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ABSTRACT

In a constant evolving world, change detection is of prime importance to keep updated maps. To
better sense areas with complex geometry (urban areas in particular), considering 3D data appears to
be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs) obtained
by LiDAR or photogrammetry are very interesting. While recent studies showed the considerable
benefit of using deep learning-based methods to detect and characterize changes into raw 3D PCs,
these studies rely on large annotated training data to obtain accurate results. The collection of these
annotations are tricky and time-consuming. The availability of unsupervised or weakly supervised
approaches is then of prime interest. In this paper, we propose an unsupervised method, called
DeepCluster 3D Change Detection (DC3DCD), to detect and categorize multiclass changes at point
level. We classify our approach in the unsupervised family given the fact that we extract in a
completely unsupervised way a number of clusters associated with potential changes. Let us precise
that in the end of the process, the user has only to assign a label to each of these clusters to derive the
final change map. Our method builds upon the DeepCluster approach, originally designed for image
classification, to handle complex raw 3D PCs and perform change segmentation task. An assessment
of the method on both simulated and real public dataset is provided. The proposed method allows
to outperform fully-supervised traditional machine learning algorithm and to be competitive with
fully-supervised deep learning networks applied on rasterization of 3D PCs with a mean of IoU over
classes of change of 57.06% and 66.69% for the simulated and the real datasets, respectively. The
code is available at https://github.com/IdeGelis/torch-points3d-DC3DCD.

Keywords 3D point clouds · Change detection · Unsupervised Deep learning · Deep clustering

1 Introduction

While urban environments are continuously and rapidly evolving, change detection between several temporal acquisi-
tions is a way to quickly highlight modified areas in order to update maps [Demir et al., 2012] or to identify damaged
objects [Dong and Shan, 2013] in case of natural disasters. With regard to the complexity of urban landscapes, sensing
the area using also vertical information appears to be judicious. Indeed, such three-dimensional (3D) information
allows to better characterize environment geometry and to avoid two-dimensional (2D) image problems such as the
difference of viewing angles between distinct acquisitions, spectral variability of objects over time, perspective, and
distortion effects [Qin et al., 2016]. 3D data are acquired thanks to Light Detection And Ranging (LiDAR) sensor
or photogrammetric process, both resulting in 3D Point Clouds (PCs). No matter the type of acquisition (LiDAR,
photogrammetry for example), multi-temporal 3D data are generalizing. Indeed, more and more national mapping
agencies opt for full territory Aerial Laser Scanning (ALS) campaign, as in the Netherlands with Actueel Hoogtebestand
Nederland (AHN) multi-temporal campaigns [Sande et al., 2010], or in France with the LiDAR high density (HD)
project whose objective is to propose a complete 3D high resolution coverage of France with regular updates in the
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future. In the same time satellites mission for 3D sensing are multiplying, e.g., Pléiades [Bernard et al., 2012], Pléiades
Néo [Jérôme, 2019], 3D Optical Constellation (CO3D) [Lebègue et al., 2020] missions. In civil engineering, Terrestrial
Laser Scanning (TLS) or unmanned aerial vehicle (UAV) photogrammetry are becoming unavoidable for an accurate
sense of complex objects. Thereby, this calls for methods able to analyze these multi-temporal 3D data.

Whether related to urban environment [Stilla and Xu, 2023] or geosciences [Okyay et al., 2019], many studies have been
focused on handling 3D data for accurate change extraction. Recently, some methods based on deep learning proved
their efficiency over traditional distance-based methods and machine learning. While the first deep learning methods for
3D change detection where based on 2.5D rasterization of PCs into Digital Surface Model (DSM) [Zhang et al., 2018a,
2019] or range image [Nagy et al., 2021], most recent works are dealing directly with the raw 3D data. Indeed, although
easing the computation, any rasterization process implies a significant loss of information for instance on building
facades but also due to aggregation of several points in a cell. Ku et al. [2021] propose to represent PCs by graphs and
apply graph convolution operator (EdgeConv) [Wang et al., 2019] to extract discriminative features. However, their
proposed method, called Siamese Graph Convolutional Network (SiamGCN), results only in change detection at the
scene level, i.e., solving a change classification task. On the opposite, de Gélis et al. [2023] proposed a network to solve
change segmentation task, i.e., providing multiclass change information at point level (so coarser results than change
classification). To handle raw 3D PCs, they rely on Kernel Point Convolution (KPConv) [Thomas et al., 2019]. Their
network, named Siamese KPConv enables to outperform other machine learning methods or DSM-based deep learning
methods. More recently, a study [de Gélis et al., 2023] suggests improving Siamese KPConv by making the network
focusing more on change-related features. To do so, the authors propose to provide an hand-crafted feature related to
change as input to Siamese KPConv along with 3D point coordinates. They also developed three other architectures
for this particular task. OneConvFusion and Triplet KPConv contain specific change-related encoder that takes as
input only feature difference. Encoder Fusion SiamKPConv (EFSKPConv) concatenates both change and mono-date
information directly in the encoder. This latter achieves the best results compared to previous state-of-the-art methods.

Although efficient, these deep learning-based methods are supervised, i.e., require large databases for the training of the
network. For change segmentation, millions of points should be annotated according to the change type. This annotation
is often performed manually because any automatization process is not obvious due to PCs characteristics such as the
lack of point-to-point correspondence, sparsity, or occlusions (see the example of AHN Change Detection (AHN-CD)
dataset [de Gélis et al., 2023]). Therefore, it is interesting to develop methods that require none or at least less
annotations to perform 3D change segmentation. As stated in recent surveys [Kharroubi et al., 2022, Xiao et al., 2023],
the literature still lacks of methods for unsupervised or weakly supervised learning when dealing with 3D PCs change
detection. Indeed, nowadays unsupervised methods are mostly traditional rule-based methods that are often very specific
to a dataset. Also, recently an adaptation of Deep Change Vector Analysis (DCVA) [Saha et al., 2019] to 3D PCs change
detection has been proposed based on self-supervised learning [de Gélis et al., 2023]. However, this unsupervised
method only deals with binary change segmentation, thus the method is not able to distinguish between multiple classes
of changes. Thereby, in this paper, we propose an unsupervised learning strategy to deal with multiclass 3D PCs
change segmentation. The strategy is based on deep clustering principle and in particular on DeepCluster [Caron et al.,
2018]. Deep clustering consists in jointly optimizing deep representation of the data and performing clustering with
learned features [Ren et al., 2022, Zhou et al., 2022]. This strategy has received increasing interest for 2D image
unsupervised representation learning in computer vision [Caron et al., 2018, Cho et al., 2021]. However, as far as the
change detection task is concerned, the use of deep clustering is less common. Zhang et al. [2018b] and Dong et al.
[2021] propose to rely on an unsupervised clustering of deep feature representations to further train their network to
perform change detection. In Zhang et al. [2018b] a stack of fully-connected layers is used to learn Gaussian-distributed
and discriminative difference representations for non-change and different types of changes. Dong et al. [2021] further
improve the latter by using a Convolutional Neural Network (CNN) relying on multi-scale self-attention. Another
study partially uses deep clustering principle for 2D binary change detection by introducing a deep clustering loss
jointly with contrastive and appealing losses to make a CNN network learn discriminative mono-date features. These
features are further compared using DCVA principle to extract binary changes in multi-modal optical and Synthetic
Aperture Radar (SAR) images [Saha et al., 2021]. This principle was adapted in de Gélis et al. [2023] for 3D PCs
binary change detection. Finally, to the best of our knowledge, Zhang et al. [2021] is the first and unique study using
the deep clustering principle on 3D data. However, the approach relies on a voxelisation of the PC instead of dealing
with the raw PC directly, and performs classification at the scene level and not at the point level (a.k.a. segmentation).

The contributions of this work are thus as follows:

1. To the best of our knowledge, we propose the first unsupervised learning strategy for multiclass change
segmentation into raw 3D PCs.

2. We build upon DeepCluster [Caron et al., 2018] to tackle the change segmentation task in 3D PCs. To do so,
we experiment our model with several 3D PCs change segmentation architectures.
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3. After analyzing the learning behavior, we evaluate our method on both real and simulated public datasets, and
provide comparisons with supervised methods and weakly-supervised methods.

The description of our method is given in Section 2. The results are provided in Section 3 and discussed in Section 4.
Finally, the conclusion is provided in Section 5. The implementation of our method is available at https://github.c
om/IdeGelis/torch-points3d-DC3DCD.

2 Unsupervised 3D change detection

Before describing our method for 3D PCs multiple change segmentation, an overview of DeepCluster [Caron et al.,
2018] is given, as it is an important component of our model.

2.1 DeepCluster principle

Among the variety of studies related to deep clustering [Ren et al., 2022, Zhou et al., 2022], DeepCluster appears to
be among the most fundamental ones. Proposed by Caron et al. [2018], this method resides in a rather simple idea
of alternatively clustering deep latent representation of data to obtain pseudo-labels further used to train a CNN. In
particular, the convolutional network is trained in a supervised manner using pseudo-labels as objective for prediction.
In a traditional supervised approach, giving a set of N images xn (n ∈ [1, N ]), a parametrized classifier gW predicts
the correct labels (yn) using the features extracted by fθ(xn) (W and θ being the parameters from the classifier and the
back-bone convolutional model, respectively). They are optimized according to the following problem:

min
θ,W

1

N

N∑
n=1

`(gW (fθ(xn)), yn) (1)

where ` is the loss function, a classical negative log-likelihood (NLL) in their method. This cost function is minimized
using standard mini-batch stochastic gradient descent and backpropagation to compute the gradient. The difficulty in an
unsupervised setting is therefore to define yn.

In DeepCluster, Caron et al. [2018] proposed to rely on a classical clustering algorithm such as k-means [MacQueen,
1967] or power iteration clustering (PIC) [Lin and Cohen, 2010] to obtain a pseudo-label (yPLn

) that is used instead
of yn. Caron et al. [2018] showed that the choice of the clustering algorithm is not crucial. Thereby, for illustration
purposes, we continue with the example of k-means algorithm. This clustering method matches data to k groups
(pseudo-clusters) by minimizing distance between each data and its corresponding cluster center, called centroid (and
contained in the centroid matrix C in practice).

Finally, the unsupervised training process alternates between i) clustering the output features of the back-bone convolu-
tional model (fθ(xn)) (clustering step), and ii) updating parameters θ and W using the obtained pseudo-labels (yPLn

)
thanks to Equation 1 (training step). This relies on the fact that a Multi-Layer Perceptron (MLP) classifier on top of a
standard CNN with randomly initialized weights (θ) provides results far above from the chance (i.e., random) level
[Noroozi and Favaro, 2016].

In practice, a few tricks are required to avoid trivial solutions, e.g., assigning all the inputs to the same cluster. First, the
authors get rid of empty clusters by randomly dividing in two groups the largest cluster when an empty cluster appears.
Second, if the pseudo-cluster representation of data is largely imbalanced, the deep model will tend to assign all data to
the most represented pseudo-cluster. To counter this, they propose to sample input images during the training based on
a uniform distribution over the pseudo-labels.

They showed the robustness of their method by training different architectures (Alexnet [Krizhevsky et al., 2017] and
VGG-16 [Simonyan and Zisserman, 2014]) on ImageNet [Deng et al., 2009] or YFCC100M [Thomee et al., 2016]
images datasets.

In the following, we adapt this principle to 3D PCs change detection.

2.2 DC3DCD: unsupervised learning for 3D multiple change extraction

Whereas the task and the data (2D image classification) of DeepCluster is far from 3D PCs multiple change segmentation,
we nevertheless decided to adapt this method to our task and particular data. By replacing the CNN by a 3D PCs
change detection back-bone, some change-related features can be extracted. Thereby, the clustering of these deep
features results in change-related pseudo-clusters. We further rely on these pseudo-clusters to optimize the trainable
parameters θ of the change detection back-bone. Figure 1 illustrates our method called DeepCluster 3D Change
Detection (DC3DCD).

3

https://github.com/IdeGelis/torch-points3d-DC3DCD
https://github.com/IdeGelis/torch-points3d-DC3DCD


DC3DCD: unsupervised learning for multiclass 3D point cloud change detection A PREPRINT

CD 
Decoder

Clustering (K-means)

Change Pseudo-labels

PC1

PC2

//22 ::

Prototypes

Change Segmentation 

Change detection back-bone

CD/Mono-date
Encoder

CD/Mono-date
Encoder

Figure 1: Illustration of our proposed method: DC3DCD. It is trained by alternatively clustering deep features
to match a pseudo-label to each point of PC 2. These pseudo-labels are used to optimize the back-bone trainable
parameters.

Algorithm 1 Fully unsupervised DeepCluster 3DCD training
Initialize the back-bone trainable parameters θ
for e← 1 to E do

Run mini-batch k-means to obtain centroids C on the whole training set
Assign to each point of the training set a pseudo-cluster
Replace parameters of the prototype layer by C
Compute the weightsWk considering pseudo-label distribution in the training set
Training sample selection: random drawing consideringWk

for i← 1 to I do
Use LNLL (weighted byWk) to modulate the back-bone trainable parameters (θ) considering pseudo-labels

The overall training process of our method is given in the Algorithm 1. Even if the general idea of DeepCluster remains,
some specific features of DC3DCD distinguishing it from the original DeepCluster idea should be noted, as described
in the following.

2.2.1 Back-bone model

Because of the unstructured nature of 3D PCs, traditional CNN models cannot be applied on them and furthermore,
they do not output change-related deep features, but they rather characterize each input independently. To cope these
issues, some studies have recently proposed different architectures for supervised change detection in 3D PCs (see
section 1). These architectures can therefore be used as a back-bone to our unsupervised method. In practice, both
Siamese KPConv [de Gélis et al., 2023] and Encoder Fusion SiamKPConv [de Gélis et al., 2023] will be experimented.
Siamese KPConv architecture is chosen because it is the first architecture to perform change segmentation into raw 3D
PCs. It extends the idea of Siamese networks with the KPConv convolution principle, as can be seen in Figure 2a. The
very recent Encoder Fusion SiamKPConv is experimented as well since it has been shown in de Gélis et al. [2023] that
it outperforms other state-of-the-art methods including Siamese KPConv. The main idea behind this architecture is no
more to encode the two PCs independently (as Siamese KPConv do) but rather to include the change information along
the encoding process, as can be seen in Figure 2b where the encoding in the bottom part takes into account also the
differences between features.

Thus, parameters θ to be optimized are parameters of these back-bone architectures.

2.2.2 Use of a prototype layer

In the original version of DeepCluster, the final classification layer of gW is re-initialized before each parameter opti-
mization session (i.e., training steps) because there is no correspondence between two consecutive cluster assignments.
The authors further proposed an improved version of DeepCluster (DeepCluster-V2) by replacing the classifier gW by
the prototypes, i.e., cluster centers. This ends up with an explicit comparison of the features and the centroid matrix

4
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(a) Siamese KPConv [de Gélis et al., 2023] (b) Encoder Fusion SiamKPConv [de Gélis et al., 2023]

Figure 2: Back-bone architectures used in our experiments.

C, and tends to improve stability and performance of DeepCluster [Caron et al., 2020]. According to preliminary
experiments, we also decided to use the centroid matrix C defining pseudo-cluster centers. Therefore, the last fully
connected layer parameters of the back-bone are set using the centroid matrix C. This so-called prototype layer is
updated after each clustering step and fixed during the training step.

2.2.3 Input data

We aim at detecting changes into raw 3D PCs. In addition of using a specific back-bone able to compute features
directly in 3D PCs, some pairs of bi-temporal vertical cylinders need to be used as input to the network. In a context of
change detection, cylinders are preferred to spheres when point clouds have a privileged orientation, as for airborne 3D
PCs where the vertical direction embeds different information than horizontal ones [de Gélis et al., 2023].

Furthermore, in their experimentation, Caron et al. [2018] provide Sobel-filtered images as input to the CNN instead of
Red Green Blue (RGB) images. Sobel filtering acts as an edge detector thanks to the computation of gradients on the
image. This seems an important step in their method [Caron, 2021, Mustapha et al., 2022] and acts as a pre-computation
of relevant features. However, when dealing with 3D PCs, there is no direct equivalent to Sobel filtering. Thus, we rely
on some predefined features commonly used to characterize 3D PCs. Let us note that using such features can help the
network, as already shown in a supervised scenario [de Gélis et al., 2023]. As such, we consider here some handcrafted
features already used in a Random Forest (RF)-based change detection context Tran et al. [2018]:

• Point distribution represented by point normals and information on the distribution of points in the neighbor-
hood (i.e., linearity, planarity, and omnivariance).

• Height information characterized by rank of the point on vertical axis in the neighborhood, maximum range
of elevation of points in the neighborhood, and normalized height according to the local Digital Terrain
Model (DTM) (rasterization of the PC at the ground level).

• Change information described through a feature called stability (ratio of the number of points in the neighbor-
hood of the current PC to the number of points in the neighborhood in the other PC).

We refer the reader to the original paper Tran et al. [2018] for a detailed description of these features.

2.2.4 Size of the training set

Change segmentation task implies assigning a pseudo-label to each point of the second PC (of pairs of the training set).
To fit in memory, a mini-batch k-means [Sculley, 2010] clustering is used. The principle of splitting the largest cluster
when an empty cluster appears is used as in DeepCluster.

2.2.5 Imbalanced dataset

Change detection datasets are highly imbalanced. To avoid falling in a trivial solution where the back-bone predicts all
points with the same label, after each clustering step weights Wk (considering pseudo-labels distribution) are computed.
These weights are further used to both select training cylinders and weight the loss (LNLL). Let us note that this
cylinder selection process was also applied in the supervised context [de Gélis et al., 2023] (on the real labels though).
It aims at giving more training samples of underrepresented pseudo-clusters. It also acts as a kind of data augmentation
because from one epoch to another, selected cylinders differ according to the random drawing of the cylinder’s central
point. Without this trick, the method is likely to collapse to a single class prediction.

5
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Figure 3: User guided mapping of predicted clusters to real classes. For the K predicted clusters, a mapping with
the corresponding real class is performed by a user to obtain the final change segmentation of the PC. 5 mappings are
provided for the sake of illustration. Segmenting the whole dataset requires K annotations only. This is far less than the
millions of points that need to be annotated in order to build training and validation sets in a supervised setting.

2.2.6 3D PCs data augmentation

During the training step, data augmentation appears to be crucial for stability and performance of the method. In
particular, the following data augmentation strategies are used: random cylinders rotation around the vertical axis (same
angle for both cylinders of a pair), and addition of a Gaussian noise at point level.

2.3 From predicted pseudo-labels to real labels

The above training using DC3DCD method is fully unsupervised, thereby no use of a ground truth is required. At
the end of the overall training process, the back-bone predicts labels for all points of the second PC according to the
change. Predicted labels do not directly correspond to the real labels. There is an oversegmentation of PCs inducted
by the choice of K, the number of pseudo-clusters, which is often large compared to the number of real classes. By
opting for such an oversegmentation setting, we expect to be able to address various use cases with different size and
precision of classes. One real class is then composed of several predicted clusters, while we assume a predicted cluster
to contain only one real class. To map a real label onto each predicted label, a mapping step is necessary. For this
mapping, we consider that the user should be involved in order to select the kind of changes that is of interest given
the use case. DC3DCD enables to train a back-bone to segment the PC into small areas containing the same types of
change or unchanged objects. Thus, the user just has to select for each predicted cluster a corresponding real class.
It can be viewed as a kind of active learning process. This is illustrated in Figure 3. This strategy finally involves K
annotations to obtain a final change segmentation over the whole testing set (no matter its size). K corresponds to the
number of pseudo-clusters used during the training. This hyper-parameter has to be set beforehand. For this reason,
our method can be viewed as weakly supervised since K annotations by a user are required in the end of the process.
However, these annotations (smaller than the millions of points contained in the dataset) are not taken into account in
the learning process, and we therefore classify our approach in the family of unsupervised methods. In practice, for
the experimental assessment of our method, we map a predicted cluster onto a real class taking into account the real
majority class it contains.

6
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3 Experimental results

3.1 Experimental settings and protocol

We detail here how we set the main hyper-parameters and we describe our experimental settings.

3.1.1 Datasets

Both simulated and real datasets will be experimented, considering Urb3DCD-V2 in low density LiDAR configuration
[de Gélis et al., 2021, 2023] and AHN-CD [de Gélis et al., 2023]. To the best of our knowledge, these are the only
public datasets for change segmentation. The Urb3DCD dataset is composed of simulated ALS PCs over a french city
model (Lyon, France). A simulator is used in order to obtain an accurate annotation of 3D points concerning multiclass
changes. Conversely, AHN-CD dataset is made of real ALS PC from AHN campaigns over the Netherland [Sande
et al., 2010]. The change ground-truth is obtained thanks to a semi-automatic process. In de Gélis et al. [2023], it has
been shown that this process is not perfect since it results in a lot of misclassifications. Therefore, the test set of this
dataset will be used for qualitative assessment only. As for quantitative assessment, AHN-CD comes with a manually
annotated sub-part of the test set, on which we will report and compare quality scores. Note that during the training, we
make no use of the ground truth unless for the method assessment purpose (see Section 3.2). The first sub-sampling rate
dl0 is set to 1 m and the cylinder radius to 50 m for Urb3DCD-V2-1. While for AHN-CD dl0 is set to 0.5 m and the
cylinder radius to 20 m because of the difference of density between both datasets.

3.1.2 Number of pseudo-clusters K

As shown in different studies related to DeepCluster [Caron et al., 2018, Mustapha et al., 2022], choosing the number of
pseudo-clusters is important. We experimented several values for K on the simulated dataset and found that K = 1000
was an adequate compromise to ensure a stable training and a reasonable oversegmentation. A too small value may not
reflect all different types of changes (and thus not allow the user to select the changes of interest), while a too large
value leads to high training and annotation times. The same value will also be used with the real dataset AHN-CD.

3.1.3 Training step and parameters optimization

For the training process, a Stochastic Gradient Descent (SGD) with momentum of 0.98 is applied to minimize a
point-wise NLL loss using the pseudo-labels defined in the clustering step. A batch size of 10 is used. The initial
learning rate is set to 10−3 and scheduled to decrease exponentially. As in Caron et al. [2018], we experimentally
verified that reassigning the clustering after each epoch is better than an update after each n epochs. Indeed, if several
training epochs are conducted, the model seems to converge in the first local minimum associated with a non-optimal
pseudo-clustering. In each epoch, 3,000 cylinder pairs are seen by the model. A total of 55 epochs, i.e., 55 clustering
and training steps, is performed.

3.1.4 Comparisons with supervised methods

A comparison with the only existing deep supervised methods is provided, namely Siamese KPConv [de Gélis et al.,
2023], Encoder Fusion SiamKPConv [de Gélis et al., 2023], DSM-based deep learning methods (adaptation of Daudt
et al. [2018] networks to DSM inspired by Zhang et al. [2019]). Results of a RF algorithm trained on hand-crafted
features [Tran et al., 2018] are also given.

3.1.5 Adaptation of a supervised method to a weakly supervised setting

To evaluate the benefit of our method, we propose a comparison with deep learning-based supervised methods tuned
to a weakly supervised setting. In practice, we use Encoder Fusion SiamKPConv, the best of supervised techniques
according to de Gélis et al. [2023]. To this end, we trained it with the same amount of annotated data as our DC3DCD
setting. However, this is not straightforward since this network cannot be trained with only 1,000 points. Indeed, as
during the supervised training of this network, labels should be provided for each point of the second PC of the pair,
and as a cylinder contains more than 1,000 points (about 3,500), we cannot directly compare the supervised training
with the same amount of labels (i.e., K = 1000). Thus, for both training and validation sets, we chose 7 cylinders, each
one centered on one of the 7 classes contained in Urb3DCD-V2 to be sure that each class is represented. Note that with
this minimal training configuration, the number of annotated points in the 14 cylinders is around 50,000. As 7 cylinders
are less than the batch size of 10 used for all other deep learning-based methods, we also provide results with a batch
size of 2.

7
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3.1.6 Comparisons with unsupervised methods

To the best of our knowledge, there is no other weakly supervised or unsupervised deep learning method tackling 3D
PCs multiple change segmentation. Thereby, we provide a comparison with a k-means algorithm applied on the ten
hand-crafted features of Tran et al. [2018] dedicated to change detection in 3D PCs. Note that LiDAR specific features
(e.g., intensity or number of echoes) used in Tran et al. [2018] are ignored here since the simulated dataset does not
contain such information. For fair comparison, the k-means is set to predict also K = 1, 000 pseudo-clusters. The same
user-guided mapping is done as proposed in the previous section (Figure 3) to assign the final classes.

Before presenting the quantitative results, we analyze in the next section the behavior of the network during the training
process.

3.2 Analysis of the learning process

Before presenting the results on the different datasets, we propose to study the behavior of DC3DCD during the training
phase. To do so, we rely on the Encoder Fusion SiamKPConv back-bone and the configuration without the use of
the ten hand-crafted features as input, so considering only 3D points coordinates. Note that the same tendencies are
obtained with hand-crafted features or with Siamese KPConv back-bone, but we prefer to show results with a network
that takes into account the minimum information regarding changes. In practice, we compute criteria associated with
the clustering quality and the pseudo-cluster distribution along the training process.

3.2.1 Clustering quality

The evolution of the clustering quality during training epochs is computed by comparing the pseudo-clusters obtained
thanks to the k-means on deep features, and the real classes. More precisely, we compute the normalized mutual
information (NMI) given by the following formula:

NMI(Y, YC) =
I(Y, YC)√
H(Y )H(YC)

(2)

where Y and YC contain the probabilities pi, pCi
, of each label i = {1...N} associated with the true and pseudo-labels.

H is the entropy defined as:

H(Y ) = −
N∑
i=1

pi log2 pi (3)

and I is the mutual information, defined as:

I(Y, YC) = H(Y )−H(Y |YC) (4)

Intuitively, the NMI is a measure of the information shared between two clusterings, i.e., in our case the clustering of
deep features and real classes. If the NMI is equal to 0, the two clusterings are totally independent. On the opposite, if
the NMI is equal to 1, there is a perfect correlation between the two clusterings, i.e., one of them is deterministically
predictable from the other.

We present the evolution of the clustering quality along the epochs in Figure 4a by giving the NMI between the
clustering and the real labels of Urb3DCD-V2 dataset. As can be seen, the clustering tends to get closer to real classes
along with the training process. It seems to stabilize after 30-40 epochs. Let us remark that at the end of the training, the
NMI is around 0.35. It is still far to 1, but the same trend was observed in DeepCluster training quality assessment by
Caron et al. [2018]. In Figure 4b, we evaluate the number of reassignments of cluster from one epoch to the following
using the NMI between the clustering of the two epochs. It seems that during the first epochs, there is an important
evolution of the clustering, but the training rapidly converges to a rather stable clustering (NMI > 0.8). Again, the
same tendency was obtained by Caron et al. [2018] for DeepCluster on ImageNet dataset.

3.2.2 Pseudo-cluster distribution

As for the pseudo-cluster distribution, we remind that, ideally, a pseudo-cluster contains only one real class, and a
real class can be distributed into several pseudo-clusters. To measure the purity of a pseudo-cluster, we propose to
investigate the entropy H (Equation 3) of each pseudo-cluster. If it is near 0, then the pseudo-cluster contains almost
only one real class. However, if a pseudo-cluster is divided into several classes, the entropy is higher. In Figure 5 is
given the pseudo-cluster distribution at epoch 10 and 50. Pseudo-clusters are sorted in increasing entropy values. First,
as can be seen, there is an improvement between epoch 10 and 50. The area under the entropy curves (dotted points in
Figure 5) is indeed smaller at epoch 50 (0.24 of mean entropy) than at epoch 10 (0.39 of mean entropy), meaning that
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(a) Clustering quality (b) Cluster reassignment

Figure 4: Analysis of the behavior of DC3DCD during the training. The evolution of clustering quality (a) is given
thanks to the NMI between the clustering and the real labels of Urb3DCD-V2 dataset. The NMI between the clustering
at epoch t and the clustering at epoch t− 1 gives the cluster reassignment (b).

entropy values are globally smaller. Then, after 50 epochs of training, 80% of the pseudo-clusters have a “purity level”
greater or equal to 93%. These results confirmed the relevance of the proposed user-guided strategy to automatically
map a pseudo-cluster onto the majority real class for the evaluation, as stated in the method description section (see
Section 2.3).

After having studied the training behavior of the DC3DCD method, we will now compare it to the state-of-the-art on
the testing set of both simulated and real datasets.

3.3 Results on simulated Urb3DCD dataset

Quantitative evaluation of DC3DCD on the simulated Urb3DCD-V2-1 dataset is given in Tables 1 and 2. In these tables,
we also recall supervised results for the sake of comparison. Let us first analyze DC3DCD results without hand-crafted
features (two first lines of the bottom part of Tables 1 and 2). As can be seen, results for both Siamese KPConv and
Encoder Fusion SiamKPConv back-bones are rather low. Indeed, while requiring the same annotation effort, k-means
algorithm trained on the same hand-crafted as the RF method proposed in Tran et al. [2018] provides better results (cf.
first line of middle part in Table 1). However, these results are interesting because the two experimented back-bones
provide significantly different results. In particular, Encoder Fusion SiamKPConv ends up with a mIoUch 1.5 times
higher than Siamese KPConv. While in a supervised setting, the improvement of Encoder Fusion SiamKPConv was of
5 points of mIoUch, in the unsupervised context the choice of the architecture seems even more crucial.

Then, when hand-crafted features are added to the input of the network, results are largely improved (cf. the two
last lines of Table 1). While DC3DCD with Siamese KPConv architecture and hand-crafted features provides results
comparable to the k-means algorithm, DC3DCD provide interesting results with both hand-crafted features and the
Encoder Fusion SiamKPConv architecture. Indeed, in this configuration there is more than 15 points of mIoUch of
improvement compared to k-means. Furthermore, DC3DCD with this configuration is better than a fully supervised
RF, and provides results comparable with fully supervised deep architectures trained on 2.5D rasterization of 3D PCs.
Thereby, providing hand-crafted features is an important step in unsupervised settings. One possible interpretation is
that the unsupervised version is very tricky to train in reason of the large number of possible local minima. Adding
hand-crafted features probably helps the initialization to be closer to the global minimum.

Notice that the Encoder Fusion SiamKPConv in a weakly supervised setting provides rather low results given the higher
annotation effort required (about 50,000 annotated points). Results with a batch size of 10 are not stable. This is
explained by the fact that only one batch is seen per epoch, and the same learning rate scheduler as with a batch size
of 2 is used. Thus, this training is more prone to fall in a local minimum. Even with a reduced batch size, leading to
more stable results, we can see the benefit of using DC3DCD for the training of Encoder Fusion SiamKPConv network
because the effort of annotation is lower.
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(a) Epoch 10

(b) Epoch 50

Figure 5: Ground truth class distribution in pseudo-clusters sorted by increasing entropy value at epoch 10 (a) and
50 (b). Each pseudo-cluster entropy is given by the dotted black curve.
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Method mAcc (%) mIoUch (%)

Su
pe

rv
is

ed Siamese KPConv [de Gélis et al., 2023] 91.21 ± 0.68 80.12 ± 0.02
Encoder Fusion SiamKPConv [de Gélis et al., 2023] 94.23 ± 0.88 85.19 ± 0.24

DSM-Siamese 80.91 ± 5.29 57.41 ± 3.77
DSM-FC-EF 81.47 ± 0.55 56.98 ± 0.79

RF [Tran et al., 2018] 65.82 ± 0.05 52.37 ± 0.10
W

ea
kl

y
su

p.

k-means 56.15 ± 0.62 41.46 ± 0.53
Encoder Fusion SiamKPConv (batch size 10) 29.03 ± 22.46 12.84 ± 18.49
Encoder Fusion SiamKPConv (batch size 2) 53.09 ± 3.73 36.60 ± 3.18

DC3DCD Siamese KPConv 28.28 ± 3.73 14.43 ± 3.70
DC3DCD Encoder Fusion SiamKPConv 52.30 ± 2.41 37.75 ± 2.11

DC3DCD Siamese KPConv (with input features) 54.91 ± 5.45 42.27 ± 6.64
DC3DCD Encoder Fusion SiamKPConv (with input features) 68.45 ± 1.10 57.06 ± 0.41

Table 1: Quantitative evaluation of DC3DCD on Urb3DCD-V2 low density LiDAR dataset. Top: supervised
methods. DSM-based methods are adaptation of Daudt et al. [2018] networks to DSM inspired by Zhang et al. [2019]
and RF refers to Random Forests. Middle: Weakly supervised methods with k-means and Encoder Fusion SiamKPConv
results using 7 training cylinders in the training and validation set (equivalent to about 50,000 annotated points). Bottom:
Weakly supervised methods with our proposed DC3DCD evaluated in 4 different settings: with Siamese KPConv or
Encoder Fusion SiamKPConv architectures and with or without the addition of 10 hand-crafted features as input to the
network.

Per class IoU (%)
Method Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile Object

Su
pe

rv
is

ed

SKPConv [de Gélis et al., 2023] 95.82± 0.48 86.68± 0.47 78.66± 0.47 93.16± 0.27 65.17± 1.37 65.46± 0.93 91.55± 0.60
EFSKPConv [de Gélis et al., 2023] 97.47± 0.04 96.68± 0.30 82.29± 0.16 96.52± 0.03 67.76± 1.51 73.50± 0.81 94.37± 0.54
DSM-Siamese 93.21± 0.11 86.14± 0.65 69.85± 1.46 70.69± 1.35 8.92± 15.46 60.71± 0.74 8.14± 5.42
DSM-FC-EF 94.39± 0.12 91.23± 0.31 71.15± 0.99 68.56± 3.92 1.89± 2.82 62.34± 1.23 46.70± 3.49
RF [Tran et al., 2018] 92.72± 0.01 73.16± 0.02 64.60± 0.06 75.17± 0.06 19.78± 0.30 7.78± 0.02 73.71± 0.63

W
ea

kl
y

su
p.

k-means 91.82± 0.05 70.46± 0.25 59.83± 0.11 59.20± 0.48 6.00± 0.19 0.00± 0.00 53.26± 3.19
EFSKPConv (b. s. 10) 58.38± 46.55 13.22± 16.83 26.15± 23.54 11.04± 19.12 0.41± 0.71 7.29± 11.99 19.48± 33.46
EFSKPConv (b. s. 2) 89.88± 0.53 29.26± 16.83 48.66± 2.57 52.91± 9.19 7.59± 6.40 14.35± 15.16 66.84± 5.42
DC3DCD SKPConv 84.51± 0.70 13.33± 3.05 29.50± 13.19 40.31± 9.15 3.03± 1.80 0.08± 0.01 0.33± 0.29
DC3DCD EFSKPConv 90.90± 0.79 64.06± 5.13 54.35± 3.84 58.14± 20.03 1.45± 2.05 0.94± 0.78 47.57± 2.58
DC3DCD SKPConv (i. f.) 92.90± 0.21 76.61± 2.09 67.22± 2.63 61.33± 10.07 8.66± 6.54 16.39± 14.95 23.44± 40.54
DC3DCD EFSKPConv (i. f.) 93.96± 0.11 79.26± 0.68 67.88± 0.49 75.34± 2.81 19.48± 4.00 20.29± 2.90 80.10± 3.16

Table 2: Per-class IoU scores of DC3DCD on Urb3DCD-V2 low density LiDAR dataset. Top: supervised methods.
DSM-based methods are adaptation of Daudt et al. [2018] networks to DSM inspired by Zhang et al. [2019] and RF
refers to Random Forests. Middle: Weakly supervised methods with k-means and Encoder Fusion SiamKPConv results
using 7 training cylinders in the training and validation set (equivalent to about 50,000 annotated points). Bottom:
Weakly supervised methods with our proposed DC3DCD evaluated in 4 different settings: with Siamese KPConv
(SKPConv) or Encoder Fusion SiamKPConv (EFSKPConv) architectures and with or without the addition of 10
hand-crafted features as input to the network. Veg. stands for vegetation; b. s. for batch size; i.f. for input features.

Two different examples are given for a qualitative assessment of the method in Figures 6 and 7. As visible in Figure 7,
main changes (e.g., new buildings or demolitions) seem quite well retrieved by the k-means and both DC3DCD
configurations. However, when going more into details, some misclassifications can be seen on new building facades
(Figure 6) or vegetation. For new building facades, a slight improvement over k-means is reached by DC3DCD, but it
is still not perfect. The k-means technique has the same tendency as the RF method (see de Gélis et al. [2023]) and
confuses small new buildings with new vegetation, surely because they have the same height as visible in Figure 6.
As depicted in Table 2, main difficulties of the DC3DCD method concern vegetation growth and missing vegetation.
Note that this was already the most difficult classes in the supervised context. The missing vegetation is almost
always confused with demolition in DC3DCD with hand-crafted input features and the Encoder Fusion SiamKPConv
architecture. This is even worse with the k-means and missing vegetation is never predicted with DC3DCD without
hand-crafted input features. However, this make sense, since the ‘missing vegetation’ and ‘demolition’ classes are both
negative changes. Surprisingly, mobile objects are quite well retrieved, especially for DC3DCD with hand-crafted input
features and the Encoder Fusion SiamKPConv architecture (Table 2).
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) k-means (e) DC3DCD EFSKPConv (f) DC3DCD EFSKPConv (input features)
Unchanged New Building Demolition New Vegetation Vegetation Growth
Missing Vegetation Mobile Objects

Figure 6: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset (area 1): (a-b) the
two input point clouds; (c) ground truth (GT): simulated changes; (d) k-means results; (e) DC3DCD with the Encoder
Fusion SiamKPConv architecture results; (f) DC3DCD with the Encoder Fusion SiamKPConv architecture and the
addition of 10 hand-crafted features as input results.

3.4 Results on real AHN-CD dataset

Concerning the real AHN-CD dataset, quantitative results on the manually annotated testing set are given in Table 3,
and Table 4 for per class results. For comparison purpose, we also provide results of supervised methods. However, we
recall that they have been trained on the semi-automatically annotated AHN-CD dataset containing several ground truth
errors [de Gélis et al., 2023]. This explains lower results of the RF compared to the k-means which have been mapped
onto real classes using the manually annotated set (as for DC3DCD method). As already observed with the simulated
dataset, we can see that DC3DCD provides better results than the k-means algorithm. Figure 8 shows that main changes
are well retrieved for both methods. However, in the k-means results, larger objects of the clutter class such as trucks
are mixed up with buildings. There are also lots of misclassifications in unchanged vegetation and unchanged building
facades (see region of interest in Figure 8f). As far as DC3DCD is concerned, unchanged vegetation is well classified.
A few mistakes are visible in some ‘new clutter’ objects. We recall that this class is a mix of a lot of objects, from
vegetation to cars or garden sheds, surely explaining why its classification score is lower. Complementary results on a
larger AHN-CD testing tile are shown in Figure 9. The ground truth is given by the semi-automatic process detailed
in de Gélis et al. [2023]. The mapping onto the real classes is performed using this ground truth for both k-means
method and DC3DCD. As visible in this example, most of ‘new clutter’ class objects are omitted or mixed up with the
new building class, also the demolition class is totally omitted by the k-means algorithm (Figure 9d). In the DC3DCD
results in Figure 9e, clutter class seems better retrieved, even though it is not perfect implying the main differences
with the ground truth (Figure 9g). In the areas of interest depicted by the black rectangles in Figure 9, we observe that
DC3DCD seems to better adapt to the user context (i.e., by the ground truth defined by the user) than the k-means, even
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) k-means (e) DC3DCD EFSKPConv (f) DC3DCD EFSKPConv (input feat.)
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 7: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset (area 2): (a-b) the
two input point clouds; (c) ground truth (GT): simulated changes; (d) k-means results; (e) DC3DCD with the Encoder
Fusion SiamKPConv architecture results; (f) DC3DCD with the Encoder Fusion SiamKPConv architecture and 10
hand-crafted input features.

though the same ground truth-guided mapping step has been performed. Indeed, here buildings are not set as new in the
ground truth and in DC3DCD, conversely to k-means. Finally, on this tile, if we compare to the ground truth, DC3DCD
obtains 55.91% of mIoUch, while the k-means only 24.63%.

4 Discussion

In this section, we have proposed an unsupervised change detection method with a weakly user-guided mapping to real
classes providing interesting results. This problem is still open and complex and in the following, we point out some
observations and discussions about possible improvements.

4.1 Importance of network’s architectures and input features

We saw in the result section that the choice of the back-bone architecture and the addition of hand-crafted features as
input along with 3D point coordinates are crucial. This is in agreement with the original publication of DeepCluster,
where authors provided gradient of images as input to obtain interesting results [Caron et al., 2018]. These results in an
unsupervised context also emphasizes conclusions of de Gélis et al. [2023] on the necessity of applying convolution on
features difference. To explain this, let us note that the unsupervised context is a largely unconstrained problem. While
the annotation allows counterbalancing architectures weaknesses, this is indeed no longer possible for the unsupervised
setting. Thereby the choice of an architecture that more specially extracts change-related features through convolutions
of difference of features from both inputs at multiple scales, and the addition of well-designed hand-crafted features,
allows guiding the training of the network toward a relevant minimum, leading to a reliable change segmentation.
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Method mAcc (%) mIoUch (%)

Su
pe

rv
is

ed Siamese KPConv [de Gélis et al., 2023] 85.65 ± 1.55 72.95 ± 2.05
Encoder Fusion SiamKPConv [de Gélis et al., 2023] 90.26 ± 0.22 75.00 ± 0.74
DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48
DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98
RF [Tran et al., 2018] 47.94 ± 0.02 29.45 ± 0.02

W
S k-means 70.07 ± 0.56 53.12 ± 0.79

DC3DCD Encoder Fusion SiamKPConv (with input features) 83.18 ± 1.10 66.69 ± 2.19

Table 3: Qualitative assessment of DC3DCD on the manually annotated sub-part of AHN-CD dataset. Top:
supervised methods. DSM-based methods are adaptation of Daudt et al. [2018] networks to DSM inspired by Zhang
et al. [2019] and RF refers to Random Forests. In supervised settings, the training is performed on the semi-automatically
annotated AHN-CD dataset containing some errors (see de Gélis et al. [2023]). Bottom: Weakly supervised methods
with k-means and our proposed DC3DCD with Encoder Fusion SiamKPConv architecture and with the addition of 10
hand-crafted features as input to the network.

Method Per class IoU (%)
Unchanged New building Demolition New clutter

Su
pe

rv
is

ed

Siamese KPConv [de Gélis et al., 2023] 89.75± 2.18 82.77± 5.38 86.44± 0.88 46.65± 0.16
Encoder Fusion SiamKPConv [de Gélis et al., 2023] 94.79± 0.34 95.31± 1.95 88.87± 1.59 41.16± 1.30
DSM-Siamese 77.10± 1.51 76.77± 0.79 4.91± 8.33 11.20± 1.71
DSM-Pseudo-Siamese 78.00± 5.09 75.32± 8.59 47.46± 11.92 23.76± 0.56
DSM-FC-EF 70.77± 1.13 90.32± 0.61 30.58± 1.76 15.81± 0.81
RF [Tran et al., 2018] 78.24± 0.00 74.64± 0.03 0.00± 0.00 13.72± 0.06

W
S k-means 84.13± 0.49 83.13± 0.89 55.40± 0.50 20.84± 1.00

DC3DCD Encoder Fusion SiamKPConv (with input features) 91.34± 1.21 89.91± 0.72 69.52± 4.97 40.63± 0.97

Table 4: Per class IoU DC3DCD results on the manually annotated testing part of AHN-CD dataset given in
%. Top: supervised methods. In supervised settings, the training is performed on the semi-automatically annotated
AHN-CD dataset containing some errors (see de Gélis et al. [2023]). Bottom: Weakly supervised methods with k-means
and our proposed DC3DCD with Encoder Fusion SiamKPConv architecture and with the addition of 10 hand-crafted
features as input to the network.

4.2 Improving DC3DCD with contrastive learning

As mentioned, the problem in an unsupervised setting is to train a network to extract appropriate features for a specific
task. In a task involving comparison of similar and dissimilar data (like change detection task), the contrastive loss
is often used to force the network to extract identical features for similar data. Therefore, an idea can be to force the
network to predict similar features for unchanged areas. To test this principle, we propose to introduce the following
contrastive term in the loss function:

Lcont = 0.5× ysim × F 2
CD with ysim =

{
1 if similar
0 else. (5)

where FCD is the L2-norm of output features and ysim is the similarity term (set to 1 for unchanged points, and 0
elsewhere). Using this contrastive term in the loss aims at forcing to 0 change-related features in unchanged areas. To
test this idea, we combine the contrastive loss in Equation 5 with the deep clustering loss (NLL using the pseudo-label)
taking the mean, and train the Encoder Fusion SiamKPConv network since it gave the best results.

We first carried out experiments by taking the similarity ysim from the ground truth (as ysim is not available in practice,
we first test the idea by taking real values of ysim). Results were really interesting since, as visible in Tables 5 and 6,
DC3DCD reached 73.51% of mIoUch without the use of hand-crafted features and 82.63% of mIoUch with the use
of hand-crafted features on Urb3DCD-V2-1 dataset. We recall that on this dataset and in a fully supervised setting,
Siamese KPConv and Encoder Fusion SiamKPConv networks obtained 80.12% and 85.19% of mIoUch respectively.
Thus, the addition of the contrastive part allows meeting fully supervised results (in an ideal case where ysim is known).

This first experience validated the idea of using the contrastive loss. However in practice, ysim needs to be estimated.
To obtain the similarity ysim, we first used the significant changes given by Multi-Scale Model-to-Model Cloud
Comparison (M3C2) or a binary thresholding of cloud-to-cloud (C2C) distance. Results are mitigated (see Tables 5
and 6) since the best results obtained using M3C2 for ysim allow us to improve by only 2 points DC3DCD without
hand-crafted input features. With hand-crafted input features, results are worsened when the contrastive term is added
during the training (using ysim based on M3C2, obtained mIoUch is 46.42%).
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(a) PC date 1 (b) PC date 2 (c) Ground truth

(d) k-means (e) DC3DCD EFSKPConv (i. f.)
Unchanged New Building Demolition New Clutter

(f) k-means errors (g) DC3DCD EFSKPConv (i. f.) errors
GT differences

Figure 8: Qualitative results on the manually annotated sub-part of AHN-CD dataset: (a-b) PCs at date 1 and
2; (c) ground truth; k-means results (d) and errors (f); DC3DCD results (e) and errors (g) using the Encoder Fusion
SiamKPConv architecture and the 10 hand-crafted features in input. Regions of interest specifically discussed in the text
are highlighted with ellipses.

Another idea is to rely on multi-task learning [Vandenhende et al., 2021, Zhang and Yang, 2021]: a multi-task
framework based on DC3DCD that jointly extracts mono-date features that can be used for similarity computation has
been designed. As illustrated in Figure 10, we added decoders for mono-date semantic segmentation to the back-bone
architectures to also obtain semantic segmentation of PCs. Both Siamese KPConv and Encoder Fusion SiamKPConv
have encoders to extract mono-date features, therefore we just added a decoder taking as input these mono-date features
instead of feature differences for Siamese KPConv for example. Thereby, we used the same idea as before to train
the network but with two separate clusterings, performed on output features of the change decoder on one side, as in
previous experiments, and on output features of mono-date decoders on the other side. This results in both change
pseudo-labels and mono-date pseudo-labels which are used to modulate change encoder-decoder and mono-date
encoders-decoders respectively. In practice, we shared trainable parameters between mono-date encoders and decoders.
We trained first the semantic segmentation part and then apply a binary clustering (using k-means) on the nearest point
mono-date features difference to obtain the similarity ysim used in the contrastive term of the change detection loss.
Concerning, the number of pseudo-clusters for mono-date Kmono−date , 4 and 500 have been tested (4 is the number of
semantic segmentation classes in Urb3DCD-V2 dataset, 500 is considered as a sample large bound). While semantic
segmentation scores, using the same user-guided mapping for mono-date semantic segmentation, are very promising
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Method i. f. ysim mAcc (%) mIoUch (%)

Su
p. SKPConv [de Gélis et al., 2023] 91.21 ± 0.68 80.12 ± 0.02

EFSKPConv [de Gélis et al., 2023] 94.23 ± 0.88 85.19 ± 0.24
W

ea
kl

y
su

pe
rv

is
ed

DC3DCD EFSKPConv 52.30 ± 2.41 37.75 ± 2.11
DC3DCD-V2 EFSKPConv GT 83.45 ± 2.22 73.51 ± 3.74
DC3DCD-V2 EFSKPConv M3C2 54.01 ± 3.54 39.59 ± 4.18
DC3DCD-V2 EFSKPConv C2C 39.74 ± 1.84 25.57 ± 1.97
DC3DCD-V2 EFSKPConv Multi-task (Kseg.sem. = 4) 34.31 ± 5.85 19.21 ± 5.81
DC3DCD-V2 EFSKPConv Multi-task (Kseg.sem. = 500) 47.62 ± 6.76 32.07 ± 6.15
DC3DCD EFSKPConv X 68.45 ± 1.10 57.06 ± 0.41
DC3DCD-V2 EFSKPConv X GT 89.04 ± 0.70 82.63 ± 0.73
DC3DCD-V2 EFSKPConv X M3C2 58.80 ± 2.14 46.42 ± 2.45
DC3DCD-V2 EFSKPConv X C2C 42.01 ± 0.67 28.04 ± 0.60
DC3DCD-V2 EFSKPConv X Multi-task (Kseg.sem. = 4) 53.04 ± 8.22 38.90 ± 8.51
DC3DCD-V2 EFSKPConv X Multi-task (Kseg.sem. = 500) 62.95 ± 1.81 50.14 ± 3.85

Table 5: Quantitative evaluation of DC3DCD-V2 on Urb3DCD-V2 low density LiDAR dataset. Top: supervised
methods. Middle: Weakly supervised methods with our proposed DC3DCD and DC3DCD-V2 with Encoder Fusion
SiamKPConv architecture without the addition of 10 hand-crafted features as input to the network. Bottom: Weakly
supervised methods with our proposed DC3DCD and DC3DCD-V2 with Encoder Fusion SiamKPConv architecture
and with the addition of 10 hand-crafted features (i. f.) as input to the network.

(90.79% of mean of IoU (mIoU) on the 4 semantic segmentation classes of Urb3DCD-V2 with hand-crafted input
features and Kmono−date = 500), using the associated ysim still leads to unsatisfactory results (see Tables 5 and 6).
Indeed, when Kmono−date is set to 500, we obtain 50.14% of mIoUch (with hand-crafted features) which is better
than with distance-based methods (M3C2 or C2C) but worse than without the contrastive part of the loss. Thereby,
computing similarity from the nearest point mono-date features difference does not seem adapted. Two main reasons
for this non-success can be advanced: i) the nearest point comparison is not optimal in occluded parts as well as in
dense urban areas (which is the case for Urb3DCD datasets that are acquired on models of Lyon city center), and ii) the
method predicts 500 different mono-date semantic classes (far more than existing real classes) and nothing forces that
two clusters that are near in semantics (e.g., belonging to the same real class) are near in the feature space, leading
to differences of features likely to be very high. To counterbalance this last point, we tested using only 4 mono-date
pseudo-clusters, but results are even worse, probably due to the fact that the DeepCluster strategy to train a network
required a number of pseudo-clusters greater than the number of real classes.

Qualitative assessment of these results is supported by Figure 7(g-h) and 11. When the similarity comes from the binary
change ground truth, visual results really lookalike the multi-change ground truth (Figure 7h and 11f). Qualitative
results of multi-task learning are quite encouraging. Surprisingly, borders of ‘missing vegetation’ seems well retrieved,
but the center is still confused with demolition.

All these experiments aim at evaluating the potential of contrastive losses to improve our unsupervised results. Results
with the similarity ysim issued from ground truth are very promising since they reach comparable results than the fully
supervised networks. However, the method is highly dependent on the quality of this binary change annotation, and in
case of mitigated binary annotation, it worsens DC3DCD results. These first perspective experimentation are, to our
opinion, encouraging to limit the annotation effort while preserving interesting results. Our future work will concentrate
on the estimation of precise ysim.

5 Conclusion

In this paper, we proposed an unsupervised learning method based on the DeepCluster principle to tackle multiclass
change segmentation in raw 3D PCs. Following the unsupervised training, we propose a user-guided mapping of
pseudo-clusters to real class in order to better to fit to the use case. Given the experiments on both synthetic and real
dataset, we saw the importance of the choice of an appropriate architecture to extract valuable change-related features.
Also, guiding the network using hand-crafted input features along with 3D points coordinates is advocated. Using these
recommended configuration, our proposed method, DeepCluster 3D Change Detection (DC3DCD), allows obtaining
better results than a fully supervised traditional machine learning algorithm relying on hand-crafted features and to
reach scores of fully supervised deep networks trained on 2.5D rasterization of PCs (i.e., the only existing models in the
literature before this thesis). We further proposed to improve DC3DCD by introducing a contrastive loss leading to
comparative results as fully supervised deep network (89.04% of mean of accuracy) in an ideal case where the similarity
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Per class IoU (%)
Method i. f. ysim Unchanged New building Demolition New veg. Veg. growth Missing veg. Mobile Object

Su
p. SKPConv 95.82± 0.48 86.68± 0.47 78.66± 0.47 93.16± 0.27 65.17± 1.37 65.46± 0.93 91.55± 0.60

EFSKPConv 97.47± 0.04 96.68± 0.30 82.29± 0.16 96.52± 0.03 67.76± 1.51 73.50± 0.81 94.37± 0.54

W
ea

kl
y

su
pe

rv
is

ed

DC3DCD 90.90± 0.79 64.06± 5.13 54.35± 3.84 58.14± 20.03 1.45± 2.05 0.94± 0.78 47.57± 2.58
DC3DCD-V2 GT 97.28± 0.10 93.66± 1.30 75.24± 4.34 83.78± 6.00 49.52± 7.00 53.60± 11.98 85.28± 3.54
DC3DCD-V2 M3C2 93.02± 0.03 75.05± 5.28 57.43± 2.03 69.02± 5.77 10.45± 8.60 4.47± 4.22 21.11± 10.22
DC3DCD-V2 C2C 90.73± 0.45 64.93± 3.79 56.52± 3.74 10.76± 5.80 0.41± 0.56 0.44± 0.51 20.37± 6.96

DC3DCD-V2 Multi-task
(Kseg.sem. = 4)

87.15± 2.38 29.55± 16.82 39.72± 7.84 28.11± 2.95 0.00± 0.00 0.08± 0.09 17.78± 11.09

DC3DCD-V2 Multi-task
(Kseg.sem. = 500)

88.56± 2.11 40.44± 12.79 45.16± 12.73 50.12± 6.53 4.03± 5.09 0.43± 1.19 51.93± 6.90

DC3DCD X 93.96± 0.11 79.26± 0.68 67.88± 0.49 75.34± 2.81 19.48± 4.00 20.29± 2.90 80.10± 3.16
DC3DCD-V2 X GT 97.73± 0.05 94.50± 0.20 81.10± 0.38 92.22± 0.92 61.32± 2.39 73.39± 1.18 90.12± 1.30
DC3DCD-V2 X M3C2 93.17± 0.13 77.48± 1.85 65.34± 0.55 76.96± 5.26 25.65± 4.94 0.31± 0.54 32.76± 4.15
DC3DCD-V2 X C2C 92.25± 0.15 70.01± 2.77 66.56± 1.12 27.11± 5.78 0.00± 0.00 4.59± 0.64 0.00± 0.00

DC3DCD-V2 X
Multi-task

(Kseg.sem. = 4)
91.96± 1.10 69.01± 7.24 63.07± 1.49 42.76± 13.31 4.11± 6.71 17.23± 7.28 31.20± 25.63

DC3DCD-V2 X
Multi-task

(Kseg.sem. = 500)
93.68± 0.48 78.23± 2.94 66.02± 1.46 71.49± 2.49 0.00± 0.00 16.07± 4.77 69.06± 16.59

Table 6: Per class quantitative evaluation of DC3DCD-V2 on Urb3DCD-V2 low density LiDAR dataset. Top:
supervised methods. Middle: Weakly supervised methods with our proposed DC3DCD and DC3DCD-V2 with
Encoder Fusion SiamKPConv architecture without the addition of 10 hand-crafted features as input to the network.
Bottom: Weakly supervised methods with our proposed DC3DCD and DC3DCD-V2 with Encoder Fusion SiamKPConv
architecture and with the addition of 10 hand-crafted features (i. f.) as input to the network.

boolean used in the contrastive loss is faultless. However, there are still improvements to be made to find a right manner
to obtain the similarity.
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(a) PC date 1 (b) PC date 2 (c) Ground truth

Unchanged
New Building
Demolition
New Clutter

(d) k-means (e) DC3DCD EFSKPConv (i. f.)

GT differences

(f) k-means errors (g) DC3DCD EFSKPConv (i. f.)
errors

Figure 9: Qualitative results on the semi-automatically annotated AHN-CD dataset: (a-b) PCs at date 1 and 2; (c)
ground truth; k-means results (d) and corresponding errors (f); DC3DCD results (e) and corresponding errors (g) using
the Encoder Fusion SiamKPConv architecture and the 10 hand-crafted features in input. Regions of interest specifically
discussed in the text are highlighted with rectangles.
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Figure 10: DC3DCD-V2 using multi-task learning.
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) DC3DCD EFSKPConv
(i. f.)

(e) DC3DCD-V2 EFSKPConv
(i. f., ysim from multi-task)

(f) DC3DCD-V2 EFSKPConv
(i. f., ysim from GT)
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Vegetation Growth Missing Vegetation Mobile Objects

Figure 11: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset: (a-b) the two
input point clouds; (c) ground truth (GT): simulated changes; (d) DC3DCD with the Encoder Fusion SiamKP-
Conv architecture and 10 hand-crafted input features (i. f.) results; (e) DC3DCD-V2 with the Encoder Fusion
SiamKPConv architecture, 10 hand-crafted input features results and the similarity ysim computed from the multi-
task configuration(Kmono−date = 500); (f) DC3DCD-V2 with the Encoder Fusion SiamKPConv architecture, 10
hand-crafted input features results and the similarity ysim computed from the ground truth (GT).
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(a) Ground truth (b) DC3DCD-V2 EFSKPConv
(i. f., ysim from multi-task)

(c) DC3DCD-V2 EFSKPConv
(i. f., ysim from GT)

Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 12: Visual change detection results on Urb3DCD-V2 low density LiDAR sub-dataset (area 2): (a) ground
truth (GT): simulated changes; (b) DC3DCD-V2 with the Encoder Fusion SiamKPConv architecture, 10 hand-crafted
input features (i. f.) and the similarity ysim computed from the multi-task configuration(Kmono−date = 500); (c)
DC3DCD-V2 with the Encoder Fusion SiamKPConv architecture, 10 hand-crafted input features and the similarity
ysim computed from the ground truth (GT). For comparison, one can refer to Figure 7 providing k-means and DC3DCD
results over the same area.
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