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ABSTRACT

“Flying spot” laser infrared thermography (FST) is a non destructive testing technique able to detect small
defects by scanning surfaces with a laser heat source. Defects, such as cracks on metallic parts, are revealed by
the disturbance of heat propagation measured by an infrared camera. Deep learning approaches are now very
efficient to automatically analyse and use contextual information from data, and can be used for crack detection.
However, in the literature only few works deal with the use of deep learning for the crack detection in FST. Indeed
obtaining a large amount of data from FST examinations can be expensive and time-consuming. We propose
here to build a generic, open-access dataset of laser thermography for defect detection. This database can be used
by the community to develop new crack detection methods that can be benchmarked on the same database, as
well as for pretraining networks for similar application tasks. We also present results of state of the art detection
networks trained with the proposed database. These models give a basis for future works. Dataset, called FLYD
(FLYing spot thermography Dataset), will be available in : https://github.com/kevinhelvig/FLYD/.
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1. INTRODUCTION

Review of literature. In order to inspect metallic aeronautical parts, FST can be used to provide local data for
a precise detection and characterization of defects like surface cracks. The method is tolerant of low non-flatness
of tested surface. This examination technique was originally developed for cracks detection in military aircraft
parts in the end of the 1960s’ [1]. In [2], Krapez made key theoretical work on this technique, studying the
impact of experiment settings on crack detection accuracy. Many works have highlighted the interest of this
technique in non-destructive testing, like for blade crack detection [3]. Regarding laser thermography, to the
best of our knowledge, there are only few papers using deep learning for crack detection [4] and no open-access
database in FST are available yet. Indeed, such FST experiment, requires expertise in thermal and laser fields,
and expensive devices like infrared camera or power lasers. It also needs to conduct a substancial number of test
with a large diversity of settings, which is time-consuming.
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Figure 1: (a) Left: reconstructed backward scan through defect. Right: Result of a Laplacian filter applied
on the forward-backward scan difference [2]. (b) Reconstructed parallel thermal scan in defect region, with the
Laplacian filtered image associated. All the images come from sample 4.




Krapez method is based on a ”double pass” acquisition, i.e on the substraction between backward and forward
scans crossing a crack, in order to attenuates edges and material heterogeneities. Crack is then detected using a
high frequency filter, such as a Laplacian filter. However this method requires a time-consuming and hand-made
adjustment of backward and forward thermal images, which is an issue for automation. Instead we propose to
work in a ”single pass” mode, performing only single scans. Heat source also scans parallel to the defect, to follow
its penetration through the material. Difference between both Krapez and the proposed method are illustrated
in Figure 1. Scans are converted into reconstructed thermal images which are normalized means of each frame
of a recording. With the proposed ”single pass” method, the data acquisition process is more simple, however
the processing is then challenging, because crack has to be distinguised from edges and surface heterogeneities.
Deep learning is a possible solution to this issue, able to learn contextual informations to perform detection.
However with this technique large databases are necessary to train detection networks.

Contributions. The major contribution here is the gathering of amounts of data using an experimental set-
up following the proposed single-pass FST approach. The dataset, named FLYD can be used to develop machine
learning and deep learning approaches. The database contains raw-thermal recordings in ”single pass” and a few
”double-pass” scans Data are annotated to be used for binary classification between damaged and undamaged
thermal images. A first benchmark for the classification task is proposed on the reconstructed single-pass thermal
scans, testing various classic and state-of-the-art neural architectures.

2. DATASET: BENCH, SAMPLES AND DATA

This section describes the bench used for experimental data production and samples examined. Then we describe
the proposed dataset for the binary classification task. This dataset is named FLYD-C (FLYD-Classification).

2.1 Flying-spot thermography bench

The FST bench of ONERA is illustrated in Figure 2. It uses a laser heat source with apower set to 2 W.
Wavelength is 532 nm. A dichroic filter is added to reflect laser spot on the examined structure, and to allow
IR to get to the MW-IR camera, sensitive between 3 and 5 pm. This wavelength band gives the possibility to
study elevations of observed temperature of 10 degrees maximum, as induced by our heat source. The acquisition
frequency is 100Hz, maximizing the number of frames collected compared to thermal specifications. The laser
spot-size is chosen between two values: approximately 0.5 mm and 1.5 mm. The thermal spot covers a variable
distance during a scan, and the scan velocity varies between two values: 0.5 mm/s and 1.5 mm/s.
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Figure 2: Illustration of the FST bench of ONERA.

2.2 Samples

The examined samples are ten metallic test specimens that were previously submitted to tensile test or fatigue
stress test. Each of them presents a crack of various lengths, various openings or various orientations. Table 1
shows estimated crack length of each sample. It highlights the variability of length in our data amount. Crack
opening varies also a lot between each sample: cracks of 4 to 6 and 9, 10, are easily distinguishable through eyes.



Defects of specimens 1, 3 and 8 are more difficult to see, while 2 and 7 are barely invisible through the naked
eyes. A metallic specimen presenting a lare failure pattern was also examined and numbered sample 11: it gives
examples without defects for our dataset. Each corner of this sample is scanned and named 11A to 11D.

Sample 11213 41|56 71819 |10
Crack length estimation [mm] | 6 | 8 | 7|13 [ 9| 15 | 11 | 8 | 17 | 23

Table 1: Samples with associated crack length.

Figure 3 illustrates the scanning protocol followed to perform data acquisition. Variations of velocity are
included to increase the amounts of data and thermal properties presented in our dataset. The scan length
varies, depending on starting position: scans A and C are 5 mm scans. Scans B are 8 mm scans. Scans D are 12
mm. Samples data are split between train-set and test-set in order to balance crack length in both set. Hence,
samples 1 to 5, 8, 9, 10, and 11A, 11B, 11C give train data, while 6, 7 and 11D give test data.
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Figure 3: Experimental protocol followed in order to gather thermal recordings Same starting positions (given
at right) have been applied for both defect and no-defect regions.

Figure 4 shows a visible image of sample 2, which presents a challenging defect which is barely invisible
without optical means, and the associated reconstructed thermal scan. The relatively important penetration
of the defect into core material is easy to distinguish in the IR spectrum. It promotes the interest of thermal
techniques to proceed to fast surface examinations, in order to reduce false positives and missed detections during
examination.
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Figure 4: (a) The visible spectrum acquisition of the defect region (sample 2). (b) Reconstructed thermal scan
in defect region (sample 2). The crack is distinguishable in the IR spectrum.

2.3 Datasets: description

An amount of 1800 thermal scans is obtained by FST examination and converted into reconstructed thermal
images. For binary classification images are labelled between uncracked and cracked classes. Data amount is



refined in order to have a balanced dataset. Dataset FLYD-C is splitted between 891 thermal images for training,
and 286 for test set. An example from each class is given in Figure 5.

Image
{ Folders \
Positive Examples : Negative
crack examples

0 20 4

80 100

0 20 4@

80 100

x[ﬁ;x] X[GI;X]
Figure 5: Examples of positive and negative examples from the classification dataset.

3. EXPERIMENTS

In this section we present a benchmark of performance of several neural architectures for binary classification
task on our dataset. We provide in the following the training settings, metrics and architecture.

3.1 Classification task

Architectures. Several state of the art architectures for defect detection have been trained on this dataset. Our
baseline of classical machine learning is a histogram-of-oriented-gradients (HOG) filter coupled with a support
vector machine (SVM). This baseline is challenged by two convolution-based visual geometrics group (VGG)
architectures: VGG 13 and VGG 16 [5]. These two neural networks are very traditionnal in the literature.
Moreover, architectures using attention mechanism instead of convolutions are also trained and tested in our
dataset. We assumed here that self-attention, giving ability to learn to hierarchize extracted information from
different regions of thermal images, may help to detect defects by accomodating better to thermal phenomena
[6]. Typical vision transformers architectures (ViT) have also been trained, such as ViT Base and ViT Large
(respectively ViT-B and ViT-L in Table): the major difference between both is the number of attention stages,
tending to increase both performance and data starvation [7]. Traditionnal vision transformers are more sensitive
to data amounts, so we also compare performance with a recent modified and enhanced transformer architectures
giving promising performance on similar tasks: CaiT (Class attention in image transformers) and Swin (shifted
attention windows) [8; 9]. For a fair comparison between convolution-based and transformer-based architectures
in modern deep learning, a ConvNext architecture, specifically built to challenge vision transformers, is trained
and compared [10].

Method. For training ADAM optimizer has been used, with cross-entropy loss and for 200 epochs. Learning
rate begins at le-4, with scheduling [11]. For each architecture, we initialize the weights with either random
values or with pretrained values using the Imagenet database. Pytorch image models library (timm) gives access
to pretrained architectures [12]. Data are split between train and test set as explained in section 2. Data
augmentations, which are horizontal/vertical flips and random rotations, are implemented during training. We
evaluate several metrics such as accuracy, F1, precision and recall are evaluated on test-set [13]. Precision and
recall help to monitor missed detections and false alarms while F1 is a combination of both. Metrics are evaluated
on test-set, and model with best accuracy is selected.

Results. Scores obtained by selected architectures are available in Table 2. The Table shows that all the
deep learning based methods give generally better performance than the baseline using SVM, even only with



a pretrained model. Pretraining of the networks using ImageNet improves performance for a large majority of
architectures, and especially for transformers architectures. Attention-based architectures seem to outperform the
majority of convolution-based networks on our task, especially with pretrained models. However the ConvNext
architecture is also close to transformers performance, mitigating this conclusion.

‘ Architecture ‘ Init. weights ‘ Test-accuracy ‘ F1 ‘ Precision ‘ Recall ‘
| Baseline: HOG+SVM | - \ 79.1 | 079 | 078 | 0.79 |
Random Init. 83.9 0.840 0.910 0.781
VGG13 Imagenet Init. 90.2 0.902 0.985 0.832
Random Init. 75.5 0.713 0.977 0.561
VGG16 Imagenet Init. 81.1 0.795 0.963 0.677
Random Init. - - - -
ConvNext Imagenet Init. 98.6 0.990 0.987 0.994
Random Init. 86.7 0.881 0.850 0.916
ViT-B Imagenet Init. 98.6 0.987 0.975 0.999
Random Init. 84.3 0.862 0.819 0.910
ViT-L Imagenet Init. 99.0 0.990 0.981 1.00
Random Init. - - - -
Swin Imagenet Init. 98.9 0.990 0.987 0.993
Random Init. - - - -
CaiT Imagenet Init. 98.9 0.990 0.981 0.999

Table 2: Performance benchmark for the binary classification dataset.

4. FUTURE DATASET EXTENSIONS

Detection and segmentation tasks. In further works, our aim is to enrich our dataset with label for a
detection and localisation task. This instance of our dataset will be called FLYD-D. Thermal images will be
annotated using Labelstudio software to add ground-truth bounding boxes. It would be interesting to annotate
images in order to locate two objects: trajectory of heat source trajectory and crack. Labels for heat source
trajectory may be useful to develop deconvolution methods to identify and erase heat source directly from scan
using learned approaches or not. Annotation format chosen will be MS-COCO 2017 [14].

It could also be interesting to provide a dataset for a segmentation task. To do so, defect will be thresholded
using Otsu segmentation in a region close to the defect, on each images. Segmentation instance of our dataset
will be named FLYD-S. Figure 6 shows an example of both tasks with associated annotations.
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Figure 6: (a) Detection and location task example: bounding boxes are displayed for heat source trajectory and
defect. (b) At left: reconstructed thermal scan. At right: Reconstructed thermal scan with manual segmentation
of crack in yellow.



Several state of the art detection and localisation architectures could be used on our dataset, such as a Faster-
RCNN [15] as a baseline and the recent YOLO v5 architecture [16]. Deformable-DETR architecture could also
be a challenger from transformers applied for detection task [17].

Adding data with more various FST settings and samples thermal properties. In our dataset the
laser power is fixed, meaning that the signal to noise ratio of the data doesn’t vary much in the dataset. It could
be interesting to add thermal images with various various laser powers. It might help to make neural architectures
more robusts to this parameter. Note that influence of experimental settings on thermal response of FST has
been proposed in our preliminary study for different samples[18]. We will provide also data using ”double-pass”
examination procedure to provide quantitative comparison of crack detection between this approach and the
proposed ”single pass” approach. Finally, our dataset will be continously enriched by annotating samples with
more diverse thermal properties, giving the possibility to study their influence on the crack detection performance.

5. CONCLUSION

This paper presents FLYD, a dataset for crack detection with laser infrared thermography, in single-pass exami-
nation mode. We provide a first benchmark to compare different machine learning and deep learning approaches
on FLYD-C classification subset. Our tests illustrate that attention mechanism is relevant for active IR image
processing. This publicly available dataset will hopefully provide a first basis for pretraining of neural architec-
tures for similar tasks, such as other thermal examination techniques based on the use of a local heat source. This
dataset will be continously improved with additionnal thermal images with more various experimental settings
of the FST bench, samples with various thermal properties, as well as thermal images in the more tradition-
nal double-pass mode. Annotations for detection-location and segmentation tasks will also be added in further
works.
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