and also a band gap that emerges due to the mismatch of linear stiffness in the Kagome lattice, shown by the blue and red colours in Fig. 1(a). Due to the topological properties of this band gap, the lattice supports topologically-protected edge and corner states [2]. In Fig. 1(c), we show the spectrum of the finite Kagome lattice with fixed boundaries. We observe multiple states inside the band gap spanning from about ω = 1.7 to ω = 2.3. These are the corners and edge states of the Kagome lattice in the linearized limit, as evident in Fig. 1(d). We name them "Linearized corner states" and "Linearized edge states" respectively.

Next, we examine how the onsite nonlinearity (Γ < 0) affects the form and stability of topological corner states. In Fig. 2, we show the nonlinear corner states obtained through the continuation of the linearized corner state in the finite Kagome lattice. Nonlinear states are determined by solving the governing equations of the nonlinear Kagome lattice using Newton solver [3] by taking the linearized corner state (shown in Fig. 1(c)) as the initial condition. In Fig. 2(a), we show the frequency of nonlinear corner states as lattice energy is increased. Interestingly, the rate of change of frequency drastically changes when periodic solutions lie in the region where linear edge states exist. Profiles of two representative nonlinear states are plotted in Fig. 2(c). First, we notice that the corner state tends to delocalize (ω = 2.02) with the increase in lattice energy, and then couples with linear edge states (ω = 1.97). In Fig. 2(b), we show the linear stability of the nonlinear corner states determined using the Floquet theory. We notice that the nonlinear corner state is largely unstable (log(max|λ|) > 0) for all ranges of frequencies. However, there is a drastic change in the amplitude of instability at two points, ω = 1.88 and ω = 1.68, indicating the change in the nature of instability. 

Introduction

Prediction of crack patterns is one of the most significant problems in mechanical engineering. The fracture of materials and structures needs to be, no doubt, avoided in any field of application. The crack pattern usually propagates along the weak regions in materials and structures. Hence, one can learn the strategies and hints to improve the material and structure design. Interestingly, the history of crack propagation is also found in fruit growth. The mesh pattern of a muskmelon is produced when the hard epidermis is pulled and cracks propagate along with the growth of the fruit [1].

Here, inspired by the growth of muskmelons, we fabricate a bilayered spherical shell composed of elastic and brittle materials and pressurized the shell from the inside to imitate the process of melon mesh pattern formation. We aim to build the predictive framework for fracture or crack propagation relying on the nonlinear geometry of structures. The prediction of shell deformation is one of the central and classical subjects in structural mechanics. It has been well known that the buckling pressure of a shell is highly sensitive to its imperfection, leading to a gap between theoretical prediction and experimental observations. Within the last decade, the rapid and precise fabrication protocol at the laboratory level is proposed [2]. The protocol is quite simple; we pour a liquid state of elastomer onto a curved mold under gravity and the elastomer is cured as a thin coating layer of the mold. With this protocol, it is found that the rigidity of thin shells is measured experimentally, and is theoretically understood that the Gaussian curvature of the shell plays a critical role. The fracture of pressurized shells has a long history of research to mainly predict the fracture size distribution [3]. By setting the fracture rule, one can derive the analytical distribution for the fracture size statistics. For example, this framework is applied very recently to analyze the mesh pattern on maskmelons [1]. Despite the fact that the size statistics obey the prediction of classical shell fracture theory and that the biological mechanism has been well studied, the physical mechanism behind the crack propagation is still missing. In particular, the role of nonlinear geometry of thin shell structures has not been investigated to date. In this work, we combine the fabrication method of thin shells and shell theory [4], to uncover the mechanism of crack propagation on shell surfaces.

Fabrication of bilayer shells and experimental protocol

We 3D-print the three molds of different Gaussian curvature. The horizontal radius r 0x is fixed at 20 mm, while the vertical radius r 0z is varied from 10, 20, to 30 mm. We apply the coating method proposed in Ref. [2] to fabricate bilayer shells. We pour different polymer solutions onto the 3D-printed mold twice. The first layer (ED layer) was prepared by mixing the base of the elastic material Elite Double (ED) 22 (vinylpolysiloxane, Young's modulus E ED = 0.99 MPa) and catalyst at a volume ratio of 1:1, stirring with a stirrer and pouring onto the mold (Figure 1(c-1)). The shell was left for 20 minutes to allow the ED layer to cure. Then, a solution of brittle material Rubber Glass (RG) (polyorganosiloxane, Young's modulus E RG = 0.64 MPa, fracture stress σ z = 0.13 MPa) Part A, Part B and a curing accelerator were mixed at a mass ratio of 3:1:0.05, and a small amount of coloring (blue) was added to visualize the crack patter clearly. The second layer (RG layer) was prepared by the same procedure (Figure 1(c-2)). The shell was left for 30 minutes to allow the RG layer to cure, removed from the mold, and clamped with an acrylic plate to seal the shell (Figure 1(d)). We apply the pressure from the inside with a syringe pump at a rate of 30mL/min, and stop the displacement of the pump at the moment cracks appeared on the shell surface to observe the crack propagation.

In addition to experiments, to qualitatively understand the crack propagation profile, we perform numerical simulations for pressurized elastic shells (thickness is set to be constant h = 0.2 mm throughout). Our model is based on the onedimensionally reduced (axisymmetric) linear model for thin shells. Since crack propagation is expected to occur within a small range of strains (less than 0.3), we did not consider nonlinearity of the rubber. The reduced elastic energy functional consists of in-plane stretching and bending elastic energies. We apply the virtual displacement w and compute the shell mid-plane profile via the principle of virtual work. The aim to perform fully-elastic simulation despite we study fracture mechanics is to quantify the evolution of longitudinal and hoop strains upon inflation. 

Results

We find that three shells show different crack patterns. The shell of nearly flat curvatures r 0z /r 0x = 0.5 shows helical crack patterns, while as we increase the Gaussian curvature, such helical profiles disappear and patterns are nearly random and reticulate, indicating that the crack pattern could be controlled by the value of the Gaussian curvature of the shell.

Our experimental observation indicates the role of nonlinear geometry in crack propagation. The different Gaussian curvatures could yield different strain profiles upon pressurization. To validate this scenario, we compute the hoop ϵ θθ and longitudinal strains ϵ φφ as a function of a polar angle φ, utilizing the reduced axisymmetric simulation of pressurized elastic shells. It can be seen that ϵ φφ > ϵ θθ at any latitude for any shell. The dependence of ϵ θθ on the radius ratio of the shell is found to be small for the profile of ϵ θθ , while that of ϵ φφ with is found to be highly sensitive to the radius ratio of the shell or the value of the Gaussian curvature. These results suggest that the evolution of longitudinal strain ϵ φφ may play an important role in crack propagation in shells.

Introduction

After its introduction by Eshelby [1] to motivate the motion of defects within solids, the concept of configurational forces has been recently extended to structural mechanics by considering variable-length systems. The variable length is the configurational parameter of the system and is attained through the insertion of a structural element, for example, within a frictionless sliding sleeve. This specific constraint has been shown theoretically and experimentally to generate a non-null reaction, parallel to the sliding direction [2]. This concept has been so far exploited to display unexpected quasi-static response [3] and to analyze propulsion [4] and divergent motion [5]. Within this context, the motion of a lumped mass 𝑚 attached at the end of a flexible element with bending stiffness 𝐵 constrained by a frictionless sliding sleeve, parallel to the gravity acceleration 𝑔, is investigated in the case when the constraint has a periodic transverse oscillation (Fig. 1)

𝑢 𝑔 (t) = 𝑢 ̅ 𝑔 cos(2 𝜋 𝑓 𝑡), (1) 
where 𝑢 ̅ 𝑔 and 𝑓 are respectively the sliding sleeve oscillation amplitude and frequency, while 𝑡 is the time variable.

Figure 1: The variable length elastic system composed by a flexible rod with a lumped mass and constrained by a frictionless sliding sleeve. The transverse oscillation of the latter makes possible the periodic or quasiperiodic motion around a finite external length within a gravitational field.

Theory and experiments

Modelling possible dissipation sources through linear viscous damping, theoretical predictions are formulated through two approaches: (i.) an analytical asymptotic solution to the second-order expansion for small rotations of the nonlinear problem, and (ii.) the numerical integration in time of the fully nonlinear equations of motion based on the spatial integration of the elastica through elliptic integrals. The asymptotic approach is based on the small amplitude periodic solution in the time t for the rotation end 𝜃 𝐿 and the external length ℓ given by

𝜃 𝐿 (t) = 𝜖 𝜃 cos(2 𝜋 𝑓 𝑡), ℓ(t) = ℓ 𝑚 [1 -𝜖 ℓ cos(4 𝜋 𝑓 𝑡)], (2) 
being 𝜖 𝜃 and 𝜖 ℓ the oscillation amplitude in the rotation and in the length, and ℓ 𝑚 the average external length value. Through series expansion under specific hypothesis the values of 𝜖 𝜃 , 𝜖 ℓ , and ℓ 𝑚 describing the asymptotic periodic motion (2) are obtained in terms of the following dimensionless quantities

Ω 𝑚 = 2 𝜋 𝑓 √ ℓ 𝑚 𝑔 , 𝑝 𝑚 = 𝑚 𝑔 ℓ 𝑚 2 𝐵 , 𝑈 𝑚 = 𝑢 ̅ 𝑔 ℓ 𝑚 . ( 3 
)
The fully nonlinear problem is then numerically solved to assess the reliability and the stability of the asymptotic prediction. It is shown that the system can display a periodic motion, however this can become quasi-periodic after a dynamic bifurcation and eventually divergent by changing the sliding sleeve oscillation amplitude and frequency parameters.

While the periodic solution requires realizations currently not possible with the available instrumentation, the quasi-periodic motion and its transition to divergent motion have been validated through experiments on a physical prototype employing a carbon-fiber rod. Interestingly, the experimentally observed quasi-periodic motion occurs with a good approximation for the average length ℓ 𝑚 predicted by the asymptotic periodic solution (Fig. 2). However, the sustained motion has been observed to be displayed for some sets of frequencies, so it turns in a divergent one when the frequency reaches a limit value for the set.

Figure 2: Average external length ℓ 𝑚 predicted by the asymptotic periodic solution as a function of the sliding sleeve oscillation frequency 𝑓 (red curve). Experimental data measured on a physical prototype for the external length averaged over the sliding sleeve oscillation period are also reported for quasi-periodic motion (grey dots). The asymptotic prediction shows good agreement with the experimental measures.

Conclusion

The motion of a variable length elastic system has been investigated theoretically and experimentally, showing the possibility to realize a sustained motion through configurational forces action generated by the periodic oscillations of a sliding sleeve constraints. The present results may open new perspective in the design of energy harvesters and vibration mitigation devices based on self-tuning structures.
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Introduction

Spontaneous rhythmic oscillations and synchronization are widely observed all over the world. Such rhythmic oscillators can be modeled by nonlinear dynamical systems possessing stable limit-cycle solutions [1]. The asymptotic phase and (asymptotic) amplitude, both of which linearly evolve, are the fundamental quantities for analyzing and controlling synchronization of limit-cycle oscillators [1,2,3]. It has been pointed out that the asymptotic phase and amplitude can be defined by using the leading Koopman eigenfunctions of the limit-cycle oscillator [4], and this definition is extended to the stochastic oscillators [5], [6] on the basis of Koopman operator theory [7]. In this study, we apply Extended dynamic mode decomposition (EDMD) [8,9], which reconstructs the leading Koopman eigenvalues and eigenfunctions from time series-data, to stochastic oscillators, and show that the asymptotic phase and amplitude can be reproduced by EDMD in a data-driven manner. As an example, we reconstruct the asymptotic phase and amplitude functions of a stochastic FitzHugh-Nagumo oscillator by EDMD.

Theory

We consider a stochastic oscillator described by Ito stochastic differential equation (SDE)

dx(t) = A(x(t))dt + B(x(t))dW (t), (1) 
where x(t) ∈ R N represents the system state at time t, A(x) ∈ R N is a vector field representing the deterministic part of the dynamics, B(x) ∈ R N ×N is a matrix representing the noise intensity, and 

W (t) ∈ R N is a N -dimensional
) 2 
where the forward and backward Fokker-Planck operator are given by

L x = - ∂ ∂x A(x) + 1 2 ∂ 2 ∂x 2 D(x), L * x = A(x) ∂ ∂x + 1 2 D(x) ∂ 2 ∂x 2 . ( 3 
)
Here, D(x) = B(x)B(x) T ∈ R N ×N is a matrix of diffusion coefficients with T representing the matrix transposition. The forward and backward operators L x and L * x are mutually adjoint, i.e., ⟨L x G(x), H(x)⟩ x = ⟨G(x), L * x H(x)⟩ x , where the inner product is defined as ⟨G(x), H(x)⟩ x = ∫ G(x)H(x)dx for two functions G(x), H(x) : R N → C, the overline indicates complex conjugate, and the integration is taken over the whole range of x. The linear differential operators L x and L *

x have the eigenvalue λ k and eigenfunctions P k (x) and Q k (x) (k = 0, 1, 2, ...) which satisfy,

L x P k (x) = λ k P k (x), L * x Q k (x) = λ k Q k (x), ⟨P k (x), Q l (x)⟩ x = δ kl , ( 4 
)
where k, l = 0, 1, 2, . . . and δ kl is the Kronecker delta [10]. Among the eigenvalues, one eigenvalue λ 0 is zero, which is associated with the stationary probability density function P 0 (x) of the system satisfying L x P 0 (x) = 0, and all other eigenvalues have negative real parts. In Ref. [7], we show that the backward Fokker-Planck operator L * x in Eq. ( 3) is the infinitesimal generator of the stochastic Koopman operator. For stochastic oscillators, it is assumed that the eigenvalues with the largest non-zero real part appear as a complex conjugate pair, denoted by λ 1 and λ 1 . The averaged asymptotic phase of the state x can then be defined from the associated eigenfunction

Q 1 as θ = arg E[Q 1 (x)]
. Also, the averaged amplitude can be defined as r = E[Q 2 (x)] by using the largest non-zero eigenvalue λ 2 on the real axis, which is assumed to be smaller than Re λ 1 . In Ref. [7], it is shown that these functions yield the average asymptotic phase and amplitudes, satisfying

dθ dt = ω, dr dt = λ 2 r, (5) 
where ω = Im λ 1 is the average oscillation frequency. Our aim in this study is to reconstruct these asymptotic phase and amplitude functions using EDMD, which reproduces the leading Koopman eigenvalues and eigenfunctions from time series-data. The detailed of EDMD is explained in Ref. [8,9]. 

Numerical results

We consider a stochastic FitzHugh-Nagumo model [7] described by the following Ito SDEs:

dx = (x -a 1 x 3 -y)dt + √ D x dW x , dy = η 1 (x + b 1 )dt + √ D y dW y , (6) 
where x and y represent real variables, a 1 , b 1 , and η 1 are parameters of the system, W x and W y represent independent Wiener processes, and D x and D y are the intensities of the noise, respectively. We set the same parameters (a 1 , b 1 , η 1 , D x , D y ) = (1/3, 0.5, 0.5, 0.2, 0.2) as those used in Ref. [7], with which the deterministic part of the system possesses a stable limit-cycle solution.

Figure 1(a) shows the eigenvalues of L x reconstructed from the time series. The average frequency ω of the phase is drawn by the imaginary part of the largest negative eigenvalue (blue circle) and estimated as ω ≈ 0.581, and the decay rate of the amplitude λ 2 is given by the largest negative real eigenvalue (green circle) and estimated as λ 2 ≈ -0.775. Also, the reconstructed phase and amplitude functions are shown in Fig. 1(b) and (d), respectively. These results agree well with those obtained by direct numerical calculation of the eigenvalues of L * x given in [7]. As given above, we can reconstruct the natural frequency ω, decay rate λ, and phase and amplitude functions from the time-series data by EDMD.

Introduction

Synchronization is one of the most fundamental types of behaviours found in nature [1]. The appearance of the coherent motion of dynamical systems has been reported in nonlinear vibrations [2], robotics [3], complex networks [4] or small-world systems [5], just to mention a few. A large part of synchronization problems refers to fundamental mechanical systems based on coupled pendula. The studies on synchronous dynamics have been performed for various pendula-type models, e.g. rotor-pendula [6] or Huygens' coupling schemes [7].

Results

In this research we investigate the dynamics and possible synchronous configurations for coupled pendula arranged in a lightly supported system. The model of interest is schematically shown in Fig. 1. 1 (i = 1,…,n). The pendula are equipped with the van der Pol type drives and their self-excited oscillations induce the motion of the beam, which allows to transfer the energy between the pendula. The angular displacement of the i-th node is given by variable φi.

The Lagrange equations of motion of the considered system are given as follows:

where i = 1, …, n.

When the beam in Fig. 1 is lightly supported, i.e. parameters k and c are close to zeros, we can approximate the system as an isolated one. In such a case, the centre of mass of the model (the beam and the suspended pendula) is not moving, according to the Centre-of-Mass (CoM) Theorem. Assuming similar pendula lengths, one can use the latter theorem to construct the conditions leading to possible solutions of the model. These solutions depend on the number of pendula and possible synchronous configurations. The latter ones can include typical in-phase and anti-phase patterns (for n = 2 oscillators), or phase-locking scenarios (n = 3).

With the increased number of pendula, more complex and new types of behaviours are observed. Investigating four nodes of identical masses (mi = const), one can uncover the existence of the synchronized state with equal amplitudes and traveling phases, i.e. φi = A sin(αt + βi), where phase β0 = 0 is considered as the reference one, while β1, β2 and β3 change in time (the β-phases are time-dependent and vary when the relations between the nodes evolve). In this scenario, the pendula group into two clusters: (i) the cluster of the 1st and the 2nd pendulum oscillating in the anti-phase and (ii) the cluster of the 3rd and the 4th pendulum also oscillating in the anti-phase. The example of such scenario is shown in Fig. 2. 

Discussion

In this study we investigate the dynamics of coupled self-excited pendula, arranged in a lightly supported system. Depending on the network's size (the number of the nodes suspended on the beam), one can observe different types of synchronous configurations and behaviours. We have described typical dynamical structures, including the in-phase and the anti-phase synchronization, as well as more complex patterns like the clustering of the pendula or the phase-locked solutions. During the research we have uncovered the 'traveling phase' state, which is characterized by the continuous change of the phases between the synchronized oscillators. The analysis of the considered models has also exhibited possible high multistability with many co-existing attractors, that can be observed for slightly different nodes. The analytical results obtained from the CoM Theorem match with the numerical ones calculated during simulations. The former ones explain and allow to understand the dynamics that is observed within the models, especially the synchronous configurations between the pendula.

Introduction

Simplicity and robustness are the main objectives in design of vibration exciters which are used for statistical tests focused on middle and high cycle fatigue durability. In many such investigations it were advantageous to create load profile combining different loads levels and cycles simulating real world applications. Unbalanced rotor exciters driven by DC or induction motors are quite usual in such test rig designs due to their simplicity and high efficiency. Using Sommerfeld effect enables to excite intensive vibrations close to the resonance and to sense the failure of the test object. Using self-synchronization of two unbalanced exciters enables targeted excitation in a certain spatial direction [1]. However, these systems provide almost constant rotation speed and, hence, excite harmonic vibrations. In this paper we investigate, how nonlinear dynamics of such systems can be used for design of multi-scale slow-fast excitations both in resonant and non-resonant regimes.

Modulated vibrations in nonlinear unbalanced rotor systems

Three dynamic systems are investigated (cf. Fig. 1):

• An unbalanced rotor with an attached free pendulum, which rotational degree of freedom is viscously coupled with the rotation of the main rotor (cf. [3]). • The same system with two viscously coupled pendulums (cf. [4], where this system is investigated with the focus on self-balancing and avoiding of vibrations). • A couple of unbalances exciters with or without viscous coupling between the rotors [5]. Averaging method for strongly damped systems [2] is used for the asymptotic analysis. It turns out that strongly modulated vibrations can be excited both in the vicinity of the main resonance of the carrier system and in the overcritical regime. However, in both cases significant damping between the rotors or rotor and pendulum(s) is inevitable for achieving the desired modulation. The strongly modulated slow-fast vibrations in the vicinity of the resonance can be excited in the coaxial systems with one or two additional pendulums. They appear due to the infinite period bifurcation. The corresponding periodic orbit has a large domain of attraction, especially if the stationary resonant solutions disappear after the saddle-node catastrophe. The system with two non-identical unbalanced rotors performs different. Modulated resonant vibrations cannot be realized in this system, because of the attractive capturing regimes. Either one rotor or another one or even both can be captured into the resonance (Sommerfeld effect) giving no place to the strongly modulated periodic solutions. But this system can be used for exciting of strongly modulated vibrations in the overcritical domain. At first glance this objective seems to be trivial. Choosing the target rotation speeds of the rotors slightly different should automatically lead to beatings in the excited vibrations. However, the self-synchronization of the rotors [1] counteracts this tendency, because the rotors are attracted to the synchronous regime with the same rotation speed. The effect of self-synchronization is the stronger the closer are the target rotation speeds of the rotors. On the other hand, the close rotation speeds are necessary for significant beatings and hence modulated excitation. Both analytical and numerical investigations show that it is not quite easy to overcome this contradiction, using the considered scheme (cf. Fig. 1c) where the inertial coupling between the unbalanced rotors appears due to unavoidable (and desired!) vibrations of the carrier system. Nevertheless, a simple system modification leads to the desired effect. Introducing additional viscous coupling between the rotors, eliminates solution with only one rotor captured into the resonance, strongly reduces the attraction domain of the self-synchronized solution and give birth to strongly modulated slowfast regimes in the overcritical domain (cf. Fig. 2). Here the target non-dimensional speeds of the rotors are 1,5 and 1,7 respectively. Simulations in time domain comparing analytical and numerical results are performed outside of the existence domain of stationary solutions: parameter u, describing the slope of the motor characteristics is equal to 4. Different possibilities to realize the required damping between the rotors using mechanical or electrical couplings are available.

Conclusions

Modulated vibrations are advantageous for durability tests of various components, because they enable to approximate real world application conditions. Unbalanced rotors driven by the DC-motors is one of the simplest and cheapest types of exciters. Such systems containing at least two rotors (or one rotor and at least one pendulum) provide the possibility to excite modulated vibrations either in the vicinity of the resonance or in the overcritical domain. However, in both cases it is essential to prevent stationary solutions corresponding either to capturing into the resonance or to self-synchronization between the rotors. This can be achieved by introducing non-small viscous coupling between the rotors. The theoretical results obtained using averaging technique for partially strongly damped systems are confirmed by direct numerical simulations of the full system.

Introduction

The geometry-induced stiffness of slender structures, or geometric rigidity, is their strength against indentation. The geometric rigidity of shell structures is their fundamental aspect and is widely utilized in building structures, such as arches, domes, and space crafts [1]. The presence of their rigidity stems from the inevitable coupling between elasticity and geometry. In particular, geometric non-linearity plays a critical role in their deformation. The nonlinear nature of the two-dimensional surface is classified into three categories by the sign of the Gaussian curvature κ G . Flat or cylindrical surfaces have zero Gaussian curvature κ G = 0. Synclastic (e.g., spherical) and anticlastic (e.g., saddle-shaped) surfaces have positive κ G > 0 and negative curvatures κ G < 0, respectively. Gauss's Theorema Egregium states that κ G is an intrinsic quantity, where surfaces of different Gaussian curvature cannot be mapped onto each other via isometric transformations. In other words, a change in κ G of a surface requires stretch or contract of its metric. The deformation of thin shells relies primarily on the nonlinear nature of their mid-surfaces. The energetic cost of a thin elastic shell of thickness t and radius of curvature R consists of the stretching and bending contribution of its mid-surface. The rigidity of former and latter deformations are characterized by the stretch ∼ Et and bending modulus ∼ Et 3 , with Young's modulus E. Given that stretching a slender structure t/R ≪ 1 is energetically more costly than bending, shell structures prefer bending to stretching against an external load. Hence, structures bend globally, while a stretch of the structure is localized. Such heterogeneous deformations are observed, for instance, as the kink of a bend tube or ridges in a crumpled paper. The prediction of the strength of shell structures has a long history of research both theoretically and experimentally, such as the geometric rigidity of spherical shells κ G > 0 and the persistence length of tubes and cylindrical shells κ G = 0 [2,3]. Despite the fact that anticlastic shells κ G < 0 are utilized as highly-designed architectures, their fundamental mechanisms behind the stability are not well understood thus far.

Pinching deformation of hyperbolic shells

Here, to uncover the mechanical performance of anticlastic shells, we study the pinching deformation of hyperbolic shells (Fig. 1(a)). The mid-plane of our shell is given by z(x, y) = x 2 /(2R 1 ) -y 2 /(2R 2 ), where the horizontal variables span in a circle of radius R(= 20 mm) on x-y plane as x 2 + y 2 ≤ R. The radii of curvature near the center of the shell on x-z and y-z planes are respectively given by R 1 and R 2 . With this parametrization, the mid-plane has the negative Gaussian curvature at (x, y) = (0, 0) as

x y z x z z y (R 1 , R 2 ) = (5,20) mm (R 1 , R 2 ) = (60,20) mm (a-i) (a-ii) (a-iii) (b-i) δ = 0 mm (b-ii) δ = 5 mm (c-i) δ = 0 mm (c-ii) δ = 5 mm δ/2 δ/2
κ G = -1/(R 1 R 2 ) < 0.
To fabricate thin hyperbolic shells of uniform thickness t(= 0.6 mm) experimentally, we construct a stereo-lithography file with the aid of the mid-plane surface z = z(x, y) and 3D-print the corresponding resin structure (E = 65 MPa, Object350 Connex3, Stratasys). The printed shells are mounted on a horizontal stage and then pinched by the amount of δ at their bottom. In parallel with the experiments, we perform FEM simulations for the resin shells with various sets of δ and (t, R 1 , R 2 ), taking into account their geometric non-linearity (COMSOL Multiphysics). Considering the four-fold symmetry of the shell, we simulate the quarter of the shell only: x, y ≥ 0.

Upon pinching, we find that hyperbolic shells deform differently, depending on the shell geometry (t, R 1 , R 2 ). When the shells are nearly cylindrical, they bend nearly isometrically and the overall structures lift (Fig. 1(b)). In contrast, when the shells are highly curved perpendicular to pinching, the tip of the shell lowers (Fig. 1(c)), with a decrease in the Gaussian curvature of the mid-surface. To further quantify the lifting and lowering behaviors, we measured the displacement of the tip as Z max -Z 0 for various sets of δ and (t, R 1 , R 2 ) both experimentally and numerically. We find that the competition between lfiting and lowering contribution plays a critical role in the shell deformation. Based on the scaling argument, we can derive the scaling prediction as

Z max -Z 0 = δ 2 1 -α ℓ 2 R 2 1 , (1) 
with the persistence length of the deformation ℓ ≡ R 3/2 2 /t 1/2 [2, 3] and the dimensionless fitting parameter α, which is in excellent agreement with both experiments and simulations (Fig. 2(a)).

Stress focus upon pinching

Given that the simulation correctly predicts the experimental results, we now address the mechanical performance of the hyperbolic shells, entirely based on FEM. We show the color map of the von Mises stress as the inset of Fig. 2(b). The spatial profile of the shell is highly heterogeneous. The large stress is localized near the pinching (y-z) plane, while stress is nearly zero at the tip. This observation is consistent with the presence of the persistence length of the deformation ℓ as in the previous section. To further uncover the stress focus behavior, we plot the stress profile along the shell averaged over the pinching plane in Fig. 2(b), where s = 0 corresponds to the center of the shell (x, y) = (0, 0). The averaged stress is maximum at s = 0 and then decays smoothly to the tip. The decay rate of the stress is small when the shell is nearly cylindrical. It should be noted that the maximum stress observed here clearly depends on the shell curvature and increases as the shell is highly curved R 1 /R 2 ≫ 1. The maximum stress is also enhanced as we pinch the shell, as shown in Fig. 2(c). Despite the simplicity of structures, the deformation of hyperbolic shells is complex, highlighting the intimate coupling between elasticity and geometric non-linearity. These observations could be useful in utilizing anticlastic structures as building blocks of more complex curved structures, where we need to be careful in the development of localized stress or large strain. 

Introduction

Soft robotics is a research field that attempts to identify new robotic functions by maximizing the remarkable mechanical, electrical-electronic, and chemical properties of soft materials [1]. The rod theory considers an exact modeling of largelydeformable rod and is a fundamental tool for addressing nonlinear problems of elasticity [2]. Because largely-deformable rods are typical objects in soft robotics, the rod theory can be adopted for soft robots. The largely-deformable rod can be modeled as the limit of a serial chain of rigid bodies connected with passive rotational joints as the number of degrees of freedom increases to the infinity . If we can drive all the joints using sufficiently high-power actuators, the rod can form any shape, such that it can be moved on any target curve [3,4], as well as achieve enveloping whole-arm compliance [5].

However, the full actuation to all the degrees of freedom is infeasible, and some actuation strategies have to be considered, which implies that soft robotics is always faceed with hyper-underactuated problems. Here, illustrative examples of soft robots that solve hyper-underactuated problems to some extent are introduced with the adoption of the rod theory modified for soft robotics.

Hyper-Flexible Manipulator

A hyper-flexible manipulator (HFM) is a continuum robot with a one-dimensional mechanism such as a cable, rope, and string [6]. One of the possibilities of actuation in an HFM is to move the base where one end of an HFM is attached. In this actuation case, owing to the port-controlled Hamiltonian structure, it is verified that the horizontal base acceleration as a control input is energetically dual with the horizontal velocity of the mass center of the hyper-flexible body [7]. Based on this system property, we can achieve impact manipulation using an HFM where we can apply an impact force to a given target point [8,9]. Another hyper-flexible possibility is the chameleon-like shooting manipulation system for acting on a distant target object [10]. In this manipulation, the end effector of an HFM is catapulted to the target. A hyper-flexible body is connected to the end effector and used to constrain the end effector's motion. The rod theory can be employed to design a target motion of the end effector.

Snap Motor

The snap motor is a simple impulsive force generator typically comprising a loop mechanism of a largely-deformable elastic rod, an actuator, and a sufficiently stiff frame [11,12]. In comparison with other conventional continuum-elastic mechanisms in soft robotics, such as a wire-driven elastic rod [13] or parallel extensible balloons [14], the distinguished feature of the snap motor is to utilize a bistable mechanism and generate snap-though buckling of a closed elastic rod intentionally via actuation. With these snap motors, we can develop a compact jumping mechanism. The 14-gram and business-card-size snap motor designed for generating uni-directional impulsive forces can quickly climb up a normal stair by repeated jumps [15]. The snap motor can also be adopted for a jumping mechanism of a wheeled robot that can jump while rolling [16]. This robot is equipped with an arched snap motor where three-dimensional shape transitions of the mechanism should be considered. The snap motor is sufficiently light; hence, it can be utilized as the perturbator of a wearable device to estimate human joint impedance [17]. A pulsatile pump can also be fabricated by a snap motor [18].

Here, a snap motor was used to expand and flatten a soft bag, to generate a pulsated flow. Recently, owing to its compact nature, light-weight, and low power consumption, the snap motor is mounted on flightless drones moving on walls for automated hammering inspections [19]. Quasi-static shape transition simulation allows us to estimate the released energy of the snap motor, which is useful in designing a better snap motor as an impulse force generator [20]. In this simulation, an appropriate discretized rod model is employed [21] with a deep understanding of the system properties [22,[START_REF] Nakagawa | Real-time Shape Estimation of an Elastic Rod Using a Robot Manipulator Equipped with a Sense of Force[END_REF].

Ostrich-Inspired Arm

An ostrich-inspired arm is a wire-driven mechanism with many degrees of freedom. The important feature of this manipulator is that the number of actuation is significantly smaller than the number of kinematic degrees of freedom, and it has to move against the gravity. Therefore, an ostrich-inspired manipulator is inherently hyper-underactuated, and the control problem is similar to a multi-dimensional version of an inverted pendulum. The prototype of the manipulator is a serial chain of 18 rigid links connected with rotation joints moving in a sagittal plane under gravity and driven through two asymmetric antagonistic wire systems connected to two levers that are directly operated by a human operator functioning as the controller [START_REF] Mochiyama | Ostrich-Inspired Soft Robotics: A Flexible Bipedal Manipulator for Aggressive Physical Interaction[END_REF][START_REF] Misu | Robostrich Arm: Wire-Driven High-DOF Underactuated Manipulator[END_REF]. The obtained experimental results demonstrate that, although the mechanism is significantly underactuated, a human operator can control this manipulator, such that its tip can reach several positions, including an upper position against gravity, thus indicating the potential of ostrich-inspired manipulators. To analyze the dynamics of the ostrich-inspired arm, a general model of a wire-driven continuum manipulator will be beneficial [START_REF] Hsiao | A Wire-driven Continuum Manipulator Model without assuming Shape Curvature Constancy[END_REF].

Here, I present illustrative examples of soft robots where the rod theory is successfully utilized with appropriate robotics considerations. The future work includes extension of a more general theory handling largely-deromable plates, shells, and three-dimensional bodies, considering other conventional types of soft robots, e.g. soft pneumatic actuators (i.e., balloons), and analysis of normalized and nondimensionalized dynamics of elastic rods for system theory of soft robots across different length/time scales [START_REF] Mochiyama | The Elastic Rod Approach toward System Theory for Soft Robotics[END_REF].

Introduction

The physical processes of interest to contemporary science and engineering are growing ever more complex.

As a result, their governing equations are becoming high-dimensional or even partially unknown. For the analysis, prediction, design and control of these processes, reduced-order models capturing the core of the underlying physical phenomena are a must. Most of these phenomena, however, are intrinsically nonlinear, i.e., contain multiple stationary states and transitions among them. As a consequence, no linearized model reduction method, such as the dynamic mode composition (DMD) and its variants, can capture the global behavior of interest in these problems accurately.

Here we discuss an intrinsically nonlinear model reduction method based on spectral submanifolds (SSMs). These manifolds are very low-dimensional attractors of a nonlinear system that are the smoothest nonlinear continuations of linear modal subspaces identified at stationary states. Locating SSMs and identifying their low-dimensional dynamics yields mathematically rigorous and accurate reduced-order models for the full system. We show how such models can be used for physical system identification, accelerated simulation of complex finite-element models, prediction of forced responses from unforced measurements of structural vibrations, model-predictive control of soft robots and prediction of transitions among various stationary states in fluids.

Theory

Instead of fitting models to individual, robust reduced-order modeling of nonlinear systems should target structurally stable invariant sets of trajectories. Most relevant for this purpose are invariant manifolds tangent to eigenspaces (or spectral subspaces) of a dynamical system linearized at a fixed point. Computed first formally in a seminal paper by Shaw and Pierre [1], such manifolds were later studied in detail in the mathematics literature by Cabré, Fontich and de la Llave [2]. The formulation and terminology we use here was developed in Haller and Poinsioen [3], a general numerical package for SSM calculations was developed by Jain and Haller [4], and fully data-driven SSM identification scheme was introduced by Cenedese et al. [5].

The fundamental result of SSM theory is that nonresonant spectral subspaces of the linearized system persist in a smoothly deformed form in the full nonlinear dynamical system. Namely, a spectral submanifolds (SSMs) exist in the nonlinear system that are invariant under the full dynamics, have the same dimension as their underlying spectral subspaces and are tangent to those subspaces at the origin. These SSMs are not unique: their invariance, dimensionality and tangency to a spectral subspace is shared by infinitely many other manifolds. Most of these manifolds, however, have reduced differentiability and only one of them, the SSM, is as smooth as the dynamical system. Under the addition of moderate periodic or quasiperiodic forcing, the SSMs persist smoothly and inherit the time dependence of the forcing

Results and discussion

The data-driven construction discussed in this presentation starts with the reconstruction of the slowest SSM in a suitable chosen observer space. By the classic Takens embedding theorem, any generic, observer sampled at multiples of a time-step can be used for this purpose if the number of periodic orbits on the SSM with periods shorter than the sampling time is finite. For oscillatory systems, the lowest-dimensional, non-resonant SSM is two-dimensional, for which the Takens theorem yields a minimum of five dimensions for the delay embedding space. Therefore, using five subsequent samples of a scalar observable as a data point, we generically obtain a representation of the observations of an unforced mechanical system in the form of a discrete point cloud in the embedding space.

Next, using this point cloud, we find the best fitting 2D invariant manifold (the SSM) and its best fitting reduced dynamics via list scares minization. We then perform a normal form calculation on the SSM-reduced dynamics to sparsify the reduced-order model without losing any essential feature of its nonlinear dynamics. Finally, for forced mechanical systems, we add the forcing reduced to the SSM in a systematic fashion and use the resulting equation to predict forced response for the system using only unforced training trajectories.

An example of the results obtained from this procedure is shown in Fig. 1, in which forced response from a low number of purely decaying trajectories of a fluid sloshing experiment were used to predict the periodically forced response amplitude and phase shift of the fluid. In this talk, we discuss further examples of SSM-based nonlinear system identification and control based on experimental data. dynamics. We find that neither the exact surface shape, nor the frequency spectrum are useful to determine the nonlinear resonance maxima. The key indicator is the phase-lag between driving and response. We systematically investigate the role of initial conditions, characterise the sloshing amplitude with the motion of the liquid's centre of mass and directly measure the damping coefficient. The results obtained with our approach are compared to common approaches used in the literature. The paper is structured as follows. In the next section, we describe the experimental methods and in §3 the quantitative characterisation of the sloshing phenomena. In §4 and §5, the Duffing and multimodal model of sloshing are respectively described and briefly compared to our measured data. Detailed measurements of large-amplitude sloshing are presented in §6 with focus on the nonlinear dynamics of the system, including multiplicity and competition of several flow states. The experimental response curves obtained for several amplitudes are presented and compared to the Duffing and multimodal model in §7. An assessment of the strengths and weakness of these models in capturing the experimentally measured response is given in §8 before the conclusion in §9.

Methods

Our experiments were performed in a rectangular container subjected to harmonic horizontal excitation. As illustrated in figure 1, the flow is quasi-two-dimensional. Sloshing waves reaching from a quasi-planar surface, up to run-up at the tank walls and wave-breaking were investigated. A distinct feature of the sloshing waves in an oscillated (or pitched) tank is their asymmetric shape leading to an oscillation of the liquid's centre of mass (shown as a red dot in figure 1). Many fundamental studies consider sloshing in wavemaker tanks (Taylor 1953;Fultz 1962;Chester 1968a). A key difference between oscillated and wavemaker tanks is that in the latter the primary resonant mode is symmetric and the liquid's centre of mass is steady in the lateral direction. dynamics. We find that neither the exact surface shape, nor the frequency spectrum are useful to determine the nonlinear resonance maxima. The key indicator is the phase-lag between driving and response. We systematically investigate the role of initial conditions, characterise the sloshing amplitude with the motion of the liquid's centre of mass and directly measure the damping coefficient. The results obtained with our approach are compared to common approaches used in the literature. The paper is structured as follows. In the next section, we describe the experimental methods and in §3 the quantitative characterisation of the sloshing phenomena. In §4 and §5, the Duffing and multimodal model of sloshing are respectively described and briefly compared to our measured data. Detailed measurements of large-amplitude sloshing are presented in §6 with focus on the nonlinear dynamics of the system, including multiplicity and competition of several flow states. The experimental response curves obtained for several amplitudes are presented and compared to the Duffing and multimodal model in §7. An assessment of the strengths and weakness of these models in capturing the experimentally measured response is given in §8 before the conclusion in §9.

Methods

Our experiments were performed in a rectangular container subjected to harmonic horizontal excitation. As illustrated in figure 1, the flow is quasi-two-dimensional. Sloshing waves reaching from a quasi-planar surface, up to run-up at the tank walls and wave-breaking were investigated. A distinct feature of the sloshing waves in an oscillated (or pitched) tank is their asymmetric shape leading to an oscillation of the liquid's centre of mass (shown as a red dot in figure 1). Many fundamental studies consider sloshing in wavemaker tanks (Taylor 1953;Fultz 1962;Chester 1968a). A key difference between oscillated and wavemaker tanks is that in the latter the primary resonant mode is symmetric and the liquid's centre of mass is steady in the lateral direction. 
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Introduction

Nonlinear model reduction, being transversal to many different aspects of nonlinear dynamics, is a long-lasting active topic [1]. The past decade has witnessed renewed interest and many differently motivated techniques are now available [2], including nonlinear normal modes (NNMs), direct multi-scale method (dMSM), normal form (NF), spectral sub-manifolds (SSMs), rectified Galerkin method (RGM), quadratic manifold (QM), loworder elimination (LOE). There is thus demand for possibly unified perspectives of the nonlinear reduction issue, aimed at a better understanding of subtle connections among all these reduction methods.

A recent low-order elimination technique [3] using passive patterns (a dynamic feature besides the dominant mode) is first discussed, and then used to outline some unified perspectives on nonlinear reduction [4], which are developed based upon two different basic problems, i.e., truncation order and truncation degree. The former refers to the common concept of reduced dimension of dominant modes, while the latter refers to truncation degree of polynomials employed to approximate invariant manifold /transformation/passive pattern. An explicit theoretical correspondence among these reduction methods is detailed, placing in particular NNMs/dMSM/NF/LOE/RGM within a unified framework in the sense of refined finite mode truncation and leading to a coherent elucidation of distinct reduction perspectives/philosophies (e.g., condensation, transformation, decomposition, elimination), which also justifies various claims/observations made in the literature as regards the capability of all these refined reduction methods to properly correct the routine/flat Galerkin (say, single/finite mode) truncated model. The current correspondence especially frames perturbation perspective within the reduction picture, and is regarded as an expanded version of the existing link between NNMs and NF built upon manifold parameterization [2,5]. Another unified perspective is built by focusing on various reduced-order models (ROMs) of general quadratic/cubic structures, produced by different reduction methods with two-, three-, and four-degree truncations. It turns out that, for non-degenerate third-order dynamics, all the truncations produce valid and equivalent, but seemingly different, ROMs. By translating the terminologies of invariant manifolds, nonlinear transformations and perturbation into the low-order elimination language using passive patterns, various reduction approaches are framed within the same formulation and finally a unified elucidation of distinct reduction methods is given in the sense of truncation degree.

A low-order elimination approach for nonlinear model reduction [3]

The basic philosophy underlying the low-order elimination idea can be stated as follows: for general nonlinear systems, a cascade of energy-containing features play meaningful roles in the system's essential nonlinear dynamics up to the scale of interest, including both the primarily excited active mode and also passively induced low-order dynamic features, termed passive patterns. This is illustrated below in Fig. 1 (a). Accordingly, the displacement decomposition scheme consisting of the active structural mode and the loworder (dominating) passive dynamic patterns, is formally denoted (1) where and are spatial shape functions for the active mode and k-th passive pattern, respectively, while and are the corresponding modal and pattern coordinates, respectively. The key step is the equivalent elimination of low-order nonlinear operator in the structure's PDE, by intentionally designing proper passive patterns and imposing (with being a linear operator)

Using passive patterns [3], one derives a ROM for a quadratic/cubic structure dominated by its m-th mode
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An illustrative comparison of this ROM and routine 1dof Galerkin model is given in Fig. 1 (b), which displays different nonlinear behaviors (softening vs. hardening), with the former agreeing well with the numerical ones.

(a) (b) 

Unified perspectives on nonlinear model reduction [4]

The subtle connection existing between various reduction techniques of non-linear structures, developed and widely used in distinct scientific environments, has been explicitly established in discrete and continuous formulations as given in Fig. 2 (a). Explicitly, NNMs (invariant manifold) method, full-basis perturbation, normal form method, rectified Galerkin method, direct perturbation, and low-order elimination approach, have been systematically interpreted in the conceptual framework and terminology of passive patterns, leading to unified perspectives, which are built by expanding the existing (solid) links in Fig. 2 (a). For example, the NNMs and the normal form methods are known to have been recently unified by manifold parametrization, upon which a general reduction method using spectral-submanifolds is built and automated [5].

Further, minor and non-essential, differences between ROMs derived by distinct reduction methods are highlighted in a hierarchy relation [4], bringing them back to complete or incomplete passive patterns being utilized in Eq.( 1). 
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Implementing nonlinear dynamics for design requires robust and universal methods for identifying and parameterizing the designed nonlinearities. While linear dynamics can be identified with standard tools (e.g., [1]), no universal and robust system identification methods for complex nonlinear oscillators have emerged.

Universal, black box models, such as NARMAX (Nonlinear AutoRegresive Moving Average with eXogenous Input)models [2] or neural networks (e.g., [4]) are popular candidates to model nonlinear dynamics from data. These identification methods are implemented in widely available software packages and the identified models can capture complex, even chaotic, dynamics [3]. Owing to their interpolative character and their excessive use of parameters such models do not extrapolate well, and hence, the derived model is not reliable. Moreover, the obtained complex underlying structure prevents one from gaining any insights into the physics of the modeled system [4]. A plethora of identification procedures geared towards nonlinear oscillators have been proposed (cf. e.g., [4] for an overview). Methods such as response surface method [5], methods relying on the Hilbert transformation [6,7] and the nonlinear phase-lag criterion [8] have been utilized to identify nonlinear oscillators from data. However, their application requires careful experimentation and is limited to single-degree-of-freedom systems. Moreover, the outcomes of such methods are graphs and visualizations, and equations of motion are not obtained. Recently, sparsity promoting identification for general nonlinear dynamical systems has been proposed [9] and further popularized [10]. Therein, it is argued that leveraging sparsity within general time series fitting improves the extrapolation and generalization capabilities of the derived models. Regardless, the applications are often limited to simulation data stemming from simple systems. Only a few studies with experimental data have been reported. Thus, it is unclear if such algorithms can be used with experimental data obtained from nonlinear oscillators.

Here, a general and universal procedure to obtain equations of motion of nonlinear oscillators from experimental data is presented [11]. The oscillatory nature of the underlying data suggests a transformation into the Fourier domain. Subsequently, curve fitting tools and a judicious parameter reduction is employed. This process is found to yield simple and easily interpretable equations of motion, which accurately capture the measurement data.

System Identification

The authors present a universal and robust method to identify nonlinear oscillatory systems from the systems' measured frequency response curves. To this end, the considered oscillatory systems are excited periodically and the observed steady state vibrations are recorded. Assembling multiple steady state responses for various excitation frequencies yields a frequency response curve. The oscillatory system

Mq + C q + K q + N( q, q) = f (t), (1) 
is fitted to the measured frequency response curve. The vector q in equation ( 1) is assembled from the generalized coordinates and is generally multi-dimensional. The function N is used to model the nonlinearity present and can depend on the positions q and velocities q. This captures conservative as well as damping nonlinearities. It is assumed that the nonlinear function N( q, q) is a polynomial function. Nonpolynomial functions can be modeled by approximating them with a polynomial. The linear part; that is, the matrices M, C and K, are unknown as well as the nonlinear part N( q, q). To fit the model (1) to the measured steady state, the steady state vibration is expanded into a Fourier series as

q = K k=-K q k e ikΩt , q = K k=-K ikΩq k e ikΩt , q = K k=-K -k 2 Ω 2 q k e ikΩt , (2) 
where Ω denotes the excitation frequency. It is noted that the zeroth coefficient in the expansion (2) (i.e., k = 0) models constant shift of the response. Subsequently, the expansion ( 2) is substituted into the model (1). After projecting the resulting equations on the first K harmonics and imposing a balance, the outcome is a set of equations which is linear in the parameters. Collecting all steady state measurements yields the, generally overdetermined, set of linear equations

Ap = b, (3) 
where the unknown parameters are assembled in the vector p. To improve the robustness of the fit, spurious entries below the noise floor are set to zero. Moreover, the conditioning of the matrix A is improved by deleting linear dependent columns. Finally, an iterative procedure reduces the number of parameters, leaving only coefficients which reduce the residual error significantly. Following this procedure, one obtains a simple and interpretable nonlinear oscillatory system, which is found to accurately capture the measured forced response curve.

The proposed approach is demonstrated on the oscillatory system shown in Fig. 1a. A shaker is used to excite the couple cantilevers and the vibratory responses are measured with strain gauges. The magnets attached to the top of each cantilever and the fixed frame induce a nonlinear restoring force. The springs between the cantilevers induce coupling between the oscillators. The identified oscillatory system is shown in Fig. 1b.
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Conclusion

The proposed methodology can be used to automatically obtain a simple and robust model, which accurately captures the forced response of the experiment. This methodology can pave the path to an automated and universal fitting routine for nonlinear oscillators.

Compact weighted residual formulation for periodic solutions of systems undergoing frictional occurrences Mathias Legrand * and Christophe Pierre ** 1 Introduction Non-smooth nonlinearities due to unilateral contact and dry friction are ubiquitous in structural engineering systems. Turbomachinery rotors are a prime example of industrial systems that are subject to intermittent contact and feature dry friction dampers to mitigate adverse vibrations. While predicting the dynamic response of non-smooth systems is of great importance and has been the subject of much research over the years, their equations of motion can be remarkably challenging to solve, because Signorini unilateral contact and Coulomb friction conditions involve a system of equalities and inequalities. Existing methods commonly rely on the penalization of the friction force by introducing a finite stiffness or on the smoothing of the contact force [2]. Frequency-domain formulations require the calculation of the contact conditions in the time domain at each iteration of the nonlinear solver via an FFT [6], while time-domain methods mandate advanced timestepping or event-driven schemes [1]. The present work suggests a simpler methodology where dry friction is expressed as an equality enforced in a weighted residual sense.

m 2 m 1 k 2 k 1 x 1 .t / x 2 .t / f .t / r.t/

Theory

Governing equations The considered academic system is shown in Figure 1. The system is subject to an external harmonic force f cos !t of period T D 2 =! at the first degree-of-freedom along with a frictional force r at the second degree-of-freedom. Denoting the displacements of the two degrees-of-freedom by x 1 .t/ and x 2 .t / and their respective masses by m 1 and m 2 and stiffnesses by k 1 and k 2 , the equations of motion governing the dynamics are:

m 1 R x 1 C .k 1 C k 2 /x 1 k 2 x 2 f cos !t D 0 (1a) m 2 R x 2 C k 2 x 2 k 2 x 1 r D 0: (1b) 
The friction condition on mass m 2 is characterized by the friction coefficient . It is assumed that there is no vertical separation such that the corresponding normal force N can be specified.

Equality-based Coulomb's friction Assuming a closed contact in the normal direction, Coulomb's friction classically says the following:

P x 2 D 0 H) jrj Ä N P x 2 ¤ 0 H) jrj D jN j and 9˛ 0 j r D ˛P x 2 :
(2)

Among others, Equation (2) can equivalently be recast into the nonsmooth equality [1,8,3] ‰.r; P x 2 / D P x 2 C min.0; .r C N / P x 2 / C max.0; .r

N / P x 2 / D 0 (3) 
where is any strictly positive real number. Equations ( 1) and (3) in the unknowns functions of time x 1 , x 2 , and r collectively describe the dynamics of the system. The equivalent Coulomb's friction equality is depicted in Figure 2.

Weighted-residual formulation It is proposed to search for periodic solutions by solving the above formulation in a weighted residual sense. All unknowns of the problem are expanded on an appropriate truncated basis of T -periodic functions with n members k .t /, k D 1; : : : ; n, commonly the Fourier basis in the Harmonic Balance Method, as follows:

x 1 .t / D P k x 1k k .t /; x 2 .t / D P k x 2k k .t /; r.t / D P k r k k .t /: (4) 
Depending on the smoothness of the selected basis functions, time derivatives might either be obtained by pointwise differentiation in time or expanded on a less smooth basis and related to the differentiated quantity in a weak sense. Once the expressions in Equation ( 4) and their time-derivatives are inserted in Equations ( 1) and ( 3 

The above integrals can be numerically computed using appropriate quadrature schemes. The resulting system of nonlinear equations can be solved using a classical trust-region nonlinear solver [4]. The proposed strategy can be seen as a very compact form of the AFT methodology [2] without regularization, and it shares similarities with the DLFT technique [6] which also relies on the AFT. The proposed formulation is very compact and involves simple implementations such as basic integral quadrature schemes and existing nonlinear solvers. Its engineering value lies in its capability to generate reasonable approximations without difficulty in contrast to much more advanced time-stepping or event-driven schemes [1,5,7].

Results and discussion

Periodic responses are sought for the following dimensionless values of the system parameters: sticking over an entire period of the motion. In the case of sliding for the mass m 2 ( D 0), linear natural frequencies are ! 1 D 0:618 rad/s and ! 2 D 1:618 rad/s. In the case of sticking for the mass m 2 ( D 1), then the associated linear system has a single degree of freedom and its free vibration natural frequency is ! 1 D 1:414 rad/s. For the specified parameters and N , sliding only is observed when the forcing frequency lies in the vicinity of the (linear) natural frequencies, with large velocities P x 1 and P x 2 . However, at ! D 4:5 rad/s, the computed motion over one period features stick-slip transitions at the friction point, with two stick-slip phases per cycle. The sticking phases are characterized by a constant displacement x 2 . The number of harmonics is set to n D 30 and the method has the ability to capture sticking behavior accurately. The graph of friction force versus velocity is such that the velocity at the friction point remains near zero as the friction force varies in the interval OE N; N D OE 0:45; 0:45 N, in agreement with Coulomb's friction law. The slipping phases of the motion are also well captured. Again, the friction force remains nearly constant at ˙0:45 N as a function of the slipping velocity, in accordance with Coulomb friction law. Overall, the results in the time and frequency domains agree well, at least for the considered set of parameters.

m 1 D 1, k 1 D 1, m 2 D 1, k 2 D

Introduction

Self-sustained oscillations of micro-electro-mechanical resonators are widely used in commercial devices, including clocks and sensors found in smartphones, automobiles, etc. These devices operate using a closed loop wrapped around a tiny mechanical resonator to generate a limit cycle whose frequency is near that of the desired resonance mode. Noise is inherent in such systems and leads to fluctuations of the frequency, which is a primary limiting factor in their precision. Mechanical resonators are used since they offer very precise frequency selection due to their low damping (when enclosed in a vacuum) and are easily actuated and sensed, for example, by electrostatic means. A common measure of frequency stability is phase noise, that is fluctuations from the desired limit cycle phase, which is manifested in the linewidth of the oscillator output frequency spectrum. Reduced phase noise leads to a sharper resonance and improved precision. It is well known that large amplitude operation of an oscillator generally improves phase noise, simply by increasing the signal-to-noise ratio (SNR) [1]. However, when nonlinear effects come into play, the phase noise increases due to so-called A -f noise conversion, in which the amplitude-frequency relationship arising from Duffing type nonlinearities converts amplitude noise into phase noise. It has recently been shown that phase noise can be reduced at large amplitudes using a non-monotonic A -f relationship and operating the oscillator at an amplitude where df /dA ≈ 0, a so-called zero dispersion (ZD) point, which locally eliminates A -f noise conversion. The theory behind this spectral narrowing effect has long been understood [2] but has just recently been realized in a physical system [3]. Experimental observations have uncovered another means of improving frequency stability, namely by using internal resonance (IR). Devices operating with 1:2 and 1:3 IR have been investigated and reductions in phase noise by several orders of magnitude have been measured [5,4]. Only very recently have the mechanisms behind this effect been uncovered, namely: (i) a ZD point caused by frequency veering in the backbone curve of the primary mode near IR in which the operating frequency is locally independent of the amplitude (∂Ω/∂A = 0) and (ii) the inherent phase synchronization of the two modes, n k φ0 -φk = 0, which results in cleaning of the primary mode by a less noisy secondary mode [6]. These two effects combine to give unprecedented phase noise performance in MEMS-based oscillators.

Model and Theory

A model is needed if one is to take full advantage of reducing phase noise via IR. To this end, we consider an idealized model of a self-sustained oscillator with a primary mode with coordinate x 0 that is coupled to one or more secondary modes with coordinates x k , expressed as

ẍ0 + 2Γ 1 ẋ0 + ω 2 0 (1 + η 0 )x 0 + γx 3 0 + ∂ x0 U cpl = S cos(ω 0 t + ϕ 0 + ∆) + ξ 0 ẍk + 2Γ k ẋk + ω 2 k (1 + η k )x k + ∂ x k U cpl = ξ k
where Γ j , ω j , γ j , are the decay rate, natural frequency, and Duffing nonlinearity of mode j, ϕ 0 is the relative phase of x 0 , ξ j and η j are additive and multiplicative noises, the potential U cpl (x 0 , ..., x k , ..., x N ) gives the correct nonlinear inter-modal coupling terms (i.e., the normal form) for the resonance of interest, and ∆ and S are the imposed phase and amplitude from the feedback loop electronics. It is assumed that only the primary mode experiences Duffing nonlinearity, since the higher order modes will be of smaller amplitude. For IR we assume that ω k ≈ n k ω 0 (k = 1, ..., N ), where n k are integers. The noise terms are assumed to arise from different physical sources and are therefore fully uncorrelated. Specifically, the noises are assumed to be zero-mean, white, Gaussian, and delta-correlated [6]. This class of models includes the essential features required to describe the manner in which the individual mode noise sources are converted into the phase noise of interest, measured by fluctuations in φ0 . The method of stochastic averaging [7] is employed with the assumption that oscillations of the primary mode is near ω 0 and the other modes oscillate at their respective resonant harmonics ω k ≈ n k ω 0 . We first consider the noise-free system to determine the nominal operating conditions, which are represented by fixed points in the averaged equations, and how they depend on parameters. Varying the amplifier parameter S and tracking the operating frequency shows that it approximately follows the IR backbone curve of the primary mode, which experiences mode veering under quite general conditions. This will reveal any ZD point(s), which typically occur near the veering. Small deterministic and random fluctuations around the desired noise-free operating point are described by linearized equations from which one can compute the diffusions of the phases ϕ j and the spectrum of the oscillator output, which is essentially Lorentzian. The noise-induced diffusion of ϕ 0 is of primary interest since it describes fluctuations in the oscillator frequency, and these behave according to ⟨δϕ 2 0 ⟩-⟨δϕ 0 ⟩ 2 ≈ D 0 t where D 0 is its diffusion coefficient. A spectral analysis shows that D 0 represents the full linewidth of the ϕ 0 spectrum at half power, which is a simple way to connect the theory with standard experimental noise metrics: smaller D 0 corresponds to a sharper response spectrum and better frequency stability.

Results and Discussion

Theoretical predictions are made using the parameters of a real device with 1:3 IR; see [8] for a detailed description of the device and experimental setup. Figure 1 shows results from the analysis and experiments in and out of IR, indicating the frequency of oscillation and the diffusion constant D 0 versus a measure of the amplifier level (left and middle panels), and the spectrum of the oscillator output (right panel). It is assumed that the dominant noise source is additive noise of the primary mode, which is typically the case since it includes the noises affiliated with the loop circuit and output measurement. The noise intensity is estimated from the single mode Duffing response based on results from [9]. Using these parameter values in the theory allows for predictions that are compared against measurements. As depicted in Figure 1, the agreement between theory and experiment is remarkable, given our lack of detailed knowledge about the noise sources. The theory and measurments consistently indicate that D 0 is reduced by 5-6 orders of magnitude when operating in IR. This dramatic improvement points a way to achieving unprecedented frequency stability in MEMS-based oscillators. The model and analytical results allow one to explore different resonance conditions and parameter tunings for optimizing the phase noise, as will be discussed in the presentation. Using Self-Excited Template Dynamics and Root-Finding Algorithms for Sensor Design
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Abstract. This work describes a new approach to dynamic sensor design that characterizes the steady-state sensor behavior in terms of a mapping onto a subset of degrees of freedom of a template nonlinear dynamical system with selfexcited dynamics. The mapping is computed using a root-finding algorithm that can be made insensitive to the use of unmodeled actuators to drive the sensor dynamics. The sensor gain, as captured the sensitivity of the components of the mapping to a parameter of interest, may be tuned by modifying parameters of the template system, without any changes to the sensor itself. An example application to mass sensing using a single, forced, linear, mass-spring-damper oscillator illustrates the general approach. The results show that the root-finding algorithm may be initialized without knowledge of the system damping or the properties of the unmodeled actuator and converges rapidly over a range of parameter values.

Introduction

Sensors are designed to exhibit a measurable change in behavior upon a change in their environment. Through suitable calibration, a quantifiable change in the environment may be inferred from a measured change in behavior. Ideally, the sensitivity (the sensor gain) of the change in behavior to the change in the environment is large so that the effects on such inference from noise in the environment or in the sensor measurements may be minimized. A sensor whose gain is tunable also when deployed affords opportunity to accommodate different operating conditions. Traditionally, a sensor is a real-time physical system that responds to changes in the system properties (cf. the masssensing mechanism using two coupled microcantilevers in [1]). A physical component is necessary in order for an interaction with the environment to be recorded, but the sensor may also include algorithmic components that execute according to inputs received unilaterally from the physical component and produce outputs that are transmitted unilaterally to the physical component, as in [2]. As an example, the motion of the tip of an atomic-force-microscopy cantilever may be measured using a laser and relied upon by an algorithm in order to compute the input signal to an actuator that drives the motion of the cantilever support. This paper discusses an alternative principle of operation, inspired by a methodology for eliminating time delays in hybrid testing in [3]. Here, the sensor combines a real-time physical component and a non-real-time, iterative root-finding algorithm, both of which respond to the environmental change according to the imposition of a set of template constraints. These constraints ensure that the response of the physical component maps onto a subset of the degrees of freedom of a template system with desirable behavior. By construction, the demands of real-time operation do not apply to such a sensor design, as time delays and unmodeled actuator dynamics are either inconsequential or may be accommodated within the root-finding algorithm.

Model system

As an illustration of the general design paradigm described in this paper (see [4] for further detail) consider the nonlinear dynamical system

u ′′ + -η + ηu 2 1 0 0 γ 1+δ u ′ + 1 + κ -κ -κ 1+δ 1+κ 1+δ u = 0, (1) 
in terms of a linear oscillator of mass 1 + δ, damping coefficient γ, and unit stiffness that is coupled through a linear spring of stiffness κ to a nonlinear Van-der-Pol oscillator of unit mass, displacement-dependent damping coefficient -η(1 -u 2 1 ), and unit stiffness. For η, κ, γ, δ ≪ 1, there exists a family of self-excited periodic orbits approximately given by u 1 (t) = r 1 cos(ωt) and u 2 (t) = r 2 cos(ωt -θ), where

ω = 1 + 1 2 κ + δ α 2 -1 , r 2 1 = 4 1 - γ ηα 2 , r 2 = r 1 /α, θ = arccos δ κ(1/α -α) , (2) 
and

δ 2 = 1 - 1 α 2 2 α 2 κ 2 -γ 2 . ( 3 
)
We may design a physical sensor sensitive to the mass difference δ according to the traditional paradigm by realizing the coupled dynamics in a single physical system and measuring the amplitude ratio α at steady-state. Alternatively, still within the traditional paradigm, we may consider a hybrid realization in which the nonlinear component is replaced with a real-time computer simulation and the coupling is realized using a measurement/actuation interface. Inevitably, measurement delays and unknown actuator dynamics then result in an amplitude ratio that deviates from that predicted for the coupled system. As a substitute that avoids any real-time coupling between the two oscillator components, consider the dynamical system

u ′′ + -η + ηu 2 1 0 0 γ 1+δ u ′ + 1 0 0 1 1+δ u = κ(σ 1 (t) -u 1 ) σ 2 (t)/(1 + δ) , (4) 
where σ 1 (t) is an a priori unknown signal of an a priori unknown period T and σ 2 (t) is the force output of an actuator applied to the linear oscillator and driven by an a priori unknown input σ(t) that is also periodic with period T . Notably, by the absence of coupling between the components, only the linear oscillator is affected by the mass difference δ, while only the nonlinear oscillator is affected by the coupling stiffness κ. The dynamics of the linear oscillator map onto the steady-state behavior of the template system (1) provided that σ 1 (t) = u 2,ss , σ 2,ss (t) = κ (u 2,ss (t) -u 1,per (t)) , u 1,per (T ) = u 0 , u1,per (T ) = 0,

where σ 2,ss and u 2,ss constitute the steady-state response of the linear oscillator and actuator assembly to the input σ and u 1,per is the periodic extension of period T of the displacement history of the nonlinear oscillator on the interval [0, T ] given the a priori unknown initial condition (u 0 , 0). We refer to the conditions in (5) as the corresponding template constraints. The sensor design is complete with the application of a root-finding algorithm that seeks to determine T , σ 1 , σ, and u 0 so that the template constraints are satisfied. To this end, we consider the initial solution guess T = 2π, σ 1 = σ ≡ 0, and u 0 = 2, as this corresponds to the case that κ = 0 and η ≪ 1. In a practical implementation we represent the unknown periodic functions as truncated Fourier series and retain the same number of modes in the first two equalities in (5). Notably, while it is necessary to allow transients to die out in the response of the linear oscillator, this is not the case for the nonlinear oscillator, which needs to be simulated only for a duration T . By the absence of coupling, however, there is no urgency in collecting data from the linear oscillator until steady-state has been satisfactorily reached and also no urgency to complete the simulations of the nonlinear oscillator in real time since the resultant outputs are only used to evaluate the residuals in (5). From (3) it follows that α = γ 2 + δ 2 /κ + O(1) in the limit as κ → 0. For fixed δ, the sensor gain may thus be made arbitrarily large by making κ sufficiently small. Since κ is realized only in the simulated component, tuning is possible without changes to the physical component. Of course, since σ 2,ss (t) = -2κ cos t + O(κ 2 ) as κ → 0, viable values of κ are bounded from below by the noise floor for the linear oscillator. Figure 1 shows several iterates of the root-finding algorithm for a particular choice of parameter values, and for the solution guess considered above, in the case of a constant delay between the actuator input σ(t) and output σ 2 (t). Similar convergence is observed over a range of values of δ and γ, even as neither is explicitly available to the algorithm. 

Concluding discussion

The brief discussion for the model example illustrates a general design principle that may be developed further by creative selection of template dynamics and a priori unknowns to be identified through imposition of template constraints. In the example, the physical component is assumed to be linear and, in assembly with the actuator, input-output stable. Neither assumption is a requirement of the paradigm, as means of tracking the behavior of interest of the physical component (other than waiting out transients) may be available through the imposition of feedback control and additional embedding of root-finding algorithms, similar to the use of control-based continuation in [3] for tracking unstable periodic orbits.

(withdraw)

Introduction

Nonlinear vibrations of a shallow shell-panels are sensitive to its boundary conditions and in-plane displacement at the boundaries. Amabili [1] held analysis on nonlinear vibrations of cylindrical shell-panels with various boundary conditions. In the analysis, the in-plane displacements are assumed as sufficiently larger number of coordinate functions as well as deflection, which results in huge computational costs. Analysis on nonlinear vibrations has been held by authors on shallow simply-supported shell-panel by assuming deflection as trigonometric functions and introducing an in-plane stress function which satisfies the compatibility condition. [2] However, this method cannot handle Clamped Edges. In previous research, the authors performed a nonlinear vibration analysis with single-degree-of-freedom approximation of a shell-panel with clamped edges by introducing power series for assuming deflection and describing in-plane deformation using a stress function. [3] In this study, the analytical method is extended for a shallow shell-panel with a clamped edge, introducing a coordinate function with power series in the direction perpendicular to the clamped edge. Furthermore, the effect of initial in-plane displacement on nonlinear vibration of the shallow shell-panels is investigated.

Analytical Procedures

The analytical model is shown in Fig. 1 expressed by dimensionless quantities. Taking the origin at the center of the panel, the 𝜉 and 𝜂 axes are introduced along in the in-plane directions. The dimensionless curvatures of the shell-panel in the 𝜉 and 𝜂 directions are 𝛼 𝑥 and 𝛼 𝑦 , respectively. Deflection and the in-plane displacements in the 𝜉 and 𝜂 directions are denoted by 𝑤 , 𝑢 and 𝑣 , respectively. The shell-panel is elastically constrained in the in-plane direction at the boundary. 𝑘 𝑥𝑦 , 𝑘 𝑥𝑚 and 𝑘 𝑦𝑝 , 𝑘 𝑦𝑚 are the spring constants per unit length in the 𝜉 and 𝜂 directions, 𝑘 𝑥𝑦𝑝 , 𝑘 𝑥𝑦𝑚 and 𝑘 𝑦𝑥𝑝 , 𝑘 𝑦𝑥𝑚 are the spring constants per unit length in the shear direction, respectively. Uniform initial in-plane displacements 𝑢 0𝑝𝑠 , 𝑢 0𝑚𝑠 , 𝑣 0𝑝𝑠 , and 𝑣 0𝑚𝑠 at the outer end of the in-plane springs in the 𝜉 and 𝜂 directions of the shell-panel were given. The in-plane displacements except for 𝑢 0𝑚𝑠 are set to 0. Poisson's ratio is 𝜈. The shell-panel is subjected to periodic excitation acceleration 𝑝 𝑠 + 𝑝 𝑑 cos 𝜔𝜏 in the lateral direction, where 𝑝 𝑠 and 𝑝 𝑑 are the constant acceleration and dynamic acceleration amplitude, 𝜔 is the excitation angular frequency, and 𝜏 is time. For the shallow panel, the in-plane inertia force can be neglected, then the dimensionless governing equations are shown in Eqs. (1a) and (1b). Eq. (1a) is the equation of motion in the lateral direction, and Eq. (1b) is the compatibility condition equation for in-plane deformation in terms of the stress function 𝑓.

𝑤, 𝜏𝜏 + 𝛻 ̅ 4 𝑤 -𝛼 𝑥 𝛽 2 𝑓, 𝜂𝜂 -𝛼 𝑦 𝑓, 𝜉𝜉 -𝛽 2 (𝑓, 𝜉𝜉 𝑤, 𝜂𝜂 -2𝑓, 𝜉𝜂 𝑤, 𝜉𝜂 + 𝑓, 𝜂𝜂 𝑤, 𝜉𝜉 ) -(𝑝 𝑠 + 𝑝 𝑑 cos 𝜔𝜏) = 0 (1𝑎) 𝛻 ̅ 4 𝑓 = 𝑐{-𝛼 𝑥 𝛽 2 𝑤, 𝜂𝜂 -𝛼 𝑦 𝑤, 𝜉𝜉 + 𝛽 2 (𝑤 2 , 𝜉𝜂 -𝑤, 𝜉𝜉 𝑤, 𝜂𝜂 )} (1b) The shell-panel is considered to be clamped at the edge 𝜉 = 1/2 and simply-supported at the other edges (SSSC). The deflection 𝑤 satisfying the boundary conditions is expressed by the single-mode assumption using the function that is the product of power series in 𝜉 direction and the sinusoidal function in 𝜂 direction as shown in Eq. (2).

𝑤(𝜉, 𝜂, 𝜏) = 𝑏 ̂11 (𝜏)(𝑑 4 𝜉 ̅ 4 + 𝑑 3 𝜉 ̅ 3 + 𝑑 2 𝜉 ̅ 2 + 𝑑 1 𝜉 ̅ + 𝑑 0 ) sin 𝜋𝜂̅ , 𝜉 ̅ = (𝜉 +

)

, 𝜂̅ = (𝜂 + 1 2 ) (2) 
In the above equation, 𝑏 ̂11 (𝜏) is an unknown time function. The coefficients 𝑑 4 , 𝑑 3 , 𝑑 2 , 𝑑 1 , and 𝑑 0 are selected to satisfy by the given boundary conditions. The stress function 𝑓 satisfying Eq. (1b) is obtained by the superposition of the homogeneous solution 𝑓 0 and the inhomogeneous solution 𝑓 1 . Assuming the inhomogeneous solutions in the same form as the deflection in Eq. ( 2), the unknown coefficients of the inhomogeneous can be obtained by the coefficient comparison. The homogeneous solution 𝑓 0 is assumed in Eq. ( 3) including the particular solutions with Fourier series both in 𝜉 and 𝜂 directions, where 𝑛𝑠 ′ = (𝑛𝑠 + 1)𝜋. [3] The unknown coefficients such as 𝑝 𝑦 and 𝐶 8𝑛𝑠+1 of the homogeneous solution can be obtained by the condition that the virtual work in the in-plane direction at boundary is zero as shown in equation ( 4). Next, substituting 𝑤 and 𝑓 into the equation of motion (1a) and applying the Galerkin method the nonlinear ordinary differential equation for 𝑏 ̂11 is obtained. From the equation of static equilibrium neglecting timevarying terms, static deformation 𝑏 ̅ 1 is obtained due to the in-plane initial displacement and the static external load. Introducing the dynamic deformation 𝑏 ̆1 taking the static equilibrium position as the origin 𝑏 ̂11 ≡ 𝑏 ̆1 + 𝑏 ̅ 1 , equation of motion for 𝑏 ̆1 is derived as shown in Eq. ( 5).

𝑀(𝑏 ̆1) = 𝑏 ̆1, 𝜏𝜏 + 2𝜀 1 𝜔 1 𝑏 ̆1, 𝜏 + 𝛼 2 𝑏 ̆1 + 𝛽𝑏 ̆1𝑏 ̆1 + 𝛾𝑏 ̆1𝑏 ̆1𝑏 ̆1 -𝑝 𝑑 cos 𝜔𝜏 𝐺 1 = 0 (5) Applying the harmonic balance method, nonlinear frequency response curves are obtained. In this analysis, we consider square cylindrical shell-panels, 𝛽 = 1, 𝛼 𝑥 = 3, 10 and 𝛼 𝑦 = 0, based on the authors' previous experiments. We considered two cases of in-plane compressive displacement in the 𝜉 direction 𝑢 0𝑚𝑠 = 0, 1000. The number of Fourier terms in the in-plane stress function were set to 𝑛𝑠 = 𝑠𝑛 = 0, 1, 2 and 𝑛𝑐 = 𝑐𝑛 = 1, 2, 3. The values of 𝑑 4 to 𝑑 0 for the boundary condition are expressed as 𝑑 4 = 8, 𝑑 3 = 4, 𝑑 2 = -6, 𝑑 1 = -1, 𝑑 0 = 1. The in-plane spring constants are 𝑘 𝑥𝑝 = 10 14 , 𝑘 𝑥𝑚 = 1.67 × 10 -2 , 𝑘 𝑦𝑝 = 𝑘 𝑦𝑚 = 3.33 × 10 -2 , 𝑘 𝑥𝑦𝑝 = 𝑘 𝑥𝑦𝑚 = 𝑘 𝑦𝑥𝑝 = 𝑘 𝑦𝑥𝑚 = 10 7 . The amplitude of periodic load is 𝑝 𝑑 = 100. The modal damping ratio is 𝜀 1 = 10 -2 . The measurement point of deflection is 𝜉 0 = 𝜂 0 = 0.

Results and Concluding Remarks

Figs. 2 and3 show the results for the shell-panels 𝛼 𝑥 = 3, 10 under the compressive in-plane displacement 𝑢 0𝑚𝑠 = 0, 1000. Fig. 2 shows the characteristics of restoring force in which the relation between the static concentrated load 𝑞 𝑠 and static deflection 𝑤 at the center of the panel is shown. Fig. 3 shows the frequency response curves between the root-mean amplitude of deflection 𝑤 𝑟𝑚𝑠 and the excitation frequency 𝜔.

Fig. 2 shows that with small curvature, the linear stiffness i.e., the slope of the characteristics of restoring force around the equilibrium point, decreased with the increase of 𝑢 0𝑚𝑠 . On the contrary linear stiffness increased with large curvature. Fig. 3 shows that with small curvature, the linear natural frequency decreased with the increase in 𝑢 0𝑚𝑠 , while increased with large curvature. These are because an in-plane compressive load has the effects of reduction of linear stiffness on flat elastic elements, while of increase in stiffness due to increase in curvature on elements with sufficient curvature, and of influences of these opposite effects depends on the amount of curvature. Moreover, both Figs. 2 and3 show that as the in-plane compression increased, the softening nonlinear characteristics become much remarkable regardless of the curvature. Abstract. This study revealed the dynamic responses of the Tsurumi Tsubasa Bridge (a long-period, cable-stayed bridge infrastructure on the Tokyo metropolitan expressway) by means of seismic response analyses of a three-dimensional nonlinear frame-structural model exposed to multi-input ground excitations in the 2011 off the Pacific coast of Tohoku earthquake. The modal characteristics were basically consistent with those of previous studies and depended on the modelling of elastic restraint cables and the boundary conditions around the vertical axes of the main towers. By performing a sensitivity analysis of the dominant model parameters of the subject bridge structure, we examined the effects of axial rigidity of the elastic restraint cable on the longitudinal (LG) and transverse (TR) motions of the bridge system and on the coupled dynamic responses of the nonlinear structural components.

Equations of motion and structural modeling

A nonlinear dynamic analysis was conducted using a three-dimensional nonlinear frame model of the Tsurumi Tsubasa Bridge subjected to the ground excitation by the 2011 off the Pacific coast of Tohoku earthquake. On the basis of the previous study [1] and the bridge's construction material [2], we defined the standard structural model (Figure 1). The transverse beams of the main tower, main girder, and end piers were modeled with linear beam elements. The bases of the piers were modeled with nonlinear beam elements. The relationship between the bending moment 𝑀 and curvature 𝜑 was modeled considering the fracture process of core concrete restrained by steel bars, up to the fourth-order slope. The main cable was modeled as a nonlinear truss element with six different cross sections and transmitting only axial forces in the tensile direction. The model between the foundation and the ground is a sway-rocking model that takes into account translational and rotational springs and their coupling in the bridge LG and TR directions. These nonlinearities were modeled by considering load-displacement and moment-rotation angles up to fourth-order gradients. The stoppers were modeled by spring elements and their nonlinearities were introduced by trilinear. The vane dampers were modeled by viscous elements and their nonlinearities were idealized by bilinear. The elastic restraint cables were modeled using truss elements with a maximum initial tension of 9.0 MN, with four cables of approximately 117 m each per main tower. Pendel bearings and vertical bearings were modeled as truss elements, and horizontal bearings were modeled as spring elements. The boundary conditions were fixed in all directions at the fixed nodal points of the springs between the foundation and the ground, fixed in the vertical direction and around the vertical axis at the nodal points of the springs between the foundation and the ground, and free at all other nodes. 

Sensitivity analysis for dominant structural parameters in the seismic dynamic response

Figure 2 shows the eigenmode diagrams from the first-order to sixth-order modes when the reduction rate of the axial stiffness of the elastic restraint cable (hereinafter referred to as the reduction rate) is 50% and 70%, respectively. Figure 3 shows the time history of the response of the main girder between P3 and P4 for a reduction ratio of 50%. Figure 2(a) shows that the first swing mode is close to the first lateral symmetric bending mode, resulting in a decrease in the LG amplitude of the main girder in the first swing mode and an increase in the UD amplitude. Then the response in the LG direction decreased and the response in the UD direction increased at the P3-P4 girder, where the contribution of the first swing mode of the main girder becomes large (Figure 3). Additionally, the dynamic interaction of the vane damper and the foundation-ground spring at P3 was observed. In that case the response of the vane damper in the LG direction increased, and the response of the spring between the foundation at P3 and the ground in the LG direction decreased (Figure 4). For the 70% reduction rate case, the UD amplitude of the main girder in the first swing mode varies smaller than that of the case with a reduction rate of 50% (Figure 2(b)). In contrast the UD amplitude in the first symmetric bending mode increases due to coupling caused by the proximity of the first swing mode and the first symmetric bending mode of the main girder (Figure 2(b)). This results that the response in the UD direction increased in the main girder at the center span, where the contribution of the first symmetric bending mode is large (Figure 5). For the 70% reduction ratio case, we also observed the dynamic hysteretic interaction between nonlinear structural elements. The moment around the TR axis of the P3 at the main tower increased, and the response of the stopper, which is a vibration control device in the LG direction, decreased (Figure 6). Real-time additive sound synthesis of plucked strings considering inharmonicity and geometrical nonlinearity using the method of multiple scales Shoya Saito * , Naoto Wakatsuki * * , Tadashi Ebihara * * , Yuka Maeda * * , and Koichi Mizutani * *

Introduction

Nowadays, to reproduce the sound of acoustic musical instruments on the computer, sample-based technology is often used. However, it requires huge samples of waveforms to reproduce the changes in the sound depending on the strength and position of plucking or striking. Therefore it costs a lot of storage and memory on the computer. Physical modeling technology might be able to solve such a problem. However, detailed modeling methods like FEM require a long calculation time. Therefore, using it as a musical instrument or a software synthesizer is impossible.

For such a reason, we have worked on reproducing the sound of acoustic musical instruments by additive synthesis that consumes low computation costs. First of all, we implemented reproduction of the changes in the sound of the membrane depending on the position. However, we have not involved geometrical nonlinearity of membrane vibration. Therefore it could not reproduce the sound changes depending on beat strength. For a basic study, as a simpler one-dimensional nonlinear case, we tried and implemented the reproduction of the sound of strings. However, we did not consider about inharmonicity of strings. Therefore the sound we could get was limited.

In this study, we introduce bending stiffness into the previous nonlinear model and implement reproduction of a wide range of the sound of strings by applying the method of multiple scales to it.

Theory

The model considering inharmonicity and geometrical nonlinearity used in this study is as follows. We added two damping parameters and an inharmonicity parameter to the Kirchhoff-Carrier strings model [3,4].

∂ 2 u ∂t 2 = c 2 ∂ 2 u ∂x 2 -β 2 ∂ 4 u ∂x 4 -σ 0 ∂u ∂t + σ 1 ∂ 3 u ∂t∂x 2 + K 2 L 0 ∂u ∂x 2 dx ∂ 2 u ∂x 2 (1) 
u is a lateral displacement of the strings, x is a coordinate on the strings, c is a phase velocity, σ 0 is a frequencyindependent damping parameter and σ 1 is a frequency-dependent damping parameter. c, K and β are represented as follows, where I is a moment of inertia of area, ρ is a density, κ is a radius of gyration, E is Young's modulus, S is a cross-sectional area, T is a tension, L is a length of the strings and r is a radius of the strings.

c = T ρS , I = r 4 4 π, κ = I S , β = κc ES T , K = E 2ρL (2) 
We substitute Eq. (3) to Eq. ( 1) to split it into each eigenmode. M is the number of modes that the model considers.

u (x, t) = M p=1 U p (t) sin (pπx) (3) 
Then, we modify the equation to adequate form and apply the method of multiple scales [5] to it. U * p (t) is the approximate solution of U p that we can get.

(4)

U * p (t) = C p e - c 2 σ 0 +σ 1 ω 2 p 2c 2 t cos (ω p + β 2 2c 4 ω 3 p )t - ω p 8 e -(σ 0 + σ 1 c 2 ω 2 p )t C 2 p K 2 c 2 σ 0 + σ 1 ω 2 p p 2 π 2 L + M m=1 e -(σ 0 + σ 1 c 2 ω 2 m )t C 2 m K 2 c 2 σ 0 + σ 1 ω 2 m m 2 π 2 L
C p is an initial amplitude of each eigenmode and determined by Eq. ( 5), where x l is a plucked position and u 0 is a initial lateral displacement of the strings.

C p = 2Lu 0 p 2 π 2 1 x l + 1 L -x l sin pπ x l L (5) 
We developed an application using MATLAB which has a graphical user interface that can control parameters and play the sound. It can calculate and play the sound simultaneously. We confirmed that it has a capability of real-time sound synthesis including reproduction of the changes of the sound depending on strength and position of plucking and radius of strings as Fig. 123show. It reproduces the sound of steel strings which ρ = 7850kg/m 3 , E = 205 × 10 9 N/m 2 . On this time, the number of modes, M , is 125 and modes those frequency(ω p + β 2 2c 4 ω 3 p ) are more than Nyquist frequency aren't added at Eq. ( 3) to avoid aliasing. 

Conclusion

In this study, we succeeded in synthesizing the plucked sound of strings considering inharmonicity and geometrical nonlinearity in real-time. While various timbres can be obtained compared to the previous study, we can set σ 0 and σ 1 freely without a physical basis. Moreover, it does not reproduce internal resonance. We will continue to work on these problems, eventually extend them to a two-dimensional problem and work on the reproduction of membranes.

Non-planar self-excited oscillation of a string due to velocity feedback control Xinzhe Xu * , and Hiroshi Yabuno * * University of Tsukuba, Japan Abstract. We consider self-excited oscillations of a string with displacement excitation at an end. The excitation is applied according to the feedback with respect to the velocity at a position of the string. We derive the amplitude equations expressing the planar and non-planar motions considering cubic nonlinear damping. The theoretical and experimental bifurcation diagrams with respect to the linear feedback gain reveal the critical feedback gains for the planar and nonplanar motions.

Introduction

Non-planar motion in strings have been attracted much attention for a long time because they are induced by the nonlinear coupling between motions in mutually perpendicular directions [1,2,3,4]. There are many studies of the non-planar motion in the resonant state due to the external excitation (for example [5,6]), but few studies due to the self-excitation [7]. This study investigates the non-planar motion of a self-excited string subject to the excitation displacement at an end. The excitation is according to the feedback with respect to the velocity at a point of the string. By applying the method of multiple scales, some nonlinear characteristics of the self-excited oscillations are revealed from the amplitude equations. Because of the cubic nonlinear damping, the amplitude of the self-excited oscillation does not grow and is kept constant after the transient state. The planar and non-planar motions are produced depending on the magnitude of the velocity feedback gain. The theoretically predicted phenomena are demonstrated by a simple apparatus.

Theoretical and Experimental analyses

Analytical model of non-planar oscillation of a string subject to the boundary feedback control is shown as Figure 1. The string, with length l, cross section area A, and density ρ, is vertically disposed by initial tension N 0 . Setting the origin O at the upper end of the string in static state. z describes the position of the point on string. ξ and ζ are the displacements of the point at z in x-and y-directions. The displacement at the upper end is introduced as δ = c f ξ(s 0 , t) relating to the response displacement at z = s 0 , where c f is the feedback gain. By using the representative time T = (ρAl 2 /N 0 ) 1/2 and representative length L = l, and the nonlinear coefficient β = (EA -N 0 )/N 0 , the equations of motion of the self-excited oscillation of a string subject to the feedback control are expressed in the non-dimensional form as

ξ * +2µ ξ * -ξ * ′′ + µ n ξ * 3 - β 2 1 0 (ξ * ′2 + η * ′2 )dz * ξ * ′′ = 0 (1) η * +2µ η * -η * ′′ + µ n η * 3 - β 2 1 0 (ξ * ′2 + η * ′2 )dz * η * ′′ = 0, (2) 
where the linear and nonlinear damping effects are considered as the second and fourth terms on the left hand side. In this study, unlike [8], the nonlinear damping is cubic. The boundary conditions are

ξ * (0, t * ) = c f ξ * (s * 0 , t * ), ξ * (1, t * ) = η * (0, t * ) = η * (1, t * ) = 0. (3) 
The solution of the first mode is derived using method of multiple scales as

ξ(z, t) = a(t) cos {ωt + ϕ(t)} sin πz, η(z, t) = b(t) cos {ωt + θ(t)} sin πz, ( 4 
)
where ω is the first natural frequency. The slow time variations of a , b, ϕ, and θ are governed with

               da dt = (-µ -πc f sin s 0 )a - 9ω 2 µ n 32 a 3 - π 4 β sin γ 32ω ab 2 db dt = -µb - 9ω 2 µ n 32 b 3 + π 4 β sin γ 32ω a 2 b dγ dt = π 4 β 16ω (a 2 -b 2 )(cos γ -1), (5) 
where γ = 2(θ -ϕ). There are two kinds of steady-state oscillations which are in the planar and non-planar motions as

     a st = 32(πc f sin s 0 -µ) 9ω 2 µ n b st = 0. ,            a st = b st = 16(πc f sin s 0 -2µ) 9ω 2 µ n sin γ st = 9ω 3 µ n c f sin s 0 π 3 β(πc f sin s 0 -2µ) . (6) 
Considering the conditions that these solutions can exist, we obtained three critical values of feedback gains as follows:

c f -cr0 = µ π sin s 0 , c f -cr1 = 2µ π sin s 0 , c f -cr2 = 2µ (π -9ω 2 µn π 3 β ) sin s 0 . ( 7 
)
Above the feedback gain c f -cr0 , the planar self-excited oscillation is produced. Above the feedback gain c f -cr1 , the motion perpendicular to the planar one is also destabilized. Above the feedback gain c f -cr2 , the steady-state non-planar self-excited oscillation is produced. By using parameters of real string as µ = 0.014, ω = 40, β = 1956, sins 0 = 0.83 and a small assumed parameter µ n = 0.01, we obtained a bifurcation diagram as Figure 2, where the blue and green lines denote the in-plane and out-of-plane steady-state amplitudes, respectively. The upper and lower diagrams described the steady-state amplitudes of in-plane motion and out-of-plane motion, respectively. In-plane and out-of-plane steady-state amplitudes are produced in the situation that the feedback gain is larger than the critical value as discussed above.

x y We conducted experiments by a simple apparatus, including a string with length 1.45m. The displacement sensors are set at the position 1.2m away from the upper end of the string. The piezo actuator gives the displacement at the upper end according to the velocity feedback. The velocity is derived from the digital differentiation of the displacement signal at the sensor position mentioned above. Figure 3 shows the experimentally obtained bifurcation diagram. The blue marks and green marks represent to amplitudes of excitation direction and the perpendicular direction of it, respectively. As theoretically predicted, increasing the feedback gain, the planar self-excited oscillation occurs first, and then the nonplanar self-excited oscillation is produced.

z O i j k z r(z,t) K(z,t) [(z,t) l s0 Figure 1: Analytical model. c f-cr0 c f-cr1 c f-cr2

Result and discussion

We considered a self-excited string, whose end is subject to the excitation displacement according to a velocity feedback control. The critical feedback gains to produce planar and non-planar motions were theoretically obtained by using the method of multiple scale. The theoretical results indicate that both planar and non-planar motions could occur at the same feedback gain under the relatively large feedback gain depending on the initial conditions. However, in the range of feedback gain for the non-planar motion, the planar motion was not experimentally observed. Also, in the range between c f -cr1 and c f -cr2 where the stable steady-state amplitude does not exist, the behavior could not be specified experimentally. More detail comparisons including a quantitative comparison between the theoretical and experimental results remain in a future work.

Introduction

Modal control, which is often used for the vibration control of mechanical structures, deals with a lowdimensional model that represents only a few vibration modes that have significant effects on vibration among all vibration modes, which can engender instability because of the effects of unmodeled vibration modes. However, an active wave control method exists that controls vibration throughout a structure by considering vibration as a superposition of waves. This method suppresses standing wave generation by eliminating one traveling wave or the reflected wave. Nagase et al. achieved vibration control of structures by eliminating reflected waves [1]. This method allowed only traveling waves to exist within the structure, thereby preventing not only the generation of standing waves but also the excitation of vibration modes. This study proposes and then examines a controller that can be implemented with a proportional and integral (PI)-controller using the active wave control method.

Derivation of a controller used for active wave control

This section presents an overview of active wave control method [2] [3]. First, we let 𝑣 (𝑡)[𝑚/𝑠] and 𝑖 (𝑡)[𝑁] respectively represent the velocity and force at the contact point in a multi-degree-of-freedom massspring-damper system. In addition, we let 𝐺 (𝑠) be a system with 𝑣 (𝑠) and 𝑖 (𝑠) as inputs and with 𝑖 (𝑠) and 𝑣 (𝑠) as outputs at each mass. The transfer function matrix 𝑇 (𝑠) of the entire system is represented by the star product 𝒮 𝒫 (•,•) of 𝐺 (𝑠) by Equation ( 1 (3)

Controller design and modeling of a two-degree-of-freedom mass-spring-damper system

Controller 𝐾(𝑠) is designed as a PI-controller with a filter, as

𝐾(𝑠) = 𝑊(𝑠) 𝑘 + 𝑘 𝑠 + 𝑘 , ( 4 
)
where 𝑘 stands for the proportional gain, 𝑘 represents the integral gain, 𝑘 is a positive constant, and 𝑊(𝑠) denotes the filter. If the integral controller part is , then no solution of the evaluation function is obtainable because it includes zero in the poles of the transfer function 𝑎 ℱ ℒ 𝑇 (𝑠), 𝐾(𝑠) -𝐾(𝑠) . Therefore, the integral controller part as must be included to obtain the solution. Because Equation ( 3) must be minimized in the realistic frequency range, filter 𝑊(𝑠) shown by Equation ( 5) is applied to remove the effects of the high frequency range, which do not include the vibration peaks, as presented below:

𝑊(𝑠) = 100 𝑠 + 100 . ( 5 
)
Assuming that the control input is added directly to the n-th stage, then the state equation for a two-degree-offreedom mass-spring-damper system is expressed by Equation ( 6) as

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝑢(𝑡), ( 6 
)
where state vector 𝒙 ∶= [𝑥 , 𝑥 |𝑥̇ , 𝑥̇ ] . In Equation ( 6), the system matrix 𝑨 and the input matrix 𝑩 are expressed respectively as

𝑨 = 𝟎 𝑰 -𝑴 𝑲 -𝑴 𝑫 ,𝑩 = 𝟎 𝑴 𝑸 , ( 7 
)
where 𝑰 represents the identity matrix, and where 𝑴, 𝑫, 𝑲, and 𝑸 respectively represent the mass matrix, the damping matrix, the stiffness matrix, and the constant vector signifying the position of the input.

4.Simulation results

Control simulations of the two-degree-of-freedom mass-spring-damper system used the active wave control method. Table 1 presents parameters used for the simulations. Presumably, = = = 𝑎 holds. By solving the nonlinear programming problem, each control parameter in Equation ( 4) to minimize the evaluation function of Equation ( 3) is obtained as 𝑘 = 0.2802, 𝑘 = 1.0653, and 𝑘 = 1.5389. The difference between the two transfer functions in Equation ( 3) is obtained as 𝐽 = 0.4346. Figure 1 depicts the time history response of the displacement of each stage when an impulse disturbance is applied to the ground. Figure 1 presents the great improvement achieved by the active wave controller for the impulse responses at both stages 1 and 2. 

Conclusions

The active wave controller suppressed vibrations that occur in a two-degree-of-freedom mass-spring-damper system. Future studies must investigate whether active wave control is applicable even if the degrees of freedom of the system are greatly increased. Furthermore, it is necessary to examine how the transfer function of the active wave controller changes as the degrees of freedom of the system increase.

Introduction

Due to environmental issues and the spread of wireless sensor networks, piezoelectric energy harvesters have been attracting attention because they can generate electricity using vibrations from the surrounding environment. Vibrations from the surrounding environment is typically a random vibration of low amplitude and of low frequency. However, conventional piezoelectric energy harvesters vibrate with large amplitude only near their resonant frequencies. This limits their operating bandwidth. To broaden the operating bandwidth, many studies have used snap-through motion. The snap-through motion, which is the movement between stable equilibrium states, is expected to produce large-amplitude oscillations and increase the amount of electricity generated. The greater the number of stable equilibrium states, the lower the potential wall between stable equilibrium points. Thus, the more likely it is that the snap-through motion will occur [2]. Deng et al. proposed an energy harvester(EH) that consists of a series of multiple cantilever beams with magnets fastened to the tips. and having different natural frequencies in parallel [1]. The number of stable equilibrium states increases exponentially with the number of oscillators due to the interaction between the magnets. Therefore, EH is expected to have a wide bandwidth at high levels of operation. However, there has been no research on design guidelines for EH, such as the appropriate arrangement of resonators. Therefore, this study focuses on EH and aims to clarify design guidelines for transducers that realize broadband operation in low-amplitude and low-frequency environments through experiments.

Forced vibration analysis

The experimental equipment is shown in Figure 1a. Three oscillators are arranged vertically. The oscillator has a magnet fastened to the tip of the cantilever beam, and the weight can also be fastened to the oscillator to shift the natural frequency. These oscillators were fixed to a shaker table that oscillates in the horizontal direction (indicated by the blue arrow in Figure 1a), resulting in the forced vibration of the oscillators. The vibration of the table was a swept sine with the amplitude of 0.3 mm and with frequency range of 5 Hz to 27 Hz. Let A denote the oscillator without a weight, and B to F be the oscillators with different mass weights fastened to the oscillator, respectively. The natural frequencies of A and F are 23.09 Hz and 11.99 Hz, respectively. Figure 1b shows the equilibrium states of the oscillators. Equilibrium states 1 and 2 were observed at a distance of 55 mm in the vertical direction between magnets. Here, for the snap-through motion to occur from equilibrium state 1 to 2, the center oscillator must move 4.2 mm to the left in Figure 1b and both ends oscillators must move 2.4 mm to the right in Figure 1b. Equilibrium states 1 to 3 were observed at a distance of 53 mm between the magnets, and equilibrium states 1 to 4 were observed at 52 mm and 51 mm, respectively. Equilibrium states 1 and 2 are characterized by linear symmetry with the center oscillator at the center. Equilibrium states 3 and 4 are characterized by point symmetry with the center oscillator at the center. The results of the experiment using three oscillators, A, A, and F (this is hereinafter referred to as AAF throughout this paper. This applies to the other oscillator arrangements too.), at a distance of 55 mm between the magnets are presented and discussed. Experiments were performed and compared between the AAF and AFA arrangements. First, the responses of AAF and AFA for the excitation with 5 Hz to 11 Hz are compared. The displacement at the beam tip was measured and denoted here as u 1 , u 2 , and u 3 for the top, middle, and bottom beams, respectively. Figure 2a shows the time history waveforms when it was excited from 5 Hz to 11 Hz. Figure 2b shows the results of the short-time Fourier Transform (STFT) for u 1 when the AFA was excited from 5 Hz to 11 Hz. The vertical axis of Figure 2b is the frequency at which the oscillator is vibrating and the horizontal axis is the excitation frequency. After the excitation Figure 2b shows that when snap-through motion occurs, a wide range of frequency components from 0 Hz to about 20 Hz are excited in the vibration. Figure 2c shows the time history waveform when it was excited from 5 Hz to 11 Hz. Figure 2d shows the STFT of u 1 when the AFA was excited from 5 Hz to 11 Hz.

From Figure 2d and Figure 2d, it can be seen that the snap-through motion occurs continuously starting at an excitation frequency of approximately 10.2 Hz, which is 0.5 Hz lower than the case of the AAF. The reason for the occurrence of snap-through motion from excitation frequencies lower than AAF is that the snap-through motion from equilibrium state 1 to 2 is more likely to occur when only the center oscillator resonates and vibrates significantly. This is likely due to the shape of the equilibrium state, which requires a large movement of the central oscillator to move from equilibrium state 1 to 2. This tendency was also observed for ADA, ACA, and EBF.

Next, the responses of AAF and AFA for the excitation from 13 Hz to 22 Hz are compared. Figure 3a shows the time history waveforms of the AFA when it was excited from 13 Hz to 22 Hz. Figure 3b shows the STFT of u1 when the AFA is excited from 13 Hz -22 Hz. From Figure 3a and Figure 3b, it is considered that the snap-through motion occurs continuously starting at an excitation frequency of approximately 20.7 Hz. This snap-through motion is considered to be caused by the excitation frequency approaching the natural frequency of A. Figure 3c shows the time history waveforms of the AFA when it was excited from 13 Hz to 22 Hz. Figure 3d shows the STFT of u1 when the AFA was excited from 13 Hz to 22 Hz. From Figure 3c and Figure 3d, it is considered that the buckling phenomenon occurs at an excitation frequency of approximately 17.5 Hz. Although the excitation frequency of 17.5 Hz is far from the natural frequencies of A and F, the snap-through motion occurs. Therefore, when the end oscillators have the same natural frequency and the center oscillator has a different natural frequency, the snap-through motion tends to occur even if the excitation frequency is far from the resonance frequency of those oscillators. This tendency was also observed for ADA.

Influence of viscous damping in autoparametric vibration absorber on its performance at the anti-resonance point (Experimental study by a simple apparatus)

Chao Zhang * , Hiroshi Yabuno * * University of Tsukuba, Japan Abstract. Autoparametric vibration absorber is a passive nonlinear control equipment to reduce the resonance amplitude in a main system. In the presentation, experiments using a simple cantilever-type autoparametric vibration absorber are introduced. The frequency response curves indicate that shortening the length of the beam reduces the inherently existing viscous damping effect in the absorber, thus improves the performance of the absorber. Also, we compare the steady-state amplitudes of the main system the cases with the pendulum-type and cantilever-type vibration absorbers at the antiresonance point. Then, in contrast with the former absorber, the performance of the latter one is upgraded by increasing the length because the damping effect of the absorber can be decreased.

Introduction

Harmful vibrations by resonances are caused in a wide variety of engineering dynamical systems. Haxton and Barr [1] designed the cantilever-type autoparametric vibration absorber reducing the response amplitude of a main system subject to external excitation. The attenuation mechanism has received much attention because of the positive utilization of internal resonance between the absorber and the main system. Many efforts have been made to improve the performance of this absorber. One important aspect is the expansion of the absorber's operating range. Cartmell and Lawson [2] implemented an active equipment so that the absorber is activated in the main system subject to excitation with a wider frequency range. The natural frequency of the pendulum-type absorber is automatically adjusted by the appropriate motion of a lumped mass of the absorber according to the excitation frequency. Vyas and Bajaj realized a wide-band autoparametric vibration absorber by introducing an array of n slightly mistuned uncoupled pendulums [3]. Meanwhile, another research direction is concerned with the location of the lumped mass of the pendulum-type autoparametric vibration absorber. Song et al. [4] investigated the vibration response of the spring-mass-damper system with a pendulum-type autoparametric vibration absorber. The theoretical analysis based on the harmonic balance method shows that under the same total mass of the absorber, when the mass is located near the tip of pendulum, the absorber performance is enhanced. In this presentation, we demonstrate experiments using a simple cantilever-type autoparametric vibration absorber to examine the effect of the damping in the absorber. It is shown that the damping of the absorber depends on the length of the absorber. Also, we theoretically compare the effects of the length of absorber on the performance between the cantilever-type vibration absorber with that on the pendulum-type one.

Validation experiments and comparison of equations of motion

Figure 1(a) shows the analytical model of cantilever-type autoparametric vibration absorber mounted on the main system which moves only in the 𝑥-direction. The absorber suppresses the response amplitude of the main system in this direction. The parameters of the main system are the mass 𝑀, the viscous damping coefficient 𝑐 and the stiffness of the restoring force 𝑘. The excitation amplitude and frequency to the main system are 𝑎 𝑒 and 𝜈, respectively. The parameters of the absorber are the Young's modulus 𝐸, the area moment of inertia 𝐼, and the total length 𝑙. The non-dimensional equations of motion of the main system and the vibration absorber are expressed by using the representative length 𝐿 = 𝑎 e and the representative time 𝑇 = √︃

𝑀+𝑚 𝑘 as d 2 𝑥 * d𝑡 * 2 + 𝜇 𝑥 d𝑥 * d𝑡 * + 𝑥 * = 6 5 𝑚 * 𝑙 * 𝑦 * d 2 𝑦 * d𝑡 * 2 + d𝑦 * d𝑡 * 2 + cos𝜈 * 𝑡 * (1) d 2 𝑦 d𝑡 * 2 + 𝜇 𝑦 𝑚 * d𝑦 * d𝑡 * + 𝜔 𝑦 2 𝑙 * 3 𝑚 * 𝑦 * - 6 5𝑙 * d 2 𝑥 * d𝑡 * 2 𝑦 * + 36 25 𝑦 * 𝑙 * d 2 𝑦 * d𝑡 * 2 + d𝑦 * d𝑡 * 2 = 0, ( 2 
)
where In the above equations, only the inertia nonlinearities are taken into account as an nonlinear effect, which is due to the motion of tip mass on the absorber in the 𝑥-direction [5]. This effect induces the autoparametric resonance between the main system and the vibration absorber. The steady-state amplitude of the main system at the anti-resonance point is analytically expressed as [5] 𝑎 st-b =

5 6 𝜇 𝑦 𝑙 * 𝑚 * . (3) 
Equation (3) shows that the shorter the length of the absorber (while increasing the tip mass of the absorber to maintain the same natural frequency of the absorber), the better the vibration absorption of the absorber. This is verified experimentally as shown in Figure 1 and 𝑚 2 = 0.04kg, respectively. Then, the theoretical amplitude ratio is

𝑎 st-b-1 /𝑎 st-b-2 = 𝑙 1 𝑚 1 / 𝑙 2 𝑚 2 = 0.2 0
.07 / 0.35 0.04 = 0.327, while the amplitude ratio obtained from the experimental data is 𝑎 st-b-1 /𝑎 st-b-2 = 0. 22 1.46 = 0.151. Then, we consider the performance of the pendulum-type absorber as shown in Figure 1(b). The absorber consists of an arm of length 𝑙 with tip mass 𝑚. The pendulum is is connected to the main system by a spring and a damper that provide torque proportional to the 𝜃 and angular velocity d𝜃 d𝑡 with coefficients 𝑘 𝜃 and 𝑐 𝜃 , respectively. The non-dimensional equations of motion of the main system and the vibration absorber are expressed by using the representative length 𝐿 = 𝑎 e and the representative time 𝑇 = √︃

𝑀+𝑚 𝑘 as d 2 𝑥 * d𝑡 * 2 + 𝜇 𝑥 d𝑥 * d𝑡 * + 𝑥 * = 𝑚 * 𝑙 * d 2 𝜃 d𝑡 * 2 sin𝜃 + 𝑚 * 𝑙 * d𝜃 d𝑡 * 2 cos𝜃 + cos𝜈 * 𝑡 * (4) d 2 𝜃 d𝑡 * 2 + 𝜇 𝜃 𝑙 * 2 𝑚 * d𝜃 d𝑡 * + 𝜔 𝜃 2 𝑙 * 2 𝑚 * 𝜃 -𝑙 * d 2 𝑥 * d𝑡 * 2 sin𝜃 = 0, ( 5 
)
where the non-dimensional parameters are

𝑚 * = 𝑚 𝑀+𝑚 , 𝜇 𝑥 = 𝑐 𝑀+𝑚 √︃ 𝑀+𝑚 𝑘 , 𝜇 𝜃 = 𝑐 𝜃 𝑎 e √ ( 𝑀+𝑚) 𝑘 , 𝑙 * = 𝑙 𝑎 e , 𝜔 𝜃 = √︃ 𝑘 𝜃 𝑘𝑎 2 e , 𝜈 * = √︃ 𝑀+𝑚 𝑘 𝜈, 𝑡 * = 𝑡 √︃ 𝑘
𝑀+𝑚 and 𝑥 * = 𝑥/𝑎 e . In the case that the natural frequency of the absorber is exactly tuned to be a half the excitation frequency, the dimensionless steady-state amplitude of the main system at the anti-resonance point can be expressed as:

𝑎 st-p = 𝜇 𝜃 𝑙 * 𝑚 * . ( 6 
)
Comparing equations ( 3) and ( 6), in contrast with the case with the cantilever-type autoparametric vibration absorber, the longer pendulum decreases the damping effect of the absorber and enhances the performance at the anti-resonance point.

Conclusions and Discussion

We considered the damping effect included in the autoparametric vibration absorber on its performance at the antiresonant point. In the case with a cantilever-type autoparametric vibration absorber, it was experimentally shown by a simple apparatus that shortening the length decreases the steady-state amplitude of the main system. Because the magnitude of steady-state amplitude at the anti-resonant point is proportional to the damping ratio, it is very important to decrease the damping in the absorber by setting other parameters for its high performance. Next, we theoretically considered the case with a pendulum-type autoparametric vibration absorber. In contrast with the case of the cantilever-type autoparametric vibration absorber, it was indicated that the performance is enhanced by making the length of the pendulum long.

However, in practical applications, the stiffness of the vibration absorber may have to be limited to a constant value. Shortening the length of the cantilever or pendulum while keeping the natural frequency and stiffness constant requires increasing the tip mass. It leads to different conclusion that in both pendulum-type and cantilever-type autoparametric vibration absorbers, a shorter length and larger tip mass result in better vibration absorption.

Introduction

In recent years, maintaining vibration durability has become more important as automotive parts have become lighter and more complex in shape. In the vibration test, a jig is designed and manufactured to support a complex-shaped part on a vibration table. If the parts can be supported by a combined structure with standardized unit jigs, the unit jigs can be flexibly adapted to various test objects, which results in reduction of costs. On the other hand, to avoid resonance during the test, the combined structure jig must be lightweight and high rigidity to increase the natural frequency of it. However, when a heavy test object is attached to the light jig, the natural frequency of the jig decrease [1] . Development of such kind of jig for vibration tests is also important for nonlinear vibration test of heavier and larger structures.

In this study, numerical analysis and experiments are carried out under the condition that the test object is attached to the box-shaped jig made of resin for vibration test. By comparing with the results of the jig without the test object, the effect of the test object on the vibration of the jig is investigated. Furthermore, reinforcement of the resin box jig by adding metal parts is proposed to support heavy test object, and the effect of reinforcement is verified.

Box-shaped jig and reinforcement

Fig. 1 shows the box-shaped jig with a test object is attached in this research. Jig 1 is made of heat-resistant cured epoxy resin and has a box-shaped structure with dimensions of 100×150×250 mm and a thickness of 15 mm. The jig is machined and has an H-section in the X-Y coordinate plane. The jig is fixed on the base plate using the fixture made of L-shaped angle parts 2. In addition, the model with double-stacked jig is also considered to support a test object at a high position. Two unit jigs are fastened by bolts to each other. The 40×150×40 mm aluminium parts 3 and the 60×20×60 mm steel parts 4 are attached to the centre of the side plate of the lower stage jig with bolts as a test object.

Fig. 2 shows the reinforced jig to prevent decrease in the natural frequency of the jig due to a heavy test object. Six aluminium square pipes 5 of 70×67.5×30 mm and 3 mm thickness are inserted into each slot of the jig and fixed with bolts. For the double-stacked jig, aluminium plates 6 of 3 mm thickness are attached to the inner and outer sides of the jig to reinforce the stacked sections of the jig. From the measurements of mass and natural frequencies of rectangular plate of same material [1] , the following material parameters are identified: density 7. 

Results of experiment and numerical simulation

Table 1 summarizes the first natural frequencies obtained by the analysis and experiments for each model. Experimental results are obtained from the transfer function of the acceleration response to the impact excitation force. By changing the excitation points, the natural frequencies and mode shapes are obtained [1] . Numerical results are also obtained by a commercial finite element code. In addition, the error between the analytical and experimental results and the rate of decrease in the natural frequency due to the test object are also shown. Fig. 3 shows the analytical results of the first vibration mode of the single model. The mode shape of the jig without the test object is similar to lower mode of a cantilevered beam bending. On the other hand, the mode of the jig with test object has larger vibration amplitude at the side plate of the jig to which the test object is attached than the other side. The test object causes a change in the mode shape of the jig. Due to the change of the mode shape and the increase in mass of the model, the natural frequency decreases when the test object is attached, as shown in Table 1. Comparing with the single jig, the rate of decrease in natural frequency of the double-stacked jig is smaller, since the test object is relatively lighter compared to the jig in the double-stacked model.

In the analytical results, for the jigs without the test object, the mode shapes of both models with and without reinforcement are almost similar and the natural frequency of the reinforced jig is larger than that of the resin jig. Although the mass of the reinforced model is approximately three times as the jig without reinforcement, the natural frequency is kept due to the increase in stiffness. In the resin jig with the test object attached, the side plate to which the test object is attached vibrates. However, in the reinforced jig with the test object attached, the other side plate of the jig also moves, which is almost same as the jig without test object. This suppressed the decrease in the natural frequency of the jig by the test object. As shown in Table 1, the rate of decrease in the natural frequency of the reinforced jig is smaller than that of the resin jig, which is the result of making the jig heavier while keeping the natural frequency of jig. The change in the rate of decrease in the natural frequency due to reinforcement is greater for the single model than for the double-stacked in which increase in mass due to the metal parts is relatively small.

Comparing the natural frequencies obtained by experiment and analysis, the error is within 10 % for the jig without reinforcement. And the decrease rate in the natural frequency by the test object is almost same in the analysis and experiment. On the other hand, in the reinforced jig model, the natural frequencies of the experiments are smaller compared to the analysis. This is because of the stronger constraint condition between the resin jig and metal parts in the analysis than in the experiment. However, the rate of decrease in natural frequencies due to the test object is comparable between analysis and experiment. Therefore, it is also confirmed by experiment that the decrease in the natural frequency due to the test object of the reinforced jig is smaller than that of the resin jig. Abstract. In this paper, we make an experimental study of bifurcation phenomena by focusing on hyperbolic Lagrangian coherent structures, which are associated with Lagrangian transports in perturbed Rayleigh-Bénard convection.

From the data of the velocity field in Rayleigh-Bénard cells experimentally obtained via Particle Image Velocimetry (PIV), we detect the hyperbolic Lagrangian coherent structures (LCSs). Then we observe the bifurcation phenomena by varying the temperature difference between two immiscible fluids and we finally show that there exist figure-eight-like structures.

Introduction

The Rayleigh-Bénard convection, which is well known as the fundamental model of atmospheric circulation, is a natural convection occurred in horizontal fluid layer that is sandwiched by two immiscible fluid layers in which the lower fluid is heated and the upper one is cooled. In such Rayleigh-Bénard convection, it was clarified in [1] that stationary Bénard cells may begin to wave slightly by even oscillatory instability when Rayleigh number becomes slightly above the critical number by increasing the difference of temperatures at the boundaries. By this small oscillation in the vector fields, it was experimentally found that a complicated fluid mixing is induced in the context of Lagrangian description by proposing a model of perturbed Hamiltonian systems for the Rayleigh-Bénard convection, see [4]. Further such a chaotic fluid transport was theoretically elucidated by [2] in the context of the so-called Lobe dynamics. Recently, it was reported by [5] that there exists a figure-eight-like structure that was not experimentally observed in [4]. The purpose of this paper is to clarify how the fluid transports are qualitatively varied in association with the difference of the temperatures at the boundaries. To do this, we detect the hyperbolic LCSs that appear in Bénard cells, in particular, by varying the temperature difference of two upper and lower fluids. Finally we experimentally observe the bifurcation phenomena in the perturbed Rayleigh-Bénard convection.

Aparatus and procedures in experiments

As shown in Fig. 1, the experimental apparatus consists of three experimental tanks filled with water, namely, the upper tank, lower tank, and test tank. The temperatures of the water in the lower and upper tanks are controlled by two chillers.

To observe the fluid transport of the perturbed Rayleigh-Bénard convection, we make the following procedures.

(i) Set the initial temperature difference ∆θ to 0 • C and vary it up to 3.5 • C by each 0.5 • C step.

(ii) In each step of the temperature differences, we obtain the data of time-variant velocity vector fields by using the PIV in each temperature difference.

(iii) Then, we compute to detect the hyperbolic LCSs by numerically integrating the vector fields which we obtain from PIV in each temperature difference ∆θ. For numerical integration, the 4-th order Runge-Kutta method is employed in which the integration time is set to 3T , where T = 18.0 s is the time of period of the perturbation for the case of ∆θ = 3.5 • C. In Fig. 2, we show the hyperbolic LCSs associated with the perturbed Rayleigh-Bénard convection for the cases of ∆θ = 2.0, 2.5, 3.5 • C, where the blue line denotes the repelling hyperbolic LCS and the red line the attracting hyperbolic LCS.

LCSs and bifurcation phenomena observed in experiments

As to the derivation of LCSs, refer to [5,6].

As can be seen from Fig. 2(a), when ∆θ is relatively small, the hyperbolic LCS only exists around the cell boundaries, in which the saddle-like structures may correspond to the endpoints of the vertical lines of the cell boundaries, and the repelling and attracting LCSs can be observed along the outer shape of convection cells. Inside of the cells, there exists no hyperbolic LCS, which implies that the fluid transport inside of the cell is stable. In Fig. 2(b), it is observed that a hyperbolic LCSs slightly appears at the center of a cell when ∆θ = 2.5 • C, in which the center of Rayleigh-Bénard cell begins small oscillations. Further, for the case in which ∆θ = 3.5 • C, the oscillation becomes large and the sizes of Rayleigh-Bénard cells are to be larger than those for the case ∆θ = 2. 

Conclusions

In this paper, we have shown the hyperbolic LCSs that are experimentally obtained in perturbed Rayleigh-Bénard convection and also shown the bifurcation that appears in the perturbed Rayleigh-Bénard convection by varying the temperature difference ∆θ, which is proportional to the Rayleigh number. In particular, when ∆θ is 2.0 • C, there exist the hyperbolic LCSs in the boundaries of the cell while there does not exist any hyperbolic LCS inside of the cell. This means that the fluid transports around the cell boundaries can be chaotic by the homoclinic tangles associated with the hyperbolic LCSs, while the transports inside the cells are stable. Increasing ∆θ, the hyperbolic LCSs begin to appear inside of the cell when ∆θ = 2.5 • C. It follows that the transport inside the cell becomes unstable. When ∆θ is 3.5 • C, the figure-eight-like structures clearly appear inside of the cells and the regions inside of the cells become unstable. Thus, we have observed the bifurcation phenomena in the LCSs of the perturbed Rayleigh-Bénard convection, namely, the transition from the stable fluid transports inside of cells to the unstable fluid transports with the figure-eight-like structures.
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The influence of accuracy of initial values on the discrete energy in variational integrator

Mamoru Gunji * , Yusuke Ono * , and Linyu Peng * * Keio University, Japan

Abstract. In variational integrator (VI), variational principles are discretized rather than the equations of motion, yielding the preservation of symplectic structures for conservative systems. One well-known behaviour of VI is the fluctuating behaviour of energy. In this study, we report the results on a computational study of the behaviour of the energy estimated by VI, depending on the accuracy of discretizations of the initial position and initial velocity, and show the energy behaviour for several illustrative examples. The study suggests that time evolution of the discrete energy with higher order accuracy of discretized initial velocity is most likely to stay closer to the initial energy for conservative systems.

Introduction

In numerical analysis of differential equations in the modeling and numerical simulation of physical phenomena, geometrical numerical integration methods, i.e., structure-preserving numerical methods, have attracted much attention because of the importance of reproducing structures of differential equations in the corresponding discrete systems, such as preserving the symplectic structure or conserved quantities, in addition to execution time, accuracy, and stability [1]. Especially in long time simulations of conservative systems, numerical solutions that do not preserve the symplectic structure can cause significant deviations from the solution trajectory and problems such as energy dissipation, which is one of the conserved quantities. VI, in which the variational principle, known as the fundamental principle in mechanics, is discretized, is one of the most well-known geometric numerical integration methods [2,3]. Let t ∈ [0, T ] be time, q ∈ R n be the generalized coordinate and q be its time derivative. We consider the variational problem with a Lagrangian L(q, q), and the corresponding Euler-Lagrange equations read

∂L (q, q) ∂q - d dt ∂L (q, q) ∂ q = 0. (1) 
In the current study, for simplicity we assume that the Lagrangian takes the form

L(q, q) = 1 2 qT M q -V (q), (2) 
where M denotes the mass and V (q) is the potential energy. Discretizing the variational principle T 0 L(q, q)dt as k L (q k , q k+1 ), discrete variational calculus gives the discrete Euler-Lagrange equations

D 1 L k + D 2 L k-1 = 0, (3) 
where L k = L (q k , q k+1 ) and L k-1 denotes its backward shift, and D 1 and D 2 denote partial derivatives with respect to the first and second arguments, respectively. Initial values q 0 and q 1 of the scheme are determined by the initial conditions q(0) and q(0). Conventionally, the initial values have usually been given by a first-order Taylor expansion for the time step h. The first purpose of the current study is to study the influence of accuracy of initial values in VI; we also consider higherorder accurate initial values other than the conventional first-order case. Furthermore, the discrete series {q k } is updated sequentially in numerical simulations, but q is not given explicitly from simulations. In order to show the discrete energy, we consider several discretizations of q, namely, the conventional forward difference, the central difference, and the fourth-order central difference, and evaluate the corresponding energy behaviour.

Numerical simulations

We study the influence of accuracy of initial values for the harmonic oscillator, the simple pendulum, and the Kepler problem with an elliptical orbit.

Table 1: Conditions used in the numerical analysis M V (q) initial position & velocity time step Harmonic oscillator 1

1 2 q 2 q 0 = 1, q0 = 1 0.01
Simple pendulum 1 1 -cos(q) q 0 = 1, q0 = 1 0.01

Kepler problem I 3 -1 |q| q 0 = (1, 0) T , q0 = (0, 1) T 0.01
Note that all updates of the simulations are given by the same VI scheme

q k+1 = 2q k -q k-1 -h 2 M -1 ∇V (q k ) , (4) 
with respect to three different ways for obtaining initial values given by VI1:

q 1 = q 0 + h q0 + O h 2 , VI2: q 1 = q 0 + h q0 - h 2 2 M -1 ∇V (q 0 ) + O h 3 , VI3: q 1 = q 0 + h q0 - h 2 2 M -1 ∇V (q 0 ) - h 3 6 M -1 Hess(V (q 0 )) q0 + O h 4 , (5) 
where q 0 and q0 are the (given) initial position and initial velocity, and Hess(V (q 0 )) denotes the Hessian of V (q) at q = q 0 . Let α, β, γ denote the forward difference, central difference, and fourth-order central difference, and we consider

VIα: qk = q k+1 -q k h + O (h) , VIβ: qk = q k+1 -q k-1 2h + O h 2 , VIγ: qk = -q k+2 + 8q k+1 -8q k-1 + q k-2 12h + O h 4 , (6) 
that correspond to three different discretizations for the total energy.

Results and discussion

It is obvious that both the way for obtaining initial values as well as the method for presenting the discrete total energy will affect the energy behaviour. The maximum relative error of the total energy happens to be the same for short time (T = 10) and long time (T = 1000), which is summarized in Table 2. Hence we only show the relative error of the total energy in short time. As noticed from Figure 1, the discrete energy in all simulations are fluctuating within a certain range, and long time calculations will not cause the energy range to exceed the current maximum range according to Table 2 (unless censoring error becomes a problem). Among all cases, VI3γ is the most accurate according to energy behaviour. Within the VI2 category, the β case behaves better than the γ one. For VI1, maximum relative errors of the energy for all cases are of the similar order. However, discrete energy of the α case fluctuates around the exact energy, but these of the other two fluctuate over or below the exact energy; from this aspect, the α case seems the best choice for VI1. The results except VI1α, VI2β, and VI3γ look like a straight line because amplitudes of the fluctuation are relatively small. In summary, it is noticed that both the way the discrete energy is defined and accuracy of the initial values used in the iteration can greatly affect the evaluation of a VI. It tends to perform better by enhancing the accuracy of both of them based on results of the current study.

Experimental Study on Non-Planar Motions of a Standing Pipe Conveying Fluid Buana Mahkota Raja * , and Kiyotaka Yamashita * * Fukui University of Technology, Japan

Abstract. Lateral vibration of pipes conveying fluid reveals various dynamical features, and has been the subject of research as an essential model of unstable phenomena in a continuous system for many years. Many studies have focused on the dynamics of pipes with intermediate spring supports. One of the reasons why this system fascinates many researchers is that the presence of double degeneracy (the pitchfork and Hopf bifurcation points) can produce a sequence of bifurcating motions. Standing pipe conveying fluid is also a system that can give rise to such double degeneracy. In this study, we consider a standing pipe conveying fluid. A concentrated mass is attached at the upper free end to easily produce the double degeneracy. We experimentally investigated the effects of the concentrated mass on the non-planar pipe motions and observed some non-planar motions.

Introduction

The effects of spring supports, damping and concentrated masses on the stability of elastic pipes conveying fluid have been investigated as they are representative of elastic stability problems in non-conservative continuous system [1,2]. It has been pointed out that these conditions have a great influence not only on the linear stabilities of a pipe, but also on the post-critical nonlinear motions [3]. Many studies have focused on the dynamics of pipes with intermediate spring supports. In this system, the presence of double degeneracy (the pitchfork and Hopf bifurcation points) can produce a sequence of bifurcating motions. Standing pipe conveying fluid is also a system that can give rise to such double degeneracy. As shown in Fig. 1, we consider non-planar motions of a standing pipe conveying fluid. We focus on the nonlinear interactions between buckling and flutter instabilities. In particular, we conduct experiment involving a silicone rubber pipe conveying water to qualitatively confirm the non-planar motions caused by the interactions between buckling and flutter. A concentrated mass M is attached at the upper free end to easily produce the double degeneracy. 

ω 1i < 0, (2) ω 2i < 0, (3) ω 1i < 0, ω 2i < 0.

Basic equation and linear stability

Let v and w be the lateral deflections of the pipe centerline in the yand z-directions, respectively. The governing equation and boundary conditions for pipe motion in the x -y plane are expressed in the following non-dimensional form:

v + 2 √ βV v′ + γ { (α + 1 -s) v ′ }′ + V 2 v ′′ + v ′′′′ = n(v, w) (1) s = 0 : v = 0, v ′ = 0, s = 1 : v ′′ = 0, v ′′′ -αv + αγv ′ = b(v, w). ( 2 
)
where ˙and ′ denote the derivatives with respect to non-dimensional time t and curvilinear coordinates s, respectively. n(v, w) and b(v, w) are the cubic nonlinear terms with respect to v and w. The third term on the left side of Eq. ( 1) represents the effect of gravity. The governing equation and its boundary conditions in the x -z plane can be written in the same manner. Four non-dimensional parameters are involved in Eqs. ( 1) and ( 2) as follows:

α = M (m + ρS) ℓ , β = ρS m + ρS , V = √ ρSℓ 2 EI U, γ = (m + ρS) gℓ 3 EI . ( 3 
)
α, β, V and γ denote the non-dimensional concentrated mass, the non-dimensional fluid mass, the non-dimensional flow velocity and the ratio of the gravitational force to the elastic force. In experiments, it is possible to change α and V

independently by changing M and mean flow velocity U . By letting v = Φ n (s)e λnt and neglecting the nonlinear terms, we can construct the eigen-value problem. Φ n is the eigen-function and λ n = -ω ni + iω nr is eigen-value. In case of α = 0.1, Fig. 2 shows the effects of γ on the linear stability of the standing pipe. The unstable region is divided into three regions: (1) ω 1i < 0, ω 1r = 0 (buckling), ( 2) ω 2i < 0, ω 2r ̸ = 0 (flutter), ( 3) ω 1i < 0, ω 1r = 0, ω 2i < 0, ω 2r ̸ = 0 (buckling, flutter), where ω ni and ω nr mean damping ratio and eigen-frequency for nth mode respectively. For large γ, the system loses stability by buckling without flow and gains stability when the flow velocity V increases. At higher flow velocity, the system also undergoes flutter instability in the second mode. In certain parameter region, Fig. 2 shows that there are double degeneracy points. Third modes remain stable up to V = 10 which is the maximum flow velocity considered in the linear stability analysis.

Experimental results

We used a silicone rubber pipe with an external diameter of 9 mm and an internal diameter of 4.1 mm. The pipe had a circular cross section and had an overall length of 190 mm. We chose the pipe that is as straight as possible without deformation. Flowing fluid was water. Pipe was clamped at the lower end and was fitted with a mass M at the upper free end. An additional mass was a brass ring with a mass of 3.1 g. The overall length of the pipe and the concentrated mass are chosen such that the first mode in the system loses the stability by buckling without flow. The schematic experimental apparatus is shown in Fig. 3. Mean flow velocity in the pipe was measured using a Coriolis flow meter (KEYENCE FD-SS20 A) installed in the flow channel. The image processisng system (Dipp-Motion V, Detect) enabled us to conduct non-contact measurements of pipe motion in 3D space at a rate of 200 times per second. Lateral displacements v and w of the pipe were sensed by the system at s = 114 mm. Non-planar motions in the neighborhood of double degeneracy points are examined by varying α and V as the control parameters. No qualitatively different phenomena were observed for different initial conditions throughout the experiments. Without the attached mass at the upper end, the pipe loses stability by buckling and gains stability when the flow velocity U reaches 3.6 m/s. When the flow velocity slightly increased, the stable straight position became unstable and the almost planar self-excited vibration was produced. Next, we examined the effect of the concentrated mass M = 3.1 g on the post-critical motion. The system loses stability under its own weight by buckling without any applied flow. The static deformation decreased as the flow velocity increased. However, slightly over U = 2.7 m/s, the pipe experienced flutter instability. When U increased further, the pipe motion became non-planar as shown in Fig. 4. The dominant frequency of v and w is 2.93 Hz corresponding to the second mode natural frequency ω 2r . v and w have large constant components corresponding to the buckling deformation. For short time intervals, the pipe undergoes nearly in-plane motion. The center position of the in-plane vibration fluctuated with the passage of time, and the motion of the pipe exhibited a complex non-planar motion. This quasiperiodic oscillation gradually shifted to periodic motion as flow velocity increased. In the plane orthogonal to a direction of the static deformation, the pipe oscillated with a dominant frequency which corresponded to the second mode natural frequency.

In the plane parallel to a direction of the static deformation, the pipe oscillated with a dominant frequency which was twice the second mode natural frequency. Therefore, the plane where buckling occurs is orthogonal to the plane where self-excited oscillation in the second mode occurs.

Introduction

Self-excited oscillations in cantilevered fluid-conveying pipes are produced due to the nonself-adjointness of the eigencuntion and have attracted much attention 2) . The eigenvalues are changed as increasing the flow velocity and the loci for different modes on the Argand diagram go close to each other, but do not touch and bounce away in a parameter range. This phenomena is called eigenvalue collision 3) , and can produce specific nonlinear phenomena as internal resonance 4) . Because the eigenvectors of the system are not orthogonal to its adjoint vector in the scalar due to the Coriolis force, Bajaj 1) introduced a special vector form to achieve the orthogonality. However, this method is not applicable to the system in this study whose boundary condition contains the inertia force. To overcome this difficulty, we propose a new method to find the adjoint functions orthogonal to the eigenfunction and derive the amplitude equation and analyze the amplitude and phase difference of resonated modes in the internal resonance due to the eigenvalue collision.

Eigenvalue collision

We consider the fluid-conveying pipe whose upper end is supported by a spring-mass-damper as shown in Figure 1. The dimensionless equation of motion 2) is expressed as

v ′′′′ + U * 2 v ′′ + γ (1 -s)v ′ ′ + 2 βU * v′ + v -n(v 3 ) = 0, (1) 
where n(v 3 ) denotes the cubic nonlinear terms. The prime and dot stand for the derivatives with respect to the dimensionless arclength and the dimensionless time, respectively.The boundary condition of the system is expressed as

s = 0 : v ′ (0) = 0, v ′′′ (0) = -αv(0) -k * v(0) -c * v(0). s = 1 : v ′′ (1) = 0, v ′′′ (1) = 0.
(

) 2 
In this study, the ratio between flow and entire mass is β = 0.388, the ratio between gravity and elastic force is γ = 74.242, the upper end mass α = 4.286, elastic coefficient k * = 1.250×10 4 and damping coefficient c * = 3.520, respectively. Considering the linear terms in Eq. ( 1), we obtain the Argand diagram(as shown in Figure1(b) and (c)). We can find that the frequency of the additional mode and 3rd mode is close to each other when the flow velocity U is from 11.292 to 13.059, and the self-excited oscillations are produced due to the eigenvalue collision and 1:1 internal resonance.

As the displacement of the flexible pipe conveying fluid increases, the nonlinear term n(v 3 ) in Eq. ( 1) cannot been disregarded. For the two modes with close frequencies, the projection operator using the adjoint vector yields the following amplitude equations: 

ȧ1 = -ω 1i a 1 + 1 4 ξ 1r a 3 1 + 1 4 {(ξ 2r + ξ 3r ) cos ∆ϕ + (ξ 2i -ξ 3i ) sin ∆ϕ}
∆ φ =ω 1r σ + 1 4 {ξ 1i -η 2i -(η 3r sin 2∆ϕ + η 3i cos 2∆ϕ)} a 2 1 + 1 4 {(-ξ 2r + ξ 3r + η 4r -η 5r ) sin ∆ϕ + (ξ 2i + ξ 3i -η 4i -η 5i cos ∆ϕ)} a 1 a 2 + 1 4 {(-ξ 4r sin 2∆ϕ + ξ 4i cos 2∆ϕ) + ξ 5i -η 6i } a 2 2 + 1 4 {-ξ 6r sin ∆ϕ + ξ 6i cos ∆ϕ} a 3 2 a 1 - 1 4 {η 1r sin ∆ϕ + η 1i cos ∆ϕ} a 3 1 a 2 , (3) 
where a 1 and a 2 are the amplitudes of the 3rd mode and the additional mode, respectively. ∆ϕ is the phase difference of there modes, and ξ k and η k are constant coefficients due to the nonlinear terms in Eq. ( 1).

Experimentally observed internal resonance

In this study, the stiffness and damping at the upper end of the pipe can be freely settled by thrust force of a linear motor under the feedback control according to the displacement and velocity at the end. With the sensors, we measure the variations of the displacements of the pipe and the upper end different flow velocity as shown in Figure2 (a). We show the experimental results in the representative two cases of U = 12.24L/min and U = 12.61L/min in Figure2 (b) and (c), respectively. The self-excited oscillations with the 3rd or additional modes are produced through 1:1 internal resonance.

According to the experiment data, in the case when U is less than the critical flow rate of 11.95 L/min, giving the flexible pipe a small disturbance, the deflection immediately returns to its original position. When U is from 11.95 to 12.32 L/min or U is larger than 12.72 L/min, there is a significant difference in frequency between the 3rd mode and the additional mode, resulting in steady state vibration but no eigenvalue collision. When U is from 12.32 to 12.72 L/min, the frequencies of the 3rd mode and the additional mode are close, resulting in self-excited oscillations produced by 1:1 internal resonance and eigenvalue collision. 

Introduction

Self-excited vibration systems such as the Van der Pol (VDP) oscillator are typical nonlinear systems characterised by a nonlinear term in the governing equation which can either be positive or negative depending on the state of the system. VDP oscillator models were initially used to study the limit cycle oscillations of currents in electrical circuits with a triode valve [1]. Self-excited oscillations that are exhibited by the VDP oscillator were also encountered in aeroelastic systems [2], railway wheelset coupled vibrations [3], and exploited for micro-sensing [4]. The essential nonlinearity of self-excited systems gives rise to complicated nonlinear phenomena. Much research work has made use of the displacement and velocity responses to reveal the dynamics of various mechanical systems to achieve enhanced design. The vibration power flow combines the force and velocity in a single quantity and provides a good indicator of vibration energy transfer within the system. The vibration power flow analysis (PFA) approach has been widely used to analyse linear systems [5] and has recently been developed for nonlinear systems including these with non-smooth nonlinearities [6]. However, the energy flow behaviour of the self-excited systems has not been fully clarified. In view of these, in the current work, the vibration energy transfer behaviour of forced self-excited systems is investigated. The results are expected to provide useful information for improved design of vibration suppression systems and energy harvesting systems with similar dynamics characteristics as exhibited by self-excited vibrating systems.

Power flow analysis

The general governing equation and power flow balance equation of a harmonically excited self-excited system with viscous damper can be expressed as respectively, where 𝑓 and 𝜔 denote the amplitude and frequency of the harmonic excitation force, respectively; parameter 𝛼 is positive; 𝑐 and 𝛽 are the damping and stiffness coefficient of the system, respectively. Power flow quantities, such as the input power 𝑝 𝑖𝑛 = 𝑥ḟcos𝜔𝑡, power input associated with the nonlinear term 𝑝 nl = -𝛼(𝑥 2 -1)𝑥ẋ, and dissipated power by the viscous damper 𝑝 d = 𝑐𝑥ẋ. They quantities can also be time-averaged over a time span in the steady state. In this work, the harmonic balance method is used to obtain the steady-state response, validated by numerical integration results. For periodic motion, the steady-state response is assumed to be 𝑥 = 𝑟 1 cos(𝜔𝑡 + 𝜙), where 𝑟 1 is the displacement amplitude and 𝜙 is the phase angle. Following a HB analysis, the frequency-response relationship is found:

𝑥̈+
𝑓 2 = (𝛼𝜔𝑟 1 ) 2 ( 𝑟 1 2 4 -1) 2 + 𝑐 2 𝜔 2 𝑟 1 2 + 2𝛼𝑐𝜔 2 𝑟 1 2 ( 𝑟 1 2 4 -1) + 𝑟 1 2 (𝜔 2 -𝛽) 2 .
(2) The first-order approximations of the time-averaged input power (TAIP) and the time-averaged powers associated with the nonlinear term and the viscous damper over an excitation cycle (𝑇 = 2𝜋/𝜔) are:

𝑝̅ in = - 1 𝑇 ∫ 𝜔𝑟 1 𝑓cos𝜔𝑡sin(𝜔𝑡 + 𝜙) 𝑇 0 𝑑𝑡 = - 𝜔𝑟 1 𝑓 2 sin𝜙, (3) 
𝑝̅ nl = - 1 𝑇 ∫ 𝛼𝜔 2 𝑟 1 2 (𝑟 1 2 cos 2 (𝜔𝑡 + 𝜙) -1)sin 2 (𝜔𝑡 + 𝜙) 𝑇 0 𝑑𝑡 = - 1 8 𝛼𝜔 2 𝑟 1 2 (𝑟 1 2 -4), (4) 
𝑝̅ d = 1 𝑇 ∫ 𝑐𝜔 2 𝑟 1 2 sin 2 (𝜔𝑡 + 𝜙) 𝑇 0 𝑑𝑡 = 1 2 𝑐𝜔 2 𝑟 1 2 , ( 5 
)
respectively. The time-averaged input power can be expressed by

𝑝̅ in = 1 8 𝛼𝜔 2 𝑟 1 2 (𝑟 1 2 -4) + 1 2 𝑐𝜔 2 𝑟 1 2 . ( 6 
)
For quasi-periodic response, the displacement response is approximated by 𝑥(𝑡) = 𝑧̂1cos𝜔 𝑝 𝑡 + 𝑧̂2sin𝜔 𝑝 𝑡 + 𝑥 ̂1cos𝜔𝑡 + 𝑥 ̂2sin𝜔𝑡.

(7) Using a HB analysis method, the steady-state frequency response relationship is obtained:

(𝛽 -𝜔 2 ) 2 𝑟 1 2 + 𝛼 2 𝜔 2 𝑟 1 2 16 (2𝜌 1 2 + 𝑟 1 2 ) 2 + (𝛼 -𝑐) 2 𝜔 2 𝑟 1 2 - 1 2 (𝛼 -𝑐)𝛼𝜔 2 𝑟 1 2 (2𝜌 1 2 + 𝑟 1 2 ) = 𝑓 2 , ( 8 
)
where 𝜌 1 = √ 𝑧̂1 2 + 𝑧̂2 2 and 𝑟 1 = √ 𝑥 ̂12 + 𝑥 ̂22 .

Results and discussion

Case studies are carried out to show the dynamics of self-excited systems from the energy flow viewpoint. 

Introduction

The string vibration of a violin, cello, or other stringed instrument is well known as a self-excited vibration that captures DC energy from the bowing motion and converts it into AC energy. The instrument's sound is characterized by the coupled vibrations of the strings, which are transmitted to the entire instrument through the pieces. Measuring strings in stringed instruments is important from the viewpoints of physical elucidation and instrument development. However, it is not easy to measure the strings of stringed instruments because they vibrate at high speeds with large displacements relative to their thickness. The line density of the strings is small and is greatly affected by the mass of the load, making contact-type methods such as accelerometers inapplicable. Therefore, methods that use changes in light intensity blocked by the string, changes in capacitance between the string and electrodes [1] and piezoelectric devices attached to the piece [2] have been used. However, conventional methods are unsuitable for measuring musical instruments during the performance because they require placing a piezoelectric element across the strings, alteration of the piece during installation, and require expensive and large-scale facilities. To solve these problems, the authors proposed a string displacement measurement method based on the light intensity scattered by the string [3]. This method has a high degree of freedom in the placement of the sensor part and is expected to be used for measurement when attached to musical instruments due to its compact size. By taking advantage of this feature, we aim to elucidate the motion of a string rubbed on an actual musical instrument.

In this paper, we attempt to measure the spatial motion of a plucked string on an actual instrument using the proposed method.

Measurement method

The measurement system of the proposed method is shown in Figure 1. In the proposed method, light is emitted from multiple light sources to the string, and the string displacement is estimated from the scattered light intensity [3]. The emission intensity of each light source is modulated at a different frequency, and the scattered light is measured by a single photodetector. Using at least two light sources can estimate the string displacement (x, y). By increasing the number of light sources, the system is expected to be more robust against chance errors when measuring scattered light. When the number of light sources is M , the photodetector's output I(t) is expressed as follows.

I(t) = M i=1 S i (x, y)p i (t) + n(t), (1) 
where S i (x, y), p i (t) are the scattered light intensity amplitudes corresponding to the i-th light source and a certain periodic function, respectively. Square waves of different frequencies were used in this experiment. Also, n(t) denotes noise and t denotes time. The intensity amplitude of the scattered light varies with time as the string is displaced. The intensity x-y stage Photodetector amplitude of the scattered light is obtained by applying synchronous detection to the photodetector output I(t), as shown in the following equation. The low-pass filter used in the synchronization detection process should be set to sufficiently attenuate the modulation frequency of the light source and not affect the frequency response of the string vibration. Solve the problem of estimating the string displacement from the measured scattered light intensity amplitude. Since a nonlinear relationship exists between scattered light intensity amplitude and string displacement, training data is obtained by scanning within the area to be measured. A model is constructed to estimate the string displacement using support vector regression [4]. Since support vector regression is insensitive to noise, a robust estimation can be expected for noisy data such as measurement data. Using x for the string displacement vector (x, y) T and (S 1 (x, y), • • • , S M (x, y)) T for the vector of scattered light intensity amplitudes, the regression equation is as follows.

String

x = ϕ(s)W + b, (2) 
where ϕ is a certain nonlinear function, W is the regression coefficient, and b is a constant vector.

Experiment

A string displacement measurement method based on light intensity is used to measure the A-line of a violin that is being rubbed. The experimental system is shown in Figure 2. The violin (Suzuki, No.280, 4/4) was fixed on a surface plate with a rubber clamp near the contact point. A point 15 mm from the piece is rubbed to measure the string displacement around 35 mm. The illumination light and scattered light are guided by an optical fiber cable. The fiber-optic cable is fixed to a computer-controllable stage by plastic support and can be scanned. Four light sources were driven by square waves of 1.00, 1.25, 1.50, 1.75 MHz, respectively. An APD module (Hamamatsu, C5331) was used as the photodetector, and the photodetector output was recorded by an oscilloscope (Rigol, MSO5204). A bow was mounted on a single-axis stage as an automatic string-rubbing device. The single-axis stage is controlled by trapezoidal positioning with an upper speed of 120 mm/s and an acceleration of 4 m/s 2 . The weight of the bow applies the bow pressure. The cutoff frequency of the synchronous detector used to measure the scattered light was designed to be 20 kHz with a third-order Butterworth characteristic. The string displacement in the x-and y-axis directions are shown in Figure 3(a) , and the trajectory of the string at that time is shown in Figure 3(b). Figure 3(a) shows that the displacement of the string along the y-axis is a sawtooth wave-like oscillation. This is the well-known "slip and slip" motion. In the x-axis direction, the vibration occurs even though it is not in the rubbing direction. When the object slips from the trajectory, it is linearly displaced, and when it sticks, it is pulled back while oscillating in the x-axis direction. We confirmed that proposed method could measure complex string motions occurring on a musical instrument.

Conclusion

Using the proposed light intensity-based string displacement measurement method, we measured the spatial motion of a string during rubbing, known as self-excited vibration. Through experiments, we confirmed that the proposed method could capture the spatial motion of the strings on the instrument. The proposed method is used to analyze the motion of the strings during rubbing.

Selective self-excited oscillations in a two-degree-of-freedom spring-mass-damper system in two modes by using band-pass filter Mari Nishijima * , and Hiroshi Yabuno * * University of Tsukuba, Japan Abstract. Self-excitations have been considered a detrimental source inducing harmful vibrations in many cases but in recent years, is positively utilized to a wide variety of machines because it keeps the resonant state regardless of variations of system parameters. In this presentation, we propose a method to produce the self-excited oscillations with the first or the second mode and both the modes in a two-degree-of-freedom spring-mass-damper system. The self-excited oscillations are produced by velocity feedback control. The velocity feedback signal is filtered by a band-pass filter whose center frequency is appropriately set according to the desired response mode. Experiments using a simple apparatus demonstrated the selective self-excited oscillation in two modes.

Introduction

Self-excited oscillations are produced in various mechanical systems such as aerofoils, railway vehicle wheel, drill strings, and so on [1]. Many methods to avoid these phenomena damaging to the systems have been proposed. In recent years, the self-excitation has been attracted much attention as a method actuating a wide variety of machines because it keeps the resonant state regardless of variations of system parameters (for example, [2,3] ).For a two-degree-of-freedom spring-mass-damper system, a methods to produce the self-excited oscillations with various modes was proposed [4]. In this study, feedback forces are applied to each mass by two control inputs. In the present study, by single control input to only one mass, we realize the self-excited oscillations with the first or the second mode, or both the modes. To this end, we introduce a band-pass filter and suitably tune the center frequency according to the desired mode. We experimentally examine the validity of the proposed method by using a simple apparatus.

2 Self-excited oscillations of a two-degree-of-freedom spring-mass-damper system As one of simplest of multi-degree-of-freedom systems, we introduce the two-degree-of-freedom spring-mass-damper system shown in Figure 1. The dimensionless equations of motion are expressed as Eq. (1). Introducing the representative time and length, T = m1 k1 and L, we can express the dimensionless equations of motion as

   ẍ * 1 + (γ 1 + γ 2 ) ẋ * 1 -γ 2 ẋ * 2 + (1 + κ)x * 1 -x * 2 = F m ′ ẍ * 1 -γ 2 ẋ * 1 + γ 2 ẋ * 2 -κx * 1 + κx * 2 = 0 ẍ * 1out + (ω L + ω H )T ẋ * 1out + ω L ω H T x * 1out = (ω L + ω H )T ẋ * 1 , (1) 
where ẋ * 1 and ẋ * 2 are the dimensionless displacements of m 1 and m 2 , respectively. x * 1 is filtered by the band-pass filter whose output is x * 1out . m ′ = m2 m1 is the mass ratio.

γ 1 = c1 √ m1k1 is the dimensionless damping coefficient corresponding to c 1 , γ 2 = c2 √
m1k1 is the dimensionless damping coefficient corresponding to c 2 , and κ = k2 k1 is the dimensionless coupling stiffness. ω L and ω H are the cutoff frequencies of the low pass and high pass, respectively. The relation of the band-pass filter is expressed in the third line of Eq. ( 1). Also, we set the input feedback force F by the velocity feedback as f 1 ẋ * 1out .From the equations of motion, the root locus for the feedback gain f 1 between 0 and 0.002 are described by numerical calculation in Matlab as in Figure 2, where the parameter values are set equal to those in the experiment. As increasing the linear feedback gain f 1 , the self-excited oscillation occurs with the first mode. To produce the selfexcited oscillation with the second mode and with both the first and the second modes, we use a band-pass filter as follows. Figure 3 shows the experimental apparatus. The mass ratio of the apparatus were m ′ = 0.843. From experimental free oscillations, we obtained the natural frequencies, ω 1 /(2π) = 11.0 Hz and ω 2 /(2π) = 13.0 Hz, in the cases when the motion of m 2 or m 1 is fixed by taping, respectively. Under the same conditions, the damping ratios, γ 1 and γ ′ 2 were obtained as 0.092 and 0.009, respectively, by imposing the assumption of logarithmic decrement. Also, γ 2 and κ are determined by using ω 1 , ω 2 , m ′ , and γ ′ 2 were identified as 0.008 and 0.993, respectively, from the following equations:

γ 2 = ω2 ω1 m ′ γ ′ 2 , κ = ω 2 2 ω 2 1 m ′ .
Using the experimental apparatus shown in Figure 3, we produced these self-excited oscillations under the aid of band-pass filter. In order to avoid the growth of the response amplitude and to realize the steady-state self-excited oscillation with a constant amplitude, we applied additional cubic nonlinear feedback control with respect to the velocity of mass m 1 , leading to a limit cycle. Figure 4 (a), (b) and (c) shows the steady-state self-excited oscillations in cases without band-pass filter, and with band-pass filter whose center frequency is 13.8 Hz and 9.15 Hz, respectively. In the condition of (a) and (b), the self-excited oscillations only with the first or second mode, respectively. Furthermore, the self-excited oscillations of the first and second modes produced simultaneously in the condition (c). The first and second mode oscillated around 4.75 Hz and 11.75 Hz, respectively.

Conclusion and discussion

Toward the positive utilization of self-excited oscillation, we proposed a method to produce self-excited oscillations with different modes in a two-degree-of-freedom spring-mass-damper system. The aid of band-pass filter results in the relatively easy method based on single control input. The self-excited oscillations with the first or second mode and the both modes were demonstrated in a simple apparatus. Theoretical investigations about quantitative setting of the center frequency for producing the self-excited oscillation with desired modes remains as a future work.

Liquid density measurement using a microchannel stainless cantilever Takumi Nakamura * , Hiroshi Yabuno * , Yasuyuki Yamamoto * * and Sohei Matsumoto * *

Introduction

Liquid density measurement using resonance frequency shift of a macro resonator has been widely used. Some commercial high-sensitivity sensors are able to distinguish 10 -6 g/cm 3 difference of density [1]. However, they require approximately 1 mL of liquid sample. To minimize the amount, a buried channel microresonator was proposed which is known as an ultrasmall mass measurement method [3]. In fact, 5 pL of sample is enough to distinguish 10 -5 g/cm 3 difference by utilizing a buried channel microresonator under a low pressure environment [4]. Although the microresonators have high sensitivity, most of them have been made with MEMS fabrication facilities to process Silicon. If the microresonators can be fabricated in more common machinery, their production becomes much easier.

In this study, we measured the density of ethanol and distilled water using a stainless steel microchannel cantilever with self-excitation. The fabrication processes require laser cutting, metal etching, and diffusion bonding, which are more common than the MEMS fabrication processes. Self-excitation of the cantilever is induced by nonlinear velocity feedback computed on an FPGA to produce a limit cycle using the dynamics of the Rayleigh oscillator, which is based on our previous study [2].

Proposed measurement method

The principle of density measurement is based on resonance frequency shifts between with and without measured mass. They are expressed as f 1 = k/(m + ∆m) and f 0 = k/m, respectively. k is the equivalent stiffness of a resonator. m is the resonator mass and extracted as m = ρ c V c + ρ 0 V , where ρ c and V c are the density and volume of the cantilever, respectively. ρ 0 is the density of the base fluid. V is the volume of the channel. ∆m is the measured mass and extracted as ∆m = (ρ 1 -ρ 0 )V , where ρ 1 is the density of the measured fluid. By extracting f 0 and f 1 , the measured density ρ 1 is expressed as

ρ 1 = ρ 0 (f 1 /f 2 ) 2 + ρ c V c (f 1 /f 2 ) 2 -1
The self-excitation of the resonator is induced by the feedback signal ∆x = β l ẋ + β n ẋ3 , where ẋ is the tip of the resonator, and β l and β n are the liner and nonlinear feedback gains, respectively. The dynamics of the Rayleigh oscillator is utilized with the signal for the resonator.

We designed the microchannel cantilever shown in Figure 1 for density measurement. It is made of stainless steel (SUS304) and manufactured by Koken Chem. co., ltd. The length, width and thickness of the cantilever are 6000µm, 1050 µm, and 300 µm, respectively. It is formed by laser cutting. The dashed lines indicate the buried channel's placement. The channel is formed by metal etching on 200 µm thickness layer and covered by 100 µm thickness layer. They are combined by diffusion bonding. The width and depth of the channel are 150 µm and 75 µm, respectively. From the dimensions, the channel volume on the cantilever is estimated as 103 nL. This amplified signal drives the multi-layered piezo actuators (Tokin Corp.: AE0203D04DF). The velocity of the tip of the cantilever is measured via a scanning laser vibrometer (Polytec GmbH: MSA-500) and transferred to the FPGA via the bandpass filter (NF Corp.: 3624) to cut off unnecessary frequency other than the resonance frequency. The response velocity is stored in a digital multimeter (Iwatsu Elec. co., ltd.: VOAC7602) and a universal counter (Iwatsu Elec. co., ltd.: SC7205A) to record response amplitudes and frequencies, respectively. The fluid-supplying tube is removed from the syringe while self-excitation. 

Experiment contents and results

To examine the sensitivity, we injected ethanol (0.7892 g/cm 3 ) and distilled water (0.9982 g/cm 3 ) independently and induced self-excited oscillation to observe a resonance frequency shift. Figure 3 (a) shows the amplitude of the selfexcited cantilever can be controlled with the nonlinear feedback control. The amplitude becomes smaller if the nonlinear feedback gain is larger, as same as our previous method [2]. The resonance frequencies filled with ethanol and distilled water are 5270.6040 Hz and 5180.9269 Hz, respectively, as shown in Fig. 3 (b). The estimated density of distilled water is 0.8168 g/cm 3 as shown in Fig. 3 (c). The error bars indicate the error of measured values during 12 minutes measurement duration because the resonance frequency slightly deviates. The resonance frequency shifted with 89.6771 Hz for 0.2090 g/cm 3 density difference. Therefore, the density sensitivity is 429 Hz/(g/cm 3 ). When the density changes by 26%, the resonance frequency shifts slightly by 1.7% because the volume ratio between the cantilever and the channel is small (6%). 

Conclusion

Microresonators are very important devices for density measurement using a small amount of sample. In this study, we fabricated a stainless microcantilever with a buried channel made through laser cutting and diffusion bonding that are the fabrication methods for macro-scale devices, unlike processes for usual MEMS. The density measurements of ethanol and distilled water are conducted by observing the resonance frequency shift. The peak frequency shift was very slight for the large change of density. Regardless of the slight resonance frequency shift, the resonator made by the method in this study may be widely applicable with the aid of the method based on the eigenmode shift in weakly coupled resonators [5,6].

Dynamic Behavior of an Acoustic Warning Device Utilizing Impact Vibration

Hideaki Nishio * , Shinichi Maruyama * , and Kenta Watanabe ** * Gunma University, Japan ** Mitsuba Co., Ltd, Japan

Abstract. An audible warning device (AWD) is a device which generates sounds by impact vibrations. The behavior of AWD is a kind of self-inducted vibration in which the suction behavior in AWD depends on its own motion. It was found that curve veering is occurred between the two natural vibration modes when the sub-stay has a length in a certain range. Unstable behavior occurs when the length of sub-stay approaches slightly longer than that in which curve veering occurs. Moreover, the unstable behavior of AWD deeply depends on mounting angle of stay and sub-stay. In this research, the unstable behavior is investigated by analysis of impact vibrations. In the analysis, the dynamic behavior between impacts is expressed by linear vibration modes obtained by FEM, which consists of actual shape, to introduce the effects of the mounting angle. It was found that qualitative differences appear in the bifurcation diagrams and Fourier spectrum depending on the mounting angle.

Introduction

An audible warning device (AWD) is a device which generates sounds by impact vibrations. The behavior of AWD is a kind of self-inducted vibration in which the suction behavior in AWD depends on its own motion. Previous research [1] found that curve veering is occurred between the two natural vibration modes when the substay has a length in a certain range. Unstable behavior occurs when the length of sub-stay approaches slightly longer than that of where curve veering occurs. Moreover, the unstable behavior of AWD deeply depends on mounting angle of stay and sub-stay. In the analysis, the dynamic behavior between impacts is expressed by linear vibration modes obtained by FEM, which consists of actual shape, to introduce the effects of the mounting angle.

Analytical Procedures

Structure of AWD is shown in Fig. 1. By applying DC voltage into the coil, the shaft and pole are pulled and move closer to each other. When the gap between them becomes closer than a prescribed value, the shaft turns off the switch of the circuit. After the shaft and pole collided, they move away until the voltage is applied again and the pulling force between them becomes sufficiently large. Sound is generated by the vibrations of the resonator which are induced by the impacts between the shaft and pole. The AWD generates sound by repeating this process. In this research, the dynamic behaviour of AWD accompanied by impact vibrations is investigated. The dynamic behaviour between impacts are expressed by linear vibration modes obtained utilizing FEM model which consists of actual shape, to introduce the effects of the mounting angle between the stay and the sub-stay. 0 ° mounting and 90 ° mounting were considered in this analysis as shown in Fig. 2.

The equation governing response of the modal coordinate 𝑏 𝑗 (𝑡) related to the 𝑗th natural vibration mode response except for collisions is as shown as Eq. ( 1).

𝑏 ̈𝑗 + 2𝜀 𝑗 Ω 𝑛𝑗 𝑏 𝑗 ̇+ Ω 𝑛𝑗 2 𝑏 𝑗 = {𝜙 𝑠𝑗 (𝐿 𝑠 ) -𝜙 𝑢𝑗 }𝐹(𝑡) 𝐵 𝑗 ⁄ (1)
Where, 𝐵 𝑗 is modal mass and 𝜀 𝑗 is modal damping ratio, measured in experiments. The symbols Ω 𝑛𝑗 , 𝜙 𝑠𝑗 (𝑥) and 𝜙 𝑢𝑗 are natural angular frequency, natural modes of the stay and the shaft in 𝑧-direction obtained by FEM. The suction force 𝐹(𝑡) is modeled by the ramp function, in which the force increases linearly from the time when the switch is on with the increase rate of 𝐴, and takes zero when the switch is off. The impact period ∆𝑡 is numerically solved by Eq. ( 2), based on the exact solutions of displacements of the shaft 𝑈 𝑠 (𝑡) and the pole 𝑊 𝑠 (𝐿 𝑠 , 𝑡) using Eq. ( 1). The symbol 𝑑 is initial gap between the shaft and the pole. The modal coordinates just before the next collision 𝑏 𝑗 (∆𝑡) and its time derivative 𝑏 ̇𝑗(∆𝑡) are obtained by Eq. ( 1). The modal coordinates right after the collision is same as 𝑏 𝑗 (∆𝑡). The time derivative of the mode coordinates 𝑏 𝑣𝑗 (∆𝑡) is obtained by Eq. ( 3), based on the conservation of momentum and relation of impact using coefficient of restitution 𝑒.

𝑈 𝑠 (∆𝑡) = 𝑊 𝑠 (𝐿 𝑠 , ∆𝑡) + 𝑑 (2)
𝑏 𝑣𝑗 (∆𝑡) = - (1 + 𝑒) ∑ {𝜙 𝑠𝑘 (𝐿 𝑠 ) -𝜙 𝑢𝑘 }𝑏 ̇𝑘(∆𝑡){𝜙 𝑠𝑗 (𝐿 𝑠 ) -𝜙 𝑢𝑗 } 𝑁 𝑘=1 𝐵 𝑗 ∑ {𝜙 𝑠𝑘 (𝐿 𝑠 ) -𝜙 𝑢𝑘 }𝑏 ̇𝑘(∆𝑡){𝜙 𝑠𝑗 (𝐿 𝑠 ) -𝜙 𝑢𝑗 } 𝑁 𝑘=1 𝐵 𝑘 ⁄ + 𝑏 ̇𝑗(𝛥𝑡) (3) 
The responses after the collision can be calculated using 𝑏 𝑗 (∆𝑡) and 𝑏 𝑣𝑗 (∆𝑡) as initial conditions of Eq. ( 1).

Introducing the map from the modal coordinates and their time derivates after 𝑖th collision to those at 𝑖 + 1th collision, numerical iterations of maps, fixed points of maps and their stabilities were calculated.

Results and concluding remarks

Figs. 3(a) and 3(b) shows natural frequencies of the mode in which shaft and pole move opposite and the mode with one half-wave in the stay and sub-stay related to the length of sub-stay for 0 ° mounting and 90 ° mounting, respectively, Curve veering [2] occurs between 𝐿 𝑠𝑏 =80~90 mm for 0 ° mounting and 𝐿 𝑠𝑏 =70~80 mm for 90 ° mounting. It is known from experiments that unstable behavior occurs when the length of sub-stay is slightly longer than that where curve veering occurs. Fig. 4 shows the bifurcation diagram in which relation between impact period and the increase rate of the 𝐴 for 0 ° mounting, 𝐿 𝑠𝑏 =90 mm, obtained numerically repeating the map. The response is non-periodic and has fairly long impact period in which impacts are not induced every time for each period of vibration. Fig. 5 shows the bifurcation diagram for 90 ° mounting, 𝐿 𝑠𝑏 =80 mm, in which the period-1 response loses stability by Hopf bifurcation which results in amplitude modulated response with impacting at every vibration period. Fig. 6 shows the Fourier spectrum of the resonator displacement for 0° mounting, 𝐿 𝑠𝑏 = 90 mm, in which fairly long non-periodic impact period is found. Almost infinite number of sidebands appear in the Fourier spectrum. Figs. 7 and8 shows the Fourier spectrum for 90° mounting, 𝐿 𝑠𝑏 = 80 mm. Fig. 7 shows the stable period-1 response in which, Fourier spectrum has peaks at the frequencies corresponding to impact period and their harmonic components that are integer multiples of the impact period. Fig. 8 shows the response after Hopf bifurcation, in which, Fourier spectrum has 5 sidebands between adjacent super harmonic components. 

Introduction

Transmitted infrared light was commonly used in photoplethysmography (PPG) and transcutaneously monitored the arterial pulse [1]. In recent years, improvements in optical device technology have enabled the realization of reflected PPG measurement and visible light measurement. These techniques contributed to improving PPG measurement methods in terms of motion artifact reduction and usability. PPG has been popular in physiological monitoring, and is utilized for blood pressure estimation as well as pulse rate monitoring [2,3]. A number of studies have suggested that the PPG waveform parameters coincides with arterial stiffness and vascular reactivity. However, the waveform of PPG varies depending on the PPG probe contact pressure. This is because the vascular wall, which is the target of PPG measurement, is heterogeneous, anisotropic and incompressible, and is a viscoelastic material that deforms greatly in a nonlinear manner [4].

Particularly in reflected PPG, it is difficult to unify the contact force between the sensor and the measurement site for each measurement. Therefore, if the PPG waveform is changed by the contact pressure, the estimation results by waveform parameters obtained from the PPG will be also affected by the contact pressure. The purpose of this study was to verify the effect of contact pressure on PPG waveform characteristics. To verify the effect of changes in contact pressure when wearing the PPG sensor, we evaluated changes in signal amplitude, area, and pulse arrival time when the sensor was pressurized from 0 to 60 mmHg using a cuff. The green PPG sensor and near-infrared PPG sensor were used to verify the differences in the effects of penetration depth on the parameters.

Experiment

Participants for measurement

The experiment involved six young adults (22.7±0.5 years) without peripheral circulatory failure. This study was approved by the ethics committee. The experimental procedure was explained, and written informed consent was obtained from all participants.

Experimental protocol

Green and near-infrared PPG were measured at no pressure (0 mmHg), 20, 30, 40, 50, and 60 mmHg. ECG was simultaneously measured using a bedside monitor (BIOVIEW2000, NEC) at a sampling frequency of 1024 Hz. Pressurization was limited to 30 seconds to avoid vascular occlusion. To ensure the responsiveness of the experimental system, measurements were taken for 20 seconds after a 10-second wait for the first 10 seconds after pressurization. After the measurement, the cuff was depressurized by a valve attached to the cuff, and the next pressurization was performed after a 10-second wait.

Evaluation

Signal amplitude

A bandpass filter of 0.7 to 5 Hz was applied to the collected PPG. Peak detection of the maximum and minimum points was performed using a threshold set from the standard deviation, and the signal amplitude per beat was calculated from the difference between them. The median of the signal amplitudes detected during the 20 seconds of measurement was used as the signal amplitude at each pressure.

Signal area

The peak of the minimum point was detected using a threshold value set based on the standard deviation of the PPG after applying a band-pass filter from 0.7 to 5 Hz. Full-wave rectification was performed, and the integral value between the k-th peak and the k+1-th peak was used as the k-th area value. The median value of the detected area was used as the signal area at each pressure.

3.3 PAT Pulse arrival time (PAT) is the time difference between the R wave of the ECG and the peak of the PPG. Pulse Wave Velocity (PWV) calculated from PAT has been examined not only as an index of arterial stiffness but also for cuffless blood pressure estimation [5,6]. The median value of the detected each PAT was used as the PAT at each pressure.

Results and discussion

Figure 1 shows the mean and standard deviation of the changes in (a)signal amplitude, (b) area, and (c) PAT in the six participants at each contact pressure. Each parameter was evaluated using the ratio of the value at no pressure (0 mmHg) to the value at each pressure by considering individual differences. The black line shows the result of Green PPG and the gray line shows that of near-infrared PPG. As shown in Figure 1(a), the signal amplitudes of both green and near-infrared PPG increased with increasing contact pressure up to a certain pressure, with the green PPG having its maximum value at lower pressures than the near-infrared PPG. Signal area was also changed as similar to signal amplitude change. On the other hand, the PAT of green PPG and near-infrared PPG showed little change at low contact pressure. But as the applied contact pressure increased, the change from no pressure became larger due to false peak detection. It is known that the amplitude of PPG is affected by changes in vascular compliance due to pressure applied to the measurement area, and this is used in blood pressure measurement by the volume oscillation method of Yamakoshi et al. The principle is based on the pressure-volume curve, which is a mechanical property of blood vessels [4]. The pressure-volume curve shows the external pressure applied to the artery and the volume change.

When the arterial external pressure and mean blood pressure are equal, the arterial wall is unloaded and the volume change is maximum. Since PPG derives the volume change using light, the signal amplitude is maximum when the difference between the external and internal pressure of the artery is zero. In this study, the signal amplitude was also maximum at blood pressure (20-40 mmHg) in the arterioles present in the measurement area of the pulse wave sensor used. Pulse wave transit time showed less change than pulse wave amplitude for both green pulse wave and nearinfrared pulse wave. This may be due to the fact that the pulse wave velocity indicates the time taken for vibrations generated by the beating heart to propagate through the blood vessels to the fingertips, and less affected by local changes such as pressure loading on the fingertips. These results suggested the importance for constant control of contact pressure when using waveform features such as signal amplitude and area obtained from the reflective PPG sensor. where a(t) is a signal, where each binary data s n is assigned a unique time slot of duration (bit period) T , and

a(t) = s n (nT ≤ t ≤ (n + 1)T ) . (5) 
By applying Eqs. ( 2)-(4) to Eq. ( 1), we found that the information a(t) remains in both the first term (natural components) and second term (second harmonic) after harmonic distortion when ASK or FSK is used. Such fact can also be utilized to boost the performance of the receiver by combining two terms (frequency diversity combining, where the receiver compares sum of signal energy at frequencies f c and 2f c with the sum of signal energy at frequencies f c + ∆f and 2f c + 2∆f ). Hence, in this study, FSK is employed instead of ASK considering other issues in indoor acoustic channels (e.g. multipath interference). The use of frequency diversity combining is also considered.

Experiment

The performance of indoor acoustic communication using parametric loudspeaker was evaluated in experiments. The experiment was performed in an anechoic chamber. We put a transmitter (consisting a PC, digital-to-analog converter, and a parametric loudspeaker with 49 emitters) and receiver (consisting a audio recorder and PC) with a distance of 3.0 m. To calculate the transmission signal r(t), parameters summarized in Table 1 were used. To evaluate the performance of the communication system, bit error rate (BER) was evaluated by changing normalized signal-to-noise ratio [energy per bit to noise power spectral density ratio (E b /N 0 )].

Figure 2 shows the experimental results. As shown in Fig. 2(a), there exist spectrum of b(t) and its second harmonics, as expected in Eq. 1. As shown in Fig. 2(b), the communication system using FSK (without frequency diversity combining) achieved a BER of 10 -3 when E b /N 0 was about 12 dB (red-colord line in the figure). Furthermore, the performance was found to be improved by using frequency diversity combining (green-colored line). Specifically, FSK with freqency diversity combining achieved the BER of 10 -3 when E b /N 0 was about 10 dB. Improvement of E b /N 0 of 2 dB means that the signal power to achieve specific BER can be reduced about 40 %, which is desirable for acoustic communication using parametric loudspekers suffering from low sound pressure level output. Consequently, it was found that FSK with frequency diversity combining is suitable for indoor acoustic communication using parametric loudspeaker. 

Conclusions

Digital modulation and demodulation schemes suitable for acoustic communication using parametric speakers were studied. The use of passband modulation using FSK was investigated to achieve digital communication in acoustic channels with nonlinear signal distortion. Experimental results suggest that acoustic communication using FSK can successfully transmit data using parametric speakers, and its performance could be improved by combining frequency diversity. A future challenge is to achieve acoustic positioning using the proposed communication system.

Introduction

The development of biomimetic Autonomous Underwater Vehicles (AUV) has progressed. As this type of AUVs do not use motors nor screws for driving, radiation noise is reduced compared to conventional AUVs. Therefore, it is expected to be quiet and move without being detected by the surroundings. However, positioning is necessary for autonomous navigation, if artificial signal is used for this positioning signal, stealth cannot be maintained.

The authors propose a utilization of dolphin like bio-mimic signals for acoustic localization [1] . Dolphins use this pulse varying timing, intervals, range according to the application. It is known that they use different pulse train in their searching phase, approach and buzz phase. In searching phase, they emitted at equal intervals and equal amplitudes. In approach phase, the pulse intervals become shorter, and those amplitudes become smaller as they approach prey. Finally in terminal buzz, the pulses are continuously emitted at short intervals with small amplitudes just before feeding [2] . Authors have proposed pulse train of dolphin's clicks signal to get good signal to noise ratio (SNR).

Proposed pulse trains

(1) Pulse trains of searching phase Figure 1(a) shows one of the proposed pulse train signals like dolphins searching signal, and its autocorrelation result is in Fig. 1(b). In this pulse train signal, the transmit timings and the amplitudes of pulses are fluctuated like a living dolphin. The pulse repeated 31 times with interval of 100 ms adding uniform random fluctuation within 1 ms. It is reported that the average clicks interval of bottlenose dolphin in Indian sea and Atlantic Ocean is around 60 to 120 ms [3] . Also, the amplitude of pulses varied from 0.9 to 1.1 times from the based amplitude. The autocorrelation function has more than 25 times higher than that of a single pulse. In addition, the side robes are sufficiently small caused by the pulse interval fluctuation compared to that of constant repetition pulse train.

(2) Pulse trains of approach and terminal buzz phase Figure 1(c) shows a generated pulse train like approach and terminal buss phase. The autocorrelation result has a large main lobe as shown in Fig. 1(d). The i-th pulse interval TIi is

𝑇 I𝑖 = 𝑇 start - 𝑇 start -𝑇 end 𝑁 -2 × (𝑖 -1), 𝑖 = 1,2, ⋯ 𝑁 -1 (1) 
where 𝑇 start the first pulse interval length and 𝑇 end is the last pulse interval length, and N is the total pulse numbers. The i-th amplitude Ai can be written with the first pulse amplitude Astart and the last pulse amplitude Aend as 

𝐴 𝑖 = 𝐴 start - 𝐴 start -𝐴 end 𝑁 -2 × (𝑖 -1). 𝑖 = 1,2, ⋯ 𝑁 (2) 
Therefore, both the pulse interval and amplitude decrease as the number of pulse increase. In Fig. 1(c), 𝑇 start = 100 ms, 𝑇 end = 10 ms, 𝐴 start = 1, 𝐴 end = 0.2, and total pulse number is 47. Fluctuation of the pulse interval is within 5 ms and fluctuation of the amplitude is within 0.1 times from the theoretical amplitude of Ai. As same as that of the searching phase, there is a big peak as a main lobe and small pectinate peaks on both sides of the main lobe.

Result

Figure 3(a) shows the effects of the pulse interval fluctuation of searching phase in bottom side lobe peak. The line colour indicates the number of pulses in one signal from 11, 31, 51 and 101. Each pulse amplitude fluctuated within 0.1 of the ideal amplitude. In addition, fluctuation of the pulse interval varied from 0.01 ms to 5 ms. For each condition, the proposed signals were generated 100 times by changing random number and calculated its autocorrelation function. The lines in Fig. 3 shows average results of bottom side lobe peak from the autocorrelation function and max and minimum values as vertical vars. When the fluctuation of pulse interval was within 10 -2 ms, the bottom side lobe peaks were increased as the total pulse number increased which means no inhibitory effect by fluctuation. But their differences were suppressed as the fluctuation of pulse interval increased. The bottom side lobe peaks are almost the same regardless of the pulse number beyond 10 ms. Since a single pulse length was about 0.05 ms, the bottom side lobe peaks are enough suppressed by fluctuating pulse interval about 200 times of the pulse length. Figure 3(b) shows the case of approach and terminal buss phase. In this case, number of pulses varied from 57 to 237. The suppress of the bottom side lobe peak in approach and terminal buss phase is greater than that of searching phase. Even when the fluctuation of the pulse interval was within 10-2 ms, the bottom side lobe peak of approach and terminal buss phase are enough as small as that of the fluctuation within 10 ms in searching phase. As the total pulse length becomes short by using approach and terminal buss phase, it possible to have more frequent contact for acoustic localization.

Conclusion

In this report, the authors proposed two different types of bio-mimic signals for acoustic localization inspired from dolphin vocalization of searching phase, and approach and terminal buss phase. In both bio-mimic signals, amplitude and pulse interval were fluctuated to get closer to the natural sound. These fluctuations make not only as a real dolphin sound, but also high SNR. In future, we will apply these signals for acoustic localization on AUV or other vehicles in the water.

Stability and nonlinearity in the flapping flight of butterfly Narumi Fujii * and Kei Senda * * * Kyoto University, Japan * * Kyoto University, Japan

Abstract. The equations of motion of a butterfly flight are nonlinear, and this nonlinearity is expected to contribute to the flight stability and maneuverability. In this study, we analyze the stability of the almost periodoc flapping flight of a butterfly. First, we identify a discrete-time linear state equation describing the time evolutions of initial perturbations as a linear mapping using the results of nonlinear numerical simulations. The mapping indicates the existence of a linear unstable mode. Then, by comparing the linear mapping with the results of nonlinear numerical simulations, it becomes clear that the mapping is nonlinear. Moreover, the nonlinearity reduces the flight instability. One aerodynamic understanding of this nonlinearity is related to the vortex street in the wake generated by the flapping motion. The change in the aerodynamic force due to changing in the relative position of the butterfly and the vortex street preventing rapid thoracic attitude instability.

Introduction

Butterfly flight is unsteady, unlike airplanes. Moreover, the equations of motion are nonlinear, and nonlinear phenomena appear. These nonlinear phenomena are expected to contribute to the flight stability and maneuverability. In a previous study, a linear stability of butterfly flight is analyzed using a nonlinear numerical simulation, and an unstable mode is found. Therefore, initial-time perturbations of the state variables are expected to diverge rapidly in the linear unstable direction as time goes on. However, the perturbations in numerical simulations using the original nonlinear differential equations do not diverge rapidly as the linear unstable mode. This suggests that there are inherent nonlinear phenomena improving flight stability. The objective of this study is to analyze the nonlinear phenomena and to understand them aerodynamically.

Numerical models

The butterfly body is modeled by a rigid four-linked multibody system consisting of a thorax, an abdomen, and two wings.

The equations of motion are formulated by the Lagrangian method as follows

M θ + Ṁ θ - 1 2 ∂ ∂θ ( θT M θ) + ∂V ∂θ = τ cnt + τ air (1) 
where θ = [x h θ t θ a β η θ] T . The θ is divided into θ 1 = [x z θ t ] T and θ 2 = [θ a β η θ] T , which are for the position and attitude of the thorax and for the relative attitude of the abdomen and wings to the thorax. The τ cnt the joint control torques, and τ air is the equivalent torques to the joints for the aerodynamic force applied to the wings. The aerodynamic force is calculated using the unsteady vortex lattice method [1].

Linear stability of flapping flight

The thorax state vector is x(t) = [θ T 1 (t) θT 1 (t)] T , and the equations of motion are described as follows

ẋ(t) = f (x(t), ∆θ 2 (t), ∆ θ2 (t), w(t); u(t)) (2) 
where w(t) is the variables for the state of the flow field, and u(t) is the periodic function of the flapping period T denoting the target trajectory of the flapping motion. The ∆θ 2 (t) and ∆ θ2 (t) describe small deviations of the flapping motion from the target trajectory due to aerodynamic force, etc. At certain initial conditions and flapping motion, the solution of Eq. ( 2)

Figure 1: Time evolutions of initial perturbations in discrete-time systems (above: nonlinear numerical simulation, below: linear discrete-time system Eq. ( 5))

Figure 2: Paths in δx -δθ t plane (★: initial perturbations, red line: linear unstable direction)

Figure 3: Induced velocity from the vortex street in the wake (black: no perturbation, red: perturbed)

becomes almost a periodic flight. In general, the stability of a continuous-time system can be evaluated using the stability of a discrete-time system constructed from the continuous-time system [2].Since it is difficult to estimate a discrete-time nonlinear system, we identify a linear system and evaluate the stability of the flapping flight system regarded as a linear system. In the almost periodic flight, the initial perturbation δx(t 0 ) = δx 0 becomes δx(t 1 ) after one cycle later at t 1 . We obtain a discrete-time linear state equation as a linear mapping of δx(t k ) as follows

δx(t k+1 ) = Aδx(t k ), t k+1 = t k + T (3) 
Let λ i and ξ i , respectively, be the eigenvalues and corresponding normalized eigenvectors of matrix

A A = ΞΛΞ -1 , Ξ = [ξ 1 ξ 2 • • • ξ 6 ] , Λ = diag [λ 1 λ 2 • • • λ 6 ] (4) 
Let δx(t k ) = Ξ δq(t k ), the perturbation δq(t k+n ), n cycles after δq(t k ), is given by

δq(t k+n ) = Λ n δq(t k ) (5) 
Thus, it is stable when |λ i | < 1, neutrally stable when |λ i | = 1, and unstable when |λ i | > 1. The eigenvalues of A are 2.27, 0.983, 0.583 + 0.691i, 0.583 -0.691i, 0.625, 0.0159 in the order of absolute value, and are denoted by

λ 1 , λ 2 , • • • , λ 6 .
The q 1 is unstable and its real eigenvector ξ 1 describes the unstable direction. An initial perturbation in this direction is expected to diverge exponentially. Fig. 1 shows the time evolution of nonlinear numerical simulation and that of the linear discrete-time system in Eq. ( 5) when an initial perturbation in the ξ 1 direction is added. Each butterfly image illustrates the stroboscopic mapping for each cycle at the beginning of downstroke. In the simulation, the initial perturbation increases for the first three flapping similar to each other.

Nonlinear phenomenon

The identified linear discrete-time system in Eq. ( 5) shows the existence of an unstable mode. The nonlinear numerical simulation shows behavior similar to the linear system for a few flapping. However, after a few more flapping, the nonlinear numerical simulation in Fig. 1 shows that the instability is suppressed compared to the linear system . Fig. 2 shows the nonlinear numerical simulation results on the δx -δθ t plane in blue lines, i,e., the time evolutions of initial perturbations for the first six flapping and the unstable direction of the linear system in a red line. The initial perturbations are [δx, 15), and they go along the linear unstable direction for a few flapping. After that, the radius linear increases slow down and the paths curve greatly. As shown in Fig. 1, the initial perturbation in a linear discrete-time system, diverges exponentially along the unstable direction. Therefore, such a phenomenon in Fig. 2 implies that the mapping has strong nonlinearity. One aerodynamic understanding of why this nonlinearity reduces the flight instability, is related to the vortex street in the wake generated by the flapping motion. Changes in the relative position of the butterfly and the vortex street influence the flow field around the wings, and vary the aerodynamic force acting on the wings slightly. Fig. 3 shows the induced velocity from the vortex street for the solution without and with initial perturbation, with the thoracic center of gravity aligned. The flow fields around the wings are slightly different. The change in aerodynamic force due to the difference in flow field begins to occur when the thoracic angle perturbation δθ t grows to a certain degree. This result suggests that the vortex street in the wake has the effect of preventing the thoracic attitude from rapid instability.

δθ t ] = [r cos α, r sin α], r = 1.0 × 10 -3 , α = n 8 π (n = 0, 1, • • • ,

Introduction

Manipulators have diverse geometries representing nonlinear systems. Therefore, studies of manipulator control have emphasized control targets such as underactuated systems and manipulators with flexible structures, and control methods such as state-dependent Riccati equation (SDRE) and sliding-mode control. De Luca et al. proposed methods to generate end-effector trajectories and to control them for an underactuated manipulator without an actuator on the last link [1]. Additionally, they have made important contributions to manipulator control through the modeling of flexible link manipulators [2]. Korayem et al. proposed a method to implement SDRE method for manipulator control experiments [3]. Kobayashi et al. controlled the vibrations of a two-link flexible manipulator using sliding-mode control [4]. However, few reports have described the use of SDRE to control the trajectory between the starting and ending points of a manipulator. Consideration of end-effector trajectory tracking from the perspective of obstacle avoidance is important. For this study, we propose the use of SDRE to control end-effector orbits.

Formulation of SDRE method

The state equation of a nonlinear system is expressed by Equation (1) as 𝒙̇(𝑡) = 𝑨 𝒙(𝑡) 𝒙(𝑡) + 𝑩 𝒙(𝑡) 𝒖(𝑡).

(1) In that equation, the state is 𝒙(𝑡) ∈ 𝑹 , the system matrix is represented as 𝑨 𝒙(𝑡) : 𝑹 → 𝑹 × , the control input is denoted as 𝒖(𝑡) ∈ 𝑹 , and the input matrix is expressed as 𝑩 𝒙(𝑡) : 𝑹 → 𝑹 × . The forms of the coefficient matrices 𝑨 𝒙(𝑡) and 𝑩 𝒙(𝑡) are not unique. They can be determined by the designer. For this system, the feedback gain is designed at each sampling time so that the evaluation function 𝐽 defined by Equation ( 2) is minimized as

𝐽 = 1 2 𝒙 (𝑡)𝑸 𝒙(𝑡) 𝒙(𝑡) + 𝒖 𝑻 (𝑡)𝑹 𝒙(𝑡) 𝒖(𝑡) 𝑑𝑡, (2) 
where 𝑸 𝒙(𝑡) and 𝑹 𝒙(𝑡) respectively denote the weight matrices for the states and inputs, which are set arbitrarily by the designer so that 𝑸 𝒙(𝑡) is a semidefinite symmetric matrix and 𝑹 𝒙(𝑡) is a definite symmetric matrix. Control law (3) is derived by solving the state-dependent Riccati equation (4) as 𝒖(𝑡) = -𝑹 𝒙(𝑡) 𝑩 𝒙(𝑡) 𝑲 𝒙(𝑡) 𝒙(𝑡) (3) 𝑲(𝒙(𝑡))𝑨(𝒙(𝑡)) + 𝑨 (𝒙(𝑡))𝑲(𝒙(𝑡)) -𝑲 𝒙(𝑡) 𝑩 𝒙(𝑡) 𝑹 𝒙(𝑡) 𝑩 𝒙(𝑡) 𝑲 𝒙(𝑡) + 𝑸 𝒙(𝑡) = 0. (4)

Modeling of a two-link manipulator

The state equation of a two-link manipulator moving on the horizontal plane as presented in Figure 1 

Simulation results

The control simulations of the manipulator's end-effector trajectories using SDRE can be described as follows.

The parameters used for the simulations are presented in Table 1. The target trajectory is configured using a polynomial of time. The weight matrices are chosen as 𝑸 = 𝑑𝑖𝑎𝑔(10 1 10 1) and 𝑹 = 𝑑𝑖𝑎𝑔(10 10). The control results of the end-effector's trajectory obtained from simulations are exhibited in Figure 2. That figure also presents confirmation that the end-effector can follow a straight-line trajectory as the target.

Conclusions

By applying the SDRE method, the manipulator's end-effector was tracked to the target trajectory. As a future task, the effectiveness of the proposed control method must be evaluated by comparison with existing control methods. Moreover, experimental verification by production of an actual manipulator is necessary.

Figure 1: Configuration of a two-link manipulator. Figure 2: End-effector's orbit for links 1 and 2.

Distance in y-direction [m]

Performance evaluation of model predictive control for active suspension systems employing an inerter with road preview Wanshu Wang * and Takehiko Asai **

Introduction

Inerter, a mechanical element which produces amplified inertial force proportional to the relative acceleration across the two terminals, has already been extensively investigated in performance improvements in passive suspension systems during the past few decades [1]. A recent study implemented linear quadratic regulator (LQR) control strategy into a semi-active inerter-based suspension to meet vibration suppression requirements under different operating conditions [2]. Meanwhile, from the control side, since the suspension working space, generator input current and its rate are limited, there has been considerable interest in model predictive control (MPC) because it allows to explicitly incorporate constraints compared to LQR controller. Moreover, the recent development of road preview sensors makes their integration with active suspensions based on the MPC controller a viable option, which can greatly enhance the dynamic performance of active suspension systems [3].

The main contribution of this study is to introduce the MPC approach with road preview for the active suspension with an inerter to improve the dynamic performance. For further optimization, constraints on the suspension working space, input current and its rate of the motor are implemented on the algorithm.

Problem formulation and numerical simulation studies

In this research, a suspension system for a quarter-car (QC) model is considered. As shown in Fig. 1 (a), an inerter and a motor are installed between the sprung mass and the unsprung mass, and a preview sensor is mounted to scan the road conditions ahead of the vehicle. To implement the preview control, dynamics of the road disturbance information can be described by a shift register and integrated in the QC system [4]. Then the discretization of the augmented state-space representation can be expressed as 0 0

sd sd sd r sd r sd m m r k k u k z k y k k k u k z k + = + + + = + + x A x B G E y C x D H ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 
    () T s u s u T s s u t u r z z z z z z z k z z = = - - x y (1) 
where u is the current of the motor, z r0 is the road disturbance, and y r is the disturbance input provided by the sensor. The output vector y consists of the vehicle body acceleration, suspension working space, and dynamic tire load, and its predicted output Y is given as a function of the state vector, the controlled U input over control horizon, and the road profile zr 0 over the prediction horizon: 0 ()

r kz = + + Y Fx ΦU Θ (2) 
where F, Φ, Θ are resulting matrices derived from the state-space matrices in (1). Then the optimization problem for the model predictive controller is to minimize a cost function subjected to Y and U 

where Q and R are weight matrices. Consider the constraints of the suspension working space, the generator input current and its rate, and then convert (3) to a typical quadratic programming format:

12 1 min 2 . . ( ) TT s t k  +   + U U SU f U PU M M x (4) 
where f, P, M1, M2 are appropriate constant matrices.

To illustrate and compare the dynamic characteristics among passive inerter-based suspension, active inerterbased suspension using a MPC controller without preview, and the one integrated by a road preview sensor, numerical simulations are carried out with proper parameter selection and constraints implementation. Fig. 1(b) shows the random road input for the vehicle driving at constant speed 16.67 m/s. Fig. 1(c) indicates that, for the vehicle body acceleration, the RMS values of the MPC without and with preview reduce by 19.1% and 38.9% with respect to the passive case, respectively. For the dynamic tire load, as shown in Fig. 1(e), compared with the passive case, the RMS values of the MPC without preview increases by [START_REF] Misu | Robostrich Arm: Wire-Driven High-DOF Underactuated Manipulator[END_REF].9% while the one with preview remains the same. Moreover, Fig. 1 (d) illustrates that, for the suspension working space, the RMS values of the MPC without and with preview increase by 209.7% and 212.6% with respect to the passive case, respectively. Because of the proper constraint implemented on the suspension working space, all of them are confined within the safe limits.

Conclusions

For future work, parameters will be further optimized to improve the system performance in detail, and discussions in the frequency domain will also be incorporated. Additionally, some other layouts of inerterbased suspensions such as Inerter-Spring-Damper (ISD) will be investigated for comparison. The energy harvesting capability of the proposed system will be also examined.

Introduction

The responsiveness of the accelerator pedal of a vehicle is important for accelerating and decelerating the vehicle as intended by the driver, but the rapid acceleration characteristic of the accelerator pedal causes reciprocating motion in the longitudinal direction of the vehicle during acceleration and cause the degradation of drivability. The factors that affect reciprocating behaviour include the transient response characteristics of the internal combustion engine and electric motor, which are sources of vibration, and the torsional rigidity and damping ratio of drive systems such as transmissions, drive shafts, and tires [1]. Especially, the responsiveness of the power source of electric drive motor is quicker than internal combustion engine, and since there are few damping elements in the drive train so that reciprocating motion is likely to occur during acceleration. Many studies have been conducted on the dynamics of such vehicle components [2]. Attempts have also been made to implement anti-jerk control in power source controllers to suppress the jerky motion [3].

On the other hand, there are few research examples of vehicle longitudinal reciprocating motion considering the biological behaviour of the human leg that operates the accelerator pedal. When the vehicle has a large reciprocating behaviour, even if the accelerator pedal is stepped on with a certain force, the foot is returned by the inertial force when the vehicle accelerates, and as the acceleration decreases, the pedal is stepped on again.

To reproduce this phenomenon in the simulation, it is required an analytical model that considering powertrain and drivetrain components, as well as the dynamics of the driver's legs. Therefore, we modelled the vehicle, the accelerator pedal, and the driver's leg, and aimed to construct an analytical model that can reproduce the jerky phenomenon that accompanies the reciprocating motion of the accelerator pedal and the driver's leg. There have long been studies that model the human skeleton and muscles as mechanical elements and consider their behaviour. There is research that focuses on the repulsive force of muscles and treats it as a spring element, and research that mentions the damping characteristics of muscles [4]. In this study, we constructed an analysis model considering the dynamic characteristics of the pedalling foot by reflecting the damping effect due to the contraction of the leg muscles in the model.

Experiments

In order to observe the movement of the driver's leg muscles that operate the accelerator pedal while driving, surface electromyography (EMG) was measured. The tibialis anterior muscle, gastrocnemius muscle, and vastus lateralis muscle are mainly used to operate the accelerator pedal. To evaluate these muscle loads for the operating pedal, the EMG are measured at a sampling rate of 1 kHz by a disposable electrodes and biological amplifiers [5]. A four-wheel drive vehicle with a gasoline engine was used to reproduce jerky motion. The vehicle weight including the driver was 950 kg, and the maximum driving force of the drive wheels was 2.2 kN in total. To conduct the experiment, the ignition timing was advanced and electronic throttle valve opening characteristics were changed to enhance the engine response to accelerator operation and facilitate the jerky motion. The test was conducted on a dry paved road to minimize the disturbance of tire slip. To investigate the effect of the muscle activity state on the damping characteristics of the pedal depressing action, standard and hard return spring were prepared. It was strengthened and the required complete stroke operating load was increased from 26.5 N to 39.2 N. The simulation model is modelled by a second-order differential equation using Matlab/Simulink (Mathworks,inc.). We experimentally determined the damping ratio of the driver's leg, in which the damping behaviour of the accelerator pedal damping motion matches the actual measurement. EMG was normalized as 100% at maximal muscle force and input to the damping ratio calculation model. The experiment was conducted with 4 adult males and each specification was measured 10 times. To quantitatively evaluate the pedal jerky motion, the RMS value of the pedal opening was calculated with the reference that converged pedal opening after vehicle start up. The value integrated over the period from 1 to 7 seconds was used as the vibration intensity. The all of the drivers have explained and agreed with experimental purpose and Ethical Guidelines for Research Involving Human Subjects.

Results and discussion

The measurement result of accelerator pedal opening, accelerator pedal speed, tibialis anterior muscle EMG, and gastrocnemius EMG during the occurrence of pedal resonance during start-up in the standard return spring are shown on Figure 1. The results for the strong return spring are shown in Figure 2. The amplitude of pedal opening of the hard return spring is lower than standard return spring. Comparing the actual measured values of pedal opening, the vibration intensity of hard return spring is 60% less than the standard return spring. In terms of damping ratio of the driver's leg, a model with constant damping ratio (CD model) and a model with a damping ratio as a function of pedal speed and EMG intensity (VD model) are compared. The vibration intensity was reduced by 41% for the CD model and 59% for the VD model. The simulation results of the VD model were consistent with the experimental results of the specification change. The damping ratio was proportional to the magnitude of the RMS value of the EMG and inversely proportional to the pedal stroke speed. The damping ratio for the VD model was ranged from 0.01 to 0.20. The decrease in damping ratio with increasing pedal stroke speed was more dominant than the increase in damping ratio with increasing RMS value of the EMG. Once large amplitude resonance occurred on the accelerator pedal, it was difficult to suppress the vibration by the driver's intention. This result is consistent with reports that the inverse dependence of the damping ratio on vibration velocity affects the damping of joint motion [6]. 

Introduction

For most feedback control design and system analysis methods, system state variables are necessary. However, measuring the entire system state is usually too expensive or impossible in most applications, and even when the states are measurable, they may include measurement or disturbance noises. Therefore, state estimation, in the form of an observer, is often needed to estimate the true state of the system. While several observer techniques have been successfully studied for linear systems, the theory of observer for nonlinear systems remains a significant challenge [1].

As state observers and digital controllers are implemented on computers, many studies on state observers assume the existence of a discrete-time model of the system [2]. However, most physical systems are modeled by continuous-time differential equations, requiring discrete-time versions of the model for the implementation of the observer [3]. While some accurate discretization methods, such as Runge-Kutta families, are available for offline computation systems, discretization methods for online observers or control designs for nonlinear systems are relatively rare. In most conventional state observer applications, the forward difference method (also known as Euler's method) is commonly used for discretization due to its simplicity and versatility. However, this method's accuracy is poor unless an efficient high sampling frequency is used, which can affect the observer's accuracy and lead to misestimation. Unfortunately, most studies on state observers have not considered this issue, leaving a gap in designing discrete-time observers for continuous-time systems.

A discretization method called continualized discretization, based on discrete-time integration gain and continualization concepts, has been developed for some rarely proposed nonlinear systems [4]. This method has been used to derive highly accurate discrete-time models that can retain complex dynamical properties for various continuous-time nonlinear systems. In this study, continualized discretization method is expected to bridge the gap between discrete-time state observers and continuous-time systems.

Discrete-time state observer

Consider a nonlinear continuous-time system with the presence of noises given by ( ) ( ) ( ) ( ) are zero-mean white Gaussian and have covariance matrices of Q and R , respectively. It should be noted that a system with control inputs also be represented by the form of eqs. ( 1) and ( 2).

d t t t dt = + x f x v , (1) ( ) ( ) ( ) ( 
In the sampled-data systems, the system noise ( )

t v
and measurement noise ( )

t w
are assumed to affect the system through zero-order-hold and be constant during each sampling interval. The discrete-time model of the continuous-time system given by eqs. ( 1) and ( 2) can be derived by using the contiualized discretization method [4] as

( ) ( ) ( ) 1 , k k k k k T T + - = + x x Γ x f x v , (3) 
( )

k k k = + y h x w , ( 4 
)
where T is a sampling interval; ( )

, k T Γ x
is a discrete-time integration gain calculated as ( )

( ) 0 1 , k T D k T e d T τ τ     = ∫ f x Γ x ( 5 
)
with Df is the Jacobian matrix of f ; k v and k w are the sampled-data of ( ) t v and ( ) t w , respectively. It should be noted that the state k y in eq. ( 4) is a sampled-data of the measurable output y . Equation (3) can rewritten in the form of

( ) ( ) ( ) 1 , , k k k k k k T T T T + = + + x Γ x f x x Γ x v . ( 6 
) Let the estimation of the system state x in the system (1) from the sampled-data of the measurable output k y is ˆk

x . In this study, the state ˆk x is estimated by a nonlinear state estimator using extended Kalman filter [5], which has the algorithm as follows: 1. State estimation: ( ) ( ) ( ) 

1 1 1 1 ˆˆˆˆ, k k k k k T T - - - - - = + x Φ x Γ x f x x  . ( 7 
( ) ( ) ( ) ( ) 1 1 1 ˆˆ, , , T T k k k k k k D D T T T T - - - - =     +            P Φ x P Φ x Γ x Q Γ x (8) 
where ( )

1 ˆk D - Φ x
is the Jacobian matrix of ( ) 

( ) ˆˆk k k k k - -   = + -   x x K y h x , ( 9 
)
where k K is the Kalman gain, which is given by ( ) ( ) ( )

1 ˆˆˆT T k k k k k k D D D - - - - - -       = +         K P h x h x P h x R , (10) 
where

( ) ˆk D - h x
is the Jacobian matrix of ( ) ˆk h x at ˆk - x .

Update for error covariance:

( )

k k k k D - -   = -   P I K h x P . ( 11 
)
The proposed observer was employed to estimate the states of van der Pol and Lorenz oscillators in the presence of noise. Simulation results indicated that the proposed observer outperformed the conventional observer based on the forward-difference method, even for relatively low sampling frequencies, in retaining complex system dynamics such as limit cycle and chaos.

Conclusions

In this study, we proposed a discrete-time observer to estimate the states of continuous-time nonlinear systems in the presence of noise. The observer is based on the extended Kalman filter and uses the continualized discretization method to derive a highly accurate discrete-time model. The proposed observer takes into account the same discrete-time integration gain and system function as the continuous-time model, and the discrete-time integration is obtained by solving the equation derived through the continualization process.

Although the study considers Gaussian noises and uses EKF for nonlinear systems, the proposed observer's idea can be extended to non-Gaussian noises using setvalued state estimation methods. We believe that the proposed observer will have significant implications for digital control and system analysis applications.

Figure 1: State estimation for the van der Pol oscillation by using the proposed and the conventional methods.

Introduction

Controllers are increasingly being implemented in digital devices. Therefore, a discrete-time (DT) model of the continuoustime (CT) system is required to represent the CT system in the DT domain, such as the plant and the controller. For various applications, various DT models have been proposed. One of them is the matched pole-zero (MPZ) model, which maps the poles and zeros of a CT system to the poles and zeros of a DT model using the same rules. Although it is one of the significant DT models, it has yet to be sufficiently extended to multi-input and multi-output (MIMO) systems. This study extends the MPZ model to MIMO systems, especially strictly proper systems, and shows that the proposed model preserves the blocking property of the transmission zero by simulations.

Proposed Matched Pole-Zero Model

Let the CT system with the same number of inputs and outputs, i.e., a square system, be expressed in state-space form as

d dt x(t) = Ā x(t) + B ū(t), (1) 
ȳ(t) = C x(t) + D ū(t), (2) 
where x(t) ∈ R n , ū(t) ∈ R m , and ȳ(t) ∈ R m are the CT state, input, and output signals, respectively, and all the matrices have compatible dimensions. If the rank of its Rosenbrock system matrix [1] is n + m, there exist nonsingular matrices

Q, P ∈ R (n+m)×(n+m) such that, for all s ∈ C [2] Q Ā -sI n B C D P = Ās -sI ns 0 ns×n f 0 n f ×ns I n f -s Āf , Ās ∈ R ns×ns , Āf ∈ R n f ×n f , (3) 
where matrices P and Q are obtained from the generalized eigenvalues and eigenvectors as

P = V s,n V f,n V s,m V f,m , V s,n ∈ R n×ns , V f,n ∈ R n×n f , V s,m ∈ R m×ns , V f,m ∈ R m×n f , Q -1 = V s,n ĀV f,n + BV f,m 0 m×ns CV f,n + DV f,m , (4) 
P -1 = T 11 T 12 T 21 T 22 , T 11 ∈ R ns×n , T 12 ∈ R ns×m , T 21 ∈ R n f ×n , T 22 ∈ R n f ×m , (5) 
and Ās and Āf are the matrices related to the finite and infinite eigenvalues of the generalized eigenvalue problem, respectively. Then, the following theorem gives the proposed MPZ model of ( 1) and ( 2).

Theorem 1. The following DT system is a DT model of (1) and (2) in the sense of system discretization defined in [3,4]:

δ w(k, T ) = Aw(k, T ) + Bu(k, T ), (6) y 
(k, T ) = Cw(k, T ) + Du(k, T ), ( 7 
)
where δ is the delta operator defined as (q -1) /T , q the shift operator that satisfies q f (k, T ) = f (k + 1, T ), k ∈ Z the step number, and T ∈ R + the sampling period; w(k, T ) ∈ R n , u(k, T ) ∈ R m , and y(k, T ) ∈ R m are the DT state, input, and output signals, respectively; matrices A, B, C, and D are

A = A z -B z K, B = B z , C = C -DK, D = D, (8) 
where

A z = V s,n ∆AT 11 + Ā, B z = V s,n ∆AT 12 + B, ∆A = A s -Ās , A s = e ĀsT -I T , (9) 
K ∈ R m×n is determined such that eigenvalues of A are identical to (e ĀT -I) /T . Poles and zeros of (6) and ( 7) are (e spzT -I) /T , where s pz is the poles and zeros of (1) and (2).

Simulations were carried out to confirm that the proposed MPZ model preserves the transmission zero using MAT-LAB/Simulink with the sampling period T = 0.5 s. Let us consider the following MIMO bi-proper CT system [5]:

Ā = -1 1 -2 -2 , B = 1 1 2 0 , C = -0.75 -0.75 -0.45 -0.45 , D = 1 0 0 0.6 , (10) 
whose poles and zeros are

s p = -1.5 ± 1.323i, s z = ±i. (11) 
Figure 1 shows the above continuous-time system's and its proposed and step invariant [6] models' responses of a sinusoidal input with an amplitude of 1 and an angular frequency of 1 rad/s. It should be noted that the proposed model is multiplied by a gain such that its DC gain is identical to that of the original continuous-time system. Figure 1 indicates that the step invariant model cannot block the input sinusoidal wave at either output y 1 and y 2 , while the proposed model can block as well as the original continuous-time system, and the transmission zeros and their blocking property are preserved.

Conclusion

This study has proposed an MPZ model of MIMO systems with the same number of inputs and outputs. The simulations show the proposed model can preserve transmission zeros and their blocking property. While the previous research on the MPZ models can discretize SISO systems and strictly proper MIMO systems, the proposed MPZ model can discretize both SISO and MIMO square systems, regardless of their properness. Extending the proposed model to non-square systems, i.e., the number of inputs and outputs are different, is underway. Moreover, further studies need to be carried out to clarify the conditions under which the gain K of the proposed model is obtained and the numerically accurate method of obtaining it. Abstract. This paper analyses the matching between the maximum gain and average phase difference values of the Bode plots obtained from the sinusoidal response of a discrete-time system with the gain and phase difference of the frequency transfer function, theoretically. As a result, it was found that the discrete-time frequency transfer function is the gain and phase of the response when a sinusoidal wave discretized by the impulse invariant model is input to a discretetime system and considered as a continuous-time system. It can be concluded that the equation that has been considered a discrete-time frequency transfer function is a continuous-time transfer function.

Introduction

Discrete-time systems and digital control theory are necessary for control using digital devices [1]. When a system represented by a transfer function is discretized, the Laplace operator s, a continuous-time operator, is converted to a discrete-time operator, such as the z operator. Similar to the transfer function, there are discrete-time Bode plots that represent the frequency response of a discrete-time system. The frequency characteristics of a discrete-time system can be evaluated with discrete-time Bode plots using the same stability margins and other indicators as in the continuous-time domain.

However, there are two problems associated with sampling in discrete-time frequency response. The first is that the response may not be steady-state, depending on the relationship between the frequencies of the sampling and the input sine wave. The second is that a discrete-time system can only input sampled signals, which means it cannot process a sine wave with a single frequency. Due to these issues, it is impossible to obtain Bode plots for the sinusoidal response in the same way as for continuous-time systems.

As described above, Bode plots cannot be drawn from the system response in discrete-time. Although there have been studies on frequency response in discrete-time [2], to the best of the author's knowledge, there are no studies that relate the system response to Bode plots. In the previous study, the authors proposed indices for the response output when a sampled sine wave is input to a discrete-time system and drew Bode plots from the discrete-time system response [3]. Comparing of the Bode plots obtained from a sinusoidal response with the one obtained from the frequency transfer function showed that one of the proposed indices agreed with the frequency transfer function's Bode plots. This study aims to perform a mathematical analysis of the results obtained in previous studies. The focus is on the discrete-time system response and its relationship to the frequency transfer function to clarify the meaning of the frequency transfer function.

2 Bode plots of discrete-time sinusoidal response and frequency transfer function

This section presents the indices of the discrete-time sinusoidal response proposed in a previous study. In this study, the discrete-time sinusoidal response refers to the output of a discrete-time system when it is fed with a sampled sine wave. It should be noted that the discrete-time sinusoidal response can be non-stationary, depending on the relationship between the frequencies of the sampling and the input sine wave. However, apart from the oscillations generated by the input sine wave, the response has a large periodic beat component.

In the prior study, three indices for gain and phase difference were proposed respectively, and this paper focuses on two of them: the maximum value of gain G max and the mean value of phase difference P mean . First, let ūmax for the gain be the amplitude of the input sine wave and y max (k) be the k th maximum value in t 0 ≤ t of the discrete-time response, where t is the time variable. The maximum value of gain is defined as follows:

G max := max 1≤k≤q y max (k) ūmax , (1) 
where q is a natural number satisfying q = pN (p ∈ N) and N is the number of maximum value in one cycle of the beat. Let t RM (k) be the k th maximum of the reference input and t M (k) be the k th maximum of the discrete-time sine response. Define the mean value of the time difference l [s] and the phase difference P [°] between the reference input and the discrete-time sine wave response as follows:

l := 1 q q k=1 (t RM (k) -t M (k)) , P = ωl mean π 180, (2) 
where ω is the angular frequency of input sine wave.

Based on the proposed indices, Bode plots were drawn from the discrete-time sinusoidal response and compared with the Bode plots of the frequency transfer function. The z operator is used as the discrete-time operator, and its frequency transfer function is obtained as follows:

G (z) | z=e jωt = G e jωT , (3) 
where j is the imaginary unit. As a result, the Bode plots of the frequency transfer function are the same as the maximum G max for the gain and the mean P mean for the phase difference. The above characteristics of the Bode plots of frequency transfer function were those seen regardless of the sampling period, transfer function, or discretization method. The gain and phase difference calculated from the frequency transfer function can be considered to represent the maximum value G max and the mean phase difference P mean in the actual discrete-time systems.

This section reveals what the frequency transfer function represents by comparing the time response to the frequency transfer function. Let consider the following stable and proper continuous-time transfer function as a plant:

Ḡ (s) = n i=1 K i s -p i , (4) 
where K i ∈ C are the coefficients of the i th term in the partial fractional expansion of the proper transfer function and p i ∈ C are the poles of the i th term. Since the results of the previous studies do not depend on discretization methods, and for simplicity of discretization, (4) is discretized using an impulse invariant model. Equation ( 4) is discretized as follows:

G (z) = n i=1 K i T z z -e piT .
(5) Add to this system a complex number of inputs represented by the following equation,

U (z) = T z z -e jωT . ( 6 
)
The output in the z-domain is as follows:

Y (z) = U (z)G(z) = n i=1 K i e -jωT (e jωT -e piT ) T 2 z z -e jωT - n i=1 K i e -piT (e jωT -e piT ) T 2 z z -e -piT . (7) 
From this equation, the discrete-time response is

y(k, T ) = n i=1 T K i e -jωT (e jωT -e piT ) e jωkT - n i=1 T K i e -piT (e jωT -e piT ) e pikT . (8) 
Considering the case of sufficiently long time, i.e., k → ∞, the time response is as follows:

y(k, T ) = n i=1
T K i e -jωT (e jωT -e piT ) e jωkT = G(e jωT )e jωkT = |G(e jωT )|e j(ωkT +ϕ) ,

where ϕ = ∠G(e jωT ).

From the above equations, what has been considered a discrete-time frequency transfer function does not represent a discrete-time response, but a continuous-time response. From ( 9) and (3), the gain and phase difference that the frequency transfer function represents are the gain and phase difference when k ∈ R in the time response (9). This operation ignores information about sampling, which is a discrete-time characteristic, and converts it to a continuous-time transfer function.

In other words, the discrete-time frequency transfer function G(e jωT ) is considered a continuous-time transfer function representing a response similar to the discrete-time response. Conversely, the sinusoidal discrete-time response is the sampled response of a sinusoidal wave represented by the gain and phase difference of the frequency transfer function.

Conclusion

The relationship between the discrete-time frequency transfer function and the actual sinusoidal response of a discrete-time system was analyzed using mathematical calculations. What is considered to be the discrete-time frequency transfer function represents the gain and phase difference of the discrete-time sinusoidal response converted to the continuous-time domain. The results showed that they do not strictly represent the gain and phase difference of the discrete-time response.

Introduction

In field of control engineering, state feedback is a method that has been proposed and used in many situations to transform a given system into a desired one. In other words, a system-to-system transformation can be done by using state feedback. This method has the advantage of facilitating the design of control systems, such as response improvement and tracking control because it converts a given system to another one, which has known characteristics. A typical example is linearization feedback control, which converts a nonlinear system to a linear system by canceling nonlinear terms in the nonlinear system with the state feedback. Another linearization using Taylor expansion is based on an approximation about an equilibrium point, and is inappropriate for systems such as robots with wide operating points, whereas linearized feedback makes it possible to assume linearity over a wide range. Nonlinear systems have features (e.g., multiple equilibrium points) that linear systems do not. Thus, from the point of view of the authors, it is also interesting to convert linear systems to nonlinear systems, as well. Similarly, converting a linear system to another linear system or a nonlinear system to another nonlinear system is also important. Linearization feedback, which realizes a linear system from a nonlinear system, has been studied and systematized in the continuous-time domain [1]. In particular, if the system can be converted to a canonical system, it is possible to extend this theory to convert from arbitrary systems to arbitrary systems. Another issue is that, today, majority of controller are implemented by using computers. In other words, through samplers and hold circuits, plants defined in continuous-time are controlled by discrete-time controllers. In many situations, the controller is regarded as a continuous-time controller with a high-speed sampling frequency. However, there are cases where this assumption is difficult to be satisfied due to the measurement system or system configuration. Therefore, controller design in the discrete-time domain playes an important role. Especially when the plant is nonlinear, rigorous discretization is difficult, so approximate discretization methods are used. However, a discretization method, which has a high-accuracy, may change the structure of the system [2]. This change in system structure makes the derivation of control laws more difficult. Although it is difficult to solve this problem, it is important to design controllers from the viewpoint of discretization to improve the performance of controllers, because there are examples [3] where the performance of controllers can be improved by using discretization with good performance.

In this study, we propose a method to convert from an arbitrary system to an arbitrary system. The proposed method is not based on exact solutions in many cases, but on approximate solutions.

Proposed method

Let x(t) ∈ R n and x k ∈ R n be a continuous-time state and a correspondent discrete-time state, respectively, where t is the time variable and k is the number of steps in discrete-time. For an arbitrary sampling period T , if x k = x(kT ) holds for every k, then x k is an exact discretization of x(t). Consider a continuous-time plant model given by the following differential equation

ẋ = f (x(t)) + gū(t) =     x 2 . . . x n α(x)     +     0 . . . 0 β     ū(t), x(t 0 ) = x0 , (1) 
where α(x) is a nonlinear function, β is a coeffient and ū(t) is a digital control input, which is implemented through a zero-order hold (ZOH), i.e., ū(t) = ū(kT ) =: u k , for kT ≤ t < (k + 1)T . A discrete-time model of the continuous-time system (1) can be written by the following form

δx k = Γ(x k , T ){f (x k ) + gu k }, (2) 
where δ is an operator defined by δ = (q -1)/T and q is a shift operator. The matrix Γ ∈ R n×n is called discrete-time integral gain. For the forward-difference method, the integral gain is define by an identity matrix. In this study, we use a discrete-time model derived by the continualized discretization method [4], where the discrete-time integral gain is given by

Γ(x k , T ) = 1 T T 0 e [Df (x k )]τ dτ, Df (x k ) = ∂ ∂x k f (x k ). (3) 
This continualized discretization method is known to have better performances than that of the forward difference method even for a large sampling period T , by defining the discrete-time integral gain such that the discrete-time model approaches x 2 . . .

x n α d (x)     . (4) 
A discrete-time model of the desired continuous-time system (4) can be written by the following form

δx k = Γ d (x k , T )f d (x k ). (5) 
Since the control input u k needs to be designed such that (2) behaves as (5) in the discrete-time domain, u k can be derived by identiting the right-hand sides of ( 2) and ( 5) as below

gu k = Γ -1 Γ d f d (x k ) -f (x k ). (6) 
It should be known that since g = [0 6) is unable to be solved for u k exactly. In this study, by multiplying a pseudo-inverse matrix g + =: (g T g) -1 g T to the both sides of ( 6) from left, we can derive its least-squares solution u + k as

• • • β] T , (
u + k = g + {Γ -1 Γ d f d (x k ) -f (x k )}. (7) 
The control system using proposed method is shown in the 1. Therefore, when u k =: u + k , the closed loop system can be written as

δx k = Γgg + Γ -1 Γ d f d (x k ) + Γ(I -gg + )f (x k ). (8) 
It should be noted that When the sampling period T → 0, the integral gain Γ → I. In that case, (8) becomes

δx k =     0 • • • 0 0 . . . . . . . . . . . . 0 • • • 0 0 0 • • • 0 1         x 2,k . . . x n α d (x k )     +        1 0 • • • 0 0 0 . . . . . . . . . . . . . . . . . . . . . 0 • • • • • • 1 0 0 • • • • • • 0 0            x 2,k . . . x n α(x k )     = f d (x k ), (9) 
and it can be confirmed that the given system is transformed into the desired system.

Conclusion

In this study, we proposed a new system transformation method using pseudo-inverse matrices. Although the proposed method is based on an approximation, we can confirm that the controller's goal can be achieved successfully in numerical simulations such as transforming Van der Pol and some others systems into linear systems and vice versa. In the future, it is expected that the effectiveness of this method will be demonstrated through stability analysis and implementation on actual machines.

State estimation and control considering nonlinear characteristics of stepper motor with noise
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Abstract. This study proposes a discrete-time state estimation method using an extended Kalman filter (EKF) for stepper motors driven in the microstepping mode. In the previous study, the authors developed a nonlinear state feedback control law based on an observer taking into account the nonlinearity of the model. However, this method is unable for the system with the presence of noises. In this study, we use the EKF, which can handle nonlinear systems with the presence of noises, as the state observer. The discrete-time model used for the EKF is derived by using the Continualized Discretization method, which enables us to derive a discrete-time model more similar to the continuous-time model than any other discretization method. Simulation is used to confirm that the proposed method suppresses the noise effectively.

Introduction

Stepper motors are originally designed to rotate by a fixed angle called a "step angle". However, microstepping mode enables the stepper motor to be rotated by smaller angles and positioned with greater precision [1]. The model of a stepper motor driven by the microstepping mode is a nonlinear system. In previous studies, control methods were considered by linearizing the nonlinear model. However, the linearized model is an approximation model, and the error of the model increases when the range used for approximation deviates. In a previous study, the authors proposed a method to control the motor by completely linearizing the model by performing nonlinear state feedback control. In order to estimate the state used in the nonlinear state feedback control, a disturbance observer based on the linearized model has been proposed [2]. However, the disturbance observer is vulnerable to noise, and the model cannot be linearized by nonlinear state feedback when noise is added to the observed value. Thus, it is desired to create an observer that can suppress noise and can be used for nonlinear systems. This study attempts to use an extended Kalman filter (EKF), which has been used in many practical applications [3], to estimate the state of the motor by assuming that the noise is a normal distribution. Since the EKF is based on a discrete-time model, it is necessary to convert the continuous-time model of the stepper motor into a discrete-time model. In this study, the model was discretized using the Continualized Discretization method, which produces a response closer to the state at the time of sampling of a continuous-time system than the forward difference method [4]. The nonlinear state feedback control is implemented by using the value estimated by the EKF to control the motor even with the presence of noises.

Nonlinear state feedback control

The microstepping mode generally uses a sinusoidal signal whose phase is shifted concerning the phase of the input current applied to the coil. Then, let θ is the angle of the rotor, the equation of motion of the rotor in the microstepping mode is

J θ + D θ = K T I M sin(N r (θ -θ e )), (1) 
where J, D, K T , and N r are the moment of inertia, viscous friction, torque constant, and number of rotor teeth of the motor, respectively. I M and θ e are the amplitude and phase of the input current, which is used to control the angle and angular velocity of the motor. In this study, the angle and angular velocity of the motor are controlled to track the given target values. Define errors ε 1 , ε 2 between the outputs of the motor and the target angle θ ref and the angular velocity θref by ε 1 = θ ref -θ, ε 2 = θrefθ, respectively. When the controller enables ε 1 and ε 2 to converge to zeros, it means that the angle and angular velocity of the motor track the target values. Substituting ε 1 and ε 2 into (1) gives

ε1 = ε 2 , (2) 
ε2 = - D J ε 2 - K T J I M sin(N r (-ε 1 + θ ref -θ e )) + θref + D J θref . (3) 
Although the system represented by ( 2) and ( 3) are nonlinear, those can be globally linearized by using the nonlinear state feedback introduced in the previous study and can be considered as if it is a linear system [2]. The nonlinear state feedback control defines the input I M and θ e as

θ e = - π 2N r -ε 1 + θ ref , (4) 
I M = - J K T αε 1 + βε 2 -θref - D J θref . (5) 
And then, the closed-loop state equation of the system is

ε1 ε2 = 0 1 α -D J + β ε 1 ε 2 , (6) 
where the α and β are design parameters deciding the pole placement of the closed loop system(6).

3 Nonlinear state estimation by using EKF To perform nonlinear state feedback control, all states of the system are used, so the state must be estimated from the observed value. In addition, when measuring the output with a sensor, the effects of noise cannot be avoided. Then, in this study, the EKF, a method for estimating true values by comparing predicted and observed values of a state, is used as a state observer that takes into account observation noise. Predictions require a discrete-time model with good performance that is close to the actual state of the continuous-time system. Therefore, this study discretizes the system using the Continualized Discretization method, which produces a response close to the state of the continuous-time system at the time of sampling.

The state equation of the stepper motor in continuous-time, including the effect of noise, is expressed by

ẋ = f (x, ū) + v = x2 + v1 , -D J x2 + K T J ū1 sin(N r(x 1 -ū2 )) + v2 , y = h(x) + w = x1 + w, (7) 
where xT = [x 1 x2 ] = θ θ , ūT = [ū 1 ū2 ] = [I M θ e ], vT = [v 1 v2 ],
and v is the system noise in continuoustime and w is the observed noise. Also, v and w is the white Gaussian noise with zero mean, and their covariance matrix is Q and R. We use a discrete-time signal u k , which is the value of the zero-order hold of the input value ū, to discretize the system. System noise and observation noise are also considered to affect the system through zero-order hold, and these noises are considered to be constant between sampling periods. Using the Continualized Discretization method, the discrete-time model at this time is

x k+1 = T Γ(x k , u k , T )(f (x k , u k ) + v k ) + x k , (8) 
y k = h(x k ) + w k , (9) 
where T is the sampling period. Γ ∈ R 2×2 is called the integral gain and is defined as

Γ(x k , u k , T ) = 1 T [I O] e Df (x k , u k ) I O O T O I , (10) 
where Df (x k , u k ) is the Jacobian matrix for x k in f (x k , u k ), I is 2 × 2 identity matrix and O is the 2 × 2 zero matrix.

The EKF is implemented using the discrete-time model given by ( 8) and (9). The estimated states are used for the feedback controller. Simulation results show that with appropriate noises set, the motor was able to track the target angle and angular velocity with high accuracy.

Conclusion

This study proposes a state estimation method using an EKF that can handle nonlinear state feedback in the presence of noise. Prior studies on stepper motors have considered their nonlinearity but were unable to address the issue of noise. To address this, we used the Continualized Discretization method to discretize the system and enable the prediction of state changes using the discrete-time system in the EKF algorithm. Simulation results demonstrate that the proposed method can effectively estimate the states of the motor and perform nonlinear state feedback even in noisy environments.

Introduction

A feasible SPS concept is required from the viewpoints of structure, dynamics, control, and systems. The SPS concept should consider the power generation and transmission subsystem and the control subsystem that maintains the orbit, attitude, shape, and vibration. To obtain a good SPS concept, it is necessary to evaluate various concepts, taking into account the total cost of the structure, devices, fuel, etc. required for the SPS from its construction, operation, and disposal.

Manufacturing cost and orbital transportation cost are the main influences on the cost of the orbital system, both of which are proportional to the mass of the orbital system, and the mass is used as the cost for evaluation. The majority of the cost of SPS operations is the cost of maintaining the satellite's orbit and controlling its attitude. To evaluate various concepts, it is necessary to calculate the behavior of the satellite for the operation using dynamics simulations and to evaluate the control costs with the necessary accuracy. The SPS is huge and becomes structurally flexible. Because the orbital motion, the attitude motion, and the vibration in shape are coupled, it is not possible to evaluate accurately the total control cost by obtaining the individual control costs. The SPS is a high DOF system with many vibration modes, and a huge number of numerical simulations are required to evaluate the cost accurately over the operation period of the SPS. Hence, this paper studies a mathematical model that enables cost evaluation with necessary and sufficient accuracy and reduces the efforts of numerical simulations to simultaneously analyze the orbital motion, attitude motion, and vibration in the shape of SSP.

Mathematical model of SPS

In this study, we discuss how to construct dynamics models of SPS using a simplified model in a two-dimensional plane based on a continuum beam with a translational and rotational inertia at one end. The formulation with the assumed mode method is used to make the partial differential equations (PDEs) and boundary conditions for the continuum discretized into ordinary differential equations (ODEs). The finite element method is also used to discretize the PDEs into ODEs. They are called the mode model and the finite element method (FEM) model, respectively.

In the case of the mode models, different models are constructed by assuming different modes with different boundary conditions, i.e., the appendage modes and the vehicle modes, and are called the appendage mode model and the vehicle mode model, respectively. The appendage modes are generally obtained by imposing geometric boundary conditions on the degrees of freedom where forces are applied on a flexible body. Vehicle modes are generally obtained by imposing kinetic boundary conditions that correspond to the boundary conditions for the simulations. In FEM models, two models are constructed by imposing the same two types of boundary conditions, and the models transformed into modal coordinates using eigenvectors are called FEM appendage mode models and FEM vehicle mode models, respectively.

In the appendage mode model, two rigid modes are not orthogonal to other, so the equation becomes

M A qA + K A q A = f A (1) M A =         M 0 α 3 α 4 • • • α n 0 I β 3 β 4 • • • β n α 3 β 3 1 0 • • • 0 α 4 β 4 0 1 0 . . . . . . . . . . . . α n β n 0 0 1         , K A =         0 0 0 0 • • • 0 0 0 0 0 • • • 0 0 0 ω 2 A3 0 0 0 ω 2 A4 . . . . . . . . . 0 0 0 ω 2 An        
where q A is the appendage mode coordinates, f A is the generalized force for q A , M A is the appendage mode inertia matrix, K A is the appendage mode stiffness matrix, the first and second components q A1 and q A2 of q A are the rigid body mode coordinates of translation and rotation, M and I are the inertia of the rigid modes of translation and rotation, ω 2 Ai is the modal stiffness of the appendage mode i, α i denotes the degree of coupling between q A1 and q Ai due to inertia, β i the degree of coupling between q A2 and q Ai due to inertia. Since the appendage modes are obtained at the boundary conditions where forces are applied to the flexible body, the appendage mode model is suitable for analysis when control inputs are applied to the model or when multiple modes are coupled through inertial forces. The equations of motion for the vehicle mode model is

M V qV + K V q V = f V (2) M V =       1 0 0 • • • 0 0 1 0 • • • 0 0 0 1 0 . . . . . . . . . 0 0 0 1       , K V =       0 0 0 • • • 0 0 0 0 • • • 0 0 0 ω 2 3 0 . . . . . . . . . 0 0 0 ω 2 n      
where q V is the vehicle mode coordinate, f V is the generalized force of q V , M V is the vehicle mode inertia matrix, K V is the vehicle mode stiffness matrix and ω 2 V i is the mode stiffness of the vehicle mode i. 

M ẍ + Kx = 0 (3) 
or eigenvalue problem of the homogeneous equation, where x is the physical coordinate, M is the inertia matrix in the physical coordinate, K is the stiffness matrix in the physical coordinate, and the first and second components x 1 and x 2 of x are the physical coordinates of translation and rotation.

The following control forces are applied to Eq. ( 2) for example:

f V 1 = f A1 + (1 -M )q V 1 -α 3 qV 3 -• • • -α n qV n f V 2 = f A2 + (1 -I)q V 2 -β 3 qV 3 -• • • -β n qV n f V i = f Ai -α i qV 1 -β i qV 2 (i = 3, 4, . . . , n) (4)
The equations of motion of the system with the control force have the same form as Eq. ( 1).

On the other hand, the appendage mode model has the form of Eq. ( 1) when the inertial elements are added to the locations of x 1 and x 2 , and the elements in Eq. ( 3) become M and I. If the inertial terms are applied to Eq. ( 3) atthe x 1 and x 2 positions, the corresponding generalized forces are decomposed and spread out as generalized forces over all modes as in Eq. ( 1). Not only in this example, but when the control force is applied to the system and transferred to the left side, it is not generally diagonal as in Eq. ( 2).

Model reduction

The reduced model of the appendage mode model Eq. ( 1) is obtained by a singular perturbation method. A simple mode truncation does not consider the effect of truncated modes on the modeled modes through coupled terms such as α i and β i . Therefore, the secular terms appear in the modeled modes of the reduced model and cause errors, so the secular terms are appropriately eliminated to improve the accuracy of the model. On the other hand, the averaging method applied to the vehicle mode model of Eq. ( 2) results in the truncation of the higher-order modes. The two models are equivalent, although details are not shown for shortage of space.

Although the procedure of the elimination of the secular terms is necessary to reduce the appendage mode model while maintaining high approximation accuracy, it is suitable for analysis in which a control system is subsequently designed and control inputs are added, or when multiple modes are coupled. On the other hand, to obtain a reduced vehicle mode model augmented by the control system, solve the eigenvalue problem of the off-diagonalized system as in Eq. ( 1), diagonalize as in Eq. ( 2), and apply the averaging method to reduce the dimension. In other words, during the trial-and-error process of control system design, it is necessary to solve the eigenvalue problem and recalculate Eq. ( 2) each time the control system is modified. Therefore, the vehicle mode model is difficult to use in control system design and is suitable for evaluation after the kinetic boundary conditions, including the control system, have been determined. 

Numerical examples

Concluding remarks

In this paper, as a method to construct a low-dimensional model augmented by control systems with high accuracy, the method of reducing the dimension of the appendage mode model by using the singular perturbation method so that no secular terms remain and the method of reducing the dimension of the vehicle mode model by using the averaging method have been examined, and the equivalence of the two methods has been described. The advantages and disadvantages of these methods have been discussed. The singular perturbation method and the averaging method were discussed in [1,2], and the various modes were discussed in [3] but the contents described in this study have not been shown.

Nonlinear guided control of a human driver via an automated vehicle Bence Szaksz * , Gábor Orosz * * , and Gábor Stépán * * *

Introduction

Automated vehicles (AVs) are gaining popularity, but human-driven vehicles (HVs) are expected to continue dominating traffic in the coming years. However, the presence of AVs has the potential to significantly influence the dynamics of traffic, particularly in terms of reducing the risk of accidents and decreasing energy consumption also for the vehicles behind them [3]. String stability is a key measure for traffic dynamics, which assesses how the velocity fluctuations of a vehicle affect the velocity fluctuations of the vehicles following it [1,4]. This research examines the dynamics of a simple case of traffic control where an HV is driving behind an AV equipped with a backward-looking control. While previous studies have primarily focused on the string stability of linearized systems, here we take into account the nonlinear range policy of the human driver, and present string stability charts for the nonlinear guided control of the HV.

2 Modeling and Control Design ). Both the light gray and the dark gray regions are plant stable, while the dark gray region is also string stable. The inlets display typical frequency response curves of the corresponding regions.

Let us assume that an AV is travelling in front of an HV. The velocities of the AV and the HV are v(t) and v -1 (t), respectively, and the distance headway is h -1 (t); see Fig. 1(a). The AV aims to cruise according to the possibly time varying reference velocity v ref (t), while it also responds to the velocity difference of the two vehicles. Utilizing the translational symmetry of the system, the equation of motion takes the form

ḣ-1 = v -v -1 , (1) v 
-1 = α(V (h -1 ) -v -1 ) + β(v -v -1 ) , (2) 
v = β(v ref -v) + β -1 (v -1 -v) ; (3) 
V (h) = min max{0, F (h),v max } , where F (h) = v max (3h go -h stop -2h)(h -h stop ) 2 (h go -h stop ) 3 . (4) 
Here, V (h) is the nonlinear range policy of the human driver, which is visualised in Fig. 1(b). The cruise control gain and the backward looking gain of the AV are denoted by β and β -1 , respectively. Additionally, the dynamics of the HV are determined by the gains α and β, which have previously been estimated in the literature [2].

In case of constant reference velocity v ref = vref , the steady state motion is given by v ⋆ -1 = v ⋆ = vref , while the headway is determined by the inverse of the range policy:

h ⋆ -1 = V -1 (v ref )
; at this point, the slope of the range policy is denoted 

= [h -1 -h ⋆ -1 , v -1 -vref , v -vref ]
T , the governing equations assume the form: ẋ = Ax + g(x) + Bε cos(ωt) , y = Cx .

(

) 5 
where g(x) contains the nonlinear terms originating in the range policy (4). The unforced linearized system is called plant stable if all the roots of the characteristic equation det(sI -A) = 0 have negative real parts. Panel (c) of Fig. 1 presents a stability chart where both the light gray and the dark gray regions are plant stable and the corresponding stability boundaries are denoted with dashed red curves and solid red curves for zero and nonzero frequencies, respectively. Furthermore, the system is called linearly string stable if the transfer function

T (s) = C(sI -A) -1 B satisfies |T (jω)| < 1
, for all ω > 0. Thus, the system may lose its string stability in two ways: either the norm of the transfer function increases above 1 immediately at ω = 0, or only after a value of ω > 0. In Fig. 1(c), the corresponding string stability boundaries are denoted by dashed blue lines and solid blue lines, respectively. The region which is both plant and string stable is shaded dark gray. These linear results indicate that applying small positive values for the cruise control gain β is advisable, while the backward looking gain β -1 may take both positive and negative values.

When the relevant nonlinearities in the range policy function are considered, the corresponding nonlinear frequency response is a function of the perturbation amplitude and includes not only the basic harmonics but also higher ones. Moreover, in the case of asymmetric nonlinearites, it also contains a shift term. Figure 2 presents stability charts in the plane of the control gains of the AV, which are colored according to the maximum of the norm of the nonlinear frequency response. The linear string stability limit is recovered for small excitation amplitudes (cf. Fig. 1(c)), while the string stable domain shrinks for small and extends for large values of β as the excitation amplitude is increased. Note, that the large values of β might lead to unrealistic large accelerations of the AV. Panel (c) of Fig. 2 shows the change of the transfer functions for the gains β -1 = -0.3 s -1 and β = 0.18 s -1 as the excitation amplitude increases. In this specific case, the nonlinear system loses its string stability as the excitation amplitude increases.

Conclusion

In this study, we investigated the dynamics of an HV following an AV equipped with a backward-looking control. The results of the linear analysis showed that applying small positive values for the cruise control gain is advisable, while the backward-looking gain can take on both positive and negative values. However, taking into account the nonlinearities in the range policy function, we found that the backward looking gain should be increased. After verifying them with measurements, the results are applicable in designing control systems for automated vehicles that can better manage the dynamics of the traffic flow in mixed traffic scenarios.

where κ is the sectional curvature, W ≡ ∇ 2 τ S. In conclusion, by monitoring the change of swarm lattice formation in external potential, an observer can measure two variables: S, agents' velocities; W , the second-order differences of nearby agents' velocities. The geodesic deviation equation (3) connects W and S through the sectional curvature κ of the external potential manifold. In order for the swarm to maintain its formation while traveling through the external potential, each agent must have the ability to dynamically control its trajectory. We consider the agent's trajectory as a discrete-time dynamical system,

x k+1 = F(x k ), (4) 
where x is the state of the system, and F is a vector field depends on the system. The curvature property of the external potential manifold results in nonlinear trajectories for the agents. To examine the nonlinear dynamics using linear techniques, we employ Koopman operator theory. Koopman theory demonstrates the capability of expressing a nonlinear dynamic system through an infinite-dimensional linear operator acting on a Hilbert space of measurement functions of the system. For systems with an unknown governing equation, such as in our case, the dynamic mode decomposition (DMD) algorithm is utilized. DMD analysis can be regarded as an approximation to Koopman spectral analysis.

Experiments are performed on real mobile robots with visual system to verify the formation control algorithm on an elliptic paraboloid potential, and the effectiveness of Dynamic Mode Decomposition in robots velocity prediction in unknown environment is demonstrated.

Results and discussion

In simulations, the curvature estimation by formation analysis is perfomred in three different external potentials: elliptic paraboloid,

x 2 1 + x 2 2 a ; hyperbolic paraboloid, x 2 1 -x 2 2 a
; and sinusoidal and cosusoidal, sin(

x 1 a ) + cos( x 2 a
), parametrized by a. The formation analysis algorithm is able to estimate the sectional curvature of all three external potential manifolds with a certain level of accuracy. Generally, the accuracy of the estimation improves as the curvature decreases, while the frequency of communication between agents and the constraint on the distance between agents do not significantly impact the accuracy of the algorithm. With a reliable correction step, the formation algorithm has a dependable prediction of the dynamics of the agents, even when using data that is approximately measured in the Euclidean metric. However, when the agents exhibit nearly linear dynamics (constant velocity), the accuracy of the algorithm decreases and eventually fails. When both algorithms are taken into consideration, smaller swarm size is more controlable but with lower accuracy in external curvature estimation, and vice versa. This trade-off is due to the fact that for formation analysis, we leverage the nonlinearity in the agents' trajectories to estimate a nonlinear property, while for formation control, we rely on a linear approximation in the Euclidean metric to correct the predictions of the agents' trajectories. As a result, finding the right balance between the number of agents, the frequency of communication, and the inter-agent distance is crucial in optimizing our approach to energy-efficient WSN algorithms. In experiments, the formation control algorithm is successful in tracking the leader robot.

Bias of the steady-state averaged solutions of a strongly overdamped particle in a cosine potential under harmonic excitation Attila Genda * , Alexander Fidlin * and Oleg Gendelman **

Introduction

Escape form a potential well is a classic problem arising in numerous fields of engineering [1] and natural sciences [2]. Escape can be caused by different types of excitation starting with the appropriate initial conditions via harmonic excitation [2] to stochastic noise [1] and impact loading. Usually, conservative escape problems without damping or weakly-damped systems are considered in the literature [3,4,5]. In these cases, the neglection of the transient motion leads to less accurate predictions regarding the frequency dependent critical forcing values [2], thus, normally another ansatz by the change to action angle coordinates is chosen [3,4]. The drawback of this method is that the analysis gets limited to the vicinity of the 1:1 resonance. Arguably, the larger the damping is, the faster the decay of the transient motion around a stable equilibrium position will be enabling the application of the method of harmonic balance without significant error resulting from the neglection of the initial conditions' effect.

Theory

In this study, a strongly overdamped particle of mass 𝑀 is investigated in potential 𝑉(𝑥) = -cos 𝑥. The equation is brought to a form where the coefficient of the viscous damping and the linearized eigenfrequency of the bottom of the potential well are both one. The particle is excited by a harmonic force with amplitude 𝐹, frequency Ω, and initial phase 𝛽 (see Fig. 1. a)). The equations of motion are given by Eq. ( 1)

(1) 𝑀𝑥̈+ 𝑥̇+ sin 𝑥 = 𝐹 sin(Ω𝑡 + 𝛽). Applying the method of harmonic balance with the ansatz 𝑥 (𝑡) = 𝐴 + 𝐴 sin(Ω𝑡 -Ψ), three equations can be obtained to determine the three unknowns 𝐴 , 𝐴 , and Ψ:

(2) 𝐽 (𝐴 ) sin 𝐴 = 0, -𝐴 Ω 𝑀 cos Ψ + 𝐴 Ω sin Ψ + 2 cos 𝐴 𝐽 (𝐴 ) cos Ψ = 𝐹, 𝐴 Ω 𝑀 sin Ψ + 𝐴 Ω cos Ψ -2 cos 𝐴 𝐽 (𝐴 ) sin Ψ = 0,

where 𝐽 (⋅) and 𝐽 (⋅) denote the Bessel functions of the first kind of zeroth and first order, respectively. Depending on the choice of the parameters, there are up to three families of solutions of Eqs. (2-4):

(5) 𝐴 , = 2𝑘𝜋, 𝑘 ∈ ℤ, 𝐴 , = (2𝑘 + 1)𝜋, 𝑘 ∈ ℤ,

𝐴 , = 2𝜋𝑘 ± arccos ⎝ ⎛ 𝛼 Ω 𝑀 -𝐹 -𝛼 Ω 2 𝐽 (𝛼 ) ⎠ ⎞ , 𝑘 ∈ ℤ, (6) (7) 
where 𝛼 denotes the 𝑙 th positive root of 𝐽 (𝐴 ) = 0. For a given parameter setting only one of the solution families is stable. Furthermore, 𝐴 , appears only if roots 𝐴 , and 𝐴 , both become unstable, thus, defining a continuous transition from one stable equilibrium point to another for 𝑀 > 0. For 𝑀 = 0, solution 𝐴 , degenerates to a jump, thus in this case no continuous transition under the slow variation of 𝐹 from 𝐴 , to 𝐴 , can be observed. In Fig. 1.c) the simulated stationary values of 𝐴 are depicted against the values of 𝐹 and 𝑀. The simulations confirm the analytical findings regarding the shift of the value of the center of steady-state vibrations 𝐴 . In Fig. 2.b) a numerical example is shown comparing two cases considering a particle with and without mass, respectively. The initial phase of the excitation 𝛽 and the initial conditions (𝑥 , 𝑥̇ ) cannot influence which family of the stationary solutions becomes stable, but they do have an effect on the value of 𝑘 and on the sign of the arccos term in Eqs. (5)(6)(7). In the upper right part of Fig. 1.c) this effect might be observed.

Results and discussion

Using the method of harmonic balance, it has been shown that, depending on the excitation amplitude 𝐹, the steady state solution of Eq. ( 1) can oscillate either around the minima of the potential well, or around its maxima, or, for certain values of the excitation amplitude, even around any arbitrary value in between the extrema of the potential. The analytic predictions show a good correspondence with numerical findings. Some qualitative difference in the values of 𝐴 can be observed in the region 𝑀 < 2𝐽 (𝛼 )/(𝛼 Ω ), where the analytic prediction loses its continuity, probably due to the neglection of the higher order terms in the harmonic balance method. The recognition of continuously shifting the center of vibrations only by modulating the force amplitude might lead to new kinds of applications in the field of micro and nano system development where the exact placement of small particles or even single molecules using electromagnetic fields is of great importance [6]. To ensure that free vibrations do not impact practical applications, it is advisable to select stable equilibria with zero initial velocity as the initial conditions.

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Project No. 508244284.

Introduction

Metamaterials were first introduced in the magnetic field [1], and later similar physical particularities were developed for mechanical and vibro-acoustical applications [2]. Based on the design of the meta-cell composing the metamaterial, control of mechanical energies can be achieved at different frequency ranges, usually resulting of negative effective indices [3]. Periodic arrangement of scatters in phononic crystals allowed to achieve wave control in the high frequency domain. Bandgaps in the low frequencies are usually reached with lattices composed of low frequencies resonators. Non-linearities can be introduced in the meta-cells to target particular effects such as energy pumping and non-periodic responses with controlled maximal amplitude [4]. One of the common mechanical unit design is the mass-in-mass cell which is used for example to obtain negative effective mass in linear and nonlinear domains [5]. Non-linearities can be implemented using special design [6] composed by passive or active components, allowing to program the cells [7]. In this work, a passive pure cubic stiffness is used between the two masses of each cell composing the periodic chain of mass-in-mass cells. Pure nonlinear oscillators can enter in resonance with any frequency and can lead to energy pumping [8]. Moreover, the internal resonances [9] are taken into account with the idea of spreading energy on resonant modes of the chain and improve vibratory control.

Theory and experiments

The system under consideration is a periodic chain of mass-in-mass cells represented in Fig. 1. The distance at rest position between two adjacent cells is ∆x. Governing system equations in continuous domain read:

         ∂ 2 U ∂τ 2 (x, τ ) - ∂ 2 U ∂x 2 (x, τ ) + εΛV 3 (x, τ ) -εχ 1 ∂ ∂τ ∂ 2 ∂x 2 U (x, τ ) + εχ 2 ∂ ∂τ V (x, τ ) = εf (x, τ ) ∂ 2 (U -V ) ∂τ 2 (x, τ ) -ΛV 3 (x, τ ) -χ 2 ∂V ∂τ (x, τ ) = 0 (1) 
where U and V stand for displacement of masses m 1 and relative displacement between masses m 1 and m 2 respectively.

We define

0 < ε = m2 m1 ≪ 1, τ = ωt = k1 m1 t, εΛ = k3 k1 , εχ 1 = c1 √ k1m1 , εχ 2 = c2
√ k1m1 and εf = F k1 . Periodicity conditions are injected in the linear associated system equations and linear modal characteristics of the system are evaluated. The system presents different types of internal resonances. We consider a n : 3n internal resonance and we suppose that the overall response of the chain is dominated by internally resonant modes. System is complexified using four different Manevitch variables [10] and harmonics selection is operated around the two modal frequencies using a Galerking methodology. At this point, asymptotic responses of the system are considered and multiple scale study [10] is conducted. The developments are used for designing experimental prototype which will be tested on the shake table of LTDS/ENTPE.

m 2 k 3 c 2 m 1 k 1 c 1 m 2 k 3 c 2 m 1 k 1 c 1 k 1 c 1 m 2 k 3 c 2 m 1 k 1 c 1 ... ... L-1 L 1
Figure 1: The periodic chain with nonlinear mass-in-mass unit cell and distance ∆x between cells at rest

Results and discussion

Detection of fixed points and definition of the phase dependent SIMs of the system with two internally resonant modes is obtained from studying of the fast dynamics [4]. Free response of system amplitudes are depicted on the envelopes of the SIMs in Fig. 2: N 1 (and M 1 ) and N 2 (and M 2 ) represent amplitudes of the two internally resonant modes describing the outer masses (and inner masses), respectively. Slow dynamics of the system provide singular and equilibrium points leading to detection of frequency response curves. Multiple responses, including non-periodic ones, can be obtained depending on the chosen parameters of the system and forcing terms. Developed techniques provide tools for designing such a chain with inter-modal energy exchanges tuning. Rigorous forward numerical integration of general evolutionary partial differential equations based on semigroup theory Akitoshi Takayasu * , Gabriel W. Duchesne * * , and Jean-Philippe Lessard * *

Introduction and main result

This talk provides a numerical method for rigorously integrate solutions applicable to a class of general time-evolving partial differential equations (PDEs). Our target PDEs to which this method is applicable are, for example,

• Complex-valued nonlinear heat equation [1,2]:

u t = e iθ u xx + u 2 , θ ∈ (-π/2, π/2)
• Nonlinear Schrödinger equation [2,3]:

iu t + u xx + u 2 = 0 • Kuramoto-Sivashinsky equation: u t = -λu xxxx -u xx + 1 2 u 2 x , λ > 0 • Phase field crystal model: u t = u xxxx + 2u xx + (1 -α)u + u 3 xx , α ∈ R
defined in the interval (0, π/L). Furthermore, in spatial dimensions of the form d j=1 (0, π/L j ) (d = 2, 3), this method is also applicable to the following equations:

• Swift-Hohenberg equation:

u t = λu -(1 + ∆) 2 u -u 3 , λ > 0 • The diblock copolymer model: u t = -∆ ε 2 ∆u + u -u 3 -σ(u -λ),
where λ is the average of the solution and σ = 0 corresponds to the Cahn-Hilliard equation.

Let us assume that the unknowns of such PDEs are represented by the Fourier series. That is, we expand the solution as

u(t, x) = k∈Z d a k (t)e ik•Lx , k = (k 1 , . . . , k d ), x = (x 1 , . . . , x d ), L = L 1 • • • 0 . . . . . . . . . 0 • • • L d (1) 
with the cosine symmetry a -k = a k . Plugging the Fourier series (1) into our target PDEs, we have a general form of infinite-dimensional system of ordinary differential equations (ODEs)

ȧk (t) = µ k a k (t) + (kL) q N k (a), (kL) q def = (k 1 L 1 ) q + • • • + (k d L d ) q , k ≥ 0. (2) 
where µ k denotes the eigenvalues of the target PDEs, k q presents the derivative in the nonlinear term, and N k is obtained from the Fourier transform of the nonlinear term and it satisfies N k (0) = 0 and DN k (0) = 0.

Our goal is to determine the Fourier coefficients a(t) def = (a k (t)) k≥0 that solves (2) with initial value a(0) = (φ k ) k≥0 . To this end, we prepare a set of index representing finite modes of size m, denoted by

F m def = {k ≥ 0 : k < m} (F m = F m1 × • • • × F m d where F mj def = {k j ≥ 0 : k j < m j }).
We truncate the Fourier coefficients at size N to numerically integrate the finite-dimensional ODE. The resulting numerical solution is denoted by (ā

(N ) k (t)) k∈F N .
We prepare several function spaces to validate local-in-time solutions. For a non-negative integer q ≥ 0 we define a Banach space of multi-index sequences as

ℓ 1 ω,q def =    a = (a k ) k≥0 : a k ∈ C, ∥a∥ ω,q def = k≥0 |a k |ω k,q < +∞    , (3) 
where the weight ω k,q for k ≥ 0 is defined by

ω k,q def = α k ν k ⟨k⟩ q , ν ≥ 1, k def = k 1 + • • • + k d , ⟨k⟩ def = 1 + k. ( 4 
)
The choice of the weight in ( 4) is to ensure that ℓ 1 ω,q is Banach algebra under the discrete convolution, i.e., ∥a * b∥ ω,q ≤ ∥a∥ ω,q ∥b∥ ω,q holds for all a, b ∈ ℓ 1 ω,q . Furthermore, let us denote a time step by J def = (0, h) for a step size h > 0 and define a function space of the time-dependent sequences as X def = C(J; ℓ 1 ω,q ), which is the Banach space with the norm ∥a∥ X def = sup t∈J ∥a(t)∥ ω,q . Similarly, we also define another Banach space as Y def = C(J; ℓ 1 ω,0 ). When considering the system of ODEs (2) in the sequence space, we define the following three operators to conveniently formulate the problem: The linear operator L : D(L) ⊂ ℓ 1 ω,q → ℓ 1 ω,0 assumed to be a densely defined closed operator on ℓ 1 ω,0 acting on a sequence ϕ = (ϕ k ) k≥0 as (Lϕ) k def = µ k ϕ k . The multiplication operator Q : ℓ 1 ω,q → ℓ 1 ω,0 is defined by (Qϕ) k def = (kL) q ϕ k . Furthermore, the Fréchet differentiable nonlinear operator N : ℓ 1 ω,q → ℓ 1 ω,q is defined by (N (ϕ)) k def = N k (ϕ). Using these operators, the initial value problem on the space of sequences corresponding to (2) is formulated as follows:

ȧ(t) = La(t) + Q N (a(t)), a(0) = φ. (5) 
We consider the initial value problem (5) in the Banach space X, and verify the solution's Fourier coefficients in a neighborhood of the numerical solution, defined as B J (ā, ϱ) def = {a ∈ X : ∥a -ā∥ X ≤ ϱ, a(0) = φ}. Here, ā(t) = (ā k (t)) k≥0 ∈ ℓ 1 ω,q is a natural extension of the numerical solution (ā

(N )
k (t)) k∈F N to the infinite-dimensional space. In addition, let us define (F (a))(t) def = ȧ(t) -La(t) -Q N (a(t)) for a ∈ C(J; D(L)) ∩ C 1 (J; ℓ 1 ω,q ). Hence, the initial value problem ( 5) is transformed into a zero-finding problem with the initial condition a(0) = φ. Let us also define an operator T : X → X as

(T (a))(t) def = U (t, 0)φ + t 0 U (t, s)Q (N (a(s)) -DN (ā(s))a(s)) ds, (6) 
where {U (t, s)} 0≤s≤t≤h is a solution operator of the linearized problem of ( 5) at ā such that

ḃ(t) = Lb(t)+QDN (ā(t))b(t), b(s) = ψ ∈ ℓ 1 ω,0 .
Remark 1 The fixed point of T in X is equivalent to the root of F with a(0) = φ and vise versa. Therefore, the existence of local-in-time solution is transformed into the existence of the fixed-point of T .

In the following, we introduce our main theorem that numerically verifies the existence of the local-in-time solution.

Theorem 1 Given the approximate solution ā ∈ C(J; D(L))∩C 1 (J; ℓ 1 ω,q ) of (5) and the initial sequence φ, assume that ∥φ -ā(0)∥ ω,0 ≤ ε holds. Assume also that for a 1 , a 2 ∈ B J (ā, ϱ) there exists a non-decreasing function L

ā : (0, ∞) → (0, ∞) such that ∥N (a 1 ) -N (a 2 ) -DN (ā)(a 1 -a 2 )∥ X ≤ L ā(ϱ)∥a 1 -a 2 ∥ X .
Moreover, ∥T (a) -ā∥ X ≤ f ε (ϱ) holds for any a ∈ B J (ā, ϱ), where f ε (ϱ) is defined by

f ε (ϱ) def = W h ε + h Lq L ā(ϱ)ϱ + δ .
Here, W h > 0 and δ > 0 satisfy

sup (t,s)∈S h ∥U (t, s)∥ B(ℓ 1 ω,0 ,ℓ 1 ω,q ) ≤ W h and ∥F (ā)∥ Y ≤ δ hold for S h def = {(t, s) : 0 ≤ s ≤ t ≤ h}, respectively. If there exists ϱ 0 > 0 such that f ε (ϱ 0 ) ≤ ϱ 0 ,
then the Fourier coefficients of (5) are rigorously included in B J (ā, ϱ 0 ) and are unique in B J (ā, ϱ 0 ).

The constants ε, W h , and δ > 0 in the main theorem are estimated rigorously by rigorous numerics based on interval arithmetic, and a numerically determined ϱ 0 > 0 satisfying f ε (ϱ 0 ) ≤ ϱ 0 is used to achieve a rigorous numerical integration in the time interval. The time step is then extended from J 1 = [0, h] to J 2 = [h, 2h] using a time stepping scheme that is repeatedly ensuring validity of the main theorem. We will demonstrate results for 2D/3D Swift-Hohenberg equation and 2D diblock copolymer model as examples of applicability of our method in the talk.

Introduction

Applications implementing bistable microstructures, such as pre-buckled or initially arch-shaped curved beams or plates (caps), commonly exploit the intrinsic ability of these devices to stay in two or more equilibrium states at the same loading. This ability lies at the foundations of a large variety of designs of threshold switches, latches or mechanical memory elements. However, there are two other distinguishing features of bistable devices making them attractive for the implementation in sensors. The first is very high sensitivity to the parameters in the vicinity of critical, close to the stability boundaries, configurations, where minor change in the external stimuli results in a pronounced change in the response. The second is extremely high frequency tunability of the bistable devices near the critical states. In the first part of the talk, several recently reported implementations of bistable devices in sensors are presented. In the quasi-statically operated force/inertial sensor [1] actuated by an electrostatic force, the critical voltages associated with the snap-though (ST) and snap-back (SB) jumps between the stable states are monitored in order to extract inertial force acting on the proof mass. Resonant devices benefit from high tunability of the bistable structures near the ST and SB states. In these sensors, the bistability is realized by implementing initially curved geometries [2] or by tailoring the electrostatic forces associated with fringing fields [3]. While bistability-based devices are often considered in the context of threshold-based ON-OFF operational scenarios, all the devices considered here allow continuous measurement of the quantity of interest.

Bistable flow sensors

In the second part of the talk, bistable flow sensors incorporating initially curved electrostatically actuated bistable micro beams are considered The dynamics of the beam can be described using a generic lumped single degree of freedom model [4][5] Here w(t) is the midpoint deflection of the beam, is the parameter associated with the beam's initial (as fabricated) midpoint elevation h, Fig. 1(a), is the geometric nonlinearity parameter related to the beam's axial constrained stretching, and are the voltage parameter and the normalized electrostatic gap, respectively and Q is the quality factor. The influence of the air flow manifest itself in the direct flow drag/levitation force parameter a along with the average temperature depending on the air flow velocity and the Joule's heating. Overdot denotes time derivatives. Non-dimensional Eq. ( 1) is obtained from the continuum, multiphysics formulation using Galerkin's approximation.

While considerations beyond the operational scenario are seemingly straightforward, the sensor's behaviour involving mechanical, electro thermal, fluidic and nonlinear dynamic aspects, is affected by many factors and is quite complex. Here we present recent experimental results shedding light on the role of operation bandwidth (BW), sampling rate, direct aerodynamic loading related to the flow incident angle as well as the levels of Joule's heating. Since ST and SB collapse is an essentially dynamic phenomenon, the ambient noise-induced vibrations prior the jumps may have a significant influence on the measured values of the critical voltages (specifically, broadband ≈ 5 V noise of the actuating voltage VES results in the decrease of the ST voltage by ≈ 2% and increase of the SB voltage by ≈ 8%). The vibrations following the jumps and engendered by the dynamic transitions between the states, Fig. 2(b), also may have an influence on the sensor performance and are among the key factors limiting the achievable operational bandwidth (flow speed sampling rate) of the sensor to several hundreds of Hz [5]. We also present the results illustrating the role of non-symmetric buckling on the measured critical values of the voltages and corresponding estimated flow velocities.

Introduction

Energy harvesting from mechanical oscillations has been of a high interest for several last years. A new possibilities occurred when composite materials have been developed. The review of composite laminates which exhibit bi-stable static configurations has been presented in [1]. Authors analysed a strongly nonlinear snap-through effect to gain the energy harvested from bi-stable composite laminates. The critical review of nonlinear methods for extending operational bandwidth and to obtain high power harvesters performance has been presented in [2] and then in [3] for the bi-stable composite structures with high geometric nonlinearities. The properties of isotropic and anisotropic composites have been discussed in terms of triggering the snap. Most of the considered in the literature bi-stable structures are symmetric or close to the symmetric configuration [1]- [3]. In contrast in paper [4] the bi-stable shell with two stable equilibria (A-shell) or four stable equilibria (B-shell) are proposed. The studied shells are created on a conical surface made of composite material with antisymmetric ply stacking sequence. A-shell has a curvature of the same sign for the whole structure as presented in Fig. 1 (a). The second option is B-shell obtained for the curvature varied from a positive to negative sign as presented in Fig. 1 (b). For the A-shell two stable configurations called C-state and I-state have been detected [4,5] while for the B-shell four stable states called I-shape, J-shape, L-shape and S-shape have been obtained [4]. It is expected that such proposed shells enable restoring more energy than the structures published in the recent literature. 

Conclusions and further research

The design of the composite shells (A-shell and B-shell) characterised by multi-stable states is proposed in the paper. A detailed experimental analysis has been performed for bi-stable A-shell which exhibits two essentially different equilibrium states: C-state and I-state. The resonance curve for C-state remains linear even for large oscillations, in contrast the resonance curve for I-state is strongly nonlinear with a softening effect occurring for small oscillations and then increasing for large oscillations. Finally I-state and C-state overlap leading to the snap-trough effect and global irregular oscillations. This vibration domain can be exploited for energy harvesting. It is expected that a proper design of the shell with an embedded active piezoelement, tuned to excitation conditions may increase effectiveness of energy recovery. The future study will be devoted to B-shell with four steady states which give more possibilities to tune the structure for various excitation conditions and thereby to achieve larger amount of harvested energy.

Introduction

Metamaterials consisting of carefully designed repeated unit cells have shown great interdisciplinary importance thanks to their superior and tailorable characteristics, which include exceptional stiffness-to-weight ratios, auxetic behavior, and customized band gaps. The properties of a metamaterial are determined by its base material as well as the geometry of its constituent unit cells, where typically these properties are predetermined and are fixed post manufacturing. To give a certain metamaterial the capability to change its properties without undergoing irreversible plastic deformations, it must have some level of reconfigurability, which results in significant stable geometrical variations. Reconfiguration can be achieved by embedding elements with instability regions, such as prestressed elastic elements [1,2]. The ultimate goal of this study is incorporating reconfigurable elements inspired by 'bendy straws' in truss metamaterials, such that these elements replace the traditionally used elastic members (e.g. [3]). 'Bendy straw'-inspired elements have a myriad of stable configurations, even in the planar case considered here, as each of their constituent unit cells can have up to four stable configurations [4]. Consequently, a single straw can be stabilized in a large number of multiaxial configurations [5,6], which provides structures incorporating multistable straws, a wide range of complex stable equilibria. The immense number of stable configurations provides a high degree of flexibility in changing the local and global stiffness as well as the dynamic properties of a structure, which can be important for shape morphing structures, soft robots, and metamaterials with reconfigurable spatial grading. Furthermore, it has been demonstrated that under thorough design, reconfigurable metamaterials can show high energy absorption abilities, almost without rebounding due to their multiple stable configurations [2,7].

Theory

We develop the theoretical foundations enabling to simulate the quasistatic behavior of any planar truss metamaterial consisting of 'bendy straw'-inspired elements as well as rigid members, see schematic example in Fig. 1 (a). The modelling begins with a finite element adaptation of the formulation derived by Ilssar et al. [4], to describe the elastic behavior of a single straw with uniform or spatially varying geometrical and physical parameters. As shown in Fig. 1 (b), each straw is modelled by two rigid tubes and a serial interconnection of cells, each composed of a rigid conical frustum, as well as an elastic conical frustum modelled by an axisymmetric and an antisymmetric degrees of freedom denoted respectively by ζ and φ, see Fig. 1 (c). These two degrees of freedom allow the straw to undergo both extensional and bending deformations. Assuming that the straw's base material is linear, and that the base angles of each elastic frustum are small, the potential energy of a single frustum is given by [4]:

V ≈ 2C 1 ζ 4 + C 2 -4C 1 ζ 2 0 ζ 2 -2C 2 ζ 0 ζ + 3C1r 4 i 4 φ 4 + C2-4C1ζ 2 0 2 r 2 i φ 2 + 6C 1 r 2 i ζ 2 φ 2 + Const. (1) 
Here, C 1 and C 2 are constant coefficients which are dependent on the frustum's inner and outer radii r i , r o as well as its thickness h, unstressed axisymmetrical deflection ζ 0 , and the material's Young's modulus E. Parametric investigation of Eq. ( 1) shows that the frustum's geometrical parameters affect the number of its stable equilibria, which vary between one and four. In the latter case presented in Fig. 1 (d), the elastic frustum can be stabilized in deployed and folded configurations, as well as in two bent states. The finite element formulation of a single straw has a great importance in experimental parameter identification, especially when the properties of a straw are not uniform. The formulation of the single straw is then extended to describe any arbitrary straw-based planar truss metamaterial. This formulation considers the holonomic constraints introduced by the straws and rigid members, relating the relative displacements and rotations of the structure's nodes in a nonlinear fashion. A numerical scheme based on this extended derivation allows generating complex deformations by dictating the translations and rotations of chosen nodes.

Results

We utilize the numerical scheme mentioned above to investigate different straw-based truss metamaterials, in order to study the effect of their microstructures on their elastic properties, deployment patterns, and energy absorption capabilities. An example of the behavior of a straw-based metamaterial is presented in Fig. 1 (e,f). These figures show the deployment pattern of a structure composed of 18 straws and a single rigid member, undergoing large deformations due to dictated displacements between two of its nodes, starting from a configuration in which all of the constituent straws are fully folded.

We further use the developed numerical scheme for structural optimization geared to design structures with superior characteristics. This is done by adjusting the spatially varying geometrical and physical parameters of the straws' constituent unit cells, as well as the arrangement of the different members on the truss level.

Discussion

This work introduces the formulation and properties of 'Bendy straw'-inspired elements to the well-explored field of truss metamaterials. These novel multistable elements can lead to new properties such as a high level of reconfigurability, which are unachievable in conventional structures. Thus, incorporation of straws can extend the research and applications of truss metamaterials to new interdisciplanary fields.

Nonlinear dynamics of ball rolling of radial bearings in an assembly with an unbalanced multi-stage rotor Katica R. (Stevanović) Hedrih *[0000-0002-2930-5946]

Introduction

In the last five-six years, the author has published a series of papers (among them References [1][2][3][4][5]) with new results on the nonlinear dynamics of the rolling, no-slip, heavy ball on curvilinear trajectories and surfaces of different shapes. Some of these published papers also contain Author's new analytical theory of the collision of rolling bodies (see Ref. [5]). The previous results were an inspiration for the application of the obtained results to the nonlinear dynamics of rolling balls in radial shaft bearings of balanced and unbalanced rotors.
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Description of the rotor model with radial ball bearings

The bearing balls roll, without slipping, along the stationary circular groove of the bearing, which is fixed to the foundation. Balls rolling on a stationary groove are in contact with a movable circular groove (on which they "roll" without slipping), which rotates together with the rotor shaft to which it is rigidly connected. In that figure, the arcs of contact are indicated, which the ball, in rolling, without sliding, describes on the moving and stationary circular groove. It is indicated that the position of the pair of bearing balls is determined by the central angle  , and that the angle of rotation of the movable circular groove and the shaft is determined by the angle  . Based on the geometric or kinematic compatibility conditions, we determined the angular velocity P  of the ball rolling as a function of both coordinates,  and  , as well as the relationship between those coordinates  and  , in the following form:

  r r R P      ,   r r R P 2 2      and     r R r R 2 2       
The last of these expressions gives the kinematic relationship between the angular velocities of rotation of the hybrid system in the rotor model and the angular velocities of rolling of the balls in the radial bearings, which are mounted in pairs on each of the ends of the rotor shaft. A scheme of disks with imbalances in the form of material points is also shown, and the angular velocity of rotation of each disk is indicated. Those angular velocities are different, which depends on the transmission ratio of the disks in contact, as well as on the position of the imbalance (material points) on a particular disk.

This leads to the non-linear dynamics of the rotor rotation, and thus to the non-linear dynamics of the rolling of the balls in the radial ball bearings.

The first model: Nonlinear dynamics of the rolling of the bearing balls and the rotation of the balanced rotor

For the case when the rotor is balanced and the center of mass has an eccentricity, one or more pairs of balls on one of the diameters of the radial bearing, the non-linearity of the rotation of the shaft, as well as the rolling of the bearing balls originates from that eccentricity. For that case, and for four pairs of balls of a pair of bearings, the expressions for kinetic energy and change in potential energy are: In that case, the nonlinear differential equation of the system's nonlinear dynamics is:

        2 4 1 2 2 4 2 1 1 2 1                      r R r R p r r R O n n n     J J E P k                     
            0 4 1 1 2 2 1 4 1 2 4 1 2                       n n n n O n n n n sin r R p e r R m p mr r R g    J J P  
where n p is coefficient of difference between mass density between balls in one pair. The equation of the phase trajectories of the nonlinear dynamics of the system is: 

                                           

Second model: Nonlinear dynamics of bearing ball rolling and unbalanced rotor rotation

For the case when the rotor is unbalanced, and the center of mass has no eccentricity, none of the pairs of balls on one of the diameters of the radial bearing, the non-linearity of the rotation of the shaft, as well as the rolling of the bearing balls, originates from that unbalance of the multi-step rotor. Singular points were determined for the nonlinear dynamics of both mentioned models, and for special cases of a multi-stage unbalanced rotor, a series of phase portraits was drawn and the appearance of bifurcation and triggers of coupled singularities and coupled triggers of coupled singularities were analyzed

Concluding comment

The originality of these models of nonlinear dynamics of rotors and balls of radial bearings is in their analytical contribution and enabling qualitative analysis of nonlinear dynamics, significant for engineering practice, as well as for university teaching of machine theory and theoretical dynamics in general. Abstract presents a short review on author's research on the topic of the theoretical models of nonlinear dynamics hybrid system containing radial ball bearings and unbalanced multi-step redactor/multiplier-power transmission in recent years. The analysis and results should be a theoretical reference for engineering designs of hybrid systems with bearing and multi-step power transmission nonlinear dynamics .

Tailoring the dynamical response of a mechanical resonator via nonlinear coupling to secondary resonators

Oriel Shoshani

Ben-Gurion University of the Negev, Israel

Abstract. We study means to tailor the dynamical response of the primary resonator via a nonlinear backaction from secondary resonators. The secondary resonators, which have significantly higher eigenfrequencies and decay rates than the primary resonator, are adiabatically eliminated, and their backaction modifies the potential, dissipation, and drive of the primary resonator, which results in a tunable response. A detailed analysis shows that by choosing the appropriate coupling and drives of the resonators, one can alter the stiffness and damping of the primary resonator, reshape the forced (open-loop) response of the primary resonator, and generate self-excited (closed-loop) oscillatory responses of an undriven primary resonator.

Introduction

From the times of ancient musical instruments right up to modern quantum computation and quantum information science, humanity has sought -and continues to seek -ways to manipulate and tailor dynamical responses. The vast majority of modern methods for tailoring dynamical responses require manipulation of the physical properties of the dynamical system, namely, of dimensions and geometry in topology and shape optimization, of materials and structure in material optimization and metamaterials, and of density and concentration in surface chemistry . However, there are also indirect means to tailor dynamical responses, for example, via coupling the dynamical system to additional degrees of freedom (DOF). Indeed, even the most simplistic coupling between a pair of linear resonators can have practical implementations, such as in anti-resonances and tuned mass dampers that can be used for vibration absorption and isolation. Moreover, if one of the resonators is nonlinear, then the system can exhibit a unique set of dynamical responses (which are impossible to obtain in linear systems) comprising a phenomenon known as targeted-energy transfer [1], which can be used in many applications.

Multi-DOF nonlinear systems can exhibit complex transitions between intricate dynamical responses, such as quasiperiodic responses, modulated chaotic responses, and stochastic switching between mixed-modes oscillations [2]. In most cases, it is difficult to fully resolve the transitions between these intricate dynamical responses, which clearly limits the applicability of the systems in fully coupled and strongly nonlinear regimes. In contrast, the nonlinear responses of single-DOF resonators are quite well understood, and there have been successful attempts to exploit nonlinearity rather than prevent it. For example, bistability and jump phenomena have been used to squeeze noise [3], to enlarge the bandwidth of energy harvesters [4], and to improve mass detection [5]. Nonlinear damping has been exploited to generate tunable quality factors [6] and to stabilize closed-loop operations [7]. The frequency-energy dependence of nonlinear resonators has been employed to reduce frequency fluctuations [8] and to enhance the synchronization domain [9]. The desired tunable response Modified low-frequency resonator

Figure 1: Tailored dynamical response of the primary resonator due to a nonlinear backaction from a secondary resonator. The motion of the dynamical system is described by low-and high-frequency resonators that are nonlinearly coupled via the potential U cpl . The dissipation of the resonators indicated by the wiggly arrows, which show that the secondary high-frequency resonator is significantly more heavily damped than the primary low-frequency resonator, Γ 1 Γ 0 . The secondary high-frequency resonator is adiabatically eliminated, and its backaction modifies the potential U eff and dissipation Γ 0eff of the primary low-frequency response, which results in a tunable response.

Theory

A multiple DOFs dynamical system in which only a single (primary) DOF evolves dynamically and all other (secondary) DOFs modify its dynamical characteristics would be ideal for tailoring dynamic responses (Fig. 1). One approach to model the backaction from secondary DOFs is via adiabatic elimination. The generic equations for the complex amplitudes A 0,1 of a pair of coupled resonators [which provide the information about the resonators' amplitudes (encapsulated in the absolute value of A 0,1 , i.e., |A 0,1 |) and phases (encapsulated in the angle of A 0,1 , i.e., ∠A 0,1 )] are given by

Ȧ0 = -Γ 0 A 0 + g 0 (A 0 , A 1 , F 0 ), Ȧ1 = -Γ 1 A 1 + g 1 (A 0 , A 1 , F 1 ), (1) 
where Γ 0,1 are the linear decay rates of the primary and secondary resonators, and g 0,1 are functions of the complex amplitudes A 0,1 and drives F 0,1 of the primary and secondary resonators that are determined by the conservative and external forces. We investigate systems in which the relaxation time of the secondary resonator 1/Γ 1 is significantly shorter than that of the primary resonator 1/Γ 0 . Hence, for times t 1/Γ 1 , the primary resonator is still evolving while the secondary resonator has reached its steady-state. Therefore, the secondary resonator tracks the primary resonator adiabatically A 1 = A 1 (A 0 (t)), and then from Eq. ( 1), we get a reduced-order dynamical system for A 0 , Ȧ0 = -Γ 0 A 0 + g 0 (A 0 , A 1 (A 0 , F 1 ), F 0 ).

(2)

Consequently, the backaction from the secondary resonator g 0 (0, A 1 (A 0 , F 1 ), 0) generates induced stiffness {g 0 (0, A 1 ( A 0 , 0), 0)} and induced damping {g 0 (0, A 1 (A 0 , 0), 0)}, where {•} and {•} are the imaginary and real parts of {•}, along with an induced drive g 0 (0, A 1 (0, F 1 ), 0). Therefore, the ability to engineer the backaction from the secondary resonator g 0 (0, A 1 (A 0 , F 1 ), 0) via the coupling and the drive of the secondary resonator opens up a route towards unprecedented control over the dynamical response of the primary resonator.

Results and discussion

We note that adiabatic elimination is a standard technique in quantum optics that produces an effective reduced-order Hamiltonian to a small subspace of states by eliminating other states with much higher eigenfrequencies and incorporating their coupling effects on the small subspace of interest. Techniques similar to adiabatic elimination have been used in classical mechanical systems, e.g., eliminating the high-frequency longitudinal displacement field from the low-frequency transverse displacement field of a nonlinear mechanical beam with midplane stretching. However, to the best of our knowledge, there are no implementations of these techniques to tailor dynamic responses (other than our studies [10,11], which will be described in the presentation). Moreover, a detailed analysis of Eq. ( 2) shows that by choosing the appropriate coupling and drives of the resonators, we can (i) alter the stiffness and damping of the primary resonator, (ii) devise schemes for amplifying, squeezing, localizing, and deforming the forced (open-loop) response of the primary resonator, and (iii) generate self-excited (closed-loop) oscillatory responses of an undriven primary resonator. From an applied engineering point of view, such methodologies for tailoring dynamical responses can pave the way toward the next generation of N/MEMS resonators that can be used in a wide variety of engineering applications and will contribute to improving the capabilities of sensors, filters, mixers, amplifiers, clocks, and frequency combs.

Introduction

Origami-inspired structure has shown strong nonlinearity when morphing states. Its unique Poisson's ratio [1] during morphing process could generate strong nonlinearity in its force response. Thus, a nonlinear isolation system can be designed based on the nonlinear force-displacement relationship [2]. Quasi-zero-stiffness (QZS) nonlinear isolation systems possess the high-static-low-dynamic stiffness characteristic, where a lower resonance frequency and wider isolation frequency band is expected than the linear spring-mass system [3][4].

To the authors' best knowledge, the effect of the structure self-weight on the dynamic response is rare to be considered and discussed during modelling and analysis. The weight of the structures, such as the supports of the stiffness structures and the payload platform, have been commonly neglected. Liu et. al., [3] introduced additional weight structures as tunable nonlinear inerter to suppress the bending trend of the transmissibility curve of a QZS system. Ye and Ji [5] recently found that the structural weight within an origami-inspired vibration isolation system can induce strong dynamic nonlinearity, potentially showing the functions of a nonlinear tunable inerter. This paper will experimentally investigate the nonlinear influence of the structure weight as tunable inerter for a QZS vibration isolator.

Figure 1. Model of the system using facet weight as a nonlinear tunable inerter

Dynamic modelling and experiment setup

By applying a QZS feature, the static response of the QZS system as shown in Figure 1 ) denotes the dynamic load when vibrating around its equilibrium position and 𝛾𝛾 represents the system stiffness coefficient.

Considering a base displacement excitation 𝑧𝑧, the absolute motion of each weight component can be expressed as: 𝑦𝑦 𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠 = 𝑦𝑦 𝑖𝑖 + 𝑧𝑧 (𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝). The kinetic energy, dissipation function, and the total elastic potential energy can be expressed as:

𝑇𝑇 = 1 2 𝑚𝑚 𝑝𝑝 𝑦𝑦̇𝑝𝑝 𝑡𝑡𝑖𝑖𝑠𝑠 2 + � � 1 2 𝑚𝑚 𝑖𝑖 𝑦𝑦̇𝑖𝑖 𝑡𝑡𝑖𝑖𝑠𝑠 2 + 1 2 𝑚𝑚 𝑖𝑖 � 𝑊𝑊 2 � 2 + 1 2 𝑚𝑚 𝑖𝑖 � 𝐿𝐿 2� 2 � 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2 (2a) 
𝐷𝐷 = 1 2 𝑐𝑐 𝐻𝐻 𝑦𝑦̇𝑝𝑝 2 + 1 2 𝑐𝑐 𝑊𝑊 𝑊𝑊 ̇2 + 1 2 𝑐𝑐 𝐿𝐿 𝐿𝐿 2 (2b) 𝑈𝑈 total = 1 2 � 𝑘𝑘 𝑋𝑋 (𝑋𝑋 -𝑋𝑋 𝑆𝑆 + 𝛿𝛿 𝑋𝑋 ) 2 + 𝑚𝑚 1 𝑔𝑔𝑦𝑦 1 + 𝑚𝑚 2 𝑔𝑔𝑦𝑦 2 + 𝑚𝑚 𝑝𝑝 𝑔𝑔𝑦𝑦 𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑋𝑋 = 𝐻𝐻, 𝐿𝐿, 𝑊𝑊 (2c) 
where 𝑐𝑐 𝐻𝐻 , 𝑐𝑐 𝑊𝑊 , 𝑐𝑐 𝐿𝐿 represent the damping coefficient of each spring set, respectively. and 𝑘𝑘 𝑋𝑋 denotes the corresponding spring stiffness in each direction; 𝑋𝑋 represents the real-time length of springs when the structure is morphing, which equals to the external dimension in the corresponding directions; 𝑋𝑋 𝑆𝑆 and 𝛿𝛿 𝑋𝑋 denote the length and pre-stressed (either compression or tension) of each spring set at the equilibrium state.

The equation of motion of the vibration isolation system with a total weight (𝑚𝑚 is used to replace 𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the following section) applied at the equilibrium state can be derived as:

𝑎𝑎 𝑎𝑎𝑑𝑑 � 𝜕𝜕ℒ 𝜕𝜕𝑦𝑦̇𝐼𝐼 � - 𝜕𝜕ℒ 𝜕𝜕𝑦𝑦 𝐼𝐼 + 𝜕𝜕𝐷𝐷 𝜕𝜕𝑦𝑦 𝐼𝐼 ̇= 𝑚𝑚𝑔𝑔, ℒ = 𝑇𝑇 -𝑈𝑈 total (3) 
In order to verify the theoretical modification and further study the origami-inspired QZS vibration isolator, a prototype has been designed, fabricated and tested. The payload can be either placed on the loading platform to present a system without inerter; or attached to the origami facets separately as structural weight and operate as tunable inerters, as shown in Figure 1.

Discussion and conclusion

Figure 2 shows the theoretical results of the transmissibility comparison between a general system without an inerter and the QZS system using structural weight as tunable inerter. The same resultant system stiffness coefficient and dynamic excitations are applied to both systems. An increase of weight proportion of the inerter in the system, from zero to a low value then to a high value, demonstrate a consistent influence on its dynamic response: the peak resonance frequency and its amplitude are reduced when applying a larger weight inerter; and the effective isolation frequency band can be moved towards to a lower frequency range. Although the unstable analytical results are impossible to be obtained from the experiment results, the isolation frequency range from experiments is consistent with the theoretical results. The experimental results indicate that the use of structural self-weight as an inerter can suppress the response effectively. The side-effects of the inerter can be reduced in higher frequency region. Based on the defined generalised potential energy (GPE) with its flow (GPEF) and generalised kinetic energy (GKE) with its (GKEF), this method has been used in designs and analysis of many NDS to judge stabilities, periodical orbits, chaotic motions, etc. summarized as follows. [5]: Lyapunov method is often used to judge stabilities of NDS. Seeking a Lyapunov function normally is very difficult. In the energy flow theory, the generalised potential energy GPE in phase space provides a Lyapunov function, geometrically relating the distance of a phase point to the origin, so that its energy flow, 𝐸 ̇≤ 0 , 𝐸 ̇< 0 and 𝐸 ̇> 0 can respectively judge if NDS are stable, asymptotically stable, and unstable, which has been examined by examples [5].

Stability at fixed point or about orbit

Chaotic motions [5,7]: A generalised energy conservation law to judge chaotic motions of NDS was developed. It has demonstrated that chaotic motions of NDS can be considered as periodical motions with infinite time-period, therefore with the time tends to infinity its time averaged GPE and GKE tend to constants, and its time averaged GPEF and GKEF tend to zero. Using MATLAB software [5], the chaotic motions of NDS reported worldwide [8][9][10][11][12][13][14] are investigated to confirm this finding.

Periodic orbits [5,15,16]: The energy flow theory reveals that a necessary and sufficient condition for NDS having periodical orbits is that its spin matrix 𝐔 ≠ 0 and there exists at least one closed curve with a corresponding period T, along which the time averaged GPEF and GKEF vanish. Examples [5,15,16] demounted this conclusion.

Investigations of relativistic dynamics to reveal characteristics of particle motions

Energy flow equation. In a Cartesian system, the equation of particle motions from relativity [17] is represented in a dimensionless form of phase space
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Here 𝒓 is position vector in phase space, 𝒇 C -and 𝒇 C 0 external forces perpendicular and parallel to velocity 𝒗, energy 𝐸 O , static mass 𝑚 ! . The energy-flow equation [5] of particle motions is
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where GPE 𝐸 and GKE K are non-negative real scalars, geometrically E represents half-square of particle distance to origin of phase space, while K involving tangent vector of particle orbit [5], 𝑃 is generalised force power, to which the normalized force 𝒇 C -contributes nothing due to 𝒗 • 𝒇 C -≡ 0.

Fixed point and zero-energy flow surface. Fixed point and zero-energy flow surface are
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which gives an equilibrium state and the zero-energy flow surface. From Eq. 2.3 it follows: a) Heisenberg's uncertainty principle [18]. A free particle without external forces might have a zero velocity 𝒗 = 0 at any space positions 𝒙; b) A particle with external force has no equilibria, except 𝑚 ! → ∞, such as black hole; c) A particle subject to no parallel force (𝒇 C 0 = 0) may undergo motions with velocity normal to its position vector, i.e., 𝒗 1 𝒙 = 0, such as rotations on circles. Periodical motions by central force. Particle with 𝒇 C 𝒑 = 𝟎 has a zero-energy flow surface 𝒗 𝑻 𝒙 = 𝟎, 𝒗 normal to 𝒙, and 𝐔 ≠ 𝟎, of which a periodical rotation in an angular velocity 𝝎 is produced by a central force.
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Here skew-symmetrical matrix 𝝎 _ , 𝝎 _ 1 = -𝛚 _ [19,20]. Eq. 2.5 gives
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Equation 2.6 represents the zero-energy flow surface, a sphere of radius R in phase space. The motion is
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a constant translation 𝜂̂= 𝑐 in 𝑥 . direction, and a periodical rotation of frequency 𝜔 in 𝑜 -𝑥 # 𝑥 : plane.

Conjecture of photon motions. 1)

There exist photon motions relative to light transmitting direction with its instant speed different from the light speed. 2) Two photons, rotating in a circle of radius 𝒏𝒂 with frequency 𝝂 on energy level n in a plane perpendicular to the light direction supported by inherent central force, shot out of the light source with the speed c in 𝒙 𝟏 , and cosine / sine waves in 𝒙 𝟐 and 𝒙 𝟑 [19][20][21].

3) The momentum of two photons is conservative: constant angular one about light direction, zero-self rotation one, and zero-radial oscillation one.

4) The angular momentum of two photons could be positive or negative, so that the total angular momentum of all photos vanishes. Analytical result shows that the instant speed of photon is faster than its time-averaged one, the speed of light [22], and its spiral orbit like electromagnetic wave. The conjecture might explain why quantum entanglement speed larger than the speed of light. It has understood that this proposed model needs to be valid by practical experiments. Considering different color photons have different rotation frequencies, so that different instant speeds, therefore it is suggested experimentally to compare their instant speeds of two different colorphotons and expected the color photos of large frequency being faster entanglement. Abstract. Depending on the degree of nonlinearity, the consequent dynamics can be dominated by the randomness. This randomness is different from the external noise in measurements. The symbolic phenomenon is the well-known Brownian motion. The nonlinearity of physical characteristics can lead to the hierarchy of apparent physical behaviour depending on the spatio-temporal scales of observation. The typical example is the suitable theoretical description on the basis of molecular discrete picture and continuum one. In this talk, we would like to introduce examples of such situations by soft matters ranging from liquid crystals to nanopapers consisting of cellulose nanofibers (CNFs). The nanopaper is a transparent paper made of CNFs, and it is fabricated by drying aqueous dispersion of CNFs. The drying process undergoing gelation is experimentally analysed by microscopy movie data analysis. The deformation characteristics of the whole specimen is designed by mechanical metamaterial approach. The former is based on the analysis of Brownian motion originating from the molecular nature of the system. The latter is based on the continuum mechanics, and the large deformation behaviour makes use of bifurcation phenomenon. These distinctive approaches share the concept of connection between the parts and the whole, while the former is stochastic and the latter is deterministic in the typical treatments.

Coarse

Coarse graining in simulation, formulation, data analysis, and structural design

Atomistic or molecular motion can be described by the deterministic equations of motion for the whole system of interest. When looking at fluid at a lower resolution, the Brownian motion of suspended tiny particles or fibers are described by the Langevin equation. Here, the Hamiltonian of the whole system is "coarse-grained" in the formulation. The decoupling of the particle/fiber of interest and the surrounding molecules is based on the different characteristic time scales. In other words, departure from the linear Langevin equation is observed when these time scales are not so far from each other [1]. The quest of coarse graining is driven by the necessity of information amount reduction. It is still unrealistic to perform all-atom molecular dynamics (MD) simulation of macroscopic spatio-temporal scale today. The coarse-grained MD is therefore a straightforward option in theory [2]. However, the reduction of the resolution is not an obvious procedure since it is usually impossible for the coarse-grained model to retain all the detailed characteristics of those with finer resolution. Therefore, one has to solve the multi-objective optimization problem with a suitable definition and procedure [3]. The obtained knowledge from coarse-grained MD can be employed for the basis of analytical scaling model, where sometimes renormalization group theory plays an important role [4]. The above-mentioned scenario is based on the theoretical work with computational and analytical modelling. MD is a direct simulation of statistical mechanics, and the interaction potential is the origin of physical characteristics, which is obtained by the evaluation of physical quantities from the sampled trajectories in phase space. The advantage of high spatio-temporal resolution also means the drawback of high computational cost. An alternative approach is the direct sampling of trajectories, i.e., the microscopy movie data analysis, typically based on the single particle tracking (SPT). The analysis of measurement data is more advantageous when the system of interest is hard to idealize or simplify for modelling. For example, a kind of transparent papers, "nanopaper" is fabricated from cellulose nanofibers (CNFs) by drying the aqueous dispersion of CNFs. The drying process affects the nanopaper properties from the same CNFs. The framework of generalized diffusion is employed to evaluate the rheology of the dispersion through the characteristics of Brownian motion of probe particles [5] even though CNFs themselves are too small to be directly observed by optical microscope. This microrheological approach is by far less invasive compared to the conventional shear-based rheometers. Therefore, the drying process of CNF dispersion can be analyzed in-process [6].

In theory, a sufficiently long trajectory of random motion can be understood in terms of the large deviation principle [7], beyond the realm of the central limit theorem. On the other hand, typical microscopy movie data provides short trajectories while the number of samples can be increased. Nevertheless, there are methodologies to evaluate the specific characteristics of the dynamics, e.g., detection of multimodal diffusion by the mixture by simple theoretical idea [5]. The rich information of random motion in a high-concentration systems can be resolved even without the tracking. The field of diffusion coefficient can be evaluated by particle image diffusometry (PID) [8]. The PID has already evaluated the intermediate state between the liquid and solid before crystal nucleation in solution [9]. The point of these microscopy movie data analysis for random motion is that they are in a sense the coarse graining from the detailed information of the big data. The nanopaper itself is recognized as continuum, whereas the CNF dispersion is analysed from the basis of molecular picture of Brownian motion. The bridging of scales is realized by the microscopy movie data analysis. Furthermore, even within the picture of continuum mechanics, the design of unit structure can play an important role in the functionality of the whole system. The concept of mechanical metamaterial corresponds to this idea. The stretchability of nanopaper is endowed by the periodic Kirigami structure [10],

where buckling of the unit structure is employed for the conversion of bending of unit into stretching of the whole structure. Here, the buckling is a kind of bifurcation phenomena, and bifurcation is one of the typical situations where nonlinear dynamics is used for the engineering functionality of mechanical systems.

Perspective of link between the behavior of soft matter and nonlinear dynamical systems

The bridging across different spatio-temporal scales is one of the typical interests of statistical mechanics, where the coarse graining is a technical term of the corresponding conceptual approach. We have introduced some of the recent examples from our studies in the previous section. One thing to note here is that there is a necessary decision of problem definition in the coarse graining. Namely, the focus to retain the precise characteristics in the modelling or measurement. One evaluates mean and variance from a set of sampled data in statistics, and the mean does not tell the variance in general. The examples that we have introduced in this abstract is a kind of soft mater systems, where statistical mechanics is already recognized as useful means to understand and design the system of interest. From fundamental theoretical point of view, statistical mechanics and dynamical systems has smooth connection. The well-established book of nonlinear dynamical systems [11] had pointed out the frontier is in the increased number of variables to approach the continuum limit.

However, the link between the statistical mechanics of soft matter and dynamical systems theory is still relatively scarce. As the focus on unstable periodic orbit shed light in the studies of turbulence, we expect much more developments and link to the nonlinear dynamical systems theory for understanding and control of soft matter systems in view of engineering applications as concrete examples. Empirically, nonlinear oscillations are often observed where the system of interest is in the state of limit cycle under the condition between the simple periodicity and chaos. On the other hand, the above-mentioned examples of soft matter systems are under the physical and/or measurement conditions where the damping factor is dominant. Nevertheless, the starting point of full exploitation of microscopy movie data analysis in the above-mentioned example was the alternative means of MD in terms of sampling of phase space trajectories. Although the overdamped and random nature of the system leads to apparently the discussion on the trajectories of positions alone, the thermal fluctuations play vital role in the dynamics, and the analysis directly reflects this fact. The unit of normal diffusion coefficient is m 2 /s whereas that of velocity is m/s. The generalized diffusion coefficient has a unit of m 2 /s 𝛼 . There seems to be some room to exploit theory of nonlinear dynamical systems here, while the measurement time resolution calls for the stochastic treatment.

At the continuum picture, soft robotics making use of elastomers and large deformations often realize smart response against input through the mechanics of materials by structural design and fabrication. In the abovementioned example of Kirigami-based mechanical metamaterial [10], the resilience against repeated deformation is accomplished by the simple design principle of stress defocusing, which has been well-known for avoiding fracture of rather brittle and hard materials. The use of nonlinear dynamical systems theory in the soft matter dynamics seems promising for structural design of the mechanical metamaterials, where bifurcation phenomena are often employed for functionality. In fact, the existing reports of mechanical metamaterials made of planar parts has been focused rather on the geometric aspects of Origami as well as Kirigami. The full exploitation of material characteristics still remains a frontier.

Introduction

Design of artificial materials with desired properties using structural elements of a relatively small or mesoscale size is a fast-growing field motivating different directions of interdisciplinary studies [1][2][3]. A particular interest to soft cellular metamaterials is due to the developing 3D printing technology shortening the path from design to fabrication of such materials. These research directions seem to converge with the area of passive control of energy flows in physics and engineering [4,5] since the energy absorbing or wave guiding features are often viewed as main targets of the metamaterials design. In the present work, periodic cellular structures are represented by an array of elastically coupled soft-walled 3D billiards with relatively light inclusions. There are two types of 2D billiards, either with repelling or stadium shaped rigid walls, that may develop stochastic properties [6,7]. The idea of a quasi-irreversible energy accumulation by chaotically moving inclusions from the oscillating cells is explored here. The oscillations are caused by either propagating or standing waves due to the elastic coupling between the neighbouring massive cells. The underlying physical assumption is that incoherently moving light inclusions/particles can be accelerated when repeatedly colliding with the oscillating potential wells without significant short-term reciprocal effects. Note that possible analogies may be found in quite different areas [8]. The model which is described below is intentionally conservative and such that every cell has just one inclusion to avoid the influence of damping and the statistics of large numbers. The role of softening the cell walls is twofold. On one hand, it makes the model closer to a real cell. On the other hand, in contrast to the conventional theory of billiards, the model can be described within the classical theory of differential equations without geometrically complicated non-smooth mappings. For instance, by analysing a reduced based the 3DOF case [9], it was shown that conditions of chaoticity can be linked to instabilities of nonlinear normal modes [10] rather than the repelling properties of mappings.

Model and a typical example of its dynamics

After a proper scaling of parameters and variables, the model under consideration (Fig. 1a) takes the following Lagrangian form [11] 
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( , , ) X is the displacement of jth soft-walled billiard cell, whose dynamics are constrained to be one- dimensional, whereas three-dimensional motions of inclusions are described by their relative displacements { , , } j j j

x y z measured inside each cell from its center of symmetry; the strength of coupling between containers is unity, the stiffness of base springs is K; all the potential wells representing soft walls of the cells are described by the same function ( , , ) V x y z with a large exponent, 1 n , and the parameter β is responsible for the shape of cells as shown in Fig1b, c. Note that the cell walls become stiff as n . Initially inclusions are in rest with respect to the absolute space whereas a sine wave propagates through the chain of cells. Then the light inclusions are slowly involved into the dynamics by the forces ( , , ) j j j

V x y z . The inclusions start moving chaotically inside the cells by gradually absorbing the energy from the massive cells and eventually destroying the wave mode shape as shown in Fig. 1d, e, f. It is seen from the fragments (b, e) and (c, f) that the cell shape can significantly affect the time rate of the energy flow from the cells to their inclusions. A possible physical mechanism accelerating inclusions may be like that explained by Fermi [8]. According to his scenario, which is suggested for the cosmic particles, two types of collisions of a chaotically moving inclusion with an oscillating cellular boundary must be happening: 'head-on collisions' with an energy gain and 'overtaking collisions' with an energy loss. Gain and loss, however, do not average out completely since a head-on collision is slightly more probable than an overtaking collision due to the greater relative velocity.

Concluding remarks

Note that a reduced version of model (1) with one or few cells with rigid walls ( n ) may resemble vibroimpact vibration absorbers. In the present case, the working mechanism guiding the energy flow is rather different. Both the dimension and especially shape of the container are essential. As a result, considering such models on macrolevel as practical energy absorbing devices requires inclusions to have a finite size with rotational degrees of freedom. The related models should also account for the direct damping/friction energy loss by inclusions when moving inside containers and striking the container walls.

Introduction

Recent advances in the additive manufacturing of truss-based metamaterials have created new opportunities to design robust and light products such as energy absorbing running shoes [1], protection equipment for sports, biocompatible hip implants [2,3]. What all these applications have in comment is the use of trussbased metamaterials, due to their structures; they can absorb a high amount of energy during impact [1,4,5]. These materials have been studied and optimized for the past two decades and their local effective macroscale mechanical behavior (including extreme cases such as negative compressibility [5]). However, spatial variation in the architectural design can facilitate new functionalities. At large scales, such concepts have been explored, e.g., in the design of space solar sails [6] and deployable solar arrays [7]. Yet, the overall available design space of periodic and especially spatially graded viscoelastic truss-based metamaterials has remained widely unexplored. 

Characterization of periodic and spatially graded 3D lattices

The overall available design space of periodic and especially spatially graded viscoelastic truss-based metamaterials has remained widely unexplored. To this end, we here discuss the performance of periodic and graded trusses in two and three dimensions (2D and 3D, respectively) with a particular focus on shedding light on untapped opportunities in their design and property spaces. The results of our simulations and experiments showed how spatial grading change the rebound trajectory after impact (Figure 2) which can be useful for several energy absorption application such as shoe soles, car seats and sports equipment for cushioning.

Deformation tracking of truss lattices using digital imaging

Many studies have focused on the effective mechanical properties for a variety of load scenarios from quasistatics to impact testing, from which the effective, macroscopic response is obtained in the form of, e.g., load-displacement relations. By contrast, the microstructural deformation mechanisms responsible for the macroscopic behavior (which involves the deformation of, e.g., individual struts within a large threedimensional (3D) truss network) are significantly more challenging to characterize quantitatively in an experiment---especially at high rates. To understand the macroscopic behaviour of these materials, one must characterize their behaviour on the node's level. Several methods have been developed to track features [8,9] however, most of them are not suitable to track trusses with a high number of slender beams. In addition, the current methods cannot handle dynamic loads. In this study, we present an efficient method that enables the tracking of features in truss-based materials without using any prior sample preparation, which is not the case of the available methods. Using this tool, we showed the effect of the unit cell type and spatial grading on energy absorption and impact redirection. 

Introduction

Fractional order (FO) controllers are generalizations of the traditional integer order proportional-integralderivative (PID) controller and they are usually mathematically described as:

𝐶 !"#$%& (𝑠) = 𝑘 ' '1 + ( ) ! * " + 𝑇 + 𝑠 , + (1) 
The tuning of the controller in (1) refers to the computation of the 5 parameters involved: Ti and Td -the integral and derivative time constants, kp -the proportional gain and the two fractional orders of integration, 0 < 𝜆 < 2, and differentiation, 0 < 𝜇 < 1. For 𝜆 = 𝜇 = 1, the classical PID controller is obtained. Several papers have demonstrated the increased flexibility of the FOPID compared to the PID, along with better disturbance rejection, better control of time delay systems and improved robustness [1], [2]. Most of the tuning methods assume a design in the frequency domain, where several performance specifications are addressed, such as gain crossover frequency, phase margin, iso-damping, to name just a few [2], [3]. The majority of these tuning methods require, however, a full mathematical model of the process to be controlled, even though the actual design method requires estimation of the process frequency response 𝑃(𝑗𝜔 7) and its slope
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at a specific frequency 𝜔 7 [3], [4]. Sometimes an accurate process model is difficult to obtain and it usually requires large process data. Most of the times, short tests that produce good estimations of the process are preferred, especially in industrial applications. In this paper, we explore the possibilities to obtain the process frequency response and its slope (usually required to tune the FOPID controller) using some short tests on the process to be controlled.

Efficient tests for estimating process frequency response and its slope

Two approaches are presented here to estimate accurately the process frequency response and slope, even in the presence of disturbances and noise. Both of these methods require a simple short sinusoidal test to be performed on the process and thus become suitable for a large range of processes. Both methods require selection of a test frequency 𝜔 7, that usually represents the desired gain crossover frequency of the loop frequency response or the critical frequency, i.e. the frequency where the process is at its limit of stability.

The first method consists in a sine test performed on the process, followed by an offline filtering technique [3]. The frequency of the sine is the desired gain crossover frequency, which is also one of the imposed performance specifications. The method is detailed in Fig. 1. The second method consists in applying a short sequence of sine signals, as indicated in Fig. 2. Based on the measured output signal and using filtering methods, the impulse response of the process is estimated, which is later used to compute the process frequency response and its slope at a specific frequency. The test frequency of the sine is the process critical frequency and each section of the test sequence lasts as long as the process settling time.

Both methods provide accurate approximations for the process frequency response and slope at the test frequency, despite possible disturbances or noisy signals. Once these have been estimated, the FOPID parameters in (1) can be determined based on the imposed performance criteria. Both methods have been tested on a vertical take-off and landing (VTOL) unit, as well as on a mass-spring-damper (MSD) system, to name just a few possible applications. Analytical analysis as well as experimental tests have shown that these processes exhibit nonlinear character. Figs. 3 a) and b) show the closed loop experimental results obtained using a FOPID tuned using the process information obtained according to the proposed two methods. For the VTOL unit the first method, as presented in Fig. 1 has been used, whereas for the MSD, the second approach as presented in Fig. 2 has been used. 

Conclusions

Efficient tuning of controllers does not necesarily imply the use of a process model, even in the case of nonlinear processes. Most of the times, these need to be controlled in certain operating points. Knowledge about the process in this operating point is enough to design reliable and efficient fractional order PIDs. In this manuscript, two methods for extracting relevant process information are presented. Both are simple and efficient and can be applied to various types of stable processes. The methods lead to process frequency response and its slope which can be then used to design FOPIDs. The proposed methods are exemplified on two nonlinear poorly damped processes, a VTOL unit and a MSD system. The reference tracking results show the efficiency of the proposed methods.

Introduction

The several categories of levitating an object by magnetic force include repulsion-type magnetic levitation, which uses the repulsive force acting between permanent magnets, and attraction-type magnetic levitation, which controls the attractive force acting between an electromagnet and a ferromagnetic object. Active magnetic bearings employ attraction-type (suspension-type) magnetic levitation [1]. Suspension-type magnetic levitation systems are unstable because, without control, the levitated object is either attracted to the electromagnet, or it falls. Furthermore, the electromagnetic force and the electrical characteristics of the circuit have strong nonlinearities. Therefore, this study was conducted for stabilizing an unstable nonlinear system by combining a linear quadratic regulator (LQR) of modern control theory and fractional calculus, which is regarded as robust against nonlinearity, to achieve stable servo control of a magnetic levitation system.

Preliminary knowledge related to fractional calculus

For order 𝛼, which is 0 < 𝛼 < 1, the fractional-order derivative and integral are defined as [2] 𝐷 𝑓(𝑡) = ( ) ∫ (𝑡 -𝜏) 𝑓(𝜏)𝑑𝜏 , and

𝐷 𝑓(𝑡) = ( ) ∫ (𝑡 -𝜏) ( ) 𝑑𝜏 ,

where 𝐷 represents the Riemann-Liouville fractional-order integral operator, 𝐷 denotes the Caputo fractional-order differential operator, and Γ represents the gamma function. Furthermore, the Caputo fractionalorder derivative has the following additivity [3]: 𝐷 𝐷 𝑓(𝑡) = 𝐷 𝐷 𝑓(𝑡) = 𝐷 𝑓(𝑡).

(3)

Suspension-type magnetic levitation system

A voltage-controlled suspension-type magnetic levitation system usually has only integer-order states. Therefore, it must be rewritten as a 0.5-order differential equation model based on the additivity of the Caputo derivative presented in Equation (3). First, the integer-order differential equations for the magnetic levitation system are expressed as 

where M stands for the mass of the levitated iron ball, R expresses the resistance of the entire circuit, 𝑄, 𝑋 , and 𝐿 respectively denote parameters determined by the relation between the iron ball and the electromagnet, and g signifies the acceleration of gravity. Moreover, state variable 𝑥 (𝑡) represents the gap length between the electromagnet and the iron ball, 𝑥 (𝑡) denotes the iron ball velocity, and 𝑥 (𝑡) stands for the electric current flowing through the circuit. Next, by linearizing Equation (4) around the equilibrium point 𝒙 𝒔𝒕 = [ 𝑥 , 𝑥 , 𝑥 , ] , the state-space model expanded to a 0.5-order differential equation is obtained as 𝐷 . 𝒙 𝒅,𝒇 (𝑡) = 𝑨 𝒇 𝒙 𝒅,𝒇 (𝑡) + 𝑩 𝒇 𝑢 (𝑡), 𝑦 (𝑡) = 𝑪 𝒇 𝒙 𝒅,𝒇 (𝑡), (5) where 𝒙 𝒅,𝒇 (𝑡), 𝑢 (𝑡), and 𝑦 (𝑡) respectively represent the deviations from the equilibrium points in the state, the input, and the output. Energy transfer in a tree-structured multi-DoF oscillator Tamás Kalmár-Nagy * , Róbert Rochlitz * , and Bendegúz Dezső Bak * * Budapest University of Technology and Economics, Hungary

Abstract. The response of a binary tree structured multi-DoF mechanical oscillator with light damping was investigated for impulsive and continuous excitations. The analysis covered two model variant, in the baseline model the mass of the Nonlinear Energy Sink (NES) blocks obeyed a power law, while in the modified model the mass of these blocks were decreased by 75 percent. A methodology involving the simplified Frequency Energy Plot (FEP) of the underlying reduced chain oscillator was presented to analyze the dynamic response for the impulsive excitations. It was shown that decreasing the mass of the NES blocks leads to a fundamentally different energy transfer mechanism that is far more efficient and outperforms also the linear version of the system, even if the damping coefficient is significantly increased for the linear model to reach the optimal damping value.

Introduction

Energy transfer is part of many engineering and natural systems. We examine a binary tree structured multi-degree-offreedom nonlinear oscillator with impulsive and continuous excitations. The motivation stems from the study of processes involving different scales and exhibiting a primarily one-way energy transfer from the larger scales to the smaller ones [1,2,3]. A good example of such a multi-scale process is turbulence, where the kinetic energy of the flow is transferred from larger vortices to smaller ones and dissipation only prevails at the smallest scale. The structure of the mechanistic model (shown in Figure 1.) resembles the hierarchical relation among the vortices of different scales and also features nonlinear energy sinks as dissipative elements by the smallest scales. The response of the mechanistic model is studied for excitations that are applied to the largest scales. It is shown how choosing the mass of the blocks representing the smallest scales influence the response of the system regarding the dissipation and how efficient targeted energy transfer is realized in the system. The simplified frequency energy plot is introduced as a means of analyzing the response of multi-degreeof-freedom systems for impulsive excitations. For continuous excitations it is shown that the nonlinear energy sinks are active only inside specific nonlinear bands when the excitation amplitude is sufficiently high.

𝑚 1 

Theory

The equations of motion of the binary tree model can be formulated in matrix form as

Mẍ + C ẋ + Kx + N(x) = 0, x(0) = x 0 , ẋ(0) = v 0 , (1) 
where x is the vector of displacements, M, C, K are the mass, damping and stiffness matrices, respectively. The nonlinear terms are collected in the vector N(x). The total mechanical energy E(t) of the system is

E(t) = 1 2 ẋT (t)M ẋ(t) + 1 2 x T (t)Kx(t) + ||N(x)|| 1 dx (2) 
The total energy is the sum of level energies, i.e. E(t) = n l=1 E l (t). E l (t) is defined so that the potential energy of the springs connecting two masses is distributed equally between the two levels and the potential energy of the top spring is added to E 1 (t):

E l (t) = 1 2 M l i∈I(l) ẋ2 i + 1 4 + 4δ l,n
(1 + δ l,1 )K l i∈I(l) (x i -x P(i) ) 2+2δ l,n + + 1 4 + 4δ l,n-1 K l+1 i∈I(l+1) (x i -x P(i) ) 2+2δ l,n-1 , l = 1, ..., n.

(

Construction of the frequency energy plot (FEP) of the system can for example be done via the harmonic balance method. This becomes prohibiting for large number of levels, so instead of computing the FEP of the binary tree structured mechanistic model, we compute the FEP of a reduced chain oscillator variant of the model that is described in [1]. This chain oscillator is obtained by simply replacing a level of blocks/springs/dampers with a single block/spring/damper whose mass/stiffnesss/damping coefficient is the sum of those of the replaced elements. The FEP of this reduced chain oscillator is shown in Figure 2. for the modified version of the system and it is called the simplified FEP of the mechanistic model. Such a nonlinear system usually has several nonlinear normal modes (NNMs). These can be distinguished based on the oscillation frequency of the individual blocks and their phases relative to each other. In Figure 2. only the backbone curves are depicted that correspond to the NNMs in which all blocks oscillate with the same frequency. We also note that only those NNMs of the mechanistic model can be computed using the reduced chain oscillator model in which every block in the same level oscillates in-phase. The thin pairs of horizontal lines in Figure 2. correspond to the "pairs" of eigenfrequencies of the underlying linear systems. One of these underlying linear systems is constructed by removing the nonlinear springs, the higher eigenfrequency of the pair comes from this one. The other one is constructed by replacing the nonlinear springs with rigid rods that yields the lower eigenfrequency of the pair. Even though this simplified FEP corresponds to the reduced chain oscillator, the computed backbone branches agree well with those of the binary tree structured system. For the two model versions (baseline and modified) discussed in this paper we also computed the full FEP corresponding to the binary tree structured mechanistic model. The full FEPs and the simplified FEPs of the baseline and the modified systems are compared in Figure 3. The good agreement between the full and simplified FEPs shows that even the latter gives us insight into the complex dynamics of the binary tree structured mechanistic model. In particular, the purpose of this research is to understand changes in the efficiency of energy transfer in binary tree structures associated with differences in the mass of the NES blocks. We also plan to relate the fractal nature of the binary tree structure to the energy transfer using a fractional derivative approach. 

Introduction and Problem Formulation

Self-excited synchronous oscillations in multibody dynamical systems have been documented since the middle of the seventeenth century. Huygens made the amazing observation that two pendulum clocks hanging from a common flexible support swung together periodically approaching and receding in opposite motions [1].

During the last two decades there has been a growing interest in the stability and robustness of continuous and intermittent synchronization of periodic and nonstationary oscillations which in addition to neural network populations have been observed in nanomechanical resonator arrays [2] and in experiments of mechanical networks [3]. Of particular interest are the chimera states in which the symmetry of an oscillator population is broken into a synchronous part and an asynchronous part culminating with a novel class of decoherent behaviour [4]. In this research we investigate the bifurcation structure and the emergence of chimera states in a pair of elastically coupled pendulum arrays that are augmented by inertia wheels governed by a linear feedback mechanism. 

Discussion of Results

We combine an analytical and numerical investigation to determine the bifurcation structure of the self-excited elastically coupled arrays which exhibit periodic limit cycle oscillations and non-stationary rotations. Figure 2 depicts the bifurcation structures of the coupled arrays as a function of the nondimensional stiffness coupling parameter. We note that both the single (Fig. 2 left) and double (Fig. 2 right) pendulum configurations exhibit a distinct range of stiffness where limit cycle oscillations occur (marked as region II). However, only the single pendulum array includes a region of nonstationary oscillations (marked as III). We also investigate the synchronous dynamics and the emergence of chimera states within the system and make use of the Kuramoto order parameter [4]. This parameter enables identification of synchronized in-phase or anti-phase solutions where the order parameter for both arrays is unity whereas a chimera state is portrayed when the order parameter for one array is unity and the order parameter of the second array varies in an irregular manner between zero (describing a decoherent state) and unity (a synchronous state). Figure 3 depicts example chimera states of the coupled single inertia wheel pendulum array as a function of increasing coupling stiffness parameter. We note that a small coupling stiffness reveals a transition from an IP synchronized state of periodic limit-cycles (Fig. 3 left) to a chimera state (Fig. 3 centre-left) where the quasiperiodic response of one array (blue) is synchronized whereas the second array (red) is decoherent. A further increase of the stiffness (Fg.3 centre-right) reveals that both of the coupled arrays are decoherent (both red and blue arrays are not synchronized) culminating with IP synchronization of both coupled arrays for large stiffness. Excitation frequency 

Integrated system examples

An orthogonal six-degrees-of-freedom platform, a bistable laminated plate and a mechatronic metamaterial are designed for the integration of nonlinear vibration isolation and energy harvesting. Fig. 2(a) shows a model of an integrated Stewart-platform vibration-isolation energy harvester, which consists of an upper platform, six identical struts, and a lower platform. Systematic variation of the parameters demonstrates that an appropriate value of the magnetic strength suppresses resonance, reduces coupling stiffness, and avoids multi-valued solutions. At ultralow frequencies, increasing could increase the power output of the system. Using a shorter initial distance between magnets leads to higher power output from the system, and extends the isolation range but increases the peak value and nonlinearity around the first resonance frequency. Varying the resistance produces the opposite effect between energy harvesting and vibration isolation [2]. Fig. 2(b) shows a vibration isolation and energy harvesting integration based on a bistable piezo-composite plate. The mass m is connected to the frame through a bistable piezo-composite plate and a metal plate. The bistable piezo-composite plate provides the negative stiffness to reduce the system's stiffness around the equilibrium; and the metal plate provides the positive stiffness. The piezoelectric film is attached to the bistable piezo-composite plate's surface, to harvest some energy from the bistable piezo-composite plate vibration. The system was excited by the base motion. The displacement transmissibility reduction is 23 dB at 100 Hz, simultaneously, the generated output voltage is 0.05 V, when a bistable piezo-composite plate is used. The maximum output voltage amounts to 3.8 V [3]. Fig. 2(c) shows the schematic of the dual-functional acoustic metamaterial beam. A dual-functional metamaterial design with cavity mass and energy harvester are studied, for both suppressing wave propagation of low-frequency and harvesting energy. This novel design arranges a periodic array of nonlinear electrical energy harvesters, realized by implanting a rolling-ball with coils into a spherical magnetic cavity, on a beam to create bandgaps for wave isolation and produce electrical energy. The response peak generated during wave propagation can be effectively suppressed in the frequency range of forbidden band. Simultaneously, the energy generated when the rolling-ball slides in the nonlinear resonator can be harvested [4]. 

Conclusions

This paper reported the integrated nonlinear design of vibration isolation and energy harvesting. A nonlinear electromechanical coupling model based on several integrated systems, such as orthogonal six-degrees-offreedom, bistable laminated plates and metamaterials, is established. Analytical, numerical and experimental methods are employed to characterize the energy transfer between the vibration modes through the nonlinear frequency response. The findings bring us to the following conclusions: 1) Combining vibration isolation and energy harvesting in a Stewart platform could be enhanced by nonlinear stiffness.

2) The foundational mechanisms of vibration isolation and energy harvesting in a system with a bistable piezo-composite plate were revealed. Hardening and softening nonlinear phenomena coexist in the plot of both the displacement transmissibility and the output voltage. 3) Dual-functional acoustic metamaterials with nonlinear energy harvesters have better vibration suppression than that of linear metamaterials, and simultaneously are capable of vibration energy harvesting. Abstract. Effect of both curvilinear fiber orientation and the resulting thickness distribution on frequencies and damping of carbon fiber reinforced plastics (CFRP) fabricated by electrodeposition resin molding (ERM) was investigated in this study. Tailored fiber placement (TFP) is employed to manufacture carbon fiber preforms with continuous nonlinear fiber paths. Optimization of fiber shapes for plate and shell model was conducted to maximize the first natural frequency and/or modal SDC using particle swarm optimization (PSO). As a result, the optimum fiber shape successfully improves both the first natural frequency and/or modal specific damping capacity (SDC) in comparison with several unidirectional fiber shapes.

Introduction

Carbon fiber reinforced plastics (CFRP) is an anisotropic material whose mechanical properties vary depending on the orientation angle of the carbon fibers. In recent years, the development of fiber placement technologies such as TFP (Tailored Fiber Placement) has made it possible to realize nonlinear curved fiber orientation, which has greatly increased the degree of freedom in designing CFRP with anisotropic properties. Many studies on CFRP with curvilinear fibers have shown that CFRP can provide excellent mechanical properties by designing appropriate fiber geometries [1]. Fiber reinforced composites have high damping performance mainly due to their resin, and damping is also anisotropic, but there are only a few studies that focus on the damping properties and design the nonlinear fiber shape. It is also important to consider the effect of non-uniform thickness distribution caused by the curvilinear fiber orientation in order to improve the accuracy of numerical analysis. Therefore, in this study, CFRP with nonlinear fibers and the resulting thickness distribution are estimated numerically and applied to optimization of the vibration characteristics. Contour lines of the radial basis function (RBF) were used to represent the nonlinear fiber shape, enabling a high degree of freedom in the fiber shape representation. TFP was used to prepare the carbon fiber preforms, and the electrodeposition resin molding (ERM) method [2], recently proposed by the authors, was used to prepare the specimens.

Fabrication and calculation method

To fabricate symmetric laminates, two layers of carbon fiber plain weave in the 0° and 45° directions were used as the base layer, and two layers of carbon fiber tow were sewn onto it using a TFP machine to fabricate a four-layer preform as shown in Figure 1. Two sets of these are prepared to make a symmetrical 8-layer laminate. The TFP machine is a device that uses embroidery technology to create preforms by sewing dry carbon fibers onto a substrate layer with a high degree of freedom. ERM, a resin impregnation method, electrochemically deposits epoxy resin on the surface of carbon fibers on the cathode side by passing an electric current through the carbon fibers in an epoxy-containing electrolytic solution, as shown in Figure 2. Unlike other methods, this method requires no resin flow due to pressure, and thus suppresses the generation of voids. A constant current was applied until a reference voltage was reached, after which the reference voltage was maintained. After resin impregnation, residual electrodeposition liquid and air are removed from the preform using a press or vacuum desiccator, and the preform is heat-cured in a high-temperature furnace while being pressurized with metal plates and vises. Material constants were obtained from static mechanical tests of the fabricated specimens. Specific Damping Capacity (SDC) was identified by inverse analysis using experimental modal analysis and finite element analysis.

Curved fiber orientation is represented by assuming that the contour lines of a surface projected onto a plane are the paths of fiber bundles. To accept fiber shapes with a large number of degrees of freedom, the surfaces are defined by a linear combination of the radial basis functions (RBF) givne in Equation (1).

𝑓(𝑥, 𝑦) = ( 𝑤 ! exp --/𝑥 -𝑥 ",! 0 $ + /𝑦 -𝑦 ",! 0

$ 𝑟 ! $ 3 % !&' (1) 
where 𝑥 !,# , 𝑦 !,# , 𝑟 # are the parameters of the Gaussian function and 𝑤 # is the weight coefficient. By linearly combining multiple Gaussian functions, a fiber shape with a large degree of freedom can be represented. The reason for the thickness distribution is due to the occurrence of overlaps and gaps between the curved fiber bundles. Here, the relationship between overlap rate and plate thickness is derived by expressing the plate thickness 𝑡(𝑥, 𝑦) as a function of the fiber shape 𝑓(𝑥, 𝑦) [3]. The optimum fiber shape and thickness distribution were simultaneously explored using PSO.

Results

Figure 3 shows the optimal fiber shape and thickness distribution of the sewn layer obtained by optimization.

The details of the experimental results are not given in this abstract, but experimental and numerical results proved that the optimization results are superior to typical linear orientations in terms of both first mode SDC and first natural frequency. The predicted thickness distribution also agreed with the measured results. Figure 4 shows the optimal fiber shape obtained by extending the present method to shell structures. A simple coordinate transformation reflects the fiber shape projected onto a plane to an arbitrary shell. Numerical experiments show that optimal fiber shape improves the frequency of the shell structure as well.

(a) Optimum fiber shape (b) Thickness distribution Figure 3: Fiber shape maximizing first modal SDC and its thickness distribution. 

Introduction

Regenerative chatter in machining process causes a poor surface finish of a workpiece, a tool wear and a machine tool damage. Regenerative chatter is the self-excited vibration caused by regenerative effect (hereinafter, referred to as "chatter"). The various approaches have been proposed to suppress chatter [1]. The spindle speed variation is one of the active control techniques for chatter [1][2][3]. The spindle speed variation technique can suppress chatter by varying time delay and disturbing the regenerative effect. However, there are actually some constraint conditions in the speed variation amplitude and frequency to minimize the impact on the spindle life and reliability. In this work, instead of the spindle speed variation, the suppression effect on chatter is studied by exciting a workpiece in two orthogonal directions to change the relative velocity between a cutting edge and a workpiece at the cutting point. The time delay variation to achieve the relative velocity variation is derived and investigated the excitation amplitude and frequency to reduce chatter vibration amplitude by conducting time history analysis.

Analytical model and excitation parameters

Figure 1 shows a workpiece fixed to a vibratory stage capable of being excited in x and y directions separately. The workpiece can be excited in a tangential direction of a cutting edge by synchronous control of a tool revolution and each excitation direction of the vibratory stage in case of the use of a straight flute end milling tool. Accordingly, it is possible to change the time delay by variating the relative velocity in a tangential direction between the cutting edge and the workpiece in the cutting point. To achieve that, it is required to provide the workpiece with the excitation displacement in the x and y directions during the cutting of the j-th cutting edge defined as the following equations: e e e e ( ) sin cos ( ), ( ) sin sin ( )

j j x t A t t y t A t t        . ( 1 
)
Where A is the excitation amplitude and ω e is the excitation frequency. Note that, the present study assumes that no more than two cutting edges are involved in cutting at the same time during cutting in order to realize the tangential excitation of a cutting edge. When the number of teeth is two, the excitation displacement in the tangential direction is expressed by using the instantaneous angular immersion j  and the Eq. ( 1) : 

                   . ( 2 
)
The variation of the instantaneous angular immersion can be derived with Eq.( 2) as shown in Fig. 2 if the excitation displacement is small: during previous cut, the following equation can be derived: 

                                    . ( 5 
)
Since the excitation frequency ω e and the tooth passing period τ 0 are included in the argument of a cosine function of Eq.( 5), the amplitude of the time delay variation τ a can be zero depending on the product of the excitation frequency ω e and the tooth passing period τ 0 . In accordance with the description of Fig. 1, the equations of motion for the workpiece milling model subject to the time delay variation by workpiece excitation in tangential direction are obtained as follows: 

    , u
                                  (6) 
Where, K u , K r , and a are respectively the cutting force coefficients and the axial depth of cut. ( ( ))

j g t  
is the function which evaluates whether the j-th cutting edge is engaged with the workpiece. ( ) 

h
             . ( 7 
)
Where f is the feed rate. Considering the loss of contact of the tool and the workpiece, ( ( )) h t  is zero when the uncut chip thickness h(t) is negative. Therefore, the equations of motion ( 6) include the nonlinearity.

Numerical simulation

As an example, Figure 3 shows the workpiece vibration displacement with and without the workpiece excitation under conditions where chatter occurs at a nondimensional spindle speed of 0.14. The vibration waveforms in Figure 3 were obtained by numerically integrating Eq. ( 6) using the Runge-Kutta method. The excitation frequency is 3 times of the tooth passing frequency(excitation frequency ratio of 3.0) and the excitation amplitude A is 150 μm. Figure 3 shows that the workpiece vibration displacement is reduced by 43.2% when the workpiece excitation is applied. Figure 4 shows the amplitude reduction ratio and the excitation amplitude for different spindle speeds when the excitation frequency ratio is 3.0 and the amplitude of time delay variation τ a is constant. Namely, the excitation amplitude is changed according to the spindle speed. Figure 4 confirms that increasing the excitation amplitude with increasing spindle speed so that the time delay variation amplitude is equal has the chatter suppression effect even in the high spindle speed range. 

Conclusions

This study is summarized as follows. The chatter suppression effect was confirmed at a time delay fluctuation frequency higher than that of the conventional spindle speed variation. In addition, increasing the excitation amplitude with increasing spindle speed so that the time delay variation amplitude is equal has the chatter suppression effect even in the high spindle speed range. In our future work, we will perform experimental verification to validate the proposed method for chatter suppression. Abstract. The Magic Formula (MF) tire model has been widely used for vehicle dynamics simulation as a semi-empirical tire model, since it has a high fidelity to express the tire force and moment with less computing load. However, MF parameters are required to be identified with the measured data. Accordingly, it has been impossible to use the model without first undergoing detailed design, prototyping, and testing. This paper proposes an Inverse Magic Formula (IMF) capable of defining the MF parameters virtually based on typical tire performances inputs. Although the MF consists of nonlinear functions, the IMF is formulated analytically for clarity. Therefore, virtual tire models can be generated artificially without prototyping. The proposed method can be used for tire requirement analysis in combination with vehicle dynamics simulation.

Inverse Magic

Introduction

As the automotive industry advances, autonomous driving vehicles and electric vehicles are expected as new mobilities. Tire technology should be enhanced to accelerate and contribute to this change, more than before.

To that end, requirement analysis regarding tire forces and moments is required at the early planning stage of vehicle development to reduce lead time. Since Model Based Development have been widely implemented to the vehicle development process recently, it is desirable to carry out the requirement analysis in a virtual environment. However, various kinds of tire models used for vehicle dynamics simulation remain to be identified with real tire tests. Accordingly, parametric study cannot be available before the tires are designed, prototyped and tested. The Magic Formula (MF) [1] , a so-called semi-empirical tire model, has been widely used to evaluate vehicle dynamic handling performance all over the world. Yet, the MF has complicated nonlinear equations with many parameters, and thus chassis designers haven't been able to use it as a parameter study tool. This paper focuses on a MF model that is a de facto standard in the automotive industry and formulates the inverse function of MF (IMF) for a tire performance requirement analysis tool.

Theory

The concept of IMF is that, as a certain set of typical tire performances (normalized cornering stiffness, normalized SAT stiffness, road friction, etc.) at the nominal load are input to the inverse function, it can output the MF parameters corresponding to the tire performance. That is, the IMF is capable of generating a MF model artificially without prototyping. Figure 1 shows the overview of the IMF system. By using both IMF and vehicle dynamics simulation, tire requirement analysis can be realized at the planning stage. Note that tire performances examined in this paper are very important for chassis engineers because they affect vehicle dynamics performance significantly. The cornering stiffness Kyα, a gradient at origin of slip angle can be expressed as follows. 

The load dependency of the normalized cornering stiffness εyα can be expressed as follows. 

Assuming that Cyα and εyα are given at nominal load (Fz = Fz0), and redefining the variables as inputs of IMF by adding *, the MF parameters pky1 and pky2 can be solved analytically as follows. (a) Lateral force (b) Normalized cornering stiffness Figure 2: Tire model generation results using IMF Next, the IMF was applied to tire optimization for a lane keep controller using a model predictive controller (MPC). 200 tire models were generated by using the IMF; normalized cornering stiffness ranges from 15 to 25, load non-linearity of the cornering stiffness ranges from 0.5e-3 to 4e-3. For a fair comparison, the front and rear cornering stiffness used for MPC were identified with each tire model. The lateral errors to the target path were compared between the 200 tire models to extract the best tire. Figure 3 shows the time series results of steer angle, yaw rate and lateral error. A blue line indicates the minimum lateral error. Then, as shown in Figure 4, a contour map on tire performance parameters can be obtained from the results. This graph suggests that higher cornering stiffness is desirable for the vehicle. Note that the desirable range varies with vehicle specifications, MPC parameters, and driving scenario. Thus, the IMF can be applied to tire performance requirement analysis. Moreover, by adding the current Pareto front, the IMF is capable of determining the direction of technological development of tires. 

Result and Discussion

Introduction

The system identification method, which use a random vibration response, is traditionally used for mechanical structural vibration. The auto-regressive method (ARM) is the most widely used method [1] because it only outputs data. Obtaining input data is generally difficult in field tests, and ARM is often utilized in actual field data. Furthermore, operational modal analysis (OMA) was recently developed in the field of stochastic signalprocessing technologies [2]. However, because it is based on the frequency response function method, OMA cannot be applied to large-damping structural and sampling fluctuating systems. In this paper, we propose an identification method based on a probability density function. The shape of the probability density function obeys system parameters, such as the spring constant (linear-nonlinear), damping constant, and diffusion coefficient of the input white noise. These characteristics are not directly related to the frequency spectrum. Therefore, a method based on the probability density function is expected to be applicable to a low S/N ratio system. In a previous study, we proposed an identification algorithm based on maximum likelihood estimation (MLE) using the analytical solution of the Fokker-Planck equation [3], [4]. However, there has been no comparison between linear and nonlinear models. An accuracy comparison was conducted in this study.

Identification method based on maximum likelihood estimation

We consider the Langevin equation in case of a unit mass which is denoted by Eq. ( 1). 𝑑𝑦 1 /𝑑𝑡 = 𝑦 2 , 𝑑𝑦 2 /𝑑𝑡 = -𝑐𝑦 2 -𝑘𝑦 1 -𝜇𝑦 1 3 + 𝑊(𝑡) (1) Here, 𝑘, 𝑐, 𝜇 represent the spring, damping, and nonlinear spring constants, respectively. In addition, 𝑦 1 , 𝑦 2 represent the displacement and velocity, respcetively and 𝑊(𝑡) represents white noise excitation. If the sensor data of 𝐃 = {(𝑦 1,1 , 𝑦 2,1 ), … , (𝑦 1,𝛼 , 𝑦 2,𝛼 ) … , (𝑦 1,𝑁 , 𝑦 2,𝑁 )}, the likelihood function is defined using the analytical solution of the stochastic differential equation of (1) 

Here, Eq. ( 2) represents the case for the linear model in Eq. ( 3) represents a nonlinear model. 𝐾 * (•) of Eq. ( 3) represents type-two modified Bessel functions. Identification algorithms were derived using the MLE method. The estimated values of the unknown parameters were obtained by maximizing the likelihood function of Eq.

(2) and Eq. ( 3). The estimation formulae are obtained using Eq. ( 4) ~ ( 6). The formulae were obtained in explicit form.

The case of linear system model: 

𝑘 est = ∑ 𝑦 2𝛼
The case of nonlinear system model: Abstract. Laminated materials are used in many structures because of their lightweight and high strength-to-weight rate.

𝑘 est = 1 
Secondary machining such as drilling is required to connect to other materials. In such cases, delamination at the adhesive layer is sometimes observed and the surface roughness of the machined surface increases. The author examines to use of ultrasonic vibration for resolving such problems. In this paper, the effectiveness of a method using ultrasonic vibration during the drilling of laminated materials is examined to protect against delamination at adhesive layers. First, an experiment using a general-purpose drilling machine is conducted to drill holes for various feed rates and rotation speeds. As the result, the surface roughness of the machined surface is small when ultrasonic vibration is used. Based on the experimental results, an evaluation method is proposed using a simplified model to show a condition improving the surface roughness. In the method, cutting resistance is modeled as resistance due to the damping force which is proportional to velocity. The impulse is obtained due to the damping force. It is concluded that the impulse of the specimen with ultrasonic vibration is less than or equal to that without ultrasonic vibration.

Introduction

Laminated materials are used in many structures because of their high strength-to-weight rate. Laminated materials require secondary processing, such as drilling, to connect to other materials. Delamination can occur during such processing. Delamination causes surface accuracy and strength degradation. Considering that attempts to use ultrasonic vibration have been made for many processing methods, the use of ultrasonic vibration as a countermeasure for such problems is investigated. In this report, the effectiveness of applying ultrasonic vibration is examined to prevent delamination in drilling holes in laminated materials, taking the above into consideration. First, an experiment was conducted using a general-purpose drilling machine to drill holes in laminated materials. As a result, it became clear that the surface roughness of the machined surface became smaller when drilling holes while applying ultrasonic vibration. Based on these experimental results, a simple model was used to evaluate the conditions under which surface roughness can be improved.

Drilling experiment using ultrasonic vibration

An ultrasonic vibration generator was attached to the spindle of a general-purpose drilling machine, and holes were drilled while applying ultrasonic vibration. The matrix of the laminated material is epoxy, and glass fiber is used as a reinforcement. The number of laminations is 23, the thickness is 5 mm (each layer is about 217 m thick), and the size is 300 × 200 mm. The laminated materials are plain woven and stacked in the same direction. The laminated materials were fixed in a vise on a table. The ultrasonic vibration frequency was 17.8 kHz, the drill material was K10, and the drill diameter was 8 mm. The holes were drilled perpendicular to the lamination surface. First, the rotation speed was fixed at 384 rpm, and the feed rate was changed between 0.05 mm/rev and 0.10 mm/rev. Next, the feed rate was fixed at 1.0 mm/rev and the rotation speed was varied between 0 and 2400 rpm. The total acceleration amplitude at the tip of the drill was 300 G or 640 G, respectively. The surface profile was evaluated in terms of surface roughness in the machining direction. The laminated material was cut through the center of the hole with a fine cutter, and the arithmetic mean roughness of the machined surface was measured. The measurement conditions for surface roughness were a feed rate of 0.5 mm/s, a cutoff value of 0.8 mm, and an evaluation length of 2.5 mm. Figure 1 shows the results for different feed rates, and Figure 2 shows the results for different rotation speeds. The ○ indicates the surface roughness without ultrasonic vibration, and the • indicates the surface roughness with ultrasonic vibration. The surface roughness is reduced when drilling is performed while ultrasonic vibration is applied. Therefore, it is clear that drilling while applying ultrasonic vibration improves the machined surface profile.

Evaluating the effectiveness of using ultrasonic vibration

The laminated material was assumed to be drilled in the depth direction during one cycle as shown in Figure 3. Figure 3 (a) shows the displacement of the drill tip in the laminated material when vibration is not applied. Figure 3 (b) shows the displacement of the drill tip in the laminated material when vibration is applied.

To simplify the theoretical analysis, it is assumed that the cutting resistance can be replaced by the resistance generated by damping. Several models have been proposed for the damping properties of laminated materials, but for simplicity, viscous damping is assumed. Assuming that the viscous damping coefficient is c, the impulse E0 during one vibration cycle when drilling without vibration is given by the following equation.

𝐸 = ∫ 𝑐𝑥ḋ𝑡 = ∫ 𝑐 𝑑𝑡 = 𝑐𝑎

(1) When drilling while applying vibration, as shown in Figure 3 (b), there is a section where drilling is performed by the drill and a section where the drill leaves the laminated material. The section where drilling is performed in one vibration cycle is defined as Aπ/ω < t < Bπ/ω. In other sections of one vibration cycle, the drill leaves the laminated material. Therefore, the impulse E1 in this case is given by 𝐸 = ∫ 𝑐𝑥ḋ𝑡 = c (𝐵 -𝐴) + 𝑏(sin 𝐵𝜋 -sin 𝐴𝜋)

Assuming that the elastic deformation of the laminate material during drilling is negligible, the conditions under which the machined surface shape is improved were determined.

In the experiment in which the effect of feed rate was examined, the displacement amplitude b of the drill tip is 115 m. In the experiment in which the effect of rotation speed was examined, the displacement amplitude b of the drill tip is 0.251 m. In the experiment to study the effect of feed rate described in Chapter 2, A and B for the interval Aπ/ω<t<Bπ/ω, where drilling is performed, can be obtained by numerical calculation and E0 and E1 were obtained. For the experiment in which the effect of rotation speed was examined as described in Chapter 2, A = 0.29 and B = 0.51, resulting in E0 = E1 = 0.0541 × 10 -8 c (Ns). From these results, the impulse when ultrasonic vibration is applied is smaller than or equal to the impulse when ultrasonic vibration is not applied. Therefore, the following equation is obtained. 𝐸 ≤ 𝐸 (3)

Conclusions

To prevent delamination in drilling holes in laminated materials, a method of drilling holes while applying ultrasonic vibration is proposed and its effectiveness is investigated. First, experiments were conducted to evaluate the machined surface profile by surface roughness of the machined surface. Next, to evaluate the effect of ultrasonic vibration on machining, a model was proposed in which cutting resistance is replaced by resistance due to viscous damping. As a result, a conditional equation for the improvement of the machined surface profile is derived from the impulse of cutting resistance. The author would like to further examine the justification of the model of cutting resistance in the future. In a system consisting of a beam and a slider, under excitation, the mass distribution of the system changes as the slider moves passively along the beam [1]. As a result, the natural frequency of the system also changes and approaches the excitation frequency, which can result in resonance. This phenomenon, called passive selftuning resonance, is expected to be applied to the field of energy harvesting in recent years due to its property of broadening the resonance bandwidth [2]. This self-adjusting resonance is caused by the nonlinear coupling between the vibration of the beam and the movement of the slider. Krack, et al. [3] proposed a sophisticated mathematical modeling of this nonlinear behavior. Our previous experimental study [4] show the effect of nonlinear modal interactions through the slider movement. In this study, the resonance characteristics of this system were further experimentally investigated by varying the excitation frequency and amplitude.

Modeling

Figure 1 shows a model of the system consisting of a beam and a slider. The displacement W of the beam is expressed as a function of the spatial variable x and the time variable t, while the position s of the slider is a function of the time variable t only. The system is sinusoidally excited in the vertical direction with amplitude Ao and angular frequency ω. The vibration of the beam and the translation of the slider are coupled via secondand third-order nonlinear terms with respect to the spatial and time derivatives of the beam displacement W, and the time derivative of the slider position s. These nonlinear terms can cause the slider to move. 

Experiment

Figure 2 shows our experimental setup. The beam was made of aluminum, 0.4 m long and 0.5 mm thick. The mass ratio of the slider to the beam was 2.0. The excitation frequencies were set to 13 Hz and 38 Hz. These correspond to the natural frequencies of the system when the slider is at the antinode of the first and second eigenmodes of the beam, respectively. The excitation amplitudes were set to 0.20mm and 0.57mm. The displacement of the beam was measured with laser displacement meters, and the position of the slider was analyzed from video taken by a high-speed camera. Figures 3 and4 show the results of the beam displacement and the slider motion for excitation frequencies of 13 Hz and 38 Hz, respectively. In each figure, the blue line represents the beam displacement, while the orange dots represent the slider position at each time. From Figure 3, it can be found that at the excitation frequency of 13 Hz, the slider, which does not move at the excitation amplitude of 0.20 mm, moves toward the center of the beam exhibiting vibration of the 1st mode shape at the

Shaking table Function generator

Laser displacement meters FFT analyzer PC High speed camera excitation amplitude of 0.57 mm. Two seconds later it settles near the center, while the amplitude of the beam is increased, indicating that resonance of the 1st mode is generated. Figure 4 shows that at the excitation frequency of 38 Hz, the slider, which does not move at the excitation amplitude of 0.20 mm, moves toward the edge of the beam exhibiting vibration of the 2nd mode shape, from its initial position near the center, at the excitation amplitude of 0.57 mm. Resonance of the second mode occurs from the initial time until one second later, while after that it transitions to resonance of the first mode. From the above, it appears that when each mode resonance of the system occurs, the slider moves toward the antinode of the mode at amplitudes above a certain threshold value. Furthermore, coupling and transitions between resonant modes can also occur via slider movement. It should be noted that the frequencies at the final first mode resonance shown in the right-hand diagrams of Figures 3 and4 are 13 Hz and 19 Hz, respectively, and the resonant frequency in the case of Figure 4, which has a larger amplitude, is slightly higher. This is due to the hardening stiffness resulting from the geometrical nonlinearity of the beam as pointed out by Yu, et al [5]. 

Conclusion

This study experimentally investigated the behavior of a system consisting of a beam and a slider at different excitation frequencies and amplitudes. It was observed that there is a threshold of excitation amplitude for the slider to move and for the system to generate resonance, that the vibration mode shape of the beam and the destination of slider movement differ depending on the excitation frequency, and that transitions in resonance modes can occur. beam slider

Introduction

As shown in Fig. 1, a sliding member called contact strips is attached to the upper surface of the pantograph head, and electric power is supplied to the train when the contact strip is in contact with a contact wire. The sliding of contact strips generates a frictional force, and a large coefficient of friction can lead to unstable oscillation of the pantograph. In fact, friction-induced unstable oscillation has been reported [1].

In addition, a combination of PHC contact wire and iron-based sintered alloy contact strip used in the Kyushu Shinkansen and the Tohoku Shinkansen shows that the coefficient of friction between these materials increases to about 0.8 at extremely low running speeds (about 15 km/h or less) [2]. This friction characteristic has been pointed out to be related to unstable oscillation and local wear that occurs at very low speeds [3]. The solution of unstable oscillation and local wear is strongly desired from the viewpoints of stable transportation and cost reduction.

To address this issue, a 2-dof pantograph model based on MBD has been proposed [4]. In this model, it has been shown that unstable oscillations do not occur when parameters identified from the actual pantograph are used, suggesting the need to consider elastic deformation of pantograph components. On the other hand, a sensitivity analysis to friction using a finite element model has also been conducted [5], although the materials and geometry are different from those of overhead wires and pantographs in Japan. However, Ref. [5] does not provide detailed information on the mechanism of unstable vibration.

Therefore, in this study, we evaluate the effects of each of the pantograph's 'contact strip section' and 'frame section' shown in Fig. 2 on stability with the aim of clarifying the mechanism of unstable vibration. Since a simplified evaluation of 'contact strip section' has already been conducted in a previous report [6], this paper constructs a pantograph model with a constrained 'contact strip section' based on FMBD and conducts a stability evaluation. length of the pantograph head; and c k , the stiffness of the contact spring. Furthermore, the complex eigenvalue analysis is applied to the proposed model to analyse its stability (Fig. 6). In Fig. 6, max R  is the maximum value of the real part of the eigenvalues, and the value of max R  is shown as 0 when the system is stable for better visibility. Figure 5: A conceptual diagram of the contact model. Figure 6: The stability analysis.

Conclusions

In this paper, a pantograph model with constrained 'contact strip section' was constructed based on FMBD in order to evaluate the influence of 'frame section' on the stability of the pantograph. Furthermore, the complex eigenvalue analysis was applied to the proposed model to analyse its stability. The paper is summarized as follows: 1. 'Frame section' of the subject pantograph becomes unstable with a coefficient of friction greater than about 1.4. 2. Furthermore, unstable oscillation can occur only in the knuckle backward, and the effect of 'one-sided' on the stability of 'frame section' is small. In the future, we intend to establish an FEM-based model of 'contact strip section', conduct analytical and experimental investigations of the stability of the catenary, and experimental investigations to clarify the mechanisms. 

Introduction

Tumour ablation therapy by high-intensity focused ultrasound (HIFU) has been known as a low-invasive method for cancer treatment [1]. Tumour cells can be heated and necrosed by the energy of focused ultrasound.

As the mathematical model of tumour ablation therapy, Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [2] describing the weakly nonlinear propagation of focused ultrasound in single phase liquid has been widely used because of its accuracy and usability for numerical simulation. Further, the energy radiated from oscillating microbubbles can enhance the heating effects of focused ultrasound (see Fig. 1). However, the original KZK equation was derived for the single-phase liquid, then needs to be extended to describe the effects of bubbles. In this study, the KZK equation for focused ultrasound is extended to the liquid containing multiple microbubbles. The resultant KZK equation can consistently describe the nonlinear propagation of focused ultrasound, the nonlinear oscillation of microbubbles, and the thermal effects of oscillating bubbles. In order to incorporate the thermal effects of oscillating bubbles, the energy equation for gas inside the bubbles [3] is introduced. In addition, the resultant KZK equation is numerically solved and intensive temperature rise near the focal point was obtained.

Theoretical result

Weakly nonlinear propagation of focused ultrasound radiated from a circular sound source in a bubbly liquid is considered (Fig. 2). The center of the sound source is set as the origin. The 𝑥 * axis represents the distance from sound source and the 𝑟 * axis does the radial distance. From the theoretical analysis based on the singular perturbation method [4], the eleven basic equations including the energy equation [3] 

Here, all the symbols are nondimensionalized: 𝜏 is the retarded time, 𝑥 is the distance from the sound source, 𝑅 is the radial distance, 𝑇 G1 is the perturbation of the temperature of gas inside bubbles, and 𝛤 is the nondimensional parameter representing the magnitude of focusing effect; the 𝛱 1 is the nonlinear coefficient, 𝛱 21 and 𝛱 22 are the dissipation coefficients, and 𝛱 3 is the dispersion coefficient. The terms representing 

PS01PS06[ 2 -PS17[ 2 [ 2 -PS55

 222 Gripping force of pneumatically actuated flexible arms Kazuya Sakai, Tomohiko G. Sano PS02 Reaction-diffusion model for the tape-peeling trace by deformed adhesives Keisuke Taga, Hiroya Nakao, Yoshihiro Yamazaki PS04 Theory and computation of weakly nonlinear ultrasound propagation in a Shrinkage and shape memory of gelated cellulose nanopaper in the drying process Shohei Moriwaki, Itsuo Hanasaki 03 Soft actuators] PS07 Jumping mechanism of elastic shells on rigid or granular substrates Takara Abe, Shuhei Shimizu, Genya Ishigami, Tomohiko G. Sano PS08 Experimental analysis on jumping mechanism using snap-through buckling of an elastic strip Shuhei Shimizu, Takara Abe, Tomohiko G. Sano, Genya Ishigami PS09 Modelling of series inflatable actuators for sequential activation control Kiyohiro Araki, Diego Paez-Granados, Modar Hassan, Kenji Suzuki [2-04 Biomechanical systems] PS10 Nonlinear material modeling of human skeletal muscle with muscle contraction Tomotaka Hamajima, Akihiro Matsuda PS11 An Instrumented Pole for Measuring the Individual Hand Forces in Pole Vaulting Rinri Uematsu, Kiyoshi Hirose, Osamu Takeda, Alexander P. Willmott, Sekiya Koike PS12 Optmization-based Kinetic Synthesis Method to Produce Nonlinear Response Property of Prosthetic Legs Sergio Alberto Galindo Leon, Diego Paez-Granados, Modar Hassan, Kenji Suzuki PS13 Mechanical Characterization of Multi-Degree-of-Freedom Elastic Neck Exoskeleton for Persons with Dropped Head Syndrome Santiago Price Torrendell, Hideki Kadone, Modar Hassan, Kenji Suzuki [2-05 Bubble] PS14 Weakly nonlinear ultrasound propagation in liquids containing multiple ultrasound contrast agents with shell in buckled or ruptured states Quoc Nam Nguyen, Tetsuya Kanagawa PS15 Thermal effects on bubble dynamics under long-Inelastic two-scale analysis of dovetail joints of CFRP fan blades for jet engines Eiichiro Mori, Masayoshi Akaza, Chiharu Tsujikawa, Tetsuya Matsuda, Naoki Morita, Nobuhiro Yoshikawa PS18 Vibration characteristics of curvilinear CFRP prepared by electrodeposition resin molding manufacturing method Md Tansirul Islam, Shinya Honda, Kazuaki Katagiri, Katsuhiko Sasaki, Ryo Takeda, Isamu Saiwaki, Yuto Shimizu PS19 Experiments on Nonlinear and Chaotic Vibrations of a Bi-stable Unsymmetrically Laminated CFRP Plate Kodai Hirano, Shinichi Maruyama, Ken-ichi Nagai, Takao Yamaguchi, Chihiro Kamio [2-07 Machine tools] PS20 Monitoring system for Laser Welding and Emitting Energy Distribution Model to Explain Nonlinear Relationship Ichiro Ogura PS21 Feasibility studies of using vibration sensor to monitor tool wear progress during finishing step of hardened steel machining Jonny Herwan, German Herrera-Granados, Ichiro Ogura, Yoshiyuki Furukawa, Takashi Misaka, Hitoshi Komoto PS22 Experimental study of the nanoscale cutting using the self-excited microcantilever Linjun An, Ichiro Ogura, Kiwamu Ashida, Hiroshi Yabuno 09 Data-driven dynamics] PS27 A case study of applying virtual node approach to multiple oscillators for reservoir computing Takeshi Shibuya PS28 Automatic Generation of Governing Equations for Mechanical Systems with Piecewise-Linear Systems using Sparse Regression Ryosuke Kanki, Akira Saito PS29 Analysis of nonlinear acoustic waves using physics-informed neural networks Kazuya Yokota, Takahiko Kurahashi, Masajiro Abe [2-10 Numerical analysis and computation] PS30 A GPU-based multi-sphere DE-FE method and its application in the simulations of tire-terrain interaction Xiaobing Guo, Shunhua Chen, Mengyan Zang, Naoto Mitsume PS31 Parallel Implementation of a rigorous contour integral based eigensolver and Stability and nonlinearity in the flapping flight of butterfly Narumi Fujii, Kei Senda PS56 Trajectory Control of Manipulator's End-effector using SDRE Method Ryosuke Kita, Natsuki Kawaguchi, Masaharu Kuroda [3-09 Predictive control] PS57 Sample-Based Adaptive Monte Carlo Model Predictive Control and Its Experimental Verification for Swing-up and Stabilization of a Pendulum on a Cart Koki Tachibana, Hisashi Date PS58 Performance evaluation of model predictive control for active suspension systems employing an inerter with road preview Wanshu Wang, Takehiko Asai PS59 A Study on Damping Characteristics of Accelerator Pedal Operating Leg for Vehicle Driving Kazuhiro Tanaka, Takashi Tsuchiya [3-10 Discrete time systems] PS60 Discrete-time state observer for nonlinear continuous-time systems Triet Nguyen-Van PS61 Matched Pole-Zero Model for Multi-Input and Multi-Output Systems Shin Kawai, Keisuke Yagi PS62 Interpretation of frequency transfer functions based on discrete-time response Yuichi Tokutomi, Triet Nguyen-Van, Shin Kawai PS63 Discrete-time state feedback control for continuous-time system transformations Tatsuya Oshima, Shin Kawai, Triet Nguyen-Van PS64 State estimation and control considering nonlinear characteristics of stepper Saiwaki, Kazuaki Katagiri, Katsuhiko Sasaki, Ryo Takeda Numerical Study of Chatter Control in End Milling Process by Workpiece Excitation Yutaka Nakano, Satoshi Sekikawa, Hiroki Takahara Inverse Magic Formula Capable of Tire Performance Requirement Analysis at Early Stage of Vehicle Development [online] Takao Kobayashi Linear / Nonlinear system identification based on response probability density function of 1-DOF system which is subjected to white noise excitation Soichiro Takata, Kaito Araki Evaluation method for the effectiveness of ultrasonic vibration assisted drilling Shigeru Aoki Frequency and amplitude dependence of self-tuning resonance Tatsuki Tagashira, Toshihiko Sugiura 15:10 -15:30 Coffee break 15:30 -16:20 Fri-f3: Wave and propagation in practical systems (Chair: Keita Ando, Keio University) Study on Unstable Oscillation of Pantograph under Friction Yuki Amano, Shigeyuki Kobayashi, Hiroki Mori, Nobuyuki Sowa Theoretical and numerical analysis on nonlinear propagation of focused ultrasound in bubbly liquids toward cancer treatment by microbubble-

Figure 1 :

 1 Figure 1: Mixed-mode oscillations: (a) relaxation oscillations; (b) bursting oscillations.

Figure 2 :

 2 Figure 2: The - parametric plane of Model 1, Eq. (2) plotted for f0=0.4 and 𝛽 = 1 and different values of : a) = ; b)  =  (blue dots -relaxation oscillations, green dots -bursting oscillations, red dotsoscillations around a non-trivial equilibrium).

Figure

  Figure 3 Comparison of numerical solution (black solid line) and approximate solutions (green dashed line) in: (a) Model 1 for = f= = =; (b) Model 2 for = f = = =.
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 1 Figure 1: FRQ of the Duffing equation for 𝐹 = 0.05 and 𝛿 = 0.05. Red = proposed method; black = numerical simulations, blue =MTSM. Right panel: zoom around the peak of the FRC.

Figure 2 :

 2 Figure 2: The amplitude and frequency of the peak of the FRQ for varying 𝐹/𝛿.

  , η; a, b) stands for the second-order directional derivative along stable directions a, b ∈ P s H. In addition,Ξ := -cos(2ϕ) 2 Tr[P c G R (P c G R ) * -P c G I (P c G I ) * ](ϕ, η) -sin(2ϕ) 2 Tr[P c G R (P c G I ) * + P c G I (P c G R ) * ](ϕ, η), c G R (P c G R ) * -P c G I (P c G I ) * ](ϕ, η) -cos(2ϕ)2Tr[P c G R (P c G I ) * + P c G I (P c G R ) * ](ϕ, η), G ϕ c (ϕ, η) := G R c (ϕ, η) sin ϕ -G I c (ϕ, η) cos ϕ, and

Figure 1 :

 1 Nonlinear extraction from acceleration data by time-frequency-domain feature extraction. [2] (a) Frame structure with shaker and pounding mechanism (b) Extracted pounding event by Holder exponent (above) and actual pounding events indicated in time-history (below).

Figure 2 :

 2 Nonlinear extraction from acceleration data by time-frequency-domain feature extraction. (a) Shake table test of frame structures with introducing pounding event (left) and boundary condition nonlinearity (right), (b) One of results feature extraction from video data based on optical flow method: the moment w/o contact event at top floor (left), and the moment of contact event at the top floor.

  (a) Sketch of the experimental fixture. (b) The envelope of the normalized kinetic energy in the excited system 1 Introduction
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 1 Figure 1: Left: honeycomb metamaterial hosting membrane-shaped resonators with center mass. Right: Schematic view of the hexagonal cell geometry.

Figure 2 :

 2 Figure 2: (a): The linear stop band size S A = min(ω + ) -max(ω -). (b): The linear absolute stop band position P = (min(ω + ) + max(ω -))/2, (c): The linear relative stop band size S R = S A /P , versus M and K.

Figure 1 :

 1 Figure 1: (a) Schematic diagram of a shaft-system interconnected through U-Joint with clearance. (b) Exaggerated 3-D representation of clearance in U-Joint.

Figure 2 :

 2 Figure 2: Ω = 20 rad/sec, β = 5 • . (a) Phase portraits for various values of δ, (b) Corresponding Poincare Maps, (c) Bifurcation diagram as a function of δ.

  Stability boundaries for χ = 1, ζ 2 = 1 and increasing ζ 1

Figure 1 :

 1 Figure 1: Model of the vibration absorber and the almost-sure stability boundaries of the single mode solution boundary in terms of excitation intensity ν and the dissipation coefficients ζ 1 and ζ 2 .Although no particular attention was given to the 1 : 2 resonance in the stochastic analysis of the linearized system, the stability boundaries in Figure1bclearly show the significance of internal resonance, χ ≈ 2κ, in determining the almost-sure instability region in the (κ, ν) parameter space, which is of significance in applications. When χ = 1, as in Figure1b, all the curves have a characteristic "V" shape that mimics that of the instability tongues and transition curves in the stability chart of Mathieu's equation with linear viscous damping and cosine-type periodic forcing of the stiffness coefficient.

Figure 2 :

 2 Figure 2: D-bifurcation of the 'reference measure' µ ν

  Figure 1 -(a, b) Influence of noise on the microcantilever attractor's density (density first color bar) and stochastic basin of attraction (probability second color bar) for σ = 0.012, Vdc = 45, V̅ ac = 5, Ω = 2.8, w0 = 0, using the refinement algorithm; (c) variation of the microcantilever resonant basin's area as a function of the noise intensity σ, for various probability thresholds (color bar)

Figure 1 :

 1 Figure 1: Schematic of pitch-plunge kinematics (y p = h sin(κt), θ = θ 0 sin(κt + φ)) for (a) φ = π/2 and (b) φ = 2π. (c) An order-to-chaos map exhibiting distinct regions of qualitatively different dynamical states.
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 1 Figure 1: (a) Schematic of the coupled piezoelectric fluid energy harvester. (b) Schematic of the fluid domain.

4 .

 4 The parameter values used are as follows: C D = 1.2, C L0 = 0.5, ρ 0 = 1.167 kg m -3 , D = 0.042 m, L b = 0.210 m, L 0 = 0.032 m, λ = 0.24, A = 12, ζ 1 = ζ 2 = 0.015, ω 1 = 18.1097 rad s -1 , ω 2 = 168.7475 rad s -1 .

  (a) Single Oscillator: Vorticity contours.

  Coupled Oscillators: Steady-state Dynamics.

Figure 2 :

 2 Figure 2: System dynamics for the single and coupled oscillator cases.
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 1 Theoretical model: (a) coupled model of 1D flow path model, rotor model, and 2D cascade model, and (b) inlet flow rate distribution for 2D cascade model

Figure 1 .Figure 2 :Figure 3 :

 123 This extended coupled system consists of the one-dimensional flow path model of the inducer, a rotor model, and a two-dimensional flow model in a cascade. When the inducer whirls synchronously, there are variations in the flow rate of flow paths obtained from the one-dimensional flow path model. These variations in flow rate were considered as inlet flow distortion of the two-dimensional flow model in a cascade as shown in Figure 1(b), and the two-dimensional cavitating flow in a cascade was analysed. Theoretical results of cavitating flow caused by the whirling motion of the rotor synchronized with the rotor rotation: (a) cavity length, and (b) pump dynamic coefficients (cavitation compliance and mass flow gain factor) Experimental and theoretical results of occurrence of RC and transition from RC to AAC: (a) experimental result [5], and (b) theoretical result

  Figure2shows the variation of the cavity length and the pump dynamic coefficients consisting of cavitation compliance and mass flow gain factor for each path with respect to the cavitation number when the amplitude of synchronous whirling motion of the inducer is about 50% of the tip clearance. It can be seen that the cavity length in one flow path changes negatively (shown with symbol •) as the cavitation number decreases. The cavitation compliance and mass flow gain factor can become negative at this time, which explains the validity of the assumption made in the previous paper[5].The coupled 1D flow path model and rotor model were analysed taking into account the change in sign of the pump dynamic characteristics due to the change in cavity length and pump dynamic coefficients shown in Figure2. Figure3(a) shows the experimental results[5] and Figure3(b)shows the theoretical results. Figure3(a)shows that as the cavitation number decreases, RC with a frequency of about 120 Hz is generated. Then the transition from RC to AAC were observed when cavitation number decreased further. At this transition, RC vibration component was converged to the synchronous vibration component, and the amplitude of synchronous vibration component increased at AAC. The theoretical results (Figure3(b)) reproduces the occurrence of RC and the transition from RC to AAC almost exactly as observed in the experimental results.
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 1 Figure 1: ε-parameter bifurcation and 1 and 3-periodic points at ε = 0.1, 0.4

Figure 2 :

 2 Figure 2: Experimental Apparatus

Figure 3 :

 3 Figure 3: Velocity fields, FTLE fields and hyperbolic LCSs observed in experiments

  (a) The triangular structure consisting of the upper limbs plus grip handle and the virtual shoulder mid-point coordinate system. (b) The three rigid-segment linked model Figure 1: A simplified model representing the thrower's upper limbs and the hammer.

  without division of the MDT into its components (2) with division of the MDT into its components Figure2: Contributions of individual terms to the hammer head speed during the turning motions. eta denotes the segment length fluctuation term; Nerr denotes the residual moment error term.
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 12 Figure 1: Ball spin-time relationship of the ball

Figure 3 :Figure 4 :

 34 Figure 3: The impact force of the ball on the string-bed with different inbound velocities

Figure 1 :

 1 Figure 1: Fabrication method of flexible arms and our experimental protocol. (a)3D-printed mold. (b)Schematic of the arm fabrication methodology. The mold is pre-filled with liquid elastomer and then we inject the air bubbles from the opposite side. (c)The schematics of the cross-section. The air expels the polymer residue, and actuators with an asymmetric cross-section are obtained by curing under the influence of gravity. (d)Experimental photos of our arm grasping a shaft. As we pressurize the cavity in the arm, the arm bends in an arch shape. (e)Schematic diagram of the gripping-sliding experiment. The arm is fixed at the base (L 0 =20mm) and the shaft grasps the rigid cylinder by applying internal pressure (h=47mm,ϕ=30mm). The shaft is then translated vertically (V =100mm/min) and the traction force F is measured as a function of displacement.

Figure 2 :

 2 Figure 2: Gripping force and curvature. (a)Gripping force F plotted against shaft displacement ∆h for various P . The black dotted line is a linear approximation of the peak value at each internal pressure. (b)Circle fitting of the arm using MATLAB image analysis. The solid red line is a skeletonized version of the arm with the center line extracted. The circular blue dotted line is the circle fitting of it. The radius of the blue circle is the radius of curvature of the arm. (c)The rescaled curvature 1/κL plotted against P/E. The solid black line represents the fitting curve. (d) The force maxima F * of the gripping force F plotted against a radius of curvature 1/κ. The solid blue line is the approximate straight line of the plot. The red solid line is our naive prediction.
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 1 Figure 1: Peel traces (a) A and (b) B. Peeling proceeds from top to bottom. The small image at the bottom left in each figure shows the enlarged image of the peel front. (c) A fractal coexistence pattern. Black and white regions represent the peel states B and A, respectively. The actual size of the figure is 25mm × 25mm.
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 2 Figure 2: Typical spatiotemporal patterns obtained by eq.(2). Time proceeds from top to bottom (500 ≤ t ≤ 1200). (a) V = 0.29, (b) V = 0.30, (c) V = 0.309, (d) V = 0.32, (e) V = 0.50.

Figure 3 :

 3 Figure 3: Temporal evolution of the ultrasound for the case of α 0 = 1.0 × 10 -5 . The red and black curves represent the waveforms with and without liquid rigidity, respectively; ξ is the nondimensional space coordinate, p ′ L is the first-order perturbation of the liquid pressure, and τ is the nondimensional time: (a) τ = 0.0, (b) τ = 0.5, and (c) τ = 4.0.
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 1 Fig 1: The undeformed configuration Fig 2: The deformed configuration under three pairs of stretches

Fig 3 :

 3 Fig 3: The Cauchy stress-strain behavior
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 1 Figure 1: Sequential snapshots of nanopaper from the state before swelling to the final state after drying under bending constraint. The nanopaper shows both shrinkage and shape memory.

Figure 2 :

 2 Figure 2: Drying induced contractive force of gelated nanopaper: (a) Front and side views of swollen nanopapers in the drying process. The time points t are the beginning of drying, the time when the shrinkage force reaches 0.1 N, and the time after drying is completed. Each nanopaper specimen was clamped at both ends at its equilibrium length at the start of drying. (b) Time evolution of contractile force in the drying process of gelated cellulose nanopaper.
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 1 Figure 1: (a)Behavior of jumping mechanism with hemispherical cap shells. We measure the jumping height H. (b) Typical time series data of pressure in the shell during the experiment. (c)The dependence of H ℓ and H j (H = H ℓ + H j ) on δp j ((h, R) = (1.5, 30) mm,m ≈ 10 g, on an acrylic plate) and displacement-pressure curve.

Figure 2 :

 2 Figure 2: (a)(b)The dependence of H ℓ and H j on h/R. The error bars represent the standard error over 3 samples. Note that the error bars of H ℓ are smaller than the size of the data points. (c)The attenuation of the jumping height on the granular substrates (d = 0.5, 5 mm) with respect to H 0 , the jumping height at Acrylic(w/ hole).
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 1 Figure 1: (a)Schematic of the jumper developed in this study. (b)Experimental setup on the rigid surface (left) and on the sandy surface (right).

Figure 2 :

 2 Figure 2: Time histories of (a)displacement and (b)acceleration of the jumper when using an elastic strip with specific parameters

Figure 3 :

 3 Figure 3: End-shortening vs. jumping height. Black and red plots show the jumping height on the rigid and sandy surfaces, respectively.

  ) and 3(b)). From the fact that the internal pressure and volume change characteristics of the actuator are invariant; independent of the circuit, it can be argued that the model can describe the inflation phenomenon accurately.
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 1 Figure 1: Circuit diagram of the pneumatic closed circuits configured for the experiments.

( a )Figure 2 :

 a2 Figure 2: Time response of each pressure P in (t) and P out (t), and ηξ(u) estimation in the single configuration.

Figure 3 :

 3 Figure 3: Actuator inflation characteristics V(P k ) based on the measured Q out:k in parallel/series configurations.

  of human skeletal muscle with muscle contraction Tomotaka Hamajima * , Akihiro Matsuda **

Fig. 1

 1 Fig.1 Stress-strain relationship (𝛾 = 0) Fig.2 Stress-strain relationship (𝜃 = 0°)

Figure 1 .

 1 Figure 1. A schematic representation of the instrumented pole with strain gauges

Figure 4 :

 4 Results of static calibration of the strain gauges under large pole-deformation condition (n=1).These values are expressed in a pole-segment coordinate system (a) Fx (b) Fy (c) Fz (d) M x,1

  Kinetic Synthesis Method to Produce Nonlinear Response Property of Prosthetic Legs Sergio Alberto Galindo Leon * , Diego Paez-Granados * * , Modar Hassan * * * and Kenji Suzuki * * * 1 Introduction

Figure 1 :

 1 Figure 1: Model of the sagittal mechanism. α = 0 and β = 0 in the figure at the center.

Figure 2 :

 2 Figure 2: a) Obtained (continuous) and expected (dashed) sagittal torque angle functions corresponding to each commercial prosthesis. b) Expected CAD designs for each set of parameters Then, we optimized the parameters of function f to match the mechanical behaviour of 4 different commercial prosthesis (Walk-tek, Vari-flex, Rush HiPro and All-Pro) using a gradient-based nonlinear optimization solver in Matlab (fmincon) by minimizing the MSE between f and the torque-angle curve of each prosthesis. The angular stiffness data for each commercial model was obtained from Halsne (2021)[5]. The set of parameters that offer the closest behavior to each commercial device and their torque angle functions are presented in Table1and Figure2a. Additionally, the expected designs of the prosthesis corresponding to each set of parameters are shown in Figure2b. The upper and lower bounds for the parameters were determined by the dimensions of the prosthesis. k remained constant as the spring used in the original design has a nominal elastic constant of 150 N/mm.

Figure 1 :

 1 Figure 1: Top: Illustration of neck mobility with the elastic mechanism in the exoskeleton device. Bottom: New mechanism compared to the original design and flexion behavior shown in three section views.

Figure 2 :

 2 Figure 2: Bending test. a) Experimental setup. b) Results: Elastic mechanism stiffness for different gap values

2 α

 2 0 = 10 -6 α 0 = 0.01 α 0 = 0.05 Shell effect (α 0 = 0.05) (b) Π 2

Figure 1 :

 1 Figure 1: Coefficients of the KdVB coefficient versus initial surface tension Π i (σ * 0 ) curves for R * 0 = 1.5 µm of three different void fraction: α 0 = 10 -6 (blue), α 0 = 0.01 (orange) and α 0 = 0.05 (green). The effects of the shell at α 0 = 0.05 are indicated in the form of a red dashed line. The other parameters are given in [9]. High void fractions are graphed to demonstrate the behavior of the solutions.

Figure 1 :

 1 Figure 1: Schematic of a gas bubble in a viscoelastic medium.

Figure 2 :

 2 Figure 2: Schematic of a set of equipments (a) for the generation of a laserinduced bubble in a gelatin gel and (b) for the visualization of bubble oscillations and the temperature measurement.

Figure 3 :

 3 Figure 3: (a) The determination of mechanical properties of a 3 wt% gelatin gel by fitting for short-term bubble oscillation. (b) The comparison of temperature rise in case of p a = 6.51 kPa, c = 3 wt% with simulation. (c) The recording of bubble oscillations for the case of Fig.3 (b).

Figure 1 :

 1 Figure1: Sketch of a coated microbubbles made from anisotropic shell. Transverse anisotropic case is considered where radial Young's modulus E r is different from the in-plane Young's modulus E ∥ . In the case of isotropic material, the value of E r is equal to E ∥[4].

  [4]: (i) E * r < E * || : anisotropic case 1, (ii) E * r = E * || : isotropic case, and (iii) E * r > E * || : anisotropic case 2. In anisotropy case 1, shell anisotropy suppresses the attenuation C 2 and nonlinearity C 1 coefficients. As shown in Fig. 2, C 1 is not significantly affected by the initial void fractions.

Figure 2 :

 2 Figure 2: Coefficients of the KdVB equation versus high initial void fraction α 0 : (a) nonlinearity coefficient C 1 and (b) attenuation coefficient C 2 . Noting that 2.65, is the upper limit of the case that Poisson ratio is 0.35, and is calculated by a constraint among elastic constants [4].

  differentiation with respect to i x and i y , respectively, ( ) denotes the differentiation with respect to time t , signifies the volume average in Y , Ω Γ indicates the boundary of  , and ij  is the Kronecker's delta. Moreover, kl i  and i  are the characteristic functions determined by solving the following microscopic boundary problems for Y :

Figure 3 :

 3 Figure 3: Analysis models in macro-and micro-scales; (a) macro-scale (dovetail joint), (b) micro-scale (half unit cell consisting of fiber and epoxy). Table1: Material properties of carbon fiber and epoxy

Figure 4 :

 4 Figure 4: Distributions in macro-and micro-scales; (a) shear stress in 1x -2x plane, (b) equivalent stress in macroscale and equivalent viscoplastic strain in micro-scale.
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 1 Figure 1: Schematic diagram of EDRM.Figure 2: Schematic diagram of EDRM

Figure 2 :

 2 Figure 1: Schematic diagram of EDRM.Figure 2: Schematic diagram of EDRM

Figure 5 :Figure 3 : 1

 531 Figure 5: Natural Frequencies of parabola model Figure 6: Natural Frequencies of sine model

2 .

 2 Vibration experiments were conducted by applying periodic lateral acceleration to the plates using an electromagnetic shaker in an initially upper-convex state. Nonlinear dynamic responses of displacements were measured simultaneously at four points on the CFRP plate at the coordinates (x, y) : (x, y) = (0,0) [mm], (x, y) = (60,0) [mm], (x, y) = (0,60) [mm] and (x, y) = (60,60) [mm].

Fig. 4 Fig. 2

 42 Fig.3shows the initial shape of plate at the two stable states, measured by scanning a laser displacement senser. Fig.4shows lower three natural modes of vibration at the upward convex state. The amplitude and phase of displacement from initial state is measured by scanning a laser displacement senser, applying infinitesimal acoustic pressure. The lowest mode has large amplitude only at (x, y) = (0,0), while 2nd mode has large amplitude both at (x, y) = (0,0) and (x, y) = (60,60). The nonlinear frequency response curves measured simultaneously at multiple positions are shown in Fig.5at the upward state, for different amplitude of excitation. The vertical axis is the root-mean-square amplitude Wrms [mm] of the displacement at the measured position on the CFRP plate, and the horizontal axis is the excitation frequency f [Hz]. The principal resonance
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 786 Fig.7 Fourier spectrum of displacement f=46.2Hz (x,y) = (0,0)
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 12 Figure 1: Experimental set-up and typical welding result Figure 2: Output of photo diodes

Figure 4 :Figure 3 :Figure 5 :

 435 Figure 4: Emitting energy distribution model for laser welding

  Fig 3(a) clearly shows the progress of tool wear can be captured from the increasing pattern of RMS value of the signal from the sensor under the workpiece. On the other hand, a similar pattern cannot be captured by the sensors at Y-axis slideways as shown in Fig 3(b).

Figure 1 :Figure 2 :

 12 Figure 1: Tool wear measurement results after cutting distance of (a) 26 m and (b) 51.8 m (end of tool life)

Figure 3 :

 3 Figure 3: Best time domain features vs tool flank wear from accelerometer (a) Under the workpiece (b) at Yaxis slideways

Figure 1 :

 1 Figure 1: a the schematic diagram of the cutting systems and b the self-excited circuit.

Figure 1 (

 1 b) shows the self-excited circuit in detail. The microcantilever is self-excited by linear feedback, and the equation of motion is m d 2 z dt 2 + d 2 ze dt 2

Figure 2 :

 2 Figure 2: a the top view of the microcantilever and the red rectangles are the position of the measurement points. b-h the displacements of each measurement point in one period.

Figure 3 :

 3 Figure 3: a the top view of the cutting holes. b the cross-section of hole I from direction . c the deflection angle with respect to time when the R 0 is 75 Ω. d the relationship between the magnitude of the deflection angles and the average depths of the cutting holes.

Figure 1 :

 1 Figure 1: (a) Connectivity of the FizHugh-Nagumo ring network, withx i = (u i , v i ), f (x i ) = (δ(v i + a + bu i ), v i -

Figure 1 :Figure 2 :

 12 Figure 1: (a) limit cycle trajectory. (b,c) limit cycle solution as a function of θ. (b) x 1 component, (c) x 2 component. (d,e) PSF without high-harmonic components. (d) x 1 component, (e) x 2 component. In each figure, the red line shows the designed functional form and the black line shows the original one, respectively.
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 12 Figure 1: Change of values of coupling functions a 1i (t)

Figure 1 :

 1 Figure 1: Profiles of three synchronized solutions shown in [2].

Figure 2 :

 2 Profile of the radii polynomial.

Figure 1 :

 1 Figure 1: Experiment results in the training phase. The blue line is the reservoir A, the red line is the reservoir B and the orange line is the original.

Figure 2 :

 2 Figure 2: Experiment results in the test phase. The colors are same as Figure 1The number of oscillators is three. The parameters are set as γ = 0.0035, β = 3.23, W in = (0.4899, 0.1679, 0.9787) T ,

  (1) and (3), the following equation is obtained: 𝑥̈= -(𝑐/𝑚)𝑥̇-(𝑘 1 /𝑚)𝑥 -(𝑘 2 /𝑚) max{0, 𝑥 -𝐿} (8) For this example, the parameters were chosen to be 𝑚 = 5, 𝑐 = 10, 𝑘 1 = 100, 𝑘 2 = 100, 𝐿 = 1.5 with an initial condition [𝑥 0 𝑥̇0] = [-100 10]

  velocity [m/s] x = 0 m (Boundary condition) x = 80 m (Exact solution) x = 80 m (PINNs)

Figure 2 :

 2 Figure 2: The ruts of an off-road tire on gravel terrain: (a) experimental result; (b) simulation result.

Figure 3

 3 Figure 3 depicts the computational time (10,000 loops) of the serial and parallel calculations, including contact detection, force calculation, information update, and other components. It can observe from the figure that the computational time of the parallel calculation (i.e., CPU/GPU calculation) is significantly less than that of the serial calculation (i.e., CPU calculation), and the speedup can reach 19.25 times.

Figure 3 :

 3 Figure 3: The computational time of the serial and parallel calculations.
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Figure 1 :

 1 Figure 1: (a) Magnetoactive polymers (MAPs) specimens of various shapes (b) Schematic model of MAPs based on two-scale analysis.
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Figure 2 :

 2 Figure 2: (a) Loading device for planar ribbons (b) Schematic of planar ribbon (c) Load vs Displacement for Mode-1 deformation (d) Mode-1 deformation.

y

  respectively indicate macroscopic displacement, macroscopic strain, elastic stiffness of the fiber and matrix, arbitrary variation of perturbed velocity field in Y , and the characteristic function satisfying the Y -periodicity. Moreover, indicate the differentiation with respect to i x and i y , respectively, ( ) denotes the differentiation with respect to time t , signifies the volume average in Y , Ω Γ indicates the boundary of  , and ij  is the Kronecker's delta. During the two-scale analysis, microscopic stress distributions in unit cells can be obtained using the following equation:

(

  

[ 1 ]

 1 Kohashi T. and Matsuda T. (2021) Two-scale progressive damage analysis of CFRP laminates. Proc. 14th World Congress Comput. Mech. [2] Matsuda T., Toyomura J., Ogaki T. and Arai M. (2016) Two-scale analysis of thermal behavior of CFRP laminates based on a thermoelastoviscoplastic homogenization theory. Key Eng. Mater. 725: 433-438. 0 100[%] 50 (a) 0.97% macroscopic strain.(b) 0.67% macroscopic strain.

Figure 5 :

 5 Figure 5: Stiffness reduction in -direction ([90]); (a) without randomness (hexagonal array), (b) with random fiber distribution.

Figure 4 :Figure 2 :Figure 3 :

 423 Figure 4: Macroscopic stress-strain relationships of unidirectional CFRP; (a) [0], (b) [90].

Figure 6 :

 6 Figure 6: Microscopic damage distribution ([90], 0.67% macroscopic strain).

Figure 1 :

 1 Figure 1: Schematic of visualizing free oscillation of a laser-induced bubble in the gel sample (Tetra-PEG).

Figure 2 :

 2 Figure 2: Visualization of the free oscillation of a laser-induced bubble in the gel sample (Tetra-PEG). The time for the maximum radius is set to t = 0. The red scale bar represents 100 µm.

Figure 3 :

 3 Figure 3: Comparison in the evolution of the bubble radius between the experiment and the simulation with varying the viscosity µ. With the inviscid assumption (µ = 0), the rigidity G is fitted based on the data from the maximum radius (at t = 0) to the first collapse time.

Figure 1 :

 1 Figure 1: (a) Nonlinear Kagome lattice with onsite nonlinearity (green springs). The inset shows its unit cell. (b) Dispersion diagram of the (infinite) linearized lattice. (c) The spectrum of the (finite) linearized lattice with the highlighted edge (blue) and corner states (red). (d) Mode profiles for a corner state (m 1 ) and an edge state (m 2 ). The colorbar denotes the amplitude of out-of-plane deformation.

Figure 2 :

 2 Figure 2: (a) Nonlinear continuation of the topological corner state. (b) Maximum amplitude of Floquet Multipliers of the periodic solutions when the frequency is decreased. (c) Profiles of the nonlinear states at ω = 2.02 and ω = 1.97.

Figure 1 :

 1 Figure 1: (a) Typical crack pattern observed in experiments. (b) Three molds with different radius ratios used for bilayer shell fabrication. (c) Procedure to make ED layer (c-1) and RG layer (c-2) in sequence by pouring polymer liquid onto the mold. (d) Bilayer shell sealed with acrylic plate and syringe pump.

Figure 2 :

 2 Figure 2: (a-c) Shells pressurized until cracking occurs. (a) r 0z /r 0x = 0.5 shell. (b) r 0z /r 0x = 1.0 shell. (c) r 0z /r 0x = 1.5 shell. (d) Simulation results of the strain field when displacement w is given.

Figure 1 :

 1 Figure 1: Reconstruction of the phase and amplitude functions of the stochastic FitzHugh-Nagumo model. (a) Eigenvalues. (b) Phase function and (c) amplitude function. The local minima of the amplitude function, which represents the stochastic periodic orbit of the system, is drawn by the black-dotted line.

Figure 1 :

 1 Figure 1: The model of n oscillating pendula suspended on the horizontally oscillating beam.

Figure 2 :

 2 Figure 2: The traveling of phases for identical pendula -the traveling phase state. Parameters: M = 10 [kg], k = 4 [N/m], c = 1.53 [Ns/m], mi = 1 [kg], li ≈ 0.24849 [m] and μ = 32.88.

Figure 1 :

 1 Figure 1: Investigated types of exciters: a) an unbalanced rotor with a single viscously coupled pendulum; b) the same rotor with two viscously coupled pendulums; c) two unbalanced rotors with inertial and viscous couplings.

Figure 2 :

 2 Figure 2: Modulated vibrations of the system with two unbalanced pendulums in overcritical domain; a) steady state solutions; b) modulated amplitude of the carrier system; c) modulated mean rotation speed.

Figure 1 :

 1 Figure 1: (a) Photographs of 3D-printed hyperbolic shells. (a-i) The bottom of the shell is pinched by the amount of δ. Snapshots are taken on (a-ii) x-z and (a-iii) y-z planes. (b) The pinching deformation of the shell with (R 1 , R 2 ) = (60, 20) mm on x-z plane: (b-i) natural (δ = 0 mm) and (b-ii) deformed (δ = 5 mm) configurations. The corresponding photos for (R 1 , R 2 ) = (5, 20) mm shell are shown as (c-i) δ = 0 mm and (c-ii) δ = 5 mm.

Figure 2 :

 2 Figure 2: (a) The rescaled tip displacement of hyperbolic shells (Z max -Z 0 )/δ as a function of the rescaled radius of curvature R 1 /ℓ. Experimental and FEM results are compared with the scaling prediction. (b) The stress propagation along the x-z plane for different ratios of natural curvatures R 1 /R 2 , based on FEM. The stress at each arclength s is averaged along each y-z plane (δ = 5 mm). (c) The color-map of maximum stress plotted on the curvature R 1 /ℓ-displacement δ/R 2 plane.
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 1 Figure 1: Analytic forced response and its experimental verification in a fluid sloshing experiment (Cenedese et al. [5]).

Figure 2 .

 2 Figure 2. Sketch of the experiment. A motor (a) drives an eccentric disk which converts the rotary motion of the motor via a pushing rod (b) into a quasi-harmonic horizontal oscillation of the platform. A positioning sensor (c) directly records the motion of the platform on which the tank (d), two high speed cameras (e) and an USB-camera (f) are mounted. For the PIV measurements a light sheet (g) is provided by a laser passing through a cylinder lens (implemented in the stationary laser guiding arm).

2. 1 .

 1 Experimental setupA sketch of our experimental setup is shown in figure2. The tank (width w = 500 mm, depth l = 50 mm) is mounted on a platform and filled with water at room temperature

Figure 2 .

 2 Figure 2. Sketch of the experiment. A motor (a) drives an eccentric disk which converts the rotary motion of the motor via a pushing rod (b) into a quasi-harmonic horizontal oscillation of the platform. A positioning sensor (c) directly records the motion of the platform on which the tank (d), two high speed cameras (e) and an USB-camera (f) are mounted. For the PIV measurements a light sheet (g) is provided by a laser passing through a cylinder lens (implemented in the stationary laser guiding arm).
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Figure 1 :

 1 Figure 1: (a) Idea of low-order elimination, (b) A comparison of backbone curves/frequency response curves (nonlinear foundation beam) [3]: refined ROM (red) vs. routine Galerkin model (blue) with * denoting numerical results, Fm=0.002, 0.004, 0.006, µ=0.0035, W=wm+s, m=3, nonlinear stiffness coefficients KN2=3000, KN3=10000.

( a )Figure 2 :

 a2 Figure 2: Unified perspectives on nonlinear model reduction [4]: (a) An expanded correspondence; (b) A hierarchy of ROMs of geometrically nonlinear structures

)Figure 1 :

 1 Figure 1: a) Experiment. b) Measured forced response curve and simulated response of model (4).

Figure 1 :

 1 Figure 1: Two-degree of freedom mass-spring system with Coulomb friction at the second degree of freedom.

Figure 2 :

 2 Figure 2: Function ‰.r; P x 2 / (blue) in Equation (3) showing that its intersection with the zero plane (orange) is the classical friction condition (2).

1 ,Figure 3 :

 13 Figure 3: Solution over one period of motion for n D 30, D 0:2 and ! D 4:5 rad/s: Frequency domain [solid line], time domain [dashed line].

Figure 1 :

 1 Figure 1: Legend: theory (black curves), experimental results in IR (blue) and out of IR (purple), D=single mode Duffing response, CM=IR coupled mode response. Left: Operating frequency versus amplifier voltage v ac representing S. Middle: Theoretical diffusion coefficient D 0 versus v ac , indicating coexisting operating points in and out of IR. Right: Measured output spectrum in and out of IR, with Lorentzians fitted to the data (black curves).

Figure 1 :

 1 Figure1: The root-finding algorithm (Newton's method implemented in the software package COCO with σ 1 (t) := σ 2,ss (t)) converges to the template steady-state behavior within four iterates. The inset on the left shows the convergence of the period T . Here, δ = γ = η = κ = 0.01 and the constant time delay equals 1.

  8𝑛𝑠+1 cosh(𝛽𝑛𝑠 ′ 𝜉) + 𝐶 8𝑛𝑠+2 sinh(𝛽𝑛𝑠 ′ 𝜉) + 𝐶 8𝑛𝑠+3 𝜉cosh(𝛽𝑛𝑠 ′ 𝜉) + 𝐶 8𝑛𝑠+4 𝜉sinh(𝛽𝑛𝑠 ′ 𝜉)} sin𝑛𝑠′𝜂̅ 𝑛𝑠 + ∑ {𝐶 8𝑛𝑐+5 cosh(𝛽𝑛𝑐 ′ 𝜉) + 𝐶 8𝑛𝑐+6 sinh(𝛽𝑛𝑐 ′ 𝜉) + 𝐶 8𝑛𝑐+7 𝜉cosh(𝛽𝑛𝑐 ′ 𝜉) + 𝐶 8𝑛𝑐+8 𝜉sinh(𝛽𝑛𝑐 ′ 𝜉)(𝑛 𝑥 + 𝑘 𝑥𝑝 𝑢)𝛿𝑢 + (𝑛 𝑥𝑦 + 𝑘 𝑥𝑦𝑝 𝑣)[{𝑛 𝑥 -𝑘 𝑥𝑚 (𝑢 -𝑢 0𝑚𝑠 )}𝛿𝑢 + (𝑛 𝑥𝑦 -𝑘 𝑥𝑦𝑚 𝑣)𝛿𝑣] {(𝑛 𝑦 + 𝑘 𝑦𝑝 𝑣)𝛿𝑣 + (𝑛 𝑥𝑦 + 𝑘 𝑦𝑥𝑝 𝑢)∫ {(𝑛 𝑦 -𝑘 𝑦𝑚 𝑣)𝛿𝑣 + (𝑛 𝑥𝑦 -𝑘 𝑦𝑥𝑚 𝑢)Since the in-plane cross-sectional forces 𝑛 𝑥 , 𝑛 𝑦 and the in-plane displacements 𝑢, 𝑣 are expressed by stress function 𝑓, the stress function 𝑓 can be in terms of unknown time function 𝑏 ̂11 (𝜏) for deflection.
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 13 Fig.1: Analytical Model of Shell-panel Fig.2: Characteristics of Restoring Force

Figure 1 :

 1 Figure 1: A three-dimensional nonlinear frame model of the Tsurumi Tsubasa Bridge.

Figure 2 :Figure 4 :Figure 6 :

 246 Figure 2: Variations of natural vibrational modes.

Figure 1 .

 1 Figure 1. Spectra of plucked sounds when (a) r = 0.2 mm(b) r = 0.4mm (c) r = 0.8mm. The eigenfrequencies of the fundamental mode and the 10th mode are shown in the frames. The effect of inharmonicity can be observed. T = 500N,L = 1m, σ0 = 2.5, σ1 = 0.001, x l = 1/42m, u0 = 1mm.

Figure 2 .

 2 Figure 2. Spectra of plucked sounds when (a) x l = 0.5m (b) x l = 0.25m (c) x l = 0.125m. T = 500N, L = 1m, σ0 = 2.5, σ1 = 0.001, r = 0.8mm, u0 = 1mm. It can be confirmed that eigenmodes whose plucking position are nodes of vibration didn't appear.

Figure 3 .

 3 Figure 3. Spectrograms of plucked sounds when (a) u0 = 1mm (b) u0 = 5mm (c) u0 = 10mm. T = 750N, L = 1.25m, σ0 = 2.5, σ1 = 0.001, r = 0.8mm, x l = 0.25m. A pitch glide effect that is caused by nonlinearity of the strings can be observed.
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 2 Figure 2: Bifurcation diagrams of planar and nonplanar motion.

Figure 3 :

 3 Figure 3: Experimental results.

1 )

 1 ): 𝑇 (𝑠) = 𝒮 𝒫 (𝐺 (𝑠), 𝒮 𝒫 𝐺 (𝑠), … , 𝒮 𝒫 𝐺 (𝑠), 𝐺 (𝑠) . (Presuming a case in which a controller 𝐾(𝑠) is located at the rightmost n-th stage, then the transfer function 𝐺 (𝑠) of the closed loop from 𝑣 (𝑠) to 𝑖 (𝑠) can be described by Equation (2) as 𝐺 (𝑠) = ℱ ℒ 𝑇 (𝑠), 𝐾(𝑠) . (2) The evaluation function used for ascertaining 𝐾(𝑠) is expressed by Equation (3) using the difference between the 𝑎 times closed-loop transfer function 𝐺 (𝑠) and the controller's transfer function 𝐾(𝑠) in the sense of 𝐻 norm, as 𝐽 = min ( ) ||𝑎 ℱ ℒ 𝑇 (𝑠), 𝐾(𝑠) -𝐾(𝑠)|| .

Figure 1 :

 1 Figure 1: Time history waveform of displacement at each stage.

  (a) Overview of experimental setup. The table vibrates in horizontal direction. (b) Equilibrium states. The yellow lines indicate the tip of oscillators.

Figure 1 :

 1 Figure 1: Experimental equipment

Figure 2 : 5

 25 Figure 2: 5 Hz to 11 Hz excitation for A, A, F

Figure 3 :

 3 Figure 3: 13 Hz to 22 Hz excitation for A, A, Ffrequency of approximately 10.7 Hz, u 2 vibrates above 4.2 mm. u 1 and u 3 vibrate above 2.4 mm. This indicates that the snap-through motion occurs continuously. Figure2bshows that when snap-through motion occurs, a wide range of frequency components from 0 Hz to about 20 Hz are excited in the vibration. Figure2cshows the time history waveform when it was excited from 5 Hz to 11 Hz. Figure2dshows the STFT of u 1 when the AFA was excited from 5 Hz to 11 Hz. From Figure2dand Figure2d, it can be seen that the snap-through motion occurs continuously starting at an excitation frequency of approximately 10.2 Hz, which is 0.5 Hz lower than the case of the AAF. The reason for the occurrence of snap-through motion from excitation frequencies lower than AAF is that the snap-through motion from equilibrium state 1 to 2 is more likely to occur when only the center oscillator resonates and vibrates significantly. This is likely due to the shape of the equilibrium state, which requires a large movement of the central oscillator to move from equilibrium state 1 to 2. This tendency was also observed for ADA, ACA, and EBF. Next, the responses of AAF and AFA for the excitation from 13 Hz to 22 Hz are compared. Figure3ashows the time history waveforms of the AFA when it was excited from 13 Hz to 22 Hz. Figure3bshows the STFT of u1 when the AFA is excited from 13 Hz -22 Hz. From Figure3aand Figure3b, it is considered that the snap-through motion occurs continuously starting at an excitation frequency of approximately 20.7 Hz. This snap-through motion is considered to be caused by the excitation frequency approaching the natural frequency of A. Figure3cshows the time history waveforms of the AFA when it was excited from 13 Hz to 22 Hz. Figure3dshows the STFT of u1 when the AFA was excited from 13 Hz to 22 Hz. From Figure3cand Figure3d, it is considered that the buckling phenomenon occurs at an excitation frequency of approximately 17.5 Hz. Although the excitation frequency of 17.5 Hz is far from the natural frequencies of A and F, the snap-through motion occurs. Therefore, when the end oscillators have the same natural frequency and the center oscillator has a different natural frequency, the snap-through motion tends to occur even if the excitation frequency is far from the resonance frequency of those oscillators. This tendency was also observed for ADA.

  the non-dimensional parameters are 𝑚 * = 𝑚 𝑀+𝑚 , 𝜇 𝑥 = 𝑐 𝑀+𝑚 𝑡 * = 𝑡 √︃ 𝑘 𝑀+𝑚 and 𝑥 * = 𝑥/𝑎 e .

Figure 1 :

 1 Figure 1: (a) Analytical model of cantilever-type autoparametric vibration absorber. (b) Analytical model of pendulum-type autoparametric vibration absorber. (c) Frequency response curves of main system in case with cantilever-type autoparametric vibration absorber.

  Fig.1shows the box-shaped jig with a test object is attached in this research. Jig 1 is made of heat-resistant cured epoxy resin and has a box-shaped structure with dimensions of 100×150×250 mm and a thickness of 15 mm. The jig is machined and has an H-section in the X-Y coordinate plane. The jig is fixed on the base plate using the fixture made of L-shaped angle parts 2. In addition, the model with double-stacked jig is also considered to support a test object at a high position. Two unit jigs are fastened by bolts to each other. The 40×150×40 mm aluminium parts 3 and the 60×20×60 mm steel parts 4 are attached to the centre of the side plate of the lower stage jig with bolts as a test object.Fig.2shows the reinforced jig to prevent decrease in the natural frequency of the jig due to a heavy test object. Six aluminium square pipes 5 of 70×67.5×30 mm and 3 mm thickness are inserted into each slot of the jig and fixed with bolts. For the double-stacked jig, aluminium plates 6 of 3 mm thickness are attached to the inner and outer sides of the jig to reinforce the stacked sections of the jig. From the measurements of mass and natural frequencies of rectangular plate of same material[1] , the following material parameters are identified: density 7.26×10 2 kg/m 3 , Young's modulus 3.15 GPa, and Poisson's ratio 0.32.
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 2 Figure 2. Hyperbolic LCSs and bifurcation associated with the difference of temperatures
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 291 Figure 1: Relative error of the total energy in short time (T = 10)
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 12 Figure 1: Non-planar motions of a standing pipe conveying fluid.

Figure 3 :Figure 4 :

 34 Figure 3: Experimental apparatus.

Figure 1 :

 1 Figure 1: (a) Analytical model of flexible fluid conveying pipe. (b) Argand diagram (the symbol * is omitted). (c) Expansion in the range of eigenvalue collision.

Figure 2 :

 2 Figure 2: (a) Experimental apparatus. (b) Time history and FFT analysis (U = 12.24L/min). (c) Time history and FFT analysis (U = 12.61L/min).

  𝛼(𝑥 2 -1)𝑥̇+ 𝑐𝑥̇+ 𝛽𝑥 = 𝑓cos𝜔𝑡, 𝑥̈𝑥̇+ 𝑐𝑥̇𝑥̇+ 𝛽𝑥𝑥̇= 𝑥̇𝑓cos𝜔𝑡 -𝛼(𝑥 2 -1)𝑥ẋ̇ (1a, b)

Fig. 1 (

 1 a) shows the response component at the forcing frequency while Fig.1(b) shows the free vibration limit cycle oscillation component. It shows that within frequency band between points A and B, the response only contains the component at the forcing frequency. However, at low or high excitation frequencies, two frequency components are identified in the response. Fig.2(a)shows the influence of the parameters on the time-averaged power input by the external force. It shows that 𝑝 in can be negative in a frequency range (which can be determined analytically), meaning that the power input 𝑝̅ nl by the nonlinear term must be positive, according to the principle of energy balance.

Figure 1 :

 1 Figure 1: Analytical approximations of the magnitudes of response components (𝛼 = 0.5, 𝛽 = 1, 𝑐 = 0.01, 𝑓 = 1). (a) Forced vibration component and (b) free vibration limit cycle oscillation component. Solid line: periodic motions; dashed line: quasi-periodic motions; circles indicate numerical results.

Figure 2 :

 2 Figure 2: Effects of parameters on the time-averaged input power 𝑝 in by the external force (𝛼 = 0.5, 𝑐 = 0.01, 𝑓 = 1). In (a), 𝑓 = 1, in (b) 𝛽 = 1.
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 23 Figure 2 Schematic diagram of Experimental system.
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 1 Figure 1: Two-degree-of-freedom spring-massdamper system subject to velocity feedback force F

Figure 2 :

 2 Figure 2: Root locus with respect to the feedback gain f 1

Figure 3 Figure 4 :

 34 Figure 3: Experimental apparatus

Figure 1 :

 1 Figure 1: Optical image of the manufactured cantilever. The cantilever is made of stainless steel (SUS304). The cantilever and channel are formed by laser cutting, metal etching, and diffusion bonding of two stainless plates. The dashed lines indicate the position of the buried channel. The channel volume is estimated as 103 nL. Sample fluids are supplied through the two semisphere-shaped holes in the right top and bottom.

Figure 2 :

 2 Figure 2: (a) Schematic diagram of the experimental setup and (b) actual setup around the cantilever's holder. The amplified feedback signal drives three multi-layered piezo actuators attached under the holder. While excitation, the fluidsupplying tube is disconnected from the syringe.

Figure 3 :

 3 Figure 3: (a) The variation of velocity amplitude of self-excited cantilever under the change of linear and nonlinear feedback gains. If the nonlinear feedback gain becomes larger, the amplitude becomes smaller. (b) Fast Fourier analyses of the amplitudes of the cantilever filled with ethanol(solid line) and distilled water(dashed line). The frequency shifts by 89.6771 Hz. (c) Comparison between true and measured values of the densities. The error bars indicate the error of measured values because of resonance frequency deviation.

Figure 2 :

 2 Figure 2: FEM model of AWD Figure 1: Structure of AWD

Figure 3 :

 3 Figure 3: Relation between Natural Frequencies of AWD and Length of Sub-Stay.

Figure 4 :

 4 Figure 4: Bifurcation Diagram (0 °,𝐿 𝑠𝑏 =90 mm).

Figure 5 :

 5 Figure 5: Bifurcation Diagram (90 °,𝐿 𝑠𝑏 =80 mm).

Figure 6 :

 6 Figure 6: Fourier Spectrum (0 °, 𝐿 𝑠𝑏 =90 mm,𝐴=18000 N/s).

Figure 7 :

 7 Figure 7: Fourier Spectrum (90 °, 𝐿 𝑠𝑏 =80 mm,𝐴=8000 N/s).

Figure 8 :

 8 Figure 8: Fourier Spectrum (90 °, 𝐿 𝑠𝑏 =80 mm,𝐴=18000 N/s).
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 1 Changes in (a) amplitude, (b) area, and (c) PAT when contact pressure was applied.

f c f c +∆f 2f c 2 (Figure 2 :

 22 Figure 2: Experimental results; (a) spectrum of received signal and (b) relationship between E b /N 0 and BER.

Figure 1 :Figure 2 :

 12 Figure 1: (a) Proposed fluctuated pulse train of searching phase signal composed of 31 clicks and (b) its autocorrelation result. (c) Proposed signal of approach and terminal buzz phase signal and (d) its autocorrelation result.

  is derived. The equation of motion of the two-link manipulator can be expressed as Equation (5) based on the Lagrangian equation of motion as 𝑴(𝜽)𝜽 ̈+ 𝑫 𝜽, 𝜽 ̇ = 𝒖(𝑡), (5) where 𝑴(𝜽) represents the inertia matrix and where 𝑫 𝜽, 𝜽 ̇ denotes a vector including Coriolis forces, centrifugal forces, and frictional forces. Letting 𝒙 = [𝜃 𝜃 𝜃 ̇𝜃 ̇] = [ 𝑥 𝑥 𝑥 𝑥 ] be the state variable for Equation (5), we can obtain the manipulator's state equation as shown by Equation (6): 𝒙̇= 𝑥 𝑥 𝑴 (𝒙) 𝒖(𝑡) -𝑫(𝒙, 𝒙̇).(6) 

Figure 1 :

 1 Figure 1: The proposed system and results: (a) A QC model, (b) Random road profile with constant speed, (c)-(e) Response time histories of the vehicle body acceleration, suspension working space, dynamic tire load, respectively.

Figure 1 :

 1 Figure 1: Measurement and simulation result of pedal resonance and damping on standard return spring

Figure 2 :

 2 Figure 2: Measurement and simulation result of pedal resonance and damping on hard return spring

Figure 1 :

 1 Figure 1: Simulation results

Figure 1 :

 1 Figure 1: The control system using proposed method an exact discretization of the original continuous-time model. If the f (x(t)) + gū(t) is a linear systems, it is exact discretization. Consider a desired system given by

Figure 1 :

 1 Figure 1: System Configuration Figure1 shows the proposed system configuration diagram.To perform nonlinear state feedback control, all states of the system are used, so the state must be estimated from the observed value. In addition, when measuring the output with a sensor, the effects of noise cannot be avoided. Then, in this study, the EKF, a method for estimating true values by comparing predicted and observed values of a state, is used as a state observer that takes into account observation noise. Predictions require a discrete-time model with good performance that is close to the actual state of the continuous-time system. Therefore, this study discretizes the system using the Continualized Discretization method, which produces a response close to the state of the continuous-time system at the time of sampling. The state equation of the stepper motor in continuous-time, including the effect of noise, is expressed by

Figure 1 :

 1 Figure 1: Comparison of full model, simply truncated model, and its the secular terms elimination model The vehicle mode model is obtained from a characteristic equation of the homogeneous equations with no control force

Fig. 1

 1 Fig.1shows the responses for the initial value using the full model (Full model), the simple truncated model with the appendage mode but does not eliminate the secular term (Truncate model), and the secular terms elimination model (Proposal model). The simple truncated model without the secular term elimination shows that the frequencies of the lower-order vibration modes change. The secular term elimination model has almost no error with respect to the fulldimensional model.

Figure 1 :

 1 Figure 1: (a) Model for the guided control of a human-driven vehicle. (b) Range policy function of the human driver. (c) Linear stability chart (α = 0.3 s -1 , β = 0.4 s -1 , κ = 0.6 s -1). Both the light gray and the dark gray regions are plant stable, while the dark gray region is also string stable. The inlets display typical frequency response curves of the corresponding regions.

Figure 2 :

 2 Figure 2: Panels (a) and (b) present stability charts in case of different excitation amplitudes colored according to the maximum of the norm of the transfer function (α = 0.3 s -1 , β = 0.4 s -1 , v max = 30 m/s, vref = 26.55 m/s, h stop = 5 m, h go = 55 m). The green region is plant and string stable, while the blue dashed and continuous lines refer to linear string stability boundaries. Panel (c) shows the change of the frequency response curves as the excitation amplitude increases (for the parameter combination β -1 = -0.3 s -1 , β = 0.18 s -1 , marked with magenta crosses in the stability charts). by κ. Considering the time varying reference velocity v ref (t) = vref + ε cos(Ωt) as input, the velocity of the HV as output y, and introducing the state x= [h -1 -h ⋆ -1 , v -1 -vref , v -vref ]T , the governing equations assume the form: ẋ = Ax + g(x) + Bε cos(ωt) , y = Cx .(5)

Figure 1 :

 1 Figure 1: a) Problem setting. b) Numerical simulation comparing the center of the steady-state solutions with parameters 𝐹 = 2.7, Ω = 1, and 𝛽 = 1.1214 with mass (𝑀 = 0.1, orange line) and without mass (blue line). In case of 𝑀 > 0 the stationary motion can oscillate around values 𝐴 ≠ 𝑘𝜋 with 𝑘 ∈ ℤ. c) The center of steady-state vibrations 𝐴 depicted against the parameter values 𝑀 and 𝐹 with Ω = 1 and 𝛽 = 1.1214 held constant. The values are obtained by direct numerical simulation of Eq. (1). In c) homogeneous initial conditions are considered.

Figure 2 :

 2 Figure 2: Example of envelopes of the phase dependent SIMs corresponding to mode 1 and 3 of the chain, along with free response of the system under initial deformation applied on both modes.

  [4][5], Fig.1(a). The experimental setup is illustrated in Fig.1 (b). In these devices, the Joule's heating of the electrostatically actuated initially curved beam results in an increase of the beam's curvature and consequently of the ST voltage and decrease of the SB voltage. Cooling of the beam by an external air flow results in the decrease/increase of the ST/SB voltages, which are monitored to extract the air flow speed, Figure2 (c).

Figure 1 :

 1 Figure 1: (a) Operational principle of the sensor: an initially curved micro beam with the midpoint elevation h is actuated by an electrostatic force due to voltage VES applied at a gap-closing electrode. The beam is Joule's heated by an electric current controlled by the heating (electro thermal) voltage VET and is cooled by an air flow with the velocity u. (b) Experimental setup. The response is measured by laser Doppler vibrometer (LDV). The heating voltage VET is not shown. (c) Experimental results: dependence of the snap-through (ST) and snapback (SB) values of the actuating voltage V on the air flow velocity u.

Figure 2 :

 2 Figure 2: (a) Experimental setup used to investigate the role of the air incidence angle. Airflow emerging from the nozzle is impinged on the beam at the angle varying from 0 to 45 0 . (b) Measured response of the beam loaded by a triangular voltage signal at the frequency of 400 Hz. The arrows denote the ST and SB jumps, respectively. Inset illustrates the synchronized time histories of the voltage signal (blue) and of the beam's response (red). (c) Normalized critical voltage shifts as a function of the flow velocity at several incident angles 0 o , 15 o , 45 o of the flow.

Figure 1 :

 1 Figure 1: Model of the multi-stable shells in a free configuration, shell of type A (a) and type B (b), 8-layer angle-ply antisymmetric stacking sequence [45/-45 2 /45/-45/45 2 /-45].

Figure 2 :

 2 Figure 2: Experimental setup of A-shell prototype for clamped configuration, (a) C-state (b) and I-state.

Figure 3 :

 3 Figure 3: Experimental resonance curves for shell A prototype and selected amplitudes of excitation: (a) 0.25 g, (b) 0.75 g, (c) 1.25 g, (d) 1.5 g.First, dynamics for small oscillations is tested for amplitude of excitation of the shaker a s = 0.25g, where g is gravity acceleration. Excitation frequency f is swept forward and backward. In Fig.3(a) a resonance curve for C-state is plotted around 5.5 Hz. The red dots indicate amplitude of shell response for the sweep forward and the green circles for the sweep backward. As we can see relatively small oscillations around C-state are almost linear. In contrast vibrations for I-state around 8.4 Hz (presented in the same Fig.3 a) exhibit strongly nonlinear softening. Black dots for the sweep forward and blue circles for the sweep backward demonstrate the hysteresis of amplitude with a jump phenomenon, in spite of small oscillations. This fact shows that both steady states, C-state and I-state, have essentially different dynamics. If excitation amplitude is increased up to a s = 0.75g (Fig.3 b) the resonance curve for C-state remains linear with a small increase of amplitude but the resonance curve around I-state gets larger amplitudes with much stronger softening. The further increase of excitation amplitude up to a s = 1.25g (Fig.3 c) shows an interesting effect -the resonance curve of I-state approaches C-state and both curves overlap for a s = 1.5g (Fig.3 d) and then snap-through effect occurs. This phenomenon leads to global oscillations between both states with large amplitude and irregular features.

Figure 1 :

 1 Figure 1: (a) A schematic truss metamaterial consisting of 'bendy straw'-inspired elements and rigid members (b) A single 'Bendy straw' composed of a serial interconnection of two rigid tubes and multistable cells, each composed of a rigid conical frustum and an elastic conical frustum (c) The two degrees of freedom used to describe each elastic frustum (d) Typical potential energy of an elastic frustum as function of its two degrees of freedom, including the stable (blue dots) and unstable (red dots) configurations [4] (e) A fully folded configuration of a straw-based truss metamaterial, consisting of 18 straws and a single rigid member (f) A deformed configuration of the same structure after applying dictated vertical displacements to the top middle node. The colorful trails show the trajectories which the different nodes follow throughout the deformation of the structure, starting from the fully folded configuration.

Figure 1 :

 1 Elements of a radial ball bearing system and a two-stage rotor: a) schematic representation of a radial ball bearing with eight balls; b) representation of one of the pairs of balls on one diameter of the concentric circular contours in the radial bearing, with indicated arcs of contact of one of the balls, in rolling, with them; and c) a sketch of the model of the two-stage rotor with discs, the model of its reduction to a single shaft and the scheme of the discs with imbalances and indicated angular velocities

Figure 2 .

 2 Figure 2. (a) Transmissibility of the system without an inerter and the QZS system, (b) image of test rig

Figure 1 :

 1 Figure 1: (a) solution 𝛗 𝒕 (𝐲 ! ) and energy flow curve 𝐸 𝒕 (𝐲 ! ) with tangent vectors at point 𝐲, 𝐲̇= 𝐟 and 𝐸 ̇; (b) flow 𝛗 " (𝑈) and energy flow 𝐸 " (𝑈) on subset 𝑈 ⊆ 𝑅 # [5].

  -graining for bridging spatio-temporal scales of soft matter dynamics for engineering science Itsuo Hanasaki * * Tokyo University of Agriculture and Technology, Japan

Figure 1 :

 1 Figure 1: Illustration of model (1) and its dynamics triggered by the initially imposed propagating sine-wave of the amplitude A = 0.5: a) mass-spring chain model of 3D soft-wall billiards with inclusions; billiard shapes represented by the potential level surface: b) dispersing boundaries ( ), and c) stadium type boundaries ( ); d) cancellation of the propagating wave for the parameters: , ; e) and f) the mean energy per one cell: 1-total energy of containers, 2-total energy of inclusions, and 3-kinetic energy of inclusions; cases (e) and (f) relate to the shapes (b) and (c), respectively.

Figure 1 :

 1 Figure 1: Vertical (red), horizontal (blue) displacement, and velocity measurements during the impact of a spatially variant bitruncated octahedron lattice. Images a) and c) show two distinctive moments during impact, point (A) is the turn-around point of the impactor and (B) is the moment where the impactor leaves the lattice again. b,d) Vertical and horizontal displacements and velocities of the indenter over time

Figure 2 :

 2 Figure 2: Node tracking of an octahedron lattice under impact loading using our DIC based tracking tool

Figure 1 :Figure 2 :Figure 3 :

 123 Figure 1: Process frequency response and corresponding slope estimation using a single sine test

  ) = 𝑥 (𝑡) 𝑥̇ (𝑡) = 𝑔 -𝑄𝑥 (𝑡) 2𝑀{𝑥 (𝑡) + 𝑋 } 𝑥̇ (𝑡) = 𝑥 (𝑡)[ 𝑄𝑥 (𝑡) -𝑅{𝑥 (𝑡) + 𝑋 ∞ } ] 𝑄{𝑥 (𝑡) + 𝑋 } + 𝐿 {𝑥 (𝑡) + 𝑋 } + 𝑥 (𝑡) + 𝑋 𝑄 + 𝐿 {𝑥 (𝑡) + 𝑋 } 𝑢(𝑡) ,

  Furthermore, 𝑨 𝒇 , 𝑩 𝒇 , and 𝑪 𝒇 are the matrices shown as

Figure 1 :

 1 Figure 1: Fractional-order (FO) servo LQR control result (output).

Figure 1 :

 1 Figure 1: The nonlinear mechanistic model with 3 levels.

10 -6 10 -Figure 2 :

 102 Figure 2: The simplified frequency energy plot of the mechanistic model for the modified system.

Figure 3 :

 3 Figure 3: Full/simplified frequency energy plots of (a) the baseline system and (b) the modified system.

  Figure 1 depicts the configurations of a single (Fig.1 left) and double (Fig.1 right) arrays. We derive the equations of motion and examine the complexity of coexisting synchronous and asynchronous self-excited oscillations in the coupled arrays.

Figure 1 :

 1 Figure 1: Sketch of the elastically coupled single (left) and double (right) inertia wheel pendulum arrays.

Figure 2 :

 2 Figure 2: Bifurcation diagrams of the elastically coupled single (left) and double (right) arrays.

Figure 3 :

 3 Figure 3: Chimera states of the elastically coupled single pendulum arrays.

Figure 4

 4 Figure 4 depicts a transition from a synchronized state of periodic limit-cycle solutions (Fig.4 left) to a chimera state of chaotic rotations (Fig.4 center) culminating with a decoherent state of chaotic oscillations (Fig.4 right) of the double pendulum arrays.

Figure 4 :

 4 Figure 4: Synchronized (left), chimera (center) and decoherent (right) states of the double pendulum arrays.The combined analytical and numerical methodologies employed enable construction of a comprehensive bifurcation structure that sheds light on emergence of chimera states that appear at the transition from synchronized oscillations to decoherent rotations in elastically coupled single and double inertia wheel pendulum arrays.

Figure 2 :

 2 Figure 2: Frequency response curves in the modal and physical coordinates: (a) Amplitude B1 of the first mode; (b) Amplitude B2 of the second mode; (c) Amplitude A1 of pendulum 1; (d) Amplitude A2 of pendulum 2; (e) Phase angle β1 of the first mode; and (f) Phase angle β2 of the second mode.

Figure 2 :

 2 Figure 2: Model of integrated vibration-isolation, energy-harvester system based on (a) a Stewart-platform [2], (b) a bistable piezo-composite plate [3], and (c) a mechatronic metamaterial [4].

Figure 1 :

 1 Figure 1: Lamination of prepared CF preform (one side half).

Figure 2 :

 2 Figure 2: Experimental equipment for ERM.

Figure 4 :

 4 Figure 4: Fiber shape maximizing the frequency of free boundary cylindrical shells.

Figure 1 :

 1 Figure 1: Workpiece model fixed to active Figure 2: Relationship between excitation displacement workpiece holder.and instantaneous angular immersion.

Figure 4 :

 4 Relation between excitationFigure 3: workpiece vibration displacement with and without excitation amplitude and reduction rate

Figure 1 :

 1 Figure 1: Overview of tire requirement analysis using IMF.

  𝐾 𝑦𝛼 = 𝐷 𝑦 𝐶 𝑦 𝐵 𝑦 = 𝑝 𝐾𝑦1 ⋅ 𝐹 𝑧0 ⋅ 𝑠𝑖𝑛 [The parameters p*** are the inputs of the MF model and are usually identified with tire tests. Fz0 is the nominal load of the tire. The load-normalized cornering stiffness Cyα can be expressed as follows.𝐶 𝑦𝛼 = 𝑝 𝐾𝑦1 ⋅

Figure 2

 2 Figure2shows the tire model generation results by using the IMF. The black lines indicate the calculation results of MF. The red dash lines indicate the specified tire performance. Around the origin (Figure2 (a)) and nominal load (4000 N, Figure2 (b)), the generated MF model behaves as expected. It was confirmed that other tire performances (SAT, camber, relaxation length and etc) can be generated as well.

Figure 4 :

 4 Figure 4: Contour map on tire performance Figure 3: Tire model generation results using IMF

  system identification based on response probability density function of 1-DOF system which is subjected to white noise excitation Soichiro Takata * and Kaito Araki **

Figure 1 :Figure 2 :

 12 Figure 1: Surface roughness (384rpm) Figure 2: Surface roughness (1.0mm/s)

(a) without vibration (b) with vibration Figure 3 :

 3 Location of the drill tip in composite material without elastic deformation

Figure 1 :

 1 Figure 1: The model of beam-slider structure.Figure 2: Experimental setup.

Figure 2 :

 2 Figure 1: The model of beam-slider structure.Figure 2: Experimental setup.

  (a) Excitation amplitude 0.20mm (b) Excitation amplitude 0.57mm Figure 3: Experimental results of beam displacement and slider motion at 13 Hz (a) Excitation amplitude 0.20mm (b) Excitation amplitude 0.57mm Figure 4: Experimental results of beam displacement and slider motion at 38 Hz

Figure 1 :

 1 Figure 1: Conceptual diagram of single-arm pantograph.Figure2: The name of divided section.

Figure 2 :

 2 Figure 1: Conceptual diagram of single-arm pantograph.Figure2: The name of divided section.

Figure 3 :

 3 Figure 3: A pantograph model that consider the coupling of two planes.

Figure 4 :

 4 Figure 4: Arrangement of sensors in excitation test.

Fig. 2 Fig. 3

 23 Fig. 1 Increasing the heated volume by microbubbles [1].
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Asymptotic Approximation of the Maximal Lyapunov Exponent of Moore- Greitzer PDE model with small Multiplicative Noise close to Stall Bifurcation

  

	Yiming Meng, N. Sri Namachchivaya, Nicolas Perkowski
	Detect and evaluate undesired nonlinearities in engineering structural dy-
	namics
	Mayuko Nishio, Sifan Wang
	Intermodal Targeted Energy Transfer
	Oleg Gendelman, Majdi Gzal, Alexander Vakakis
	Wave propagation in metamaterial honeycombs with embedded nonlinear
	membrane resonators
	Yichang Shen, Walter Lacarbonara
	Non-linear characteristics of a two-DOF shaft-system coupled by a universal
	joint with clearance
	Junaid Ali, Anil K. Bajaj, Gregory Shaver

Table 1 :

 1 Numerical Simulation Parameters Parameter Value Input shaft inertia J 1 (kg.m 2 ) 0.001 Output shaft inertia J 2 (kg.m 2 ) 0.001 Input shaft stiffness k 1 (N m/rad) 10 Output shaft stiffness k 2 (N m/rad)

		10
		Damping ratio (ζ) 0.01
	η(t) =	cos(β) 1 -sin(β) 2 • sin(x 2 ) 2

Finite Element Analysis of the Impact Between a Tennis Racket and a Tennis Ball Toki Shimada

  

											Nonlinear
		10								
		6 8		T a M.D.T(Total ) MDT (Gyro moment) MDT (Fluctuation) MDT (Centrifugal force) MDT (Coriolis force) Grav. xdd shC eta N err Sum of CTRBs Measured speed	Hammer lower point			Hammer lower point		T M.D.T(Total ) a MDT (Gyro moment) MDT (Fluctuation) MDT (Centrifugal force) MDT (Coriolis force) Grav. xdd shC eta N err Measured speed Sum of CTRBs	T Ta(shC) flex/ext a Ta(shC) fw/bw rot Ta(shC) int/ext rot Grav. xdd shC eta N err Initial state term Sum of CTRBs Measured speed	T Ta(shC) flex/ext a Ta(shC) fw/bw rot Ta(shC) int/ext rot Grav. xdd shC eta N err Initial state term Sum of CTRBs Measured speed	Hammer lower point
	head speed [m/s]	4									Hammer lower point
	Contributions to	2								
		0								
		-2								
		0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8
						Time [s]			

* , Yudai Washida ** and Akihiro Matsuda ***

  𝑤 0 and 𝑤 𝑝 = 1 -𝑤 0 are weight factors for isotropic tissue and muscle fibers. The second Piola-Kirchhoff stress tensor 𝑺 is obtained by partial differentiation of this strain energy density function 𝑊 by the right Cauchy-Green deformation tensor 𝑪.

	𝐼 ̃(𝑭 𝑒 ) = 𝐼 ̃𝑖𝑠𝑜 (𝑭 𝑒 ) + 𝑤 𝑝 tr(𝑪 𝑒 𝑴) 𝐾 ̃(𝑭 𝑒 ) = 𝐾 ̃𝑖𝑠𝑜 (𝑭 𝑒 ) + 𝑤 𝑝 tr(𝑪 𝑒 -1 𝑴)	(9) (10)
	Here, 𝑺 = 2	𝜕𝑊 𝜕𝑪	= 2 (	𝜕𝑊 𝑖𝑠𝑜 (𝑭) 𝜕𝑪	+	𝜕𝑊 𝑎𝑛𝑖 (𝑭 𝑒 ) 𝜕𝑪 )
		𝐾 ̃𝑖𝑠𝑜 (𝑭) = 𝐼 ̃𝑖𝑠𝑜 (𝑭 𝑒 ) = 𝑤 0 3 𝑤 0 tr(𝑪 -1 ) tr(𝑪 𝑒 ) 3 𝐾 ̃𝑖𝑠𝑜 (𝑭 𝑒 ) = 𝑤 0 3 tr(𝑪 𝑒 -1 )	(6) (7) (8)

Table 1 :

 1 Obtained set of parameters in order to fit the sagittal angular stiffness of commercial prosthesis and the corresponding MSE between the expected and calculated mechanical outputs , Hideki Kadone * * , Modar Hassan * * * , and Kenji Suzuki * * * 

	Prosthesis	Parameter Alpha [-40°,40°] Beta [-40°,40°] L1 [30,70] L2 [80,100]	K	MSE
	Walk Tech	-39.7°-23.0°70.0 mm	80.0 mm	150.0 N/mm 23.2
	Vari-Flex	-40.0°-29.2°70.0 mm	80.0 mm	150.0 N/mm	4.5
	Rush HiPro	-39.7°-40.0°62.3 mm	80.0 mm	150.0 N/mm	0.7
	All-Pro	39.2°-40.0°59.2 mm	100.0 mm 150.0 N/mm	0.7

* 

  Synchronization of nonlinear systems[START_REF] Pikovsky | Synchronization: A Universal Concept in Nonlinear Sciences[END_REF];[START_REF] Strogatz | Sync: How Order Emerges From Chaos In the Universe[END_REF]), including chaotic systems, is even now a hot topic in interdisciplinary fields such as applied physics, applied mathematics, social sciences, and control engineering. In control engineering, synchronization in networks of nonlinear systems is closely related to cooperative control of multiagent systems, such as the consensus and formation control problems of UAVs (Olfati-Saber et al. (2007)). In many realworld applications, however, due to the communication constraints of systems and connection failure between systems, network structures may be changed occasionally. Therefore, the synchronization problem in time-varying networks is an essential issue from a practical viewpoint, and there are many existing results (e.g. Yang et al.(2016); Qin et al. (2020)).

Table 1 :

 1 Coefficients of piecewise-linear equation discovered by the proposed method

		𝑐 𝑚 ⁄	𝑘 1 𝑚 ⁄	𝑘 2 𝑚 ⁄	𝐿 𝑒𝑞
	𝑥̈𝑝	2.0	20.0	20.002	1.502
	𝑥̈𝑛	2.0	19.998	20.006	1.507

Figure 2: The trajectory of each equation derived with plain and noisy data.

Table 1 :

 1 . Computation time of the contour integral (sec)

	threads/procs	1	2	3	4	5	6
	1	63.493248 34.683393 28.590250 22.583462 20.102951 18.277447
	2	55.641075 27.072135 19.683484 16.357850 13.513426 11.501335
	3	50.573028 24.612850 17.462121 16.186934 17.657767	
	4	47.927855 22.292936 16.858366 28.583784		
	5	46.160153 22.364563 40.866044			
	6	47.769949 20.790750				
		Table 2: implementation environment		
		CPU	Intel Xeon Gold 6128 3.40GHz		
		Memory			376GB		
		OS		Ubuntu 16.04.7 LTS		
		core			6		

  ), the corresponding residuals R (1a) .t /, R (1b) .t / and R (3) .t / are built and the goal is to find the 3n unknowns x 1k , x 2k , and r k satisfying the 3n equations

	Z T	k .t /R (1a) .t / dt D	Z T	k .t /R (1b) .t / dt D	Z T
	0		0		0

k .t/R (3) .t / dt D 0; 8k D 1; : : : ; n:

Table 1 :

 1 Simulation parameters

	Variable	Name	Numerical value	Unit
	𝑚	Mass	1	[kg]
	𝑑	Viscous damping coefficient	0.04	[Ns/m]
	𝑘	Spring constant	1	[N/m]
	𝑎	Constant ratio	0.9	-
	𝑛	Number of stages	2	-

Table 1 :

 1 Results of first natural frequenciesBifurcation phenomena and hyperbolic Lagrangian coherent structures in Rayleigh-Bénard convection Yuta Haga, Yudai Mohri, Yuta Nakahara, Yutaro Ohtsuka, Masahito Watanabe, Hiroaki Yoshimura

				Single					Double-stacked	
			Resin jig	Reinforced jig		Resin jig	Reinforced jig
		Jig		Jig	Jig		Jig	Jig		Jig	Jig		Jig
			with test object		with test object		with test object		with test object
		freq.	freq.	decrease	freq.	freq.	decrease	freq.	freq.	decrease	freq.	freq.	decrease
		[Hz]	[Hz]	[%]	[Hz]	[Hz]	[%]	[Hz]	[Hz]	[%]	[Hz]	[Hz]	[%]
	Analysis	490 115	77	529 365	31	160	115	28	166 165	0.60
	Experiment 478 112	77	352 242	31	176	108	39	146 145	0.60
	Error [%]	2.5	2.6		33	34		-10	6.1		12	12

Resin jig

Resin jig with test object Reinforced jig Reinforced jig with test object Figure

3

: Analytical results of first vibration modes (single)

Table 1 :

 1 Parameters of FSK modulation used in experimentBit period FSK carrier freq. Freq. deviation AM carrier freq. Data rate

	T (ms)	f c (kHz)	∆f (kHz)	f s (kHz)	(bps)
	1.25	1.8	0.4	40	800

Table 1 :

 1 Parameters used for simulation

	Name	Numerical value	Unit
	Mass of link 1	2.0	[kg]
	Mass of link 2	1.0	[kg]
	Position of center of gravity of link 1	0.5	[m]
	Position of center of gravity of link 2	0.5	[m]
	Overall lengths of links 1 and 2	1.0	[m]
	Viscous friction coefficient of joint 1	2.2	[Nms]
	Viscous friction coefficient of joint 2	0.1	[Nms]

  ) 

	t = y	h x	t	+	t w ,	(2)
	where : n R f measurement noise. Assume that the sampled-data of ( ) n R ∈ x is the system state and m R ∈ y ( m n ≤ ) is a measurable system output. The functions n R → and : n m R R → h are nonlinear. Vectors ( ) n t R ∈ v is a system noise and ( ) m t R ∈ w is a t v and ( )

t w

  ) 2. Calculation for error covariance:

  can be simplified into a nonlinear polynomial (without the linear term):𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔 + 𝛾𝛾𝑘𝑘 𝐻𝐻 𝑦𝑦 𝐼𝐼 3 + 𝑂𝑂[𝑦𝑦 𝐼𝐼 ] 𝑛𝑛(1a) 𝛾𝛾 = �𝐶𝐶 30 𝑚𝑚 𝑝𝑝 𝑔𝑔 + 𝐶𝐶 31 𝑚𝑚 2 𝑔𝑔 + 𝐶𝐶 32 𝑘𝑘 𝐿𝐿 + 𝐶𝐶 33 𝑘𝑘 𝑊𝑊 + 𝐶𝐶 34 𝑘𝑘 𝐿𝐿 𝛿𝛿 𝐿𝐿 + 𝐶𝐶 35 𝑘𝑘 𝑊𝑊 𝛿𝛿 𝑊𝑊 � 𝑘𝑘 𝐻𝐻 ⁄ (1b) where 𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔 represents the static load of the QZS system, and (𝛾𝛾𝑘𝑘 𝐻𝐻 𝑦𝑦 𝐼𝐼

3 

+ 𝑂𝑂[𝑦𝑦 𝐼𝐼 ] 𝑛𝑛

Vibration Design of Composites with Nonlinear Fiber Shapes Fabricated by Tailored Fiber Placement Machine and Electrodeposition Resin Molding Method Shinya Honda

  Isamu Saiwaki * , Kazuaki Katagiri * , Katsuhiko Sasaki * and Ryo Takeda * * Osaka Research Institute of Industrial Science and Technology, Japan

* , * Hokkaido University, Japan *

  Where τ(t) represents the time delay variation. Assuming that the time delay variation τ(t) is varied minutely on the basis of the tooth passing period τ 0 , τ(t) is approximated by the following equation:

							j	( ) t	 		( ) t			j		1	(	t			( )) t	 		(	t			( )) t	.	(4)
	( ) t	0	4 ( ) A t d	cos	e 0 2	sin	e	t		0 2					0a	sin	e	t		0 2	,	a	4 ( ) A t d	cos	e 0 2

  t is the uncut chip thickness expressed as follows.

	( ) h t		( f x t	( )) t	 ( ) sin ( ) j x t t		( y t	( )) t	 ( ) cos ( ) j y t t

Formula Capable of Tire Performance Requirement Analysis at Early Stage of Vehicle Development Takao Kobayashi *

  

* Bridgestone Corporation, Japan

  as follows:

	𝐿 = ∏ 𝑁 𝛼=1	𝐿 = ∏ 𝑁 𝛼=1 √𝜋(𝐷/𝑐)𝐾 1/4 ( 𝑘 2 /8𝜇(𝐷/𝑐)) 2𝜋(𝐷/𝑐) √𝑘 1 √ 𝜇 𝑘 exp [ exp [ 2(𝐷/𝑐) -𝑘𝑦 1𝛼 2 ] exp [ 2(𝐷/𝑐) 2 -𝑦 2𝛼 ] -𝑘 2 8𝜇(𝐷/𝑐) ] exp [ -1 2(𝐷/𝑐) {𝑘𝑦 1𝛼 , 2 +	𝜇𝑦 1𝛼 4 2	}] exp [ 2(𝐷/𝑐) 2 -𝑦 2𝛼 ]	.	(2)

  Evaluation method for the effectiveness of ultrasonic vibration assisted drilling

							Shigeru Aoki *									
	2	(	-𝑋 est (	1 𝑁 1 𝑁	∑ 𝑁 𝛼=1 ∑ 𝑁 𝛼=1	𝑦 1𝛼 2 𝑦 1𝛼 4	) + √ 𝑋 est 2 (	1 𝑁 1 𝑁	∑ 𝑁 𝛼=1 ∑ 𝑁 𝛼=1	𝑦 1𝛼 2 𝑦 1𝛼 4	)	2	+	4𝑦 est 𝑋 𝑒𝑠𝑡 1 𝑁 ∑ 𝑦 1𝛼 4 𝑁 𝛼=1	)	,	𝜇 est =	2 𝑘 est 𝑋 est	(5)

*

Tokyo Metropolitan College of Industrial Technology, Japan

  are reduced into the single equation, i.e., the KZK equation for bubbly liquids (see detailed derivation process[2]):

	𝜕 𝜕𝜏	(	𝜕𝑇 G1 𝜕𝑥	+ 𝛱 1 𝑇 G1	𝜕𝑇 G1 𝜕𝜏	+ 𝛱 21	𝜕 2 𝑇 G1 𝜕𝜏 2 + 𝛱 22 𝑇 G1 + 𝛱 3	𝜕 3 𝑇 G1 𝜕𝜏 3 ) =	𝛤 2 2𝑅	𝜕 𝜕𝑅	(𝑅	𝜕𝑇 G1 𝜕𝑅	) .

C 2 ), where ω is the angular frequency of the input and C is the fixed value capacitor. Thus, the phase difference between the input and output can be adjusted by the value of the R 0 . We preload the microcantilever's tip with 601 µN and produce self-excited vibration under different values of the R 0 . As shown in Fig.2(a) the microcantilever is attached to a base, and the

red rectangles denote the points measured during the cutting process. The first point from the right is set on the tip of the microcantilever, and close to the position of the diamond abrasive grain in the x -y plane.
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Conclusions

In this work, we discuss the influence of onsite nonlinearity on the topological corner states of the Kagome lattice. We noticed that the corner states are delocalized and coupled with edge states as nonlinearity is present in the system. Moreover, such solutions are found to be linearly unstable for all ranges of frequency. Next, we plan to investigate the nature of these instabilities in detail and verify it through long-time transient simulations, as studied in one-dimensional topological lattices [3].

Summary

We clarified that the crack propagation of the bilayer shells depends on the natural Gaussian curvature of shells. Based on the simulation of pressurized elastic shells, we indicated that the strain profile is sensitive to the Gaussian curvatures. We note that our characterization of crack patterns is still qualitative. To further quantify the curved geometry of crack patterns, we have performed µCT scans against the fractured shells (data not shown). By increasing the number of samples and performing the experiments with different Gaussian curvatures, we expect to validate the scenario that the nonlinear geometry of structures can control crack propagation.
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Concluding remarks

We showed that we can reconstruct the phase and amplitude functions of stochastic limit-cycle oscillators, defined by their Koopman eigenfunctions, in a data-driven manner from time-series data by using EDMD. We may use these functions for data-driven prediction and control of stochastic oscillatory systems. Further progress in this direction will be reported in the future.
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Sapienza University of Rome, Italy

Abstract. A general methodology for reduced-order modelling of geometrically nonlinear structures is discussed. This approach is built upon equivalent elimination of low-order nonlinear terms by employing a concept termed 'passive pattern', which could be regarded as nonlinear 'energy-containing' dynamic features, besides active structural mode. Further, unified perspectives on nonlinear model reduction will be detailed by framing distinct reduction approaches within a theoretical correspondence, including nonlinear normal modes, normal form, spectral sub-manifolds, perturbation method, and the current low-order elimination technique.

Design of MEMS resonators for phase noise reduction using internal resonance Abstract. This research deals with the analytical results on the effects of initial in-plane displacement with a shallow shellpanel including a clamped edge. The equations of motion are derived introducing an in-plane stress function which satisfies the compatibility condition. The deflection is assumed by single-mode approximation using a coordinate function with the product of power series and trigonometric function to satisfy the boundary condition of clamped edge. The unknown constants of the stress function are determined approximately satisfying the in-plane boundary condition. Applying the Galerkin method, the equation of motion is reduced to a nonlinear ordinary differential equation. Nonlinear periodic responses are calculated with the harmonic balance method. It was found that if the curvature is sufficiently small, the linear stiffness decreases when the initial compressive in-plane displacement is applied. On the other hand, when the curvature is sufficiently large, the compressive in-plane displacement causes static deformation to increase the curvature, which results in the increase in linear stiffness.

Active wave control of a mass-spring-damper system using filtered PI-controller Abstract. Digital acoustic communication using parametric speaker is attracting considerable attention to provide highly accurate location information using a single ultrasonic beacon. However, since harmonic distortion exists in the demodulated signal, it is necessary to clarify appropriate types of information signals. In this study, modulation and demodulation schemes suitable for acoustic communication using parametric speakers were studied. As results, the use of passband modulation using frequency shift keying was found to be suitable for acoustic channels with nonlinear signal distortion in both theory and experiments.

Introduction

Digital acoustic communication is attracting considerable attention to provide highly accurate positioning in indoor locations where GPS is not available. The use of parametric speakers is being studied as a means of providing highly accurate location information using a single ultrasonic beacon. Parametric loudspeakers can transmit signals only to a specific direction by utilizing the phenomenon that when ultrasonic waves are amplitude-modulated with an information signal and radiated at high sound pressure, the original signal is self-demodulated due to the nonlinear characteristics of air. On the other hand, since harmonic distortion exists in the demodulated signal, it is necessary to clarify appropriate types of information signals [1,2]. Therefore, this work studies digital modulation and demodulation schemes suitable for acoustic communication using parametric loudspeakers.

2 Principle of digital acoustic communication using parametric loudspeakers Figure 1 shows a block diagram of communication using parametric loudspeakers. The transmitter calculates signal b(t) by modulating binary data, performs amplitude modulation (AM) whose carrier frequency is f r , and emits the modulated signal [1 + mb(t)] sin 2πf r t to the air using the parametric loudspeaker, where m and f r are the modulation index (0 < m ≤ 1) and carrier frequency of AM, respectively. The emit signal is distorted during propagation due to the effect of air nonlinearity, and is received by the receiver as

where P 1 , A, β, ρ 0 , c 0 , z and α are the pressure amplitude at source, the source radius, the non-linearity coefficient of the medium, the density of the air, the small signal sound speed, the coordinate along the propagation direction of beams, and the dissipation factor corresponding to thermoviscous absorption, respectively. The receiver processes this received signal r(t) and obtains the data. Focusing on Eq. ( 1), it is desirable to convert the data to b(t) in the message modulation process so that the data remains after harmonic distortion.

Consideration of data modulation process

There exist several techniques for converting data into signals. The modulation techniques can be classified in two types -baseband modulation (encoding data directly as the amplitude, width or position of a pulse) or passband modulation (encode data as the amplitude, frequency or phase of a sinusoidal carrier). Focusing on Eq. ( 1), the amplitude of the received signal increases as the frequency of b(t) increases. Hence, to realize digital communication using parametric loudspeaker, the use of passband modulation is desirable to acquire r(t) with enough signal-to-noise ratio. Passband modulation technique includes amplitude shift keying (ASK), phase shift keying (PSK), and frequency shift keying (FSK). Let us consider to calculate b(t) by modulating binary data of length N , s n = {0, 1} (n = 0, 1, . . . , N -1).

In this case, the modulated signal b(t) by each method can be expressed as

Trajectory control of manipulator's end-effector using SDRE method Ryosuke Kita * , Natsuki Kawaguchi * and Masaharu Kuroda * * University of Hyogo, Japan

Abstract. When a nonlinear system such as a manipulator is controlled, linear control theory such as linear quadratic regulator (LQR) control is often applied after linear approximation of the model. However, the control of nonlinear systems using linear control theory is unsuitable for controlling devices such as manipulators, which are expected to function over widely diverse areas because their applicable operating range is constrained. The method for solving the Hamilton-Jacobi equation (HJE), a partial differential equation, can be one control method for nonlinear systems that do not use linear control theory. However, finding a solution analytically is extremely difficult. By contrast, a nonlinear control method based on the state-dependent Riccati equation (SDRE) exists, for which the HJE is solved approximately. By transforming a nonlinear system into a pseudo-linear system and using linear control theory, SDRE method can derive a control law. Using SDRE method, we propose control of the trajectory drawn by the end-effector of a two-link planar manipulator. Abstract.

Sample-Based

Monte Carlo Model Predictive Control (MCMPC) is a sample-based NMPC that can deal with hybrid systems consisting of both continuous and discontinuous events. In order to make MCMPC adaptive without spoiling this feature, we chose a particle filter as a kind of sample-based estimator of parameters in the system. As a first step, we considered the swing-up and stabilization of a pendulum on a cart as a highly nonlinear continuous system. We verified the proposed method by simulations and experiments. The non-adaptive MCMPC failed to swing-up and stabilize with the initial parameters having errors while the proposed method successfully achieved.

Introduction

Nonlinear Model Predictive Control (NMPC) is a kind of nonlinear feedback control method in which an input sequence is obtained by solving the finite-time nonlinear optimal control problem using a mathematical model that represents the behavior of the controlled object. The advantage of NMPC is that constraints can be handled explicitly. This is beneficial for most engineering applications, as the specifications are defined by inequality constraints, but in general, this is difficult to do analytically for nonlinear systems, which NMPC solves numerically. Monte Carlo Model Predictive Control (MCMPC) is a kind of NMPC that uses a sample-based optimization method; using randomly generated control input sequences, and a large number of predictive simulations are executed and evaluated as samples. The weighted mean of the samples gives the solution. This method does not require the gradient information of the evaluation function. Therefore, it can be easily applied to hybrid systems with a mixture of continuous and discrete events. Nakatani et al. [1] applied MCMPC to a pendulum on a cart considering the collision of the cart with walls; and showed that the impact by the collision could speed up the swing. Kato et al. [2] showed that incorporating collision phenomena into MCMPC's prediction model can reduce the vulnerability of quadcopters to collisions. NMPC, including but not limited to MCMPC, relies on the accuracy of the model to ensure the validity of the optimal solution. When an accurate model is not available in advance, or when the model changes, NMPC should be adaptive by performing on-line system identification while controlling the system. However, there has been no study to make MCMPC adaptive. In this paper, we choose a sample-based method, such as a particle filter, for the on-line system identification, so that it is also applicable to hybrid systems. The particle filter estimates the system parameters and updates the prediction model of the MCMPC and hence the adaptive MCMPC can be realized. As a first step toward adaptive MCMPC that are applicable to hybrid nonlinear systems, we consider swing-up and stabilization of a pendulum on a cart as a highly nonlinear continuous system. It is the problem of swinging the pendulum up from the pendant position to the inverted position and stabilizing it in the inverted state by shaking up the cart. Its high nonlinearity is due to the fact that the sign of the input changes depending on the state variable. To achieve this with a single controller, the controller has to be able to handle the high nonlinearity. We verify the effectiveness of the proposed method by simulations and experiments. Consider a nonlinear discrete-time system represented by the following state-space model:

Here the state vector of the system at time t is x t ∈ R n , the input is u t ∈ R m , the output is y t ∈ R l , the process noise is η t ∈ R n , the observation noise is ν t ∈ R l , and θ t ∈ R r is a parameter that specifies f (•), g(•). In this study, an adaptive MCMPC is realized by on-line system identification of the control target and sequential updating of the parameters of the MCMPC prediction model. Let Z t = [u ⊤ t , y ⊤ t ] ⊤ be the input and observed output values of the system, and let L(•) be the error function of the parameters based on the input/output of the system. Then the online system identification problem is to estimate the parameter θt at every time t as follows:

Let J(•) be the NMPC evaluation function and T be the prediction horizon. The adaptive NMPC problem is to solve for the optimal control input sequence {u * t , . . . , u * t+T } for the initial state x t and parameter θt at every time t, as follows:

2 Proposed method

We use a particle filter for system identification. With parameter θ t as random variables, the particle filter approximates the posterior distribution of θ t as follows:

where θ

t is its weight at time t, and δ(•) is the Dirac delta function. The estimated value is the weighted average of all particles as θt = i w

t . The weight of the i-th particle at time t is updated using the weights at time t -1 and the likelihood p Z t |θ (i) t at time t as in the following equations:

where τ is the evaluation interval and y

k is the predicted output at time k for the initial value y t-τ -1 and the parameter θ (i) t . The likelihood at time t is the evaluated value of the sum of the squared errors of the predicted output from time t -τ to the current time t. The accuracy of parameter estimation decreases when the state approaches to the equilibrium. We use dead-zone approach for this; the parameter estimation stops when the norm of the state vector is lower than a threshold. For MCMPC, we use the method of Nakatani et al [1]. Let u

be the input sequence of the j-th sample at time t, where k is the predicted time counted from time t. In MCMPC, the optimization problem in Equation ( 4) is solved by the Monte Carlo approximation as follows:

In this study, we consider the swing-up and stabilization of a pendulum on a cart, which is a fourth-order system with high nonlinearity. We verify the effectiveness of the proposed method by simulations and experiments. The adaptability of the proposed method is evaluated by comparing the responses of the non-adaptive MCMPC and the adaptive MCMPC with the initial parameters having errors.

Result and Discussion

Figure 1 shows the time sequence of the cart position and the pendulum angle in the experiment. In this case, the prediction horizon of NMPC, T , is 1 s, the evaluation interval of the particle filter, τ , is 1 s, and the natural frequency of the pendulum is about 1 Hz. The position of the car is restricted in [-0.3, 0.3] as the state constraint. The non-adaptive MCMPC failed to swing-up due to errors in the initial parameters, but the adaptive MCMPC succeeded in swing-up and stabilization. Therefore, we can conclude that the proposed method has sufficient adaptive performance for a continuous highly nonlinear system such as a pendulum on a cart. The effectiveness of the proposed method for hybrid systems will be verified in the future. Relation to the persistently excitation, which plays a crucial role in parameter convergence, should also be addressed for a wider variety of nonlinear systems. 

Discrete-time state observer for nonlinear continuous-time systems Triet Nguyen-Van

University of Tsukuba, Japan

Abstract. This paper presents a discrete-time observer for estimating the states of continuous-time nonlinear systems in the presence of noise. Unlike conventional discrete-time state observers, which are constructed using discretized models derived through the forward-difference method without accounting for their inherent inaccuracies, the proposed observer is based on an application of the extended Kalman filter (EKF) for a discrete-time model derived using a method called continualized discretization. This observer was tested on the Lorenz and van der Pol oscillators, which exhibit complex dynamics such as limit cycle and chaos. Simulation results indicate that the proposed observer outperforms the conventional method by providing more accurate state estimates and better retention of the system dynamics of the original continuous-time model. Abstract. In this study, we propose a transformation method for continuous-time systems by discrete-time state feedback control. The continuous-time system is discretized by using a method called continualized discretization. By equating the derived discrete-time models of the original system and the desired system, a discrete-time controller is derived for transforming the original system into a desired one. Since an exact solution to this problem is unavailable for the discrete-time domain, an approximated approach is proposed by using pseudo-inverse matrices. Although it is only an approximation method using pseudo-inverse matrices, we confirmed that it works effectively in the simulation. The proposed method is able to transform the given system almost exactly when the sampling period is sufficiently small.

Estimating the Curvature of a Two Dimensional Time-Invariant External Potential through Swarm Formation: Theory and Experiments Yanran Wang * , and Takashi Hikihara * * Kyoto University, Japan

Abstract. The conservation of energy is a crucial issue in Wireless Sensor Networks (WSNs). As data transmission consumes the most energy, the algorithms utilized in WSNs must be structured in a manner that reduces data transmission, especially to the data storage center known as Base Station (BS). Our approach offers a fresh perspective on enhancing energy efficiency in WSNs protocols by exploring the relationship between cluster formation of sensors and external enviromental potential. This approach eliminates the need for data transmission to BS, conserving energy for the WSN system as a result. We estimate the curvature of the potential manifold by studying the evolution of the cluster formation over time. We also propose a formation control algorithm for preserving the established formation topology in the presence of external potential. To validate the formation control algorithm on an elliptic paraboloid potential, experiments were conducted using real mobile robots equipped with a visual system.

Introduction

Wireless Sensor Networks (WSNs) have become the focus of much attention due to their potential for offering situational awareness across multiple facets in a variety of applications [2,3,6,7,9]. The WSN system relies on spatially dispersed sensor nodes to gather the desired environmental data within their sensing range, which is then transmitted to the control center known as the Base Station (BS). An ideal WSN should possess qualities of autonomy, robustness, scalability, and a prolonged network lifetime. However, WSNs are often deployed in challenging environments where energy resources are limited. Given the constraint on energy and the high energy cost of data transmission, the algorithms for WSNs must be designed in a way that reduces data transmission, with a focus on minimizing transmission to the base station. Clustering is frequently employed as a technique for designing energy-efficient algorithms in WSNs.

Examples of cluster formations can be observed in the natural world, such as with flocks of birds and schools of fish. These organisms exhibit collective motion behaviors, which are studied in the interdisciplinary field of Swarm Intelligence (SI).

The individual agents within the swarm are simple entities with limited sensing abilities and computational rules, and only interact with each other locally. Despite this, the swarm as a whole displays emergent global behaviors that are not evident to the individual agents. SI systems possesses desirable properties of being distributed, autonomous, scalable, and robust [1], all are crucial in developing algorithms for WSNs. While there is an abundance of clustering algorithms available [4,5,8], most of them concentrate on optimizing sensor protocols for factors such as scalability, resilience, data collection, workload distribution, and network stability. In these algorithms, transmitting data to the BS is often necessary.

In this research, we proposes a novel solution to the energy efficiency challenge in WSNs by integrating the concept of SI with WSNs. Instead of directly collecting information from individual sensors, the desired environmental information is obtained by analyzing the changes in sensor cluster formations (swarm formations). This minimizes the energy expenditure in data transmission between sensors and eliminates the need for BS.

Theory and experiments

In the research [10], we identify the environmental information as an external potential hypersurface M of (n-1)-dimensions (n=3). Mathematically, the set of solutions to a single equation defines M , a Riemannian manifold,

where F is a C ∞ function.

The swarm formation can be characterized as a directed path graph P n = (V, E) consists of a set of vertices V = {v 0 , v 1 , . . . , v n } and a set of edges E such that E ⊆ {v i , v i+1 }, where i = 0, 1, . . . , n -1. Each vertex symbolizes an individual agent in the swarm, while the edges represent the distance between any two neighbouring agents. Let q = (q 0 , ..., q n ) T be the configuration of all agent, where q i ∈ R denotes the position of agent v i for all v i ∈ V. The length of edges, dis(E), is defined to be the geodesic distance between two connected vertices over P n (q). Then the desired formation constraint for the swarm can be established as

In order to formulate a desired formation in any arbitrary external potential M , we must first determine the trajectory of the head agent, then build a representation of edges through a parallel vector field, K, that is metrically orthogonal to the trajectory of the head agent. Next, we need to compute the geodesic deviation vector field, S. The trajectory of the subsequent agents in the swarm are represented by the integral curves of the geodesic deviation vector field. Observed in the ambient Euclidean space, one can notice the change in swarm formation as it moves due to the curvature of the external potential manifold. This change in swarm formation is quantified as the change in the difference of neighbouring agents' velocities, the acceleration of the separation vectors s ∈ S along K. Geodesic deviation equation relates the acceleration of the separation vector between two neighbouring geodesic curves to Riemann curvature tensor. By our assumption of the swarm formation, we have

Nonlinear dynamics and energy harvesting from multi-stable shells , 𝑘 = -, 𝑎𝑛𝑑 𝑘 = , (7) where 𝐿 denotes the inductance at the equilibrium point. (

Fractional-order servo LQR control

Consequently, to provide trackability to target value 𝑟, the expanded state equation, which is a combination of the fractional-order state equation ( 5), Equations ( 9) and (10), can be composed as

where 𝒙 𝒘 is an expanded state in which the error state between the output and the target value 𝑟, and the 0.5order integral state of it are added to state 𝒙 𝒅,𝒇 (𝑡) in Equation (5). For this expanded state equation, the fractional-order LQR controller can be derived by finding the feedback gains which minimize the following evaluation function 𝐽 as

where 𝑸 𝒍𝒒𝒓 and 𝑅 are the weights for the states and the input. This evaluation function is minimized by numerical calculation because the minimum value cannot be obtained analytically. Next, fractional-order states must be estimated as performed for fractional-order state-feedback. To do so, a fractional-order state-observer is used. The state equation for the fractional-order state-observer is given as 𝐷 . 𝒙 𝒅,𝒇 (𝑡) = 𝑨 𝒇 𝒙 𝒅,𝒇 (𝑡) + 𝑩 𝒇 𝑢 (𝑡) + 𝑯 𝑦 (𝑡) -𝑪 𝒇 𝒙 𝒅,𝒇 (𝑡) , (13) where 𝒙 𝒅,𝒇 (𝑡) denotes the estimated states and where 𝑯 is the observer gain obtained using the poleassignment method. The input to minimize the evaluation function for this expanded system is written as 𝑢(𝑡) = 𝑢 -𝐹 , (𝑦 (𝜏) -𝑟)𝑑𝜏 -𝐹 , 𝐷 . (𝑦 (𝑡) -𝑟) -𝑭 𝒙 𝒙 𝒅,𝒇 (𝑡),

where 𝐹 , , 𝐹 , and 𝑭 𝒙 denote the optimal feedback gains. Figure 1 presents a control result obtained with this input. Figure 1 confirms that the fractional-order servo LQR control can realize not only stabilization of the equilibrium point but also target-value tracking while the magnetic levitation system is stabilized. Abstract. Modal analysis is employed to investigate the localization phenomena in an N-pendulum array subjected to a vertical, harmonic excitation. The equations of motion for the array are derived in both physical and modal coordinates. Parametric resonance may occur near the excitation frequency which is twice the natural frequency. The frequency response curves for the amplitudes and phases of two identical pendula are determined in modal and physical coordinates using van der Pol's method. The results show that the branches of the frequency response curves on which only the first mode appears encounter pitchfork bifurcation, after which the first and second modes appear simultaneously as the excitation frequency decreases. At this time, a localization phenomenon is observed in the physical coordinates, where the two pendula oscillate with different amplitudes. Furthermore, the phase difference determines which pendulum oscillates with a higher amplitude.

Introduction

Localization can occur in systems with multiple connected nonlinear units. The occurrence of localization was first reported in the field of solid-state physics [1]. The authors of this paper investigated the cause of localization of harmonic resonance in a nonlinear oscillator array using modal analysis [2] and discovered that localization may occur when multiple modes appear simultaneously. Additionally, the authors discovered that the localization of principal parametric resonance occurred in a pendulum array subjected to a vertical, harmonic excitation, as shown in Fig. 1 [3], but the mechanism of its occurrence was not clarified. Note that the other parametric resonances are possible to occur for large excitation amplitudes and/or small damping, but they rarely appear in real systems. The cause of localization in a pendulum array, similar to that presented in [3], is investigated in this study via modal analysis.

Theoretical analysis

A theoretical model of an N-pendulum array is shown in Fig. 1. The mass, length, and damping coefficient of pendulum "i" (i = 1, 2, …, N) are designated as mi, li, and ci, respectively. Each pendulum is connected by a linear torsion spring with spring constant Kj (j = 1, 2, …, N-1) at the supporting point. The array is subjected to a vertical, harmonic excitation a0cosωt. The nondimensional equation of motion for the angular displacement of pendulum i, θi, is obtained as follows: 1) is expressed in matrix form as follows:

) where

. The transformation equation from the physical coordinates to the modal coordinates is expressed as ( ) ( ) t t = θ Pq .

(3)

Here,

, and P is a modal matrix defined as

where

φ is an eigenvector of the rth mode. Substituting Eq. ( 3) into Eq. ( 2) and pre-multiplying the resulting equation by P T yields the modal equations of motion as follows:

1

where r µ and r k represent the modal mass and stiffness, respectively. Van der Pol's method is applied to Eq. ( 5) to obtain the frequency response curves. Nonlinear term r N in Eq. ( 5) is expanded to the Maclaurin series up to the fifth power term of qr. The approximate solutions of the resulting equations are as follows:

where the orders of the variables and system parameters are assumed to be 2 2 0

(1),

Here, ε denotes a small bookkeeping parameter. Substituting Eq. ( 6) into Eq. ( 5) under the assumptions of Eq. ( 7) and equating the coefficients of the terms of frequency (1/2)ω in the resulting equations to zero, one can obtain the expressions for determining the steady-state solutions of r u and r v in Eq. ( 6). The amplitude Br and phase angle βr of the rth mode in the modal coordinates as well as the amplitude Ai and phase angle αi of pendulum i in the physical coordinates can be calculated as follows:

Numerical results

Figure 2 shows the frequency response curves for N = 2. The values of the system parameters are µi = 1.0, li = 1.0, ci = 0.02, K1 = 0.03, and a0 = 0.013 (i = 1, 2). Figures 2(a) and 2(b) show the response curves for amplitudes Br (r = 1, 2) of the first and second modes in the modal coordinates, respectively. Figures 2(c) and 2(d) show the response curves for amplitudes Ai (i = 1, 2) of pendula 1 and 2 in the physical coordinates, respectively.

Figures 2(e) and 2(f) show the response curves for phase angles βi of the first and second modes, respectively.

The solid, dashed, and thin lines represent the stable and unstable steady-state solutions and backbone curves, respectively. Branches with the same name, for example ai and a r , represent solutions that occur simultaneously.

Because only the second mode appears on branches a r , the two pendula oscillate with identical amplitudes. This is also true on branches d r where only the first mode appears. However, pitchfork bifurcation occurs at points P r on branches d r , after which both the first and second modes appear simultaneously on branches b r and c r . This results in localization on branches bi and ci, where pendula 1 and 2 oscillate with different amplitudes. On branches b r and c r , two types of steady-state solutions exist, whose amplitudes are identical; however, their phase angles differ by π. This phase difference determines which pendulum oscillates with a higher amplitude. If there is an imperfection in the pendula, saddle-node bifurcation occurs instead of pitchfork bifurcation at points P1 and P2, and the response curves become more complicated than in Fig. 2.

Conclusion

Localization in a nonlinear pendulum array subjected to a vertical, harmonic excitation have been investigated via modal analysis. The results showed that pendulum localization can occur when multiple modes appear simultaneously.

Integrated nonlinear design of vibration isolation and energy harvesting

Ze-Qi Lu, Li-Qun Chen

Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, China

Abstract. Simultaneous use of a mechatronic structure both as a vibration isolator and an energy harvester provides a new viewpoint for some engineering problems such as the power self-provided vibration control of aerospace engineering. To achieve the integrated nonlinear design of vibration isolation and energy harvesting, this work developed a semi-analytical method for the boundary value problem of strongly nonlinear differential equations, obtained the nonlinear multimode output frequency response function, and characterized the energy transfer between the vibration modes through the nonlinear frequency response. A nonlinear electromechanical coupling model based on several integrated systems, such as orthogonal six-degrees-of-freedom platform, bistable laminated plate and mechatronic metamaterial, is established. The resonance conditions required by efficient integration of vibration isolation and energy harvesting has been clarified, and the effects of nonlinearity have been examined. The analytical, numerical, and experimental results for strongly nonlinear vibration revealed the interaction mechanisms of vibration control and energy transfer.

Introduction

The integration of vibration isolation and energy harvesting can not only reduce the harmful vibration transmitted to the host structure, but also provide power for low-power MEMS devices and wireless sensors, which has been widely concerned [1]. The conventional technique based on the principle of linear vibration is difficult to achieve optimal synchronization and has to make trade-off between two mechanisms. Therefore, the nonlinear control of vibration energy is a promising way to realize the power self-provided vibration control in the development of sophisticated equipment.

Figure 1: Energy transfer of integrated vibration-isolation, energy-harvesting system.

General theoretical considerations

The mechatronic structures are designed for the dual purpose of vibration isolation and energy harvesting. 

Substituting Eq. ( 2) into Eq. ( 1) gives 2N+2 nonlinear algebraic equations via the harmonic balance method:

( )

where

, , ... , ... , ... , ... ,

. Using arc-length continuation explores parameter effects of the integrated vibration isolation and energy harvesting characteristics. Assuming the successive solution f is an analytical function of , f=f() is continuous and differentiable. After providing solution f0=f(0), a neighboring solution f=f() is identified on the solution curve by constructing a Taylor series expansion about f0. So we take f=f(s) and =(s); then Eq. (4) becomes:

( ) ( )

The solution curve's derivative can be denoted as:

The frequency response functions for the displacement transmissibility and the output voltage are given by ( 

Numerical simulation

The time series for the numerical identification was generated using the fourth order Runge-Kutta method. The numerical conditions were as follows: 𝑘 = 1, 𝑐 = 0.05, 1.0, 𝜇 = 0~0.05, and 𝐷 = 0.05. The variance of white noise was 𝜎 𝑤 2 = 1 the average was 0, the initial values were 𝑦(0) = 0, 𝑦′(0) = 0, and the sampling period was Δ𝑡 = 0.1. Furthermore, 5000000 samples were used for identification. The identification results of the linear and nonlinear spring constants are represented in Fig. 1. Here, the horizontal axis shows the ratio between the nonlinear spring constant and linear spring constant in true values. The error rate of linear spring constant estimation in case of linear system model (blue) increased with increasing the 𝜇/𝑘, however, the error rate in case of nonlinear system model (red) decreased with increasing the 𝜇/𝑘 in Fig. 1(a). The results show the resolution of the nonlinearity detection in the nonlinear model and the application limit in the linear model. In particular, the estimation error rate was decreased in the case of more than 1% of 𝜇/𝑘. The error rate of the nonlinear spring constant in the case of the nonlinear system model (red) decreases with increasing the 𝜇/𝑘 in Fig. 1(b). The results show the resolution of the nonlinearity detection. The estimation error rate was decreased in the case of more than 1% of 𝜇/𝑘. The investigation implies that the relative contribution of nonlinear restoring force to the whole restoring force is small in the region of response displacement.

(a) Linear spring constant estimation (b) Nonlinear spring constant estimation Figure 1: Comparison of estimation accuracy (using error rate).

Conclusions

In this paper, we discuss an identification method based on MLE using the analytical solution of the Fokker-Planck equation. A comparison between the linear and nonlinear models was conducted. The formulations were easily reviewed, and the estimation error rate was considered. As a result, the estimation error rate of the linear spring constant and the nonlinear spring constant using the nonlinear model was decreased in the case of more than 1% of 𝜇/𝑘.

Frequency and amplitude dependence of self-tuning resonance

Tatsuki Tagashira * and Toshihiko Sugiura * * Keio University, Japan Abstract. This study experimentally investigated the dynamical behavior of a system consisting of a beam and a slider at different excitation frequencies and amplitudes. In this system, the slider moves passively along the beam under excitation, resulting in a change in the natural frequency of the system, which can produce its resonance. This phenomenon, called passive self-tuning resonance, is caused by the nonlinear coupling of the beam vibration and slider movement. Since the frequency range in which this resonance can occur is wide, it is expected to have applications in vibration-based energy harvesting. From the experiments in this study, it was observed that there is a threshold of excitation amplitude for the slider to move and for the system to resonate, that the resonant mode shape of the beam and the destination of the slider's movement differ depending on the excitation frequency, and that transitions in resonance modes can occur.

Study on Unstable Oscillation of Pantograph under Friction

Yuki Amano * , Shigeyuki Kobayashi * , Hiroki Mori ** and Nobuyuki Sowa **

Pantograph model based on FMBD and excitation test

In this paper, unstable oscillation of a single-arm pantograph for Shinkansen train at very low speeds is the subject of investigation. For simplicity, only the central excitation is considered (Y = 0 in Fig. 3). Based on the assumption of central excitation, we propose a pantograph model with two coupled in-plane motions as shown in Fig 3 . The motion in each plane is modelled based on FMBD. The connection between the pantograph head and the frame is coupled under the condition that the vertical displacements coincide. Further, the validity of this model is verified through excitation test shown in Fig. 4.

In this paper, the pin-disk model [7] is used to represent the 'one-sided' contact of the contact strip (Fig. 5). In Fig. 5,  is the coefficient of friction; c f , the contact force; a , the contact position; l , the vertical the dissipation effects are divided into two terms; the term with the coefficient 𝛱 21 and second order derivative owing to the liquid viscosity and compressibility, and the term with the coefficient 𝛱 22 and without differentiation owing to the thermal conductivity of gas inside bubbles. The latter is newly obtained term in this study by introducing the energy equation for gas inside the bubbles [3].

Numerical result

The resultant KZK equation ( 1) is numerically solved by the finite difference method developed by Lee & Hamilton [5]. In Fig. 3, the spatial distribution of temperature fluctuation obtained by numerical simulation of KZK equation ( 1) is shown. Near the focal point of 𝑥 * = 300 mm and 𝑟 * = 0 mm, the maximum temperature rise is obtained. In addition, the two types of dissipation terms; the term owing to the liquid viscosity and compressibility, the term owing to the thermal conductivity of gas inside bubble, are quantitatively compared. As a result, the dissipation effect owing to the thermal conductivity of gas inside bubble accounts for 30~50 % of the total dissipation effects. We shall point out the importance of this result from the viewpoint of practical medical applications such as tumour ablation therapy.

Summary

Weakly nonlinear propagation of focused ultrasound in bubbly liquids is investigated theoretically and numerically. From the theoretical analysis based on the multiple scaling method [4] for the 11 basic equations for bubbly liquids, the KZK equation ( 1) is newly derived [2]. The resultant KZK equation (1) includes the dissipation term owing to the thermal conductivity of gas inside bubbles. Next, the resultant KZK equation ( 1) is numerically solved and the spatial distribution of temperature fluctuation is obtained. As shown in Fig. 3, intensive temperature rise near the focal point is shown. In addition, the dissipation effects owing to the thermal conductivity of gas inside bubbles accounts for 30~50% of the total dissipation effects.
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We will introduce agricultural support robots and rescue robots developed by FUT in agricultural fields and disaster areas, where aging and labor shortages are remarkable. In addition, we will improve environmental problems by using various automobile-related technologies that utilize biofuels and AI.

In cooperation with the "Fukui PHOENIX Hyper Project" promoted by this university, we will actively develop an excavation robot for use on the lunar surface. Additionally, Fukui Prefecture's companies aim to revitalize the local community by commercializing and managing them.

Japan is facing a rapidly declining birthrate and aging population, disasters, and environmental problems. While Fukui Prefecture is said to have the highest level of happiness in Japan, the population outflow, especially among young people, is demanding solutions to the labor shortage, particularly in the agriculture, forestry and fisheries industries, as well as revitalization of the region. Fukui Prefecture is attractive for its high level of technological prowess in manufacturing, and we believe that the development of robots and automobiles based on that manufacturing will enable us to solve various problems.

Fukui University of Technology Future Robotics Center

What's s RF RF-F-ID D D D RFID (Radio Frequency Identification) allows information to be exchanged from tags with ID information by wireless communication at short distances (several centimeters to several meters depending on the frequency band) using electromagnetic fields or radio waves.

Antenna

Using the latest robotics to solve various regional and space social problems

Development of Lunar Underground Excavation Robot

with "Annular Spiral Crawler Mechanism" Since the interior of the Moon contains important information for space research, lunar excavation is required, and various research institutes are studying lunar excavation robots. For these lunar excavation robots, improving the excavation speed and ensuring the attitude stability of the airframe are issues. In order to solve this problem, we have devised an "annular spiral crawler mechanism," in which the crawler is wrapped around the cylindrical fuselage in a spiral shape. As a result of the evaluation, it was confirmed that the "annular spiral crawler mechanism" can improve the excavation speed and ensure the stability of the airframe by canceling the reaction force of the drill. In the times of ever-changing, the requirement for aluminum wheels has been extremely severe. Aluminum wheels should be welldesigned with high strength and durability with superb lightness. Kosei offers aluminum wheels with the high-degree of free design and various surface-finishing which is the advantage of die casting along the diversified customer needs. "Light and Strong" is what wheels are required. The development with CAE Strength Analysis and considering well-design has been needed to pursue the lightness and strength to higher dimension. We make it possible to cut extra aluminum on wheels keeping their balance and to light-design in the grams.

Contact Us

K KOSEI I ALUMINUM M CO.,LTD

Kosei constructs a strong production and sales network with six domestic strongholds in Japan, and strongholds in Thailand, China, U.S.A., and they enable to supply Japan, Europe, Asia and North America. Our controlling office in Hong Kong establishes the network system much stronger.

Gocator 3D Smart Sensors Industrial Camera HALCON -the powerful Machine Vision Software

PRODUCTS

LINX is a technology provider with proven track records working with various top manufacturing companies.

We have been partnering with ambitious tech companies with disrupting ideas around the world to create new waves of innovation in manufacturing industry.

Build bridges between tech genius and future business iRAYPLE, high cost performance and short delivery times thanks to overwhelming mass production scale merit, Teledyne Imaging includes DALSA and FLIR, which expands the possibilities of machine vision with advanced functions brought about by sensor development capabilities. Basler, wide variety of image CMOS sensors and digital interfaces. we responds to a wide range of customer needs with a camera lineup with different features.

LMI Technologies is headquartered in Vancouver, Canada. They offer world-class 3D scanning and inspection solutions.The high-performance, easyto-handle, and cost-effective 3D sensor Gocator series is active all over the world and contributes to improving the profitability of customers.

HALCON is a pioneering tool that allows you to build a high-performance image processing system by freely combining over 2,000 advanced operators, including advanced AI/Deep Learning functions. It comes with an excellent development environment that can greatly reduce development man-hours, and the created script-type programs can be automatically converted to C++, VB, and C# code, making it easy to incorporate them into applications.
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