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Abstract In the early visual system, corticothalamic feedback projections greatly outnumber11

thalamocortical feedforward projections. Extensive experimental and modeling work has been12

devoted to the functional impact of the feedforward pathway, but the role of its denser feedback13

counterpart remains elusive. Here, we propose a novel unifying framework where thalamic14

recurrent interactions and corticothalamic feedback act in a closed-loop fashion to attune15

multiple stimulus representations. At each position of the visual field, the loop puts into16

competition local representations of the stimulus in thalamus and cortex through direct17

excitation of narrow topologically-aligned portions of the thalamus, accompanied with18

peri-geniculate nucleus mediated broad inhibition suppressing the topological surround. We19

built a detailed conductance-based spiking model incorporating retinal input, lateral geniculate20

nucleus, peri-geniculate nucleus, primary visual cortex, and all the relevant intra-areal and21

feedback pathways. For the first time we perform comparative analyses between model22

configurations with completely or locally inactivated cortico-thalamic feedback, as in the23

experimental preparations. The model mechanistically explains (i) the existence of intra-thalamic24

surround suppression, (ii) the sensitivity of thalamic neurons to orientation tuning, (iii) the25

cortex-dependent center-surround opponency in thalamic cells, (iv) the cortical increase of size26

and orientation selectivity, (v) the cortically enhanced competition between cross-oriented27

domains within the hypercolumn, and (vi) the selective suppression of cortical functional28

connectivity. Our results integrate decades of experimental and theoretical research, supporting29

the hypothesis that cortico-thalamic loop exerts competitive influence between neighboring30

regions in the thalamus and cortex, complementing the lateral intra-V1 interactions in31

center-surround contextual modulation.32

33

Introduction34

The classic framework to understand visual cortical function has relied dominantly on the feedfor-35

ward thalamo-cortical drive (Alonso et al., 1996; Ferster and Miller, 2000; Carandini et al., 2005)36

and its modulation by local and distal cortico-cortical interactions (Hubel and Wiesel, 1965; Sillito37

et al., 1980; Monier et al., 2008; Fournier et al., 2014). This view neglects the many functional ob-38

servations that indicate significant participation of intrathalamic (Usrey and Alitto, 2015; Ghodrati39
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et al., 2017) and cortico-thalamic feedback influences in cortical computations (Tsumoto and Suda,40

1980; Sherman and Koch, 1986; Wörgötter et al., 1998; Alitto and Usrey, 2008; Briggs and Usrey,41

2007; Basso et al., 2005). "To adopt this attitude, however, indicates a failure to rise to the challenge of42

defining the critical questions to ask of the thalamus" (Jones, 1985, p. 820).43

Here we hypothesize that the recurrent interactions within the thalamus and the feedback loop44

between the cortex and thalamus are indispensable for understanding the mechanism through45

which stimulus representations are refined globally across the early visual system. These loops46

contribute to emerging properties in both thalamic and cortical responses and are instrumental to47

the interactions operating across the cortical retinotopic map. In particular, the cortico-thalamic48

loop can put into competition cortical encoding of stimuli at nearby retinotopic visual field locations49

through a ubiquitous connectivity motif of narrow excitation and broad inhibition. With direct50

excitation from V1 to LGN, cortical encoding of the visual stimulus at each retinotopic position51

projects its own attuned selectivity back to the thalamus (Jones and Sillito, 1994; Alonso et al., 1996;52

Andolina et al., 2007; Bijanzadeh et al., 2018). With indirect - comparatively broader - inhibition53

mediated by the thalamic reticular nucleus, cortical stimulus encoding at each retinotopic position54

suppresses its topological surround (Tsumoto et al., 1978; Funke and Eysel, 1998; Sillito and Jones,55

2002; Born et al., 2021).56

To test this hypothesis, we have built a detailed conductance-based spiking network model57

incorporating all the key elements of the higher-mammalian cortico-thalamic loop. Crucially, the58

model takes into account the peri-geniculate nucleus (PGN) - a major source of broad thalamic59

inhibition (Jones, 1985; Lam and Sherman, 2005) - previously neglected in models of the cortico-60

thalamic loop (Bonin et al., 2005; Einevoll and Plesser, 2012; Born et al., 2021). In combination with61

the inclusion of experimentally established direct narrow cortico-thalamic excitation, wemodel the62

narrow-excitation/broader-inhibition motif of intra-thalamic and corticothalamic connectivity. To63

the thalamo-cortico model, we determine a minimal set of parameters that reproduces simultane-64

ously a broad range of known functional properties of cortical and thalamic neurons undermultiple65

stimulation conditions. With this set of parameters fixed, we then proceed to study how a range of66

experimental findings can be underpinned by the cortico-thalamic loop. For this purpose, we per-67

form a comparative analysis across multiple spiking model configurations that mimic previously68

reported experimental inactivation conditions. We compare full model of the early visual system -69

an analog to intact brain condition - with two partially deafferented model configurations mimick-70

ing experimental preparations: (a) “local cortical feedback inactivation” configuration, where the71

cortical feedback was modulated by cortical current injection, and (b) “no cortical feedback” config-72

uration, where the cortical feedback was completely absent.73

This is the first model to reproduce a range of phenomena that previously lacked mechanistic74

explanation, including: the origin of extra-classical suppression in LGN independent of the cortex75

(Cleland et al., 1983; Alitto and Usrey, 2008), the bias for stimulus orientation in LGN (Daniels et al.,76

1977; Creutzfeldt and Nothdurft, 1978; Vidyasagar and Urbas, 1982), the cortical enhancement of77

center-surround opponency in LGN (Jones et al., 2012). Our model also makes a range of testable78

predictions, including: (i) the role of the cortico thalamic loop in the enhancement of cortical se-79

lectivity for stimulus size and orientation, (ii) orientation-dependent and lateral competition within80

the hypercolumn, and (iii) stimulus size dependent modulation of center-surround effective inter-81

actions.82

Overall this study demonstrates the importance of cortico-thalamic loop for shaping the evoked83

activity in V1. In contrast to the feed-forward and cortex-centric view currently dominating in neu-84

roscience of vision, we show that a broad range of both thalamic and cortical functional properties85

can be substantially re-shaped by the cortico-thalamic loop, and hence we advocate for the neces-86

sity to rethink the encoding of stimulus in the early visual system in terms of a dynamic recurrent87

action concerted between the cortex and the thalamus.88
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Results89

We have built a conductance-based spiking model of the cat cortico-geniculate loop. The model90

was constrained by experimentally determined connectivity statistics, in-vitro and in-vivo single-91

cell electrophysiological properties, and functional measures of the evoked firing statistics in the92

intact and lesioned early visual system of the adult cat (Figure 1, see Table 1 in theMethods section93

for the full list of model parameters and associated references).94

We tuned the model through an iterative workflow (see Methods) to match, qualitatively and95

quantitatively, the experimentally measured tuning of V1 firing rates to five features (contrast, spa-96

tial and temporal frequency, orientation, size) characterizing the test visual input (here, a full-field97

sinusoidal drifting grating), while restricting the free parameters within bounds outlined by exist-98

ing experimental data. Through this iterative procedure, we found a single parameter set that99

satisfied all the available experimental constraints (Figure 2, and supplementary figures 1 and 2).100

Thenceforth, we no longer modified the optimized parameter set.101

We then proceeded to dissect the functional impact of corticothalamic feedback by compar-102

ing cortical and thalamic responses to the different sets of stimuli, between the full closed-loop103

configuration (Figure 1b), against the open loop and altered feedback configurations (Figure 1c, d).104

These model configurations correspond to the majority of experimental preparations utilized in105

studies of the cortico-thalamic loop. In the following, we organize the results around the classical106

view of the two integration loci for the cortico-thalamic-loop: the thalamic and cortical viewpoints.107

However, we will remind the reader of the full integration of this system by making punctual links108

between figures from one viewpoint to the other.109

The Thalamic viewpoint110

Two debated questions in the experimental literature – (a) the origin of LGN extra-classical sur-111

round suppression, and (b) the origin of LGN orientation bias – offer the opportunity to distinguish112

the functional role of corticothalamic feedback from thalamic selectivity supported by the input113

from the retina.114

Cortical feedback enhances thalamic selectivity for stimulus size115

In the early visual pathway, neural responses generally vary with the size of a contrast-defined116

stimulus. For small sizes, the response increases as excitation is dominant. For stimuli extend-117

ing beyond the classical receptive field, responses saturate and then decrease because of gradual118

recruitment of surround inhibition. Such surround suppression has been also observed in LGN119

neurons (Cleland et al., 1983). The origin of this effect is still a matter of debate. When the pri-120

mary visual cortex feedback is disabled, the surround suppression in LGN principal cells declines121

in comparison to the intact condition but is not fully eliminated (Murphy and Sillito, 1987; Jones122

et al., 2000; De Labra et al., 2007; Alitto and Usrey, 2008; Usrey and Alitto, 2015). In our model, we123

found that the corticothalamic feedback enhances an already existing selectivity for stimulus sizes124

that originates in the narrow projections from the LGN to its surrounding peri-geniculate nucleus125

(PGN), reciprocated by broader inhibitory projections from PGN to LGN.126

Specifically, in our virtual experiments, we stimulated the different model configurations with127

circular patches of drifting gratings of varying radii (see Methods), and we recorded membrane128

potentials, spikes, and input conductances of virtual LGN and PGN cells. In the absence of any129

cortical feedback, the modeled thalamus already exhibited extra-classical surround suppression130

of LGN responses (Figure 3a). The full model exhibited a significant increase in mean response131

at small sizes (+16.1%, Welch t-test, p<0.001), with a significant decrease in mean response for132

large sizes (-18.3%, Welch t-test, p<0.001). This results in a significant reduction of the average133

suppression index between full and feedforward-only configurations (-43.3%, from 0.29±0.01 to134

0.16±0.01, Welch t-test, p<0.001).135

The presence of surround suppression even in the absence of cortical feedback exhibited by the136

feedforward-only model configuration, and its reduction of suppression index when compared to137
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Figure 1. Model of the early visual system. (a) Model components with spatial and functional connectivity.From the left: Retina is modeled as a layer of phenomenological X retinal ganglion cells (RGC) of the twofunctional subgroups with center-surround opponency (ON-center, white inner disk, OFF-center, dark innerdisk). Each RGC excites (red arrow 1) one LGN cell determining its receptive field. Both ON- and OFF-centerLGN cells excite (red arrow 2) PGN cells (blue filled circles) and, in return, PGN cells inhibit (blue arrow 2) bothON-and OFF-center LGN cells. PGN cells also inhibit each other (blue arrows 3). In the primary visual cortex(V1), the afferent connections of excitatory (red circles) and inhibitory (blue circles) cells are formed bysampling connections from a Gabor probability distribution centered at the retinotopic position of the givencortical neuron and overlaid onto the sheets of ON- and OFF-center LGN cells (red cone and arrow 4). Notethat, in reality, LGN thalamocortical connections make collaterals into PGN, but for clarity we separated theminto 2, 3, and 4. Positive Gabor subfields are overlaid on ON-center and negative on OFF-center sheets. V1excitatory-to-inhibitory and inhibitory-to-excitatory connections (5) implement a push-pull connectivity(Troyer et al. 1998). The slow recruitment of lateral connections incorporates distance-dependent delays (6).Cortical feedback excitatory connections to the thalamus (red arrow) are formed by sampling connectionsfrom Gaussian probability distributions overlaid on PGN (7) and LGN (8) populations (see Methods). (b-d)Model configurations mimicking experimental preparations. (b) Full-model configuration, where allfeedforward (purple) and feedback (green) pathways are present. (c) Variable cortical feedback configuration,where the cortical feedback was modulated by cortical current injection. (d) Feedforward-only configuration,where the cortical feedback was absent.
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Figure 2. Experimental Data-driven constraints and optimized model fits. To tune our model, normalizedtrial-averaged firing rates from neurons virtually recorded in the closed (green curves) and open (purplecurves) loop versions of our model were iteratively compared with closed and open loop experimental data,for five stimulus features variations: contrast (column a), spatial (b) and temporal (c) frequency, size (d), andorientation (e). Each row details a given integration stage in the early visual system (from top to bottom rows:RGC, LGN, PGN, V1). When available, experimental population averages (empty squares and circles with errorbars) were used, otherwise, multiple single-cell recordings (various filled symbols) were used. The originalfiring rates are reported on the top of the vertical axis, using the same color code. The number of recordedmodel cells is reported in the lower right of column a (green), and, when available from experimental studies,in the other plots (black). When available, experimental data having multiple stimulus feature variations in thesame study were used over data from single feature studies. We resorted to macaque data when data for catwas unavailable (see the stimuli section of Methods for experimental data sources).
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Figure 3. Cortical feedback increases thalamic response selectivity for sizes. (a) Populationtrial-averaged size tuning curves (shaded SEM) for virtual neurons, recorded in LGN (n=243, green) and PGN(n=57, purple), respectively in the feedforward-only model configuration (light dashed lines and shades), andin the full model configuration (dark solid lines and shades). Note, in the full model, the shift in the preferredstimulus size for LGN RFs, together with a significantly lower plateau. (b) Normalized count offeedforward-only LGN and PGN active cells as a function of stimulus size. PGN cells require larger sizes to berecruited. (c) Trial-averaged size tuning of mean excitatory (red) and inhibitory (blue) conductances in theLGN. In the feedforward-only model configuration (dashed), the LGN was dominated by excitatoryconductance. The inhibitory conductance increased beyond 0.48° stimulus radius, corresponding to the PGNincrease in excitatory inputs from the LGN. In the full model configuration (solid), the LGN was dominated byinhibitory conductance. (d) Excitatory-to-inhibitory balance in the LGN. In the feedforward-only modelconfiguration (dashed), the LGN conductance ratio is dominated by excitation and becomes balanced only atlarge sizes. In the full model configuration (solid), it is overall more balanced and dominated by inhibition.
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the full model, are consistent with in-vivo experimental studies. Murphy and Sillito (1987) recorded138

LGN X-type cells from cats with either intact or ablated primary cortical areas and found a signifi-139

cant reduction (-35.5%) of the average suppression index between control and ablated cortex con-140

ditions (from 0.71±0.02 to 0.43±0.02, t-test, p<0.001). Andolina et al. (2013) reported a significant141

reduction of mean LGN responses for drifting grating stimuli of varying size (-20.9%, t-test p=0.017)142

when applying the GABA promoter muscimol over cat visual cortical areas. For the same type of143

stimulus, but without manipulation of the cortex, Usrey and Alitto (2015) found a suppression in-144

dex of 0.43±0.02 in LGN cells.145

We next proceeded to dissect the underlying mechanisms of extra-classical surround suppres-146

sion. In the feedforward-only model configuration, the percentage of LGN and PGN cells progres-147

sively recruited with the increase of stimulus size showed two different activation thresholds (Fig-148

ure 3b). For small stimuli (below 0.5 deg), the percentage of LGN cells firing above ongoing activity149

followed the stimulus size, the number of recruited LGN cells remained below the spatial summa-150

tion threshold of PGN cells, and, consequently, no retroactive inhibition from PGN was induced. In151

contrast, large stimuli (above 0.5 deg) recruited enough LGN cells to surpass the PGN activation152

threshold, and thus PGN began providing recurrent inhibition. The growth rate of PGN activity153

with respect to stimulus size was steeper (11.1 growth rate) than that of LGN. This means that for154

sufficiently large stimuli, PGN inhibition overtakes the additional stimulus size induced excitation155

in LGN cells, augmenting the strength of size-dependent suppression.156

To get a mechanistic understanding of these results, we used our model to extract population-157

averaged input conductance tuning curves of LGN (Figure 3c). In the feedforward-only configura-158

tion, the excitatory conductance grew with the stimulus size, while inhibitory conductance started159

to grow only with larger stimuli, but then increasedmuch faster following the increase in PGNfiring.160

In contrast, in the full model configuration, inhibition was dominant and both excitation and inhi-161

bition increased concomitantly with stimulus size. To highlight the functional impact of the open162

vs. closed loop configuration on the size tuning of LGN neurons, in Figure 3d we analyzed the163

excitatory-to-inhibitory conductance balance (EICB) — the ratio of excitatory to total input conduc-164

tances ( 𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦
𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑜𝑟𝑦+𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦

), where values close to 0 represent inhibition-dominated regimes and values165

of 1 excitatory-dominated regimes. We showed that, in the feedforward-only model configuration,166

LGN cells are characterized by an excitatory-dominated regime for small sizes (EICB=0.91±0.08),167

which shifted towards inhibition at large sizes (EICB=0.62±0.12). This confirms that the inhibitory168

contribution from PGN required large-sized stimuli to be effective at inhibiting LGN response. In169

the full model, the corticothalamic feedback raises PGN inhibition, leading to a further shift toward170

inhibition (small: EICB=0.45±0.05, large: EICB=0.38±0.11).171

Cortical studies have shown that both excitatory and inhibitory conductances are size tuned in172

V1 neurons, supporting the view that inhibition-stabilization is the underlying mechanism for such173

conductance tuning (Ozeki et al., 2009). In contrast, in LGN, our simulations predict that this is not174

the case. Instead, both excitatory and inhibitory conductances increase with stimulus size, while175

the size-tuning of the spiking response is mediated through stimulus-size-dependent changes to176

excitatory vs. inhibitory balance. Our model thus predicts a different mechanism of size tuning177

generation in LGN in comparison to V1.178

These results suggest that intra-thalamic connectivity is sufficient per se to foster competition179

between spatially offset LGNneurons through the ubiquitousmechanismof short-range excitation180

and longer-range inhibition. Cortical feedback further enhances this competition. However, the181

cortex is also sensitive to other stimulus features, such as orientation, which may be projected182

onto the thalamic circuitry, as we will see in the following section.183

Cortical feedback introduces a thalamic bias for stimulus orientation184

Although orientation selectivity is considered a hallmark of thalamocortical convergence, weak sen-185

sitivity of cell responses to stimulus orientation has been reported for cat LGN cells (Daniels et al.,186

1977; Creutzfeldt and Nothdurft, 1978; Vidyasagar and Urbas, 1982; Vidyasagar et al., 2015). Corti-187
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cal feedback has been hypothesized to influence both the tuning and the distribution of orientation188

preference (Vidyasagar and Urbas, 1982; Krug et al., 2001; Sedigh-Sarvestani et al., 2017), but the189

mechanism of this latter effect remains unclear. In our model, we found that thalamic orientation190

bias is only expressed when the distribution of orientation preferences of cortical afferents to the191

thalamus is homogeneous. On the contrary, when the cortical feedback orientation preference is192

heterogeneous, no orientation preference is expressed in the thalamus.193

Simulations were run, using full-field drifting grating stimuli of varying orientations, and record-194

ingmembranepotentials, spikes, and input conductances fromvirtual LGN cells, in the feedforward-195

only and full model configurations. The predictions of our model agree with the available ex-196

perimental data based on trial-averaged LGN firing rate responses. Similar effects of cortical de-197

afferentation are found for the orientation bias and the ratio of preferred to non-preferred orien-198

tations (Figure 4a). Mean orientation bias significantly decreased (-15.7%, paired t-test, p=0.0007)199

from 1.27±0.14, in the feedforward-only configuration, compared to 1.13±0.07, in the “full” model.200

These results are in line with Vidyasagar and Urbas (1982), who tested orientation selectivity in201

cat LGN cells, but using moving bars, and reported that biases of LGN X-cells changed significantly202

between the two configurations, with a 14.5% decrease of mean orientation bias from 1.83±0.55203

to 1.74±0.62 (paired t-test, p<0.001).204

The orientation tuning of cat LGN cells in the presence of intact V1 has been tested also with205

sinusoidal drifting gratings (Naito et al., 2007; Suematsu et al., 2013; Osaki et al., 2018). All studies206

reported mean orientation selectivity indexes (OSI) — the normalized circular distance between207

stimuli and responses— for LGNX cells of 0.3 (Suematsu et al., 2013), in linewith theOSImeasured208

in the intact model (Figure 4a, right).209

Guided by the hypothesis that the local cortical orientation preference (Payne and Peters, 2002)210

could differently bias thalamic responses, we divided the virtual LGN recordings into two groups211

(Figure 4b) such that, in the corresponding cortical location, the majority of cortical cells belonged212

to the same ISO-orientation preference domain (ISO-Domain-LGN group, where the cortical ISO-213

domain had 0 degrees preference), or expressed a mixture of preferences (Pinwheel-LGN group).214

In the feedforward-only model configuration, there was no significant response preference to-215

ward any orientation in either LGN groups (Figure 4c, blue lines). However, in the “full” model216

(green lines), the two groups of thalamic cells responded differently to the orientation protocol.217

We found statistically marginal change due to cortical feedback in the Pinwheel-LGN group (Welsh218

t-test, p=0.097). In contrast, a highly significant change in orientation preference emerged (Welsh219

t-test, p=0.0071) in the ISO-Domain-LGN group (Figure 4c).220

A mechanistic explanation can be provided by comparing the excitatory and inhibitory conduc-221

tance tuning curves of the two LGN cell groups in the feedforward-only and full model configu-222

rations (Figure 4d). The corticothalamic feedback significantly raised (Welsh t-test, p=0.0001) the223

excitatory conductance of the ISO-domain-LGN group, preferentially at the orientation matching224

that of the co-registered cortical domain (by convention, 0 degrees). It also raised the inhibitory con-225

ductance preferentially for cross-oriented stimuli. Similar biases, but of much smaller magnitude,226

were present in the conductances recorded from the Pinwheel-LGN group. We hypothesize that227

this residual orientation selectivity in the Pinwheel-LGN group is due to remnant non-uniformity in228

the orientation preferences represented around a pinwheel. The excitatory-to-inhibitory conduc-229

tance balance (Figure 4e) recapitulates these orientation tuning characteristics in the ISO-domains230

vs. Pinwheel groups. In the feedforward-only model configuration, both LGN groups were char-231

acterized by a lack of impact of stimulus orientation on the E/I balance (Pinwheel-LGN: 0.48±0.1,232

Domain-LGN: 0.46±0.16; Figure 4d,e). In the full model, the corticothalamic feedback selectively233

raised inhibition only in the ISO-Domain-LGN cell group, and more so for stimulus orientations234

orthogonal to the orientation preference of the retinotopically co-registered cortical domain (EICB235

Pinwheel-LGN: 0.38±0.15, Domain-LGN: 0.21±0.1; Figure 4d,e). Overall these results demonstrate236

that the cortex can imprint orientation preference onto LGN neurons through cortico-thalamic237

feedback, but this phenomenon is dependent on the functional organization of the surrounding238
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Figure 4. Cortical feedback introduces thalamic selectivity for orientation. (a) Left: Normalizedorientation bias ratio in the full (black) and feedforward-only (gray) configurations, for (n=243) LGN cells. Left:Using drifting bars, experiments by Vidyasagar and Urbas (1982) showed a significant mean reduction oforientation bias ratio (n=94, drifting bars of 15x0.1 deg, moving at 5 deg/s). Our model also exhibited suchreduction when measured using drifting gratings. Right: Orientation selectivity indexes measured usingdrifting gratings by Naito et al. 2007 (only available for intact condition). Our full model matches the OSImeasured in cats when measured using an identical stimulus. (b) Setup of the virtual orientation tuningexperiment. Two groups of model LGN cells were selected based on the orientation preference of theircortical feedback afferent inputs (1: from a cortical pinwheel, and 2: from a “0 degree” cortical ISO-domain).(c) For the LGN group receiving input exclusively from cortical pinwheels, the trial-averaged firing orientationtuning curves (top) show no significant selectivity changes between the full (green, shaded SEM) and“feedforward-only” model (purple) configurations. For the LGN group receiving selective inputs from 0degrees-oriented ISO-preference cortical domains, the trial-averaged firing orientation tuning curves (top)showed selectivity in the full model (green), significantly different from the nonselective units recorded in thefeedforward-only model configuration (purple). (d) The trial-averaged synaptic conductance tuning curves forboth group 1 and 2 (dashed) confirm the absence of selectivity in the feedforward-only model configuration.The conductance tuning curves of the full model show tuned conductances for both groups. (e)Excitatory-to-inhibitory balance. In the feedforward-only model configuration (dashed), the LGN conductanceinput ratio is balanced for both groups. In the full model configuration (green), only for the Domain-LGNgroup, global input conductance is inhibitory dominated, becoming more balanced only when integrating theorientation-biased cortical input.
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area of retinotopically co-registered cortex.239

Cortical feedback enhances center-surround opponency in LGN cells240

The experimental studies and our modeling presented in the previous two sections hint at the241

possibility that the functional influence of the corticofugal pathway onto its thalamic target could242

depend on the spatial relationship between thalamic and cortical receptive fields (RFs). In fact, the243

seminal work by Tsumoto et al. (1978) showed that spatial overlap between the RFs of V1 cells244

and their target LGN cells determined the sign of the corticothalamic modulatory effect on LGN245

responses. Later, Jones et al. (2012) recorded LGN cell responses to patches of drifting sinusoidal246

gratings of varying diameters, while reversibly inactivating local regions of V1, whose RFs were ei-247

ther overlapping or non-overlappingwith those of the recorded LGN cells. They reported enhanced248

facilitation for overlapping LGN-V1 RFs, together with enhanced suppression for non-overlapping249

LGN-V1 RFs. However, the mechanism underlying such opponency remains unclear.250

The constraints outlined by anatomical and functional studies of both intra-thalamic and cor-251

ticothalamic connectivity, which we introduced in our model, imply the spatial impact of the disy-252

naptic inhibitory pathway combining V1→PGN→LGN was broader than the direct monosynaptic253

excitation of V1→LGN connections. We, therefore, hypothesized that a stimulus that engages over-254

lapping cortical and thalamic receptive fieldswill induce a corticothalamic enhancement of the LGN255

center response through the direct excitatory pathway, as well as a concomitant enhancement of256

the suppressive surround through the broader indirect inhibitory pathway. We tested this hypoth-257

esis by replicating the experiments of Jones et al. (2012) in our simulations and found that indeed258

the corticothalamic feedback enhances the effects of intra-thalamic center-surround opponency,259

demonstrating that the specific anatomical parameters of the V1→PGN→LGN can explain experi-260

mental data of Jones et al. (2012).261

We stimulated the model with circular patches of drifting gratings of varying radius and we262

inactivated spatially registered cortical excitatory cells (Figure 5a, b; see “variable-cortical-feedback”263

configuration, Figure 1c). Pairs of cortical and thalamic neurons were grouped according to the264

distance between their RFs center in two categories: overlapping—when cortical RF subtended an265

area of visual space containing the center of the recorded LGN cell (Figure 5a), and non-overlapping266

— when the cortical RF subtended area of visual space near but offset from that sampled by the267

recorded LGN cell (Figure 5b).268

Preferred stimulus size was defined as the grating patch size eliciting maximal response in the269

given LGN cell (peak of the size tuning-curve) recorded in the intact (control) condition. We then270

measured the percentage change of the peak response of LGN neurons (n=45) during cortical in-271

activation. The response changes were averaged for three grating patch size ranges: (i) smaller-272

than-preferred stimulus sizes, (ii) preferred stimulus size, and (iii) larger-than-preferred stimulus273

sizes, When we inactivated the overlapping cortical group (Figure 5c), the recorded LGN responses274

showed a significant decrease for less-than-preferred sizes (-29.3%, empty bars; Wilcoxon pair275

test, p=0.001), together with smaller decreases for preferred (-16.7%) and for larger-than-preferred276

sizes (-9.1%). In contrast, inactivation of the non-overlapping cortical group lead to a significant in-277

crease in response (+26.5%) for larger-than-preferred sizes (Figure 5d; Wilcoxonmatched pair test,278

p=0.002), as well as smaller but positive changes for preferred (+13.2%) and smaller-than-preferred279

sizes (+2.4%).280

Model results are in qualitative agreement with the reference experimental study by Jones281

et al. (2012). In their work, the local inactivation of cortical cells having RF centers in overlap with282

recorded LGN RF centers resulted in a significant decrease of responses in those LGN neurons283

(-45.8%, Figure 5c, filled bar) below control levels for less-than-preferred sizes (Wilcoxon pair test,284

p=0.003). We found a smaller but statistically significant decrease for preferred and a statistically285

non-significant decrease for larger-than-preferred sized stimuli. In the work by Jones et al. (2012),286

local inactivation of cortical cells having RFs non-overlapping with recorded LGN ones resulted in287

a significant increase (+46.3%, Figure 5d, filled bars) above control levels in larger-than-preferred288
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Figure 5. Cortical feedback enhances thalamic center-surround opponency. (a,b) Setup of the virtualexperiment to study the dependence of size tuned LGN responses on the degree of retinotopic overlap withcortical receptive fields. As in Jones et al. 2012, cortical locations (red circles, ∼600 𝜇m apart) were chosensuch that in one condition they were retinotopically overlapping (a, dashed black line) the RFs of recordedLGN cells (dashed circle), while in the second condition they were non-overlapping with (b, still in proximity to)the recorded LGN RFs. The distance between overlapping and non-overlapping locations was chosen suchthat the effective corticothalamic direct excitation (red cone) was flanked by a disynaptic indirect inhibition(blue annulus). The overlapping cortical location was inactivated in a, c, e, while the non-overlapping corticallocation was inactivated in b, d, f (black cross over the corresponding red circle). (c,d) Population summaryhistogram of the mean percentage change in LGN cell responses between intact and locally-inactivatedmodel cortex (empty bars), vs. Jones et al. 2012 data (filled bars). The signs of the changes in the model wereopposite for the overlapping and non-overlapping conditions (negative in c and positive in d) and theirmagnitude decreased (c) or increased (d) with the grating stimulus radius (abscissa in degrees), in agreementwith the experimental data. (e) Excitatory-to-Inhibitory conductance balance (EICB) is reduced for theoverlapping inactivation (full model in green, local cortical inactivation in purple). (Inset) Trial-averaged meanexcitatory (red) and inhibitory (blue) synaptic conductance tuning curves of model LGN cells. When theoverlapping cortical location is inactivated, only the excitatory conductance is reduced appreciably (dashed),whereas no or minimal change is observed in the inhibitory conductance. (f) The EICB is increased only atlarge sizes during non-overlapping inactivation. (Inset) When a non-overlapping cortical site is inactivated, theinhibitory conductance is lower (dashed) while the excitatory conductance profile is unchanged.
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sizes (Wilcoxon pair test, p=0.003), together with a smaller increase for preferred and for smaller-289

than-preferred sizes. The smaller magnitude of changes due to cortical inactivation observed in290

themodel relative to Jones et al. (2012) might indicate that the feedback connection density and/or291

synaptic weights, both poorly constrained by existing literature, are under-estimated in the model.292

We could dissect ourmodel to gain amechanistic understanding of the experimental results for293

the overlapping and non-overlapping configurations. We hypothesized that the connectivity con-294

straints of our model would result in the cortical enhancements of thalamic center-surround op-295

ponency. This hypothesis was supported by the size-tuning curves of the excitatory and inhibitory296

input conductances. Our simulations showed indeed that, when suppressing cortical activation in297

regions in register with the activated thalamic receptive fields (Figure 5e), the withdrawal of cortical298

feedback excitation led to a reduced thalamic response at small stimulus sizes, while at large sizes299

the inhibition was still dominant (in line with Figure 3). In contrast, in non-overlapping receptive300

field regions, suppression of cortical feedback (Figure 5f) resulted in a withdrawal of indirect ad-301

ditional inhibition coming di-synaptically from the cortex, which consequently led to an enhanced302

response at large stimulus sizes, while at small sizes both the feedforward and feedback inhibitions303

were less engaged.304

Taken together, from the thalamus-centric point of view, our model shows how the corticotha-305

lamic loop could significantly contribute to the interactions of cortical visual space representations306

through their back-projection to the thalamus. In particular, the feedback promotes a unified stim-307

ulus representation between cortex and thalamus over short distances: it provides excitation for308

spatially overlapping receptive fields (Figure 5ace), and it imposes a retroaction of the cortical ori-309

entation preference bias onto the thalamus (Figure 4cde). In contrast, over medium distances,310

the feedback promotes competition between different stimulus representations: the feedback311

provides suppression for spatially non-overlapping receptive fields (Figure 5bdf), increasing the312

intrathalamic surround suppression (Figure 3).313

The Cortical viewpoint314

In the previous sections, we have shown how cortical activity exerts influence over the thalamus315

through the cortico-thalamic feedback connectivity, and hence recurrently reshapes its own input,316

and consequently its activity. We will now explore the hypothesis that the thalamo-cortical loop317

allows the cortex to up- or down-regulate its own functional selectivity in a stimulus-dependent318

fashion.319

The loop enhances cortical selectivity to stimulus size and orientation320

A series of electrophysiology studies showed that the activity of LGNneurons that further project to321

V1 is tuned to the size of the stimulus with larger than preferred stimuli suppressing the response322

of the neurons (Nolt et al., 2004; Sceniak et al., 2006), even in the absence of cortical input. The323

exact mechanisms of such surround suppression in LGN remain unclear, and no computational324

models offering mechanistic explanations were proposed yet. This surround suppression in LGN325

is enhanced further in the cortex (cat: Hubel and Wiesel, 1965; Sillito et al., 1993, monkey: Sceniak326

et al., 1999; Angelucci and Bressloff, 2006). In our model, we found that corticothalamic feedback327

enhances suppression for non-preferred stimuli both with respect to the size and orientation of328

the stimulus.329

We presented our model full-field drifting gratings varying in orientation and drifting gratings330

patches varying in size while recording cell responses from a circular region within a cortical ISO-331

preference domain, in two model configurations: “full”, and “feedforward-only” (Figure 6). In this332

latter case, the cortico-thalamic feedback connections were absent, corresponding to an in-vivo333

preparation inwhich the corticothalamic pathwaywould be inactivated (for example by inactivating334

V1 Layer 6 corticofugal neurons with muscimol, as in Jones et al. (2012), or using optogenetics,335

as in Hasse and Briggs (2017)). We found that the presence of cortico-thalamo-cortical feedback336

was associated with enhanced suppression at stimulus sizes beyond preferred, and at stimulus337
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Figure 6. The loop increases size and orientation selectivity by increasing suppression for
non-preferred stimuli. (a) Min-Max normalized trial-averaged size tuning curves for (n=32) cortical cells.Responses were more suppressed for larger-than-preferred sizes (>1.5 deg) in the full (green) compared tothe feedforward-only (purple) model configurations. (b) Normalized trial-averaged orientation tuning curvesfor cortical cells. Responses were lower for stimuli orthogonal to the preferred orientation in the full model(green) vs the feedforward-only (purple) model configurations. (c) Excitatory-to-inhibitory size conductanceratio. The closing of loop reduced the relative impact of inhibition, with E/I ratio values closer to 0.5 for the full(green) vs feedforward-only (purple) model configurations. Inset shows the corresponding trial-averagedmean excitatory (red) and inhibitory (blue) synaptic conductance size tuning curves of model V1 cells in thefull (solid) vs feedforward-only (dashed) configurations. (d) Excitatory-to-inhibitory orientation conductanceratio. Although the presence of the closed loop altered the response for orthogonal stimuli, there was only aminor change in excitatory/inhibitory balance. In the inset, trial-averaged mean excitatory (red) and inhibitory(blue) synaptic conductance orientation tuning curves of model V1 cells.
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orientations cross-oriented with the preferred one.338

In order to compare cortical responses in the two configurations, wemeasured the “feedforward-339

only” (purple) and “full” (green) trial-averaged normalized firing rates (Figure 6ab). For the size tun-340

ing protocol (Figure 6a), in the “feedforward-only” configuration the suppression index was low (SI:341

0.11±0.13), while in the “full” model, the presence of the cortico-thalamo-cortical feedback path-342

way resulted in a significantly higher values of the suppression index (SI: 0.32±0.12, Welch t-test,343

p=0.0052). For the orientation tuning protocol (Figure 6b), in the feed-forward-only configuration,344

the suppression for non-preferred stimuli was significantly lower than in the full model (-8.8%,345

Welch t-test p=0.0071).346

We explored the underlying relationship between excitatory and inhibitory synaptic conduc-347

tances through size and orientation tuning curves recorded in both model configurations by com-348

puting the excitatory-to-inhibitory (E/I) conductance balance. For the size tuning protocol (Fig-349

ure 6c), the cortico-thalamo-cortical loop shifted the conductance regime of excitatory cells from350

dominant inhibition in the “feedforward-only” configuration (0.23) to a more balanced conduc-351

tance regime in the “full” model (0.41). For the orientation tuning protocol (Figure 6d), the cortico-352

thalamic feedback shifted the conductance regime of excitatory cells towards a more balanced353

(feedforward-only: 0.29; full: 0.37). In the “feedforward-only” configuration, excitatory cells were354

dominated by inhibitory conductances (insets of Figure 6 c and d, for both types of stimulus vari-355

ation). Our “full” model results for size tuning of firing rate responses were in agreement with the356

available cat V1 data (DeAngelis et al., 1994, SI: 0.52±0.4). And the radius sizes for the tuned re-357

sponses of center and surround corresponded to the measures reported in the literature (Sillito358

et al., 1993).359

Importantly, the reduction of suppression measured for “feedforward-only” vs “full” configura-360

tionswas in agreement with the only (to our best knowledge) available cat experimental data about361

size-tuned cortical responses in the absence of cortical feedback to the thalamus, provided by Bolz362

and Gilbert (1986). They inactivated Layer 6 of cat V1 with GABA injections, while presenting stim-363

uli varying in size, and reported a reduced suppression index in Layer 4 (SI changed from 0.54 to364

0.10). However, Layer 6 is known to also be a source of direct input to Layer 4 (Douglas andMartin,365

1991), therefore their results could not be unequivocally attributed to the cortico-thalamo-cortical366

feedback loop, unlike in our model, where the only external source of input to cortical neurons367

comes from the thalamus.368

In summary, our model shows that the cortico-thalamic loop enhances suppression for non-369

preferred (both in terms of orientation preference and size) stimuli, facilitating (i) competition be-370

tween local representations of different orientations and, (ii) competition between representations371

of retinotopically proximate stimuli. These suppressive mechanisms are mediated both by local372

recurrent cortical circuitry and also long-range lateral connectivity (Kapadia et al., 2000; Stettler373

et al., 2002).374

The loop enhances competition within the hypercolumn but not in the surround375

So far we have studied the cortical response to stimulus size and orientation independently. We376

thus next proceeded to study whether the cortico-thalamic loop engages the short vs. long-range377

cortical circuits differentially andwhether these lateral interactions depend on the orientation pref-378

erence of the neurons. To do so, we extended our analysis to also include (i) cells spatially offset379

from the cortical location retinotopically aligned with the stimulus center, and (ii) cells with cross-380

oriented preference to that of the stimulus. In the previous section, we found that the cortico-381

thalamic feedback facilitates competition between the representation of nearby stimuli through382

enhanced surround suppression. Here we found that this competition is restricted to the hyper-383

column aligned with the stimulus center and the strength of these competing influences is inde-384

pendent of the orientation preference of the modulated neurons.385

We analyzed two topologically defined domains, “Center” and “Surround” (Figure 7a). The first386

domain contained cortical cells with RF centers aligned with the center of the stimulus and located387
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Figure 7. The loop increases the competition between the center and surround, but only within the
hypercolumn encoding the stimulus center. (a) cells had their RF centers in either a center domain (0.7degree radius) or a surround annulus domain (from 1.0 to 1.7 degrees). Within each domain, we consideredcells having a preferred orientation matching that of the stimulus (0 degrees; ISO group) and cells having theorthogonal preferred orientation (∼90 degrees; CROSS group). (b) Normalized tuning curves for all groups inboth domains. (Left column) Center-ISO (n=32) and Center-CROSS (n=42) mean responses reached their peakresponse around 0.3 deg radius and were more suppressed for large sizes (>1.5 deg radius) in both the “full”model (green) compared to the “feedforward-only” configuration (purple). (Right column) No significantreduction was measured for the Surround-ISO (n=561) and Surround-CROSS (n=591) cell groups. Bothreached their peak around 2.1 deg radius. (c) The orientation map contrast (ratio ISO/CROSS activities) inCenter groups is affected differently, depending on the model connectivity configuration. Thefeedforward-only configuration had significantly lower tuning contrast than the full (t-test, p=0.003). (d) In thesurround groups, the tuning contrast levels were not significantly different between the feedforward-onlyand full model configuration.
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within a circular area of 700 𝜇m radius, roughly the scale of a hypercolumn. The other domain388

contained cells with RF centers positionedwithin the surrounding annulus of the visual space (inner389

circle of 1 degree radius and outer circle of 1.8 degrees radius), and situated beyond 1000 𝜇m from390

the cortical position co-aligned with the stimulus center. Both in the center and surround domain,391

neurons were partitioned into ISO-group containing cells with orientation preference matching392

the stimulus orientation, and the CROSS-group containing cells with orthogonal preference. By393

convention, the grating orientation was set at the preferred orientation 0 degrees. In order to394

compare the responses of all groups, we reported the normalized firing rate in the “full” (green)395

and “feedforward-only” (purple) model.396

In the center, the ISO group mean responses were more suppressed for large sizes (>1.5 deg)397

in the “full” model (green) compared to the “feedforward-only” configuration (purple), as already398

shown in Figure 6. Interestingly, both neurons in the ISO and CROSS groups exhibited a similar399

increase in surround suppression in the “full” relative to the “feedforward-only” condition, in line400

with the fact that the additional surround suppression in the “full” condition ismediated by the LGN401

neurons that lack (strong) selectivity to the orientation of the stimulus. Furthermore, such change402

in surround-suppression in the model V1 was absent in the neurons recorded in the surround403

region.404

In order to quantify the competition between ISO and CROSS groups, we looked at the tuning405

of the orientation map contrast — calculated as the normalized ratio between responses of ISO406

(𝑅𝑖) and CROSS (𝑅𝑐 ) orientation preference domains (𝑅𝑖 −𝑅𝑐∕𝑅𝑖 +𝑅𝑐). We observe that the cortico-407

thalamic loop increased the orientation tuning contrast in neurons located in the center domain408

(Figure 7c), but this change was absent in neurons located in the Surround-domain (Figure 7d).409

These results showed that the cortico-thalamic loop reinforces locally the competition between410

ISO-functional domains by sharpening the apparent contrast of the orientation preference map411

within the hypercolumn retinotopically co-aligned with the RF center. This effect is however absent412

in neurons recorded in the surrounding region of the cortex, indicating that the cortico-thalamic413

loop engages only a short-range cortical circuit, in line with the limited retinotopic range of the414

feedback cortico-thalamic connection.415

The loop selectively suppresses cortical functional connectivity416

In the previous section, we found that the cortico-thalamic loop increased competitive interactions417

between ISO- and CROSS-oriented groups within a cortical hypercolumn. We then hypothesized418

that the loop could change cell-to-cell interactions in a stimulus-dependent manner, thus affecting419

cortical functional connectivity. To test this hypothesis, we characterized cortical functional con-420

nectivity as the capacity of one portion of the cortex (i.e. the Center) to alter the cell excitability421

of another portion of the cortex (i.e. the Surround), with respect to the impact locus of feedfor-422

ward stimulation. We then inspected how the loop modulates these interactions. In our model,423

we found that the cortico-thalamic loop induces suppression of the local intracortical cooperative424

facilitation of ISO- but not CROSS-oriented groups, for larger than preferred stimulus sizes, thus425

demonstrating the selective influence of the corticothalamic loop on the interactions across visual426

space.427

To characterize functional connectivity with respect to cortical location, cell stimulus feature428

preferences, and the cortico-thalamic loop, we recorded the spikes, synaptic conductances, and429

membrane potentials, from ISO- and CROSS-cell groups, in both Center and Surround locations430

(the same cell group definitions in Figure 7a of the previous section). We then performed a popula-431

tion spike-triggered average (STA) of the synthetic local field potential (sLFP). The sLFP, computed432

using membrane potential in conjunction with excitatory and inhibitory conductances, produces433

the currents measured by a virtual electrode (Destexhe et al., 1998, see Methods and supplemen-434

tary figure 3). The sLFP captures not only the balance between conductances but also their ef-435

fect relative to the state of depolarisation of the local neural population. As such, it is a measure436

of the ‘effective’ input currents driving the postsynaptic membrane potentials in the surrounding437
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Figure 8. Population spike-triggered average of sLFP amplitude size tuning curves. (a-b) Example STA ofCenter-sLFPs triggered by spikes in the Surround (a), and similarly of Surround-sLFPs triggered by spikes inthe Center (b), measured at preferred (left column) and larger-than-preferred (right column) stimulus sizes, inthe feedforward-only (top, green) and full (bottom, purple) configurations. (c-d) Size tuning curves of DII (thepeak amplitudes of sLFP STAs waveforms) for the center STA to surround spikes and surround STA to centerspikes conditions and ISO- and CROSS-oriented cell groups in the cortex (solid, respectively, c: n=38, e: n=16,d: n=31, f: n=21). Corresponding size tuning curves of firing rates are dashed, as in Figure 7. (c) Cortical DIIpeak amplitude (solid curve) of ISO-oriented cells in the Center, triggered by spikes in the Surround. In the“feedforward-only” configuration (purple), the DII is reaching its peak maximum at 0.5 deg of stimulus radius.For larger stimuli, the DII saturates. In the “full” model (green), the DII peak amplitude is overall lower, with acorresponding peak at 0.5 deg stimulus radius, but also remains significantly lower than in the “feedforward”configuration for larger stimuli. The DII tuning roughly followed the firing tuning (dashed). (d) The surroundDII response of ISO-oriented cells triggered by Center spikes follows a similar trend, with its maximum shiftedto larger (2.1 deg radius) stimuli. (e-f) The corticothalamic loop only reduces DII amplitudes forCROSS-oriented cells in both the center and surround.
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population of neurons (Destexhe et al., 1998). By averaging sections of sLFP recorded in one lo-438

cation triggered on spikes emitted by the population of neurons at another location, population-439

to-population cortical functional interactions can be measured (Eckhorn et al., 1988; Arieli et al.,440

1995; Katzner et al., 2009;Nauhaus et al., 2009; Einevoll et al., 2013; Baudot et al., 2013). Themag-441

nitude of the through of such STA of sLFP, is indicative of the strength of depolarizing interactions442

between the population. We will refer to this quantity as depolarizing interactions index (DII) in the443

following text. We computed the DII for every combination of cell groups (ISO vs CROSS, Figure 8444

c and d vs e and f; and center STA to surround spikes vs surround STA vs center spikes Figure 8 c445

and e vs d and f), in each cortical location, for each stimulus size (10 patches of drifting gratings of446

varying size, 12 trials), in the “feedforward-only” and “full” model configurations.447

The DII followed quite different trends across configurations and stimulus sizes. To facilitate448

comprehension and comparisonwith previous sections, we inverted the sign of sLFP vertical scales449

in the panels of Figure 8. Overall, there was a clear reduction in the amplitude of the DII in the450

“full”-loop model configuration relative to the “feed-forward” model configuration (Figure 8 cf). In451

both ISO-group conditions (Figure 8 c,d, green lines), the DII tuning curve for the “full”-model con-452

figuration exhibited size tuning, and the stimulus size at which the DII and firing rate size tuning453

curves reached maximum roughly coincided. In contrast, there was an absence of size tuning of454

the DII size tuning curves in both ISO-group conditions for the “feed-forward” model configuration455

(Figure 8 c,f; purple lines). Interestingly, in both CROSS-group conditions, there was a lack of size456

tuning in the DII curve for both model configurations (Figure 8 e,f).457

In summary, the cortico-thalamic loop maintained, relative to the “feed-forward” configuration,458

the facilitatory interactions between neural populations in the Center and Surround, whose func-459

tional preference matched the orientation of the stimulus, but only for stimulus sizes that were460

confined to CRF (as defined by the peak of the size tuning curve). But, the facilitating interactions461

were suppressed once stimuli started invading the surround. In contrast, for neurons whose pref-462

erence did not match the stimulus orientation, a suppression (relative to the ”feed-forward” con-463

figuration) was found irrespectively of the stimulus size. This demonstrates the potential impact464

of the cortico-thalamic loop to modulate interactions across cortical and hence visual space in a465

functionally specific and stimulus-dependent manner. We hypothesize that this behavior could466

further enhance the role of V1 in the extraction of contours under cluttered conditions.467

Taken together, from the cortex-centric point of view in Figure 6 we first showed that the loop468

increases cortical suppression for larger than preferred stimulus sizes and non-preferred stimulus469

orientations. Then, in Figure 7, we showed that this extra feedback mediated suppression facili-470

tates competition between neural populations selective to mutually orthogonal orientations, but471

these competitive effects are confinedwithin the hypercolumn. In this section, we showed that this472

additional feedback-mediated surround suppression is induced through the reduction of facilita-473

tory lateral interactions between populations of neurons in the center and surround representing474

similar stimulus orientations.475

Discussion476

The early sensory pathways integrate numerous reverberating loops between the cerebral cortex477

and thalamus (Jones, 1985). While the feedforward visual sensory pathway from LGN to V1 has478

been studied extensively, the understanding of corticothalamic feedback is limited, due to the ex-479

istence of only sparse structural data (Sherman and Koch, 1986; Basso et al., 2005), diversity of480

experimental conditions (Ghodrati et al., 2017), and lack of reproducible functional observations481

(Jones, 1985; Usrey and Alitto, 2015).482

These practical hindrances to advance our understanding of the cortico-thalamic loop are fur-483

ther exacerbated by more conceptual issues. A potential risk in the reductionist practice of dis-484

abling (e.g. pharmacologically, through lesioning, or otherwise) an inherently recurrent system at485

a specific point in the loop, is to attribute any resulting loss of function to the sole locus of the in-486

tervention without taking into account the distributed changes occurring concurrently elsewhere.487
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Such reasoning is highly problematic since the function under study can emerge through inter-488

actions between many parts of the global neural system (here the early visual system), and local489

elimination of any of these contributing components could lead to the global function disappear-490

ance. Computational models provide new probes and perturbation paradigms that can be applied491

in any possible location in the detailed virtual architecture of the system under study.492

Data-driven simulations concur to a better understanding of the emergent properties through493

the explicit construction of the recurrence built in the model itself. Indeed, in this study, we have494

applied such a computational approach to the functional dissection of the role of feedback be-495

tween V1 and LGN. Our simulations show for the first time that the cortico-thalamic loop yields496

phenomena that do not arise in LGN or V1 alone, and that the competitive interactions that are497

typically attributed to cortico-cortical communication can also arise or be further amplified through498

the cortico-thalamic loop.499

The simulations recapitulate - within a single model - experimental observations in cat visual500

system across several stimulus features and circuit manipulation protocols. The model suggests501

mechanistic scenarios by which the corticothalamic loop enhances stimulus features already rep-502

resented by the thalamic circuits (Figure 3a), while also strengthening locally functional contrast in503

the cortically encoded feature maps (Figure 4cd, Figure 5cd). The model also describes the mecha-504

nism by which the cortico-thalamo-cortical loop supports increased stimulus feature selectivity by505

increasing the relative difference between levels of activation of local neural populations represent-506

ing orthogonal stimulus orientations (Figure 6 and Figure 8). Particularly, the model indicates that507

the cortico-thalamic loopmay enhance competition between feature-selective domains coexisting508

within the same hypercolumn but not beyond (Figure 7). The model suggests also that the loop509

selectively suppresses cooperative facilitation between ISO-preference cortical domains (Figure 8).510

Several previous modeling works already explored corticothalamic feedback. Most of these511

studies focused on the involvement of the thalamocortical loop in the size-tuning of LGN and V1512

neurons. First Bonin et al. (2005) highlighted the limitations of a simple Difference-of-Gaussians513

(DoG) model to reproduce LGN responses in intact (closed-loop) preparations. They showed how514

extending the DoG model with a suppressive term, made of a feedforward cascade of linear fil-515

ters, could offer a better approximation of the early visual system. This model, while only repro-516

ducing contrast and size tuning results, still has the important benefit of being linear, without re-517

quiring any recurrence. Later, Einevoll and Plesser (2012) extended the Difference of Gaussian518

model by incorporating terms representing the corticothalamic feedback from a set of idealized519

orientation-selective cortical cells. Their detailed model reproduced the responses of LGN cells520

to several stimuli, including size-varying patches of drifting gratings, replacing the suppressive lin-521

ear filters with an idealized corticothalamic kernel. Recently, Martínez-Cañada et al. (2018) took522

a more mechanistic approach, simulating a thalamocortical spiking network with LGN relay cells523

and interneurons, and cortical cells. The network input was modeled as two DoG filter arrays of524

antagonistic center-surround (ON- and OFF-center) arrangement, as in our model. The thalamic525

afferents to the cortex were arranged in such a way as to induce phase-opponent Gabor-like ON-526

and OFF- simple cells, also in line with our model. But, in contrast to our present study, the cortical527

response was fed back to thalamic relay cells along connectivity configurations dependent on the528

cortical phase. Two feedback connectivity schemes were tested. One phase-matched scheme, in529

which ON-center simple cortical cells projected to ON-center thalamic cells (and OFF-center sim-530

ple cortical cells to OFF-center thalamic cells), and a phase-reversed scheme, in which ON-center531

simple cortical cells projected to OFF-center thalamic cells (and vice-versa). In accordance with532

the available literature, they found that a phase-reversed feedback kernel provided an increased533

center-surround antagonism in LGN responses to patch gratings. In the present study, we show534

that the assumption of such phase-specific feedback connectivity is not necessary for explaining535

the center-surround antagonism in LGN responses. This kernel-based approach was also recently536

used to explain the impact of cortical feedback on LGN representation in a mouse preparation537

(Born et al., 2021). Interestingly, in this work, a wide inhibitory feedback coupling kernel was used538
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to reproduce feedback-enhanced surround suppression and sharpening of LGN receptive fields.539

Our model incorporates previously characterized (Deleuze and Huguenard, 2006) spread of PGN540

activity, giving biological credence to the cortical-driven source of widespread inhibition to LGN,541

without the need for phase-specific cortico-thalamic connections.542

While our model offers a mechanistic explanation for several important computations taking543

place in LGN and cortex, the broader purpose of these computations remains to be elucidated.544

Here, we consider that the selectivity required to categorize visual stimuli and the flexibility to cope545

with the combinatorial explosion of possible configurations of visual features need to be faced in546

the early stages of visual processing (Barlow and Levick, 1969). Both goals can be achieved in a547

system that supports selectivity emergence through recurrent competition (Edelman, 1993), and548

flexibility through synergistic interactions (Kauffman et al., 1995). We propose that the corticotha-549

lamic loop enhances both competition and synergy, thanks to a known connectivity motif, at the550

heart of our model: focused direct excitation, surrounded by wide indirect inhibition. The crux551

here is that the interaction domain in the model is not space itself but the cortical feature pref-552

erence map. Competition is limited to the hypercolumn scale, i.e. covering in cortical space the553

representation of one point in visual space through all possible functional filters (defined here by554

the local topology of the orientation map). The synergy between stimulus representations is me-555

diated by corticothalamic direct narrow excitation, where each cortical representation projects to556

the thalamus its own attuned selectivity, to reverberate again to the cortex (Alonso et al., 1996;557

Andolina et al., 2007; Béhuret et al., 2013; Bijanzadeh et al., 2018). This reverberation compe-558

tition principle is ubiquitous and has been proposed in other sensory systems (auditory system:559

Suga et al., 1997; Suga and Ma, 2003; somatosensory system: Ghazanfar et al., 2001; Li and Ebner,560

2007; Temereanca and Simons, 2004). Similarly, the just as ubiquitous competition between stimu-561

lus representations is mediated by corticothalamic indirect broader inhibition, where each cortical562

representation suppresses its topological surround, through the thalamic reticular nucleus, source563

of thalamic inhibition (for the visual system: Tsumoto et al., 1978; Funke and Eysel, 1998; Sillito and564

Jones, 2002; see for the auditory system: Suga et al., 2000; Yan and Suga, 1996; for the somatosen-565

sory system: Lam and Sherman, 2005). The structural-functional model of the early visual system566

presented here integrates such an unprecedented breath and detail of these key anatomical and567

functional features. Hence, it constitutes a novel versatile computational toolbox for testing alter-568

native hypotheses on the function of the cortico-thalamic loop, that cannot be addressed through569

direct physiological or pharmacological lesion experiments.570

Methods and Materials571

Here we provide the description of the principles used to construct the simulated cortical and572

thalamic regions, the various connection pathways within and between these regions, and the573

cellular and synaptic properties. We also detail the experimental protocols, the procedures for the574

collection and analysis of data, and the software stack used to develop and simulate the model.575

The full code listing and parameters are available on the project page on GitHub (https://github.576

com/dguarino/T2).577

Model structure578

Our model was based on a previous model of V1 (Taylor et al., 2021; Antolík et al., 2019) that has579

been modified to focus on the thalamus and the corticothalamic feedback loop. It consists of: (i) a580

region of visual field, (ii) two retinotopically congruent regions of the dorsal thalamus, namely the581

lateral geniculate nucleus (LGN) and the peri-geniculate nucleus (PGN), and (iii) a retinotopically582

congruent region of the cat primary visual cortex (V1). Themodel covers 7x7 degrees of visual field583

within 5 degrees of eccentricity around the area centralis. This corresponds in the cat to 1.4 mm2584

of LGN and PGN tissue (Sanderson, 1971), and to a 3.5x3.5 mm patch of primary visual cortex.585

RETINA. We use a simple model of the transduction from luminance stimuli to retinal ganglion586

cell (RGC) spikes that includes a phenomenological model of RGC receptive field (as in Rodieck,587
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1965; Cai et al., 1997). This model has two space-time separable components, one for the center588

and one for the surround of the RGC receptive field (RF) response:589

𝑅𝐹 = 𝑆𝑐𝑇𝑐 − 𝑆𝑠𝑇𝑠 (1)
The spatial components was modeled as a Gaussian functions of the visual stimulus position590

(x), according to the model of Rodieck (1965):591

𝑆𝑐,𝑠(𝑥) = 𝐴𝑐,𝑠 ⋅ 𝑒
(𝑥−𝑥𝑐,𝑠 )2

𝜎2𝑐,𝑠 (2)
with 𝐴 being the amplitude of response, and 𝜎 the radius of the RF component. These parameters592

were chosen according to the literature for cat RGCs at ∼ 5 degrees of eccentricity from the area593

centralis, to be 𝜎𝑐 = 0.2𝑑𝑒𝑔, 𝜎𝑠 = 0.7𝑑𝑒𝑔 (Linsenmeier et al., 1982;Marrocco et al., 1982) and𝐴𝑐 = 1.0,594

𝐴𝑠 = 0.05 (Cai et al., 1997). The time components are modeled as sums of Gamma functions (Cai595

et al., 1997):596

𝑇𝑐,𝑠(𝑡) = 𝐾1 ⋅
[𝑐1(𝑡 − 𝑡1)]𝑛1𝑒−𝑐1(𝑡−𝑡1)

𝑛𝑛11 𝑒−𝑛1
−𝐾2 ⋅

[𝑐2(𝑡 − 𝑡2)]𝑛2𝑒−𝑐2(𝑡−𝑡2)

𝑛𝑛22 𝑒−𝑛2
(3)

where the parameters were taken from Nirenberg et al. (2010) (𝐾1 = 1.05, 𝐾2 = 0.7, 𝑐1 = 0.14, 𝑐2 =597

0.12, 𝑡1 = −6.0, 𝑡2 = −6.0, 𝑛1 = 7.0, 𝑛2 = 8.0).598

The visual transduction, for each RGC, is computed as follows. A 𝑣𝑖𝑒𝑤 of the stimulus, a set of599

luminance values pertaining to a cell RF area, is convoluted with a RF:600

𝑟(𝑡) = (𝑅𝐹 ⋅ 𝑣𝑖𝑒𝑤)[𝑡] = 𝛼1
𝜏
∑

0
𝑅𝐹 (𝑡) ⋅ 𝑣𝑖𝑒𝑤(𝑡 − 𝜏)∕𝛼2 (4)

where both RF and view are 3D arrays (2D for the space component and a third dimension for601

the time component), 𝜏 = 7𝑚𝑠 is the duration of the RF temporal component, and 𝛼1 = 380000602

and 𝛼2 = 150, are dimensionless linear luminance gain parameters. This response 𝑟(𝑡) represents603

the absolute mean luminance convolution of RF kernel and stimulus view, therefore it is unbound.604

We adopted an additional saturation term, similar to Bonin et al. 2005, to saturate the luminance605

response with a contrast response, obtained by convolving the standard deviation of the spatial606

component (here simply represented by the variable 𝑥) of the stimulus 𝑣𝑖𝑒𝑤(𝑡) with the response607

𝑧(𝑡):608

𝑧(𝑡) = (𝑟 ⋅ 𝑣𝑖𝑒𝑤)[𝑡] = 𝛽1
𝜏
∑

0
𝑟(𝑡) ⋅ 𝑠𝑡𝑑(𝑣𝑖𝑒𝑤(𝑥))∕𝛽2 (5)

where 𝛽1 = 200000 and 𝛽2 = 0.00001, are dimensionless linear contrast gain parameters. This satu-609

ration term represents an abstraction of the RGC firing rate, as if already weighted by the triadic610

dendro-dendritic contribution coming from LGN interneurons (as suggested by Sherman, 2004),611

which we did not model explicitly.612

The sum of response 𝑟(𝑡) and saturation term 𝑧(𝑡), in units of luminance (cd/m²) assuming the613

kernel values as dimensionless, is injected as a current (nA) in an Integrate-and-Fire model, to-614

gether with an amount of white noise used to mimic the response variability and average firing615

rate of RGCs (for On- and Off-center cells, see table 1). The parameters for luminance, contrast616

saturation term, and noise were chosen to match the literature available for luminance (Barlow617

and Levick, 1969) and contrast (Derrington and Lennie, 1982) of RGC responses (Rathbun et al.,618

2010) and S-potential inputs to LGN (Weyand, 2007), see supplementary figures 1 and 2.619

LATERALGENICULATE ANDPERIGENICULATENUCLEI. The lateral geniculate nucleus (LGN) of620

cats has three laminae of alternating ocularity (Sherman andGuillery, 2006, p.48). Wemodeled one621

superficial lamina A, containing X cells, further divided into X-On and X-Off cell groups according to622

their contrast phase preference (Enroth-Cugell et al., 1974). We chose to not model the Y pathway623

of cat since its cells present a non-linear spatio-temporal RF, and we chose to restrict ourselves624

to the X pathway having a linear response to stimuli (Sherman and Guillery, 2006, p.48). The total625

number of neurons in the superficial LGN lamina is approximately 450000 (Sherman and Koch,626
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1986; Budd, 2004) which, for a total area of 16 mm2 and a layer width of 500 𝜇m (Sanderson, 1971)627

gives approximately 56000 cells/mm3. Using a ratio of principal cells to interneurons in the range628

of 3:1 to 6:1 (Tömböl, 1967), and considering an estimate of approximately 45000 principal cells629

per mm3 (Sanderson, 1971), the number of LGN principal cells would lie between 7500 and 15000630

cells per mm3. In our model, we adopted the simplification of dropping the third dimension and631

each layer is two-dimensional only. Given a magnification factor of 0.2 mm2 per visual deg2, the632

amount of principal cells would be ∼9000 cells per mm2, or ∼1800 per deg2. For practical reasons633

of simulation time, we down-sampled it to 100 principal cells per deg2, with a total 12800 principal634

cells in the LGN, divided into two 6400 sets for On- and Off-center cells. We applied the same635

reasoning for PGN, using the same cell density and magnification factor (Sanderson, 1971), given636

the receptive field size overlap observed in the literature (Lam and Sherman, 2005; Soto-Sánchez637

et al., 2017).638

PRIMARY VISUAL CORTEX. The cortex corresponds to a 3.5×3.5mmpatch of cat primary visual639

cortex. It contains 10800 excitatory and 2700 inhibitory neurons, in the ratio 4:1 (Beaulieu and640

Colonnier, 1989;Markram et al., 2004), and 10 million synapses, with a significant downsampling641

(∼10%) of the actual density of neurons present in a corresponding portion of cat cortex (Beaulieu642

and Colonnier, 1989) to make the simulations computationally feasible. For further details on the643

cortical structure, please refer to Antolík et al. (2019).644

Model neurons645

All excitatory and inhibitory neurons are modeled as point-like spiking neurons. All sub-cortical646

neurons are conductance-based Leaky Integrate-and-Fire (LIF, Lapique, 1907; Dayan and Abbott,647

2005). We adapted LIF unit parameters for the different cell types from in-vivo and in-vitro mea-648

surements of neurons in the cat visual system and classically modeled in the literature (Freed and649

Sterling, 1988; Worgotter and Koch, 1991; Destexhe et al., 1996, 1998; Huertas et al., 2005; Budd650

et al., 2010), and the neuroelectro db (neuroelectro.org). The neurons in cortex are modeled as651

Adaptive Exponential Integrate-and-Fire units (Brette and Gerstner, 2005) and their parameters652

are detailed in table 1 (see Antolík et al., 2019 for motivation and justification). All neuron model653

details may also be found in the online repository for the project.654

Connectivity655

In constructing the model, we have included realistic network properties, such as the spread and656

relative proportions of the various sets of connections composing the intra-, inter-thalamic, and657

thalamocortical circuitry. The synaptic connections are probabilistically drawn with replacement,658

and number of synapses given in the table above. However, we allowed formation of multiple659

synapses between neurons, hence the exact number of connections between neurons is variable.660

The extents of axonal and dendritic arborization reported in the literature usually refer to the ter-661

minal extents of labeled cells; we took these measures as representing three standard deviations662

(3𝜎) of the Gaussian distribution of connection probability. Another important consideration in de-663

signing the connectivity is the reliability of synaptic transmission. Both in cortex and thalamus, it664

has been shown that a small fraction of presynaptic action potentials succeeds in evoking postsy-665

naptic potentials (Allen and Stevens, 1994; Stratford et al., 1996;Weyand, 2007). However, it would666

be computationally expensive to model explicitly synaptic failures, therefore we have decided to667

account for synaptic transmission failures in the number of simulated synapses per neuron, adopt-668

ing a 10% factor (unless otherwise stated in the following text) with respect to the input counts669

reported in the literature.670

THALAMIC CONNECTIONS. For all intra-thalamic connections, LGN-to-PGN and PGN-to-LGN,671

we used a zero-mean Gaussian probability distribution:672

𝑔1(𝑥, 𝜎) =
1

√

2𝜋𝜎2
𝑒−

𝑥2

2𝜎2 (6)
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with standard deviation as mentioned in the paragraph above. The total number of synapses per673

LGN cell is reported to be between 5000 and 8000 (Sherman and Guillery, 2006; Murphy et al.,674

2000; Sillito and Jones, 2002). Of the total, 16% of these connections are from RGCs. Sherman675

and Guillery (2006) reported that the majority these input cells are not able to trigger an action676

potential in the postsynaptc LGN target and suggests that 2-5 individual input coincidence is re-677

quired. In spite of this wiring constraint, we further simplified our model by simulating an simpli-678

fied monosynaptic connection between an RGC and one LGN principal cell. Then, 36% come from679

PGN (therefore 1800-2880, mean ∼2200, downsampled to 220), 5% from interneurons (we do not680

model them, see above). The total number of synapses per PGN cell is reported to be around 6000681

(Golshani et al., 2001; Sillito and Jones, 2002 p.1659: 6771±1018) of which: 20% is from LGN (there-682

fore∼1200, downsampled to 120), 15% form other PGN cells (therefore∼900, downsampled to 90).683

Measures of the mean arborization distance of LGN axons into PGN are obtained from both mor-684

phological (Friedlander et al., 1979) and functional (Lam and Sherman, 2005) studies, and report685

radius range between 50 and 150 𝜇m. For our Gaussian distributions, we used a 3𝜎 radius of 75686

𝜇m. Morphological studies (Cucchiaro et al., 1991; Sanchez-Vives and McCormick, 1997; FitzGib-687

bon, 2000; Fitzgibbon, 2006) give a 100-300 𝜇m radius for PGN to PGN connections, either dendro-688

dendritic or axon collaterals. We used 70 µm (3𝜎). Morphological (Cucchiaro et al., 1991; Cox et al.,689

1996; Sanchez-Vives and McCormick, 1997) and functional (Lam and Sherman, 2005) studies give690

150-300 𝜇m radius for the axonal arborizations of PGN to LGN. We adopted 150 𝜇m radius (3𝜎).691

THALAMO-CORTICAL CONNECTIONS. According to the literature (Sherman andGuillery, 2006;692

Budd, 2004), each cortical neuron receives connections from at least 450 LGN cells (we downsam-693

pled it to 45). Each neuron in V1 received connections from both On- and Off-center LGN popu-694

lations. The spatial thalamo-cortical connectivity was determined by a Gabor distribution, as re-695

ported by Troyer et al. (1998):696

𝑔2(𝑥, 𝑦, 𝜆, 𝜃, 𝜙, 𝜎, 𝛾) = 𝑒
𝑥′2+𝑦′2𝛾2

2𝜎2 ⋅ 𝑒𝑖(2𝜋𝑥′𝜆+𝜙) (7)
where 𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 and 𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃. For individual neurons the orientation 𝜃, phase697

𝜙, size 𝜎, frequency 𝜆, and aspect ratio 𝛾 of the Gabor distribution were selected as follows. To698

obtain a functional organization in the cortex, we pre-computed an orientation map correspond-699

ing to 3.5x3.5 mm of cortical area (Antolík and Bednar, 2011), and this map was used to assign700

an orientation preference 𝜃 to each cortical neuron. The phase 𝜙 of the Gabor distribution was701

randomly assigned Ziskind (2013). We set to constant values the remaining parameters, following702

the average values reported by Jones and Palmer 1987 for cat V1 RFs located in the parafoveal area703

(size 𝜎=0.25 degrees of visual field, the spatial frequency 𝜆=0.8 Hz and the aspect ratio =0.57).704

INTRACORTICAL CONNECTIONS. According to Beaulieu and Colonnier (1985), the number of705

synaptic inputs per single neuron in cat V1 is 5800. A large portion of these connections comes706

from other cortical areas Budd and Kisvárday (2012), with recent estimates for the cat, reporting707

a 76% of them coming from outside V1 (Stepanyants et al., 2008). In our model, cortical synapses708

were formed taking into account the proportion of excitatory and inhibitory cortical cell type densi-709

ties, the average number of synaptic inputs, the proportion of extra-area input and the failure rates710

of synaptic transmission. In total, each excitatory cortical cell in our model receive 800 synaptic in-711

puts, while inhibitory neurons receive 520 inputs, to account for their smaller size. The probability712

of connection between two neurons in the network was distance-dependent, based on Gaussian713

decay. Cortico-cortical connectivity was determined by the zero-mean hyperbolic probability den-714

sity function (pdf):715

𝑝𝑑𝑓 (𝑥) = 𝑒−𝛼
√

𝜃2+𝑥2 (8)
with 𝛼 being a distance parameter, and the other parameters as above. The parameters for this716

pdf incorporated four known principles: (i) connection probability decays with increasing cortical717

distance between neurons (Budd and Kisvarday 2001, Stepanyants et al. 2008); (ii) connections718

have a functionally specific bias (Buzas et al. 2006, Ko et al. 2011); (iii) excitatory neurons have the719
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weak tendency towards connecting nearby neurons of similar receptive field properties, and this720

tendency increases for more distant post-synaptic neurons (Buzas et al. 2006); (iv) the anti-phase721

relationship between excitatory and inhibitory conductances in cat V1 simple cells suggests a push-722

pull connectivity, at least in layer 4 (Hirsch et al. 2003, Lauritzen andMiller 2003, Monier et al, 2006;723

Baudot et al. 2013).724

CORTICOTHALAMIC CONNECTIONS. Of the total 5000-8000 synapses per LGN cell (Sherman725

and Guillery 2001, Murphy et al. 2000, Sillito and Jones 2002) 44% come from cortex (therefore726

2200-3520, with a mean of 2800, that we down-sampled to 280). The number of synapses per727

PGN cell coming from the cortex is 60% (therefore ∼3600) but, in this case, a different downsam-728

pling reasoning was applied. The feedback connections from primary visual cortex to PGN have729

been measured only by few morphological studies and reported to form en-passant boutons, in730

the order of tens, within a radius below 25 𝜇m (Ahlsen and Lindstrom 1983, Boyapati and Henry731

1984, FitzGibbon et al. 1999, FitzGibbon 2000). However, PGN cells form a dense dendro-dendritic732

network that is capable of spreading excitation in a radius of ∼100 𝜇m (Deleuze and Huguenard733

2006). For the sake of simplicity, we downsampled the number of cortical synapses onto PGN cells734

to 40, and we used a radius of 90 µm (3𝜎), that we chose through a parameter search strategy (see735

below). Cortical inputs to LGN have been measured mainly by morphological studies (Murphy et736

al. 1999, FitzGibbon et al. 1999, daCosta and Martin 2009) and reported to have irregular circular737

shapes with apical radius varying widely between 50 and 100 𝜇m. We used a 60 𝜇m radius (3𝜎).738

We drew all cortico-thalamic connections probabilistically from a zero-mean Gaussian distribution739

(as in eq. 1, above), in spite of a recently proposed Gabor-shaped distribution of cortico-thalamic740

connection (Jones et al. 2012): the reason was that the evidence for a Gabor distribution is still very741

sparse and linked to the presence of extra-striate signals that we did not model.742

Synapses743

In the conductance-based neuron models we adopted, all synaptic connections are collapsed into744

a single synapse mechanism under an assumption of linear summation. For the change in conduc-745

tance caused by presynaptic events, we adopted a step increase followed by an exponential decay746

of the postsynaptic conductance change. Retino-geniculate synaptic strength has been measured747

in-vitro (Blitz and Regehr 2003, 2005, Lam and Sherman 2005) giving an overall change in conduc-748

tance of 10-40 nS mediated by AMPA synapses; we used 6 nS with 1.5 ms decay time constant for749

the excitatory synaptic conductance (see table 1). This value is below the experimentally measured750

ones, because higher values led to excessive network activity. LGN to PGN synaptic strength, me-751

diated by AMPA synapses, has been measured by Liu et al. 2001 on a per synapse basis leading to752

a value of 1.914±1.814 nS, we used 1.5 nS, with 1.5 ms decay time constant. Recurrent PGN synap-753

tic strength, mediated by GABA synapses, was reported to be in the range 0.3-5 nS (Ulrich and754

Huguenard 1996); we used a lower 0.1 nS with 5ms decay time constant for the inhibitory synaptic755

conductance. The synaptic conductance of inhibitory connections from PGN to LGN, mediated by756

GABA synapses, has been reported to be in the range 0.4-0.6 nS (Sanchez-Vivez et al. 1997, Lamand757

Sherman 2005), we used 0.5 nS with 5ms decay time constant. In cortex postsynaptic conductance758

change is modelled in the same way. The strength of LGN to V1 synapses, mediated by AMPA, has759

been measured by Cruikshank et al. 2007 in the 0.7-2.0 nS range. Accordingly, we used 2 nS with a760

7.8 ms decay time constant. The cortical feedback synaptic efficacy onto LGN cells is mediated by761

AMPA synapses, with varying measures in the mouse: 0.128±0.047 nS in (Golshani et al. 2001), 2-8762

nS in (Lam and Sherman 2013). We opted for 0.2 nS with 1.5 ms decay time constant. The cortical763

feedback onto PGN cells has been measured also in the mouse to be 0.400±0.257 nS (Golshani et764

al. 2001, Liu et al. 2001); we used 0.4 nS with 1.5 ms decay time constant of the excitatory synaptic765

conductance.766
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Delays767

The transmission delays between processing layers we adopted were taken from several converg-768

ing experimental reports: 1 ms from LGN to PGN, 1 ms PGN to PGN (Rogala et al. 2013), and 1 ms769

PGN to LGN (Lindstrom 1982, Funke and Eysel 1998, Rogala et al. 2013). The transmission delay770

between LGN layers to the cortex is 2 ms (Lindstrom 1982). While feedback transmission delays771

between cortex and LGN or PGN are between 3 and 5 ms (Lindstrom 1982, Budd 2008, Rogala et772

al. 2013).773

Inactivation protocols774

Several virtual inactivation experiments were conducted, to compare the model’s output with ex-775

perimental results from the literature. In order to replicate the in-vivo experimental conditions as776

closely as possible in-silico, we used three main procedures: (i) reproducing the intact brain (“full”777

configuration), (ii) inactivations of small portion of cortex (“variable feedback” configuration), (iii)778

inactivation of only the feedback connections (“feedforward-only” configuration), see figure 1 for a779

summary. In configuration (ii), a point in cortexwas chosenhaving the same (or normal) orientation780

with respect to the stimulus. To mimic activity suppression (for instance by muscimol injection), a781

negative intracellular current, strong enough to prevent reaching spike threshold, was injected into782

all neurons located within a circular area of variable size (300 and 600 𝜇m, corresponding to 0.3783

and 0.6 degrees of visual field), such as to simulate various scales of postsynaptic blocker diffusion.784

Jones et al. 2012 reported an area of cortical focal iontophoretic inactivation of approximately 600785

𝜇m, corresponding to 0.5 degrees considering V1 magnification factor around the area centralis.786

The relative spatial position of cortical and thalamic receptive fields were also taken into account,787

identifying overlapping and non-overlapping receptive fields. For the inactivation of cortical non-788

overlapping areas, the authors reported a thalamic distance between receptive field centers of789

approximately 2.5 degrees of visual field, that we matched in our model. We selected a circular790

patch of cortical excitatory units and directly injected a current of -0.5 nA in each simulated cell,791

resulting in a hyperpolarization that prevented cortical cell response.792

Stimuli793

We performed our simulations using clips of visual stimuli (graded in contrast and luminance) spe-794

cific of each associated experimental protocol. Each stimulus sequence consisted of a series of795

visual stimuli of variable contrast which were interleaved with the 150 ms presentation of a full796

field of uniform luminance (50 cd/m2). Each visual stimulus was described, at any given point in797

space and time, by a single number representing its contrast (relative to the mean luminance of798

the uniform field), ranging from -1 (dark) to 1 (maximal brightness), with 0 being the chosen back-799

ground luminance. Six types of stimulus have been used in this work: (a) changes of ambientmean800

luminance, (b) changes of contrast level in a sinusoidal drifting grating (DG), (c) changes of spatial801

frequency of DG, (d) changes of temporal frequency of a DG, (e) changes of size of a DG patch, (f)802

changes of orientation of a DG. The model responses have been tuned using iteratively all stimuli.803

Stimuli (c), (d), (e), (f) were used to test the model in both control (i) and altered (ii) configurations,804

while stimulus (e) was also testedwith partially inactivated cortex (iii). All stimuli were created using805

the Mozaik framework (Antolik and Davison 2013, see below for details).806

LUMINANCE. The model was stimulated with five levels of ambient luminance: complete dark-807

ness, 0.085, 0.85, 8.5, 85 cd/m2, as in Barlow Levick 1969, and Papaioannou and White 1972. The808

average (background) level of luminance for all other simulated experiments was 30 cd/m2.809

CONTRAST. We usedMichelson contrast, as the difference between the cd/m2 luminance peak810

(Lmax) and trough (Lmin) values, divided by twice the average (background) luminance, C = (Lmax811

- Lmin) / Lmax + Lmin). Being normalised by the background luminance, the contrast is usually812

expressed as percentage. Nine contrast levels were used: 0, 2, 4, 8, 18, 36, 50, 80, 100%, as in813

Kaplan et al. 1987.The contrast level of all the following experiments (c-f) was fixed at 80%.814
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SPATIAL FREQUENCY. Patterns of full-field sinusoidal drifting gratings were supplied to the815

model. Ten different frequencies were chosen for the sinusoidal gratings: 0.07, 0.1, 0.2, 0.3, 0.5,816

0.8, 1, 1.5, 2, 8 cycles/degree (with temporal frequency of 2 Hz), as in Bisti et al. 1977, Maunsell et817

al. 1999.818

TEMPORAL FREQUENCY. Patterns of full-field sinusoidal drifting gratings were supplied to the819

model. Ten different temporal frequencies: 0.05, 0.2, 1.2, 3.0, 6.4, 8, 12, 30 Hz were chosen for the820

drifting movement of the gratings (having 0.5 cycles/degree of spatial frequency), as in Marrocco821

and McClurkin 1985, Marrocco et al. 1996, Alitto and Usrey 2004.822

ORIENTATION. Patterns of full-field sinusoidal drifting gratings were supplied to the model,823

with eight different orientations uniformly chosenbetween0 and90degrees (having 0.5 cycles/degree824

of spatial frequency and 2.0 Hz of temporal frequency), as in Daniels et al. 1977, Vidyasagar and825

Urbas 1982.826

SIZE. Patterns differing in the radius of a circular patch of sinusoidal (with 0.5 cycles/degree827

frequency) drifting (8 Hz) gratings were supplied to the model. Ten radiuses were chosen: 0.125,828

0.19, 0.29, 0.44, 0.67, 1.02, 1.55, 2.36, 3.59, 5.46 degrees, as in Murphy et al. 1987, Sillito and Jones829

2002, Deangelis et al. 1994, Jones et al. 2012.830

Iterative procedure to find a single parameter set831

We systematically presented the stimuli described above to our model and heuristically found a832

single parameter set that fitted qualitatively and quantitatively (see next section for the analysis).833

To assess model stability, we then searched the parameter space around two crucial parameters:834

the arborisation extent (𝜎) of LGN→PGN and PGN→LGN for the feedforward-only configuration,835

together with V1→PGN for the “full” and “variable feedback” configurations. As a guide through836

the parameter search, we took as reference parameter the index of end-inhibition, for the LGN-837

PGN interactions (supplementary figure 4a), and the slope of the regression performed on the838

mean percentage change as in figure 4 (supplementary figure 4b).839

Simulation recording and Analysis840

We presented the above stimuli to the model for several trials (varying from 6 to 12, depending841

on the simulated clip duration, which in turn depended on the type of stimulus and reference842

experimental conditions). We recorded the spike timing and synaptic conductances of units from843

the LGN, PGN, and V1 populations, chosen either randomly or selectively depending on the type844

of experiment. For the experiments presenting stimuli (a-f) with configurations (i-ii), we recorded845

randomly from ∼100 cells in both LGN and PGN. For the experiments presenting stimulus (e) with846

configurations (i-iii) we also recorded from a grid of 20x20 cells (100 𝜇m side, spacing 5 𝜇m) in both847

LGN and PGN, centred on the (0,0) coordinate of visual space.848

TRIAL AVERAGED FIRING RATE. The first 100 ms from stimulus onset were discarded in order849

to get rid of the onset flash effect. Then the firing rate was calculated as the average number of850

spikes over trials per neuron for each stimulus. When a populationmeasure is provided in the text,851

the average over neurons was also performed.852

LOW-PASS INDEX. Used by Kimura et al. 2013 to describe the degree of spatial frequency tun-853

ing of firing rates to low spatial frequencies. It is computed as the ratio of the response magnitude854

at the lowest spatial frequency eliciting a response to that at maximal response.855

END-INHIBITION INDEX. Used byMurphy and Sillito 1987 to describe the degree of size tuning856

in LGN cells. It is given by the percentage difference between the peak and the plateau of the size857

tuning curve, divided into bins from 1 (low suppression) to 10 (high).858

SUPPRESSION INDEX. A measure similar to the above end-inhibition index, computed as fol-859

lows: SI=1- Response to large gratingsResponse to preferred size grating860

𝑆𝐼 = 1 −
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑙𝑎𝑟𝑔𝑒 𝑔𝑟𝑎𝑡𝑖𝑛𝑔𝑠

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑜 𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑠𝑖𝑧𝑒 𝑔𝑟𝑎𝑡𝑖𝑛𝑔𝑠
(9)
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861

ORIENTATION BIAS. Used by Vidyasagar and Urbas 1982 to describe the degree of orientation862

tuning of LGN cells. It is defined as the ratio of the peak response to the preferred orientation to863

that in the non-preferred orientation for each cell. The results for all cells are grouped into bins864

from 1 (low bias) to 10 (high).865

SIZE TUNINGCOMPARISON. As in Jones et al. 2012, after the trial averaged firing rate was com-866

puted, only LGN cells showing a significant (p<0.05) change in response were chosen for further867

analysis. To compare the responses of overlapping and non-overlapping, control and cortex local868

inactivation, we identified three groups of cells by automatically selecting for each unit the smallest869

radius eliciting the smallest response, the peak response, and an average of the responses to large870

radiuses. The comparisons of these responses were done using a non-parametric two-tailed test871

(Wilcoxon, see below).872

LOCAL FIELD POTENTIAL. Excitatory and inhibitory conductances, and membrane potentials873

were recorded for all cells within a radius of 3mm from the center of the network (aligned to the874

presented stimulus center). The transmembrane current of each cell was computed according to875

the Ohm law:876

𝐼𝑠(𝑡) = 𝑔𝑠(𝑉 − 𝐸𝑠) (10)
where 𝑔𝑠 and 𝐸𝑠 denote the conductance and equilibrium potential for each of the two synaptic877

types (see above Table 1). A biophysical forward-modelling scheme for the LFP was adapted from878

Einevoll et al. 2013. This method is known to approximate the extracellular electrical potentials879

generated by cellular transmembrane currents. Its formula is:880

𝜙(𝑟𝑒, 𝑡) =
1

4𝜋𝜎

𝑁
∑

𝑛=1

𝐼𝑛(𝑡)
|𝑟𝑒 − 𝑟𝑛|

(11)
where 𝐼𝑛(𝑡) denotes the transmembrane current of cell 𝑛 at position 𝑟𝑛, 𝑟𝑒 is the position of the881

electrode tip, the sum includes𝑁 recorded cells, and 𝜎 is the extracellular conductivity (parameter882

fixed at 0.1 S/m, according to Dobiszewski et al. 2012). Note that although this method has been883

developed to synthetize an LFP signal from a multicompartmental model, here we are interested884

not only at the balance of excitation and inhibition with respect to the membrane potential but885

also at the effect of distance between contributions. Therefore our use of the formula has to be886

considered as yielding a LFP-like signal.887

POPULATION SPIKE-TRIGGERED AVERAGE. We identified two cortical areas : a center area of888

1mm radius aligned with the stimulus center, and a surround annulus area of 1mm internal radius889

and 0.8mm external radius. These two areas were alternatively used as “source” and “target of our890

analysis. We computed the LFP for the target location as described above; then we computed the891

population spike triggered average (STA), see supplementary figure 3. For each spike fired in the892

source location, we extracted an LFP chunk of 600 ms centered on the reference spike time, and893

we averaged across all extracted chunks. This STA was then analyzed to extract its features. We894

identified the presence of a negative peak as absolute STA minimum (“trough”) and characterized895

its lag, amplitude and duration. The lag was measured as (ms) difference between reference time896

and negative absolute minimum time. The amplitude was measured as the absolute minimum897

value (mV). And the duration was measured as the interval between the first two neighboring local898

maxima next to the absolute minimum (ms). We repeated this procedure for each stimulus size899

presentation.900

STATISTICAL SIGNIFICANCE ASSESSMENTS. The biological question we are asking is whether901

the LGN activities are changed by the cortical feedback. Given that we distinguished the exper-902

imental procedures into two configurations, control and variously inactivated feedback, we can903

formulate a null-hypothesis: “the LGN activities in the “full” and feedforward-only configurations904

are the same” and its corresponding alternative hypothesis. The experiments performed in the905
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literature (that we replicated in-computo) identify two types of statistical tests depending on the906

kind of variable measured. For the ongoing activity and low-pass index of spatial frequency, we907

are dealing with a comparison of cells’ firing rates as measurement variables: therefore, one-way908

ANOVA (or Wilcoxon, for non normal distributions with skewness test not passed) was used. For909

all other experiments, where the firing rate was measured at different step changes of a stimu-910

lus value, the results were grouped into two categories : therefore, two-sample t-test (or Welch,911

for normal distributions with different standard deviations) was used. For the overlapping/non-912

overlapping surround suppression experiments, a non-parametric two-tailed test (Wilcoxon) was913

used, as in Jones et al. 2012. On the trial averaged firing rates, we also performed a statistical test914

for the null hypothesis “two related samples have identical average values” (as in Jones et al. 2012).915

In this case, the standard error of the mean was also computed.916

Software stack917

In order to replicate as closely as possible the same experimental conditions as those in the liter-918

ature, we need to have an experimental setup, not just a one-shot simulation. Therefore a whole919

infrastructure is needed, to prepare different types of stimuli, to operate selective inactivation of920

layers and units, to perform recordings and analysis.921

We modeled the thalamo-cortical loop using Mozaik (Antolik and Davison 2013, see code at922

https://github.com/antolikjan/mozaik). Mozaik is an integrated workflow framework for large scale923

neural simulations, intended to relieve users from writing boilerplate code for projects involv-924

ing complex heterogeneous neural network models, complex stimuli and experimental protocols925

and subsequent analysis and plotting. It is built on top of the following tools: imagen (for stim-926

uli generation), PyNN 0.8.0 (for simulator independent neural network model definition, see http:927

//neuralensemble.org/PyNN/), NEST simulator 2.1.0, Neo (for exchange and internal representation928

of data),matplotlib (for plotting). Additional analysis code was written using the scipy library (https:929

//www.scipy.org/). All the code is available online (see https://github.com/dguarino/T2). Experi-930

mental data were digitized by scraping the original published material using WebPlotDigitizer 3.11931

(http://arohatgi.info/WebPlotDigitizer).932
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Table 1. Model parameters.
Subcortical cells parameters Value Source

Retinal Ganglion Cell
Threshold −50.0 mV Greenberg et al. 1999
Resting potential −63.0 mV Lankheet et al. 1989
Reset potential −55.0 mV Margolis Detwiler 2007
Refractory period 0.5 ms Lankheet et al. 1989
Membrane time constant 10.0 ms Freed and Sterling 1988
Membrane capacitance 0.1 nF Freed and Sterling 1988; Weiner 2012
On-center mean noise (std) 2 nA as in Levick Williams 1964
Off-center mean noise (std) 5 nA "
On/Off-center radius 0.2 ° Linsenmeier et al. 1982; Marrocco et al. 1982
On/Off-surround radius 0.7 ° "
Lateral Geniculate Nucleus
Threshold −45.0 mV Wörgötter, Koch 1991
Resting potential −65.0 mV Wörgötter, Koch 1991; McCormick Huguenard 1992
Reset potential −55.0 mV Huertas et al. 2005
Refractory period 2.0 ms Huertas et al. 2005
Membrane time constant 10.0 ms Huertas et al. 2005
Membrane capacitance 0.2 nF Destexhe et al. 1998
Excitatory reversal potential 0.0 mV Wörgötter, Koch 1991
Inhibitory reversal potential −80.0 mV Huertas et al. 2005
Excitatory synaptic constant 1.5 ms Huertas et al. 2005
Inhibitory synaptic constant 5 ms Huertas et al. 2005
Density On/Off populations 100 /°
Peri-Geniculate Nucleus
Threshold −50.0 mV Wörgötter, Koch 1991
Resting potential −70.0 mV Wörgötter, Koch 1991; McCormick Huguenard 1992
Reset potential −55.0 mV Huertas et al. 2005
Refractory period 5.0 ms Huertas et al. 2005
Membrane time constant 10.0 ms Huertas et al. 2005
Membrane capacitance 0.2 nF Destexhe et al. 1998
Excitatory reversal potential 0.0 mV Wörgötter, Koch 1991
Inhibitory reversal potential −80.0 mV Huertas et al. 2005
Excitatory synaptic constant 1.5 ms Huertas et al. 2005
Inhibitory synaptic constant 5 ms Huertas et al. 2005
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Cortical cells parameters Value Source

Cortical excitatory
Threshold −53.0 mV Monier et al. 2008
Resting potential −80.0 mV "
Reset potential −54.0 mV "
Refractory period 2.0 ms "
Membrane time constant 10.0 ms "
Membrane capacitance 0.05 nF "
Excitatory reversal potential 0.0 mV "
Inhibitory reversal potential −80.0 mV "
Excitatory synaptic constant 7.8 ms "
Inhibitory synaptic constant 15.0 ms "
Exc synaptic time constant −5.2 ms "
Inh synaptic time constant 0.08 ms "
Subthreshold adaptation (a) −5 ms "
Spike-triggered adaptation (b) 0.08 ms "
Slope factor (ΔT) 2.0 ms Naud et al. 2008
Adaptation time constant (𝜏w) 88.0 ms Naud et al. 2008
Cortical inhibitory
Threshold −53.0 mV Monier et al. 2008
Resting potential −80.0 mV "
Reset potential −53.0 mV "
Refractory period 0.5 ms "
Membrane time constant 10.0 ms "
Membrane capacitance 0.05 nF "
Excitatory reversal potential 0.0 mV "
Inhibitory reversal potential −80.0 mV "
Excitatory synaptic constant 7.8 ms "
Inhibitory synaptic constant 15.0 ms "
Exc synaptic time constant −5.2 ms "
Inh synaptic time constant 0.08 ms "
Subthreshold adaptation (a) −5 ms "
Spike-triggered adaptation (b) 0.08 ms "
Slope factor (ΔT) 2.0 ms Naud et al. 2008
Adaptation time constant (𝜏w) 88.0 ms Naud et al. 2008
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Thalamic connectivity parameters Value Source

RGC→LGN
Synaptic efficacy 6.0 nS Blitz & Regehr 2003, 2005; Lam & Sherman 2005
Delay 1.0 ms Lindstrom 1982
LGN→PGN
synapses per receiver neuron 60 Murphy et al. 2000, Sillito & Jones 2002
Synaptic efficacy 1.5 nS Liu et al. 2001
Radius of arborisation 75 𝜇m Friedlander et al. 1979
Delay 1.0 ms Lindstrom 1982, Funke & Eysel 1998, Rogala et al. 2013
PGN→PGN
synapses per receiver neuron 20 Golshani et al. 2001, Sillito & Jones 2002
Synaptic efficacy 0.1 nS Ulrich & Huguenard 1996
Radius of arborisation 70 𝜇m Cucchiaro et al. 1991, Sanchez et al. 1997, FitzGibbon 2006
Delay 1.0 ms Rogala et al. 2013
PGN→LGN
synapses per receiver neuron 110 Golshani et al. 2001, Sillito & Jones 200
Synaptic efficacy 0.5 nS Sanchez-Vives et al. 1997, Lam & Sherman 2005
Radius of arborisation 150 𝜇m Cucchiaro et al. 1991, Cox et al. 1996
Delay 1.0 ms Lindstrom 1982, Funke & Eysel 1998, Rogala et al. 2013
LGN→V1 (exc,inh)
synapses per receiver neuron 45 Sherman & Guillery 2001, Budd 2008
Synaptic efficacy 1.3 nS Cruikshank et al. 2007
Radius of arborisation 250 𝜇m da Costa & Martin 2009
Delay 2.0 ms Tsumoto & Suda 1980
V1 exc→PGN
synapses per receiver neuron 40 Murphy et al. 2000
Synaptic efficacy 0.6 nS Golshani et al. 2001, Liu et al. 2001, Deleuze & Huguenard 2006
Radius of arborisation 90 𝜇m Ahlsen & Lindstrom 1983, Boyapati & Henry 1984, FitzGibbon 2000
Delay 5.0 ms Tsumoto & Suda 1980
V1 exc→LGN
synapses per receiver neuron 250 Murphy & Sillito 1996, Murphy et al. 2000
Synaptic efficacy 0.4 nS Golshani et al. 2001
Radius of arborisation 60 𝜇m Murphy et al. 1996, 1999, FitzGibbon et al. 1999, daCosta & Martin 2009
Delay 5.0 ms Tsumoto & Suda 1980
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Cortical connectivity parameters Value Source

excitatory→excitatory
structured synapses 2000 Beaulieu & Colonnier 1985
% random synapses 40 Buzas et al. 2006
Synaptic efficacy 0.5 nS Hoffmann et al. 2015, Cruikshank et al. 2007
Radius of arborisation 200 𝜇m Budd & Kisvarday 2001, Stepanyants et al. 2008
Delay 0.2 ms Bringuier et al. 1999, Fregnac 2012, Jocoy 2011
excitatory→inhibitory
structured synapses 2000 Beaulieu & Colonnier 1985
% random synapses 40 Buzas et al. 2006
Synaptic efficacy 0.75 nS Hoffmann et al. 2015, Cruikshank et al. 2007
Radius of arborisation 190 𝜇m Budd & Kisvarday 2001, Stepanyants et al. 2008
Delay 0.3 ms Bringuier et al. 1999, Fregnac 2012, Jocoy 2011
inhibitory→inhibitory
structured synapses 500 Beaulieu & Colonnier 1985
% random synapses 40 Buzas et al. 2006
Synaptic efficacy 0.2 nS Hoffmann et al. 2015, Cruikshank et al. 2007
Radius of arborisation 250 𝜇m Budd & Kisvarday 2001, Stepanyants et al. 2008
Delay 0.2 ms Bringuier et al. 1999, Fregnac 2012, Jocoy 2011
inhibitory→excitatory
structured synapses 500 Beaulieu & Colonnier 1985
% random synapses 40 Buzas et al. 2006
Synaptic efficacy 0.26 nS Hoffmann et al. 2015, Cruikshank et al. 2007
Radius of arborisation 230 𝜇m Budd & Kisvarday 2001, Stepanyants et al. 2008
Delay 0.3 ms Bringuier et al. 1999, Fregnac 2012, Jocoy 2011
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Figure S1

Cortical feedback reduces ongoing activity in the model LGN. (a) Comparison of LGN ongoing activity in the

“without-cortex” (vertical axis) vs “full” (horizontal axis) models. Model data (blue circles) follow a decrease slope

similar to the experimental data from Waleszczyk et al. 2005 (black diamonds). This decrease is found significant

in the simulation case (Kruskal-Wallis p<0.001). Linear regressions are plotted for the data in black, and for the

model in blue. The dotted line represents identity (no change between configurations). (b) Zoomed portion of

the same data as in (a) to better appreciate model data points distribution and their deviation from the identity

line.
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Figure S2

Cortical feedback changes contrast sensitivity of LGN cells. (a) Contrast tuning curves based on trial

averaged firing rates for the On-center LGN population (Off-center follows the same trend which has not been

overlaid for clarity). The comparison between “full” (black mean lines and shaded SEM) and “without-cortex”

(grey mean line and shaded SEM) configurations show that cortical feedback increases thalamic firing rate for

low-contrast stimuli (c<0.4) and reduces it for high-contrast stimuli (c>0.4) (grey mean line and shaded SEM). (b)

Input-output ratio for LGN On-center cells computed using trial-averaged conductances and trial-averaged firing

rates. In the “without-cortex” model (grey), the dynamic range is significantly reduced compared to the “full”

model (black). (c) Trial-averaged excitatory (red) and inhibitory (blue) conductance tuning curves for On-center

LGN cells (Off-center cells shared the same properties) in the “full” (solid) and “without-cortex” (dashed) models.

Both evoked excitatory and inhibitory conductances increase with the stimulus contrast and with the cortical

feedback, but the increase slopes differ, being faster for inhibitory input than for excitatory drive. (d) This

results in a striking difference in the contrast dependency for the balance between excitation and inhibition,

where inhibitory damping prevails in the “full model” as soon as the contrast increases above 20%.
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Figure S3

Overlayed Population Spike-Triggered Averages for all stimulus sizes in the center and surround. (Top

row, Left) PSTA of synthetic LFP recorded in the center iso group triggered by spikes emitted in the surround, in

the full model (closed loop) configuration, for different sizes (color code on the left corresponding to the radius).

The PSTA amplitude is tuned for stimulus size (see main text figure 8a). The PSTA width is constant across sizes.

And the PSTA lag is reliably following the triggering spikes (~12ms). (Top row, Right) PSTA of sLFP recorded in

the surround iso group triggered by spikes emitted in the center, in the full model (closed loop) configuration,

for different sizes (color code on the left corresponding to the radius). The PSTA amplitude is tuned for stimulus

size (see main text figure 8b). The PSTA width is constant across sizes. And the PSTA lag is reliably following the

triggering spikes (~10ms). (Bottom row, Left) PSTA of sLFP recorded in the center iso group triggered by spikes

emitted in the surround, in the feedforward-only model configuration, for different sizes (color code on the left

corresponding to the radius). (Bottom row, Right) PSTA of sLFP recorded in the surround iso group triggered

by spikes emitted in the center, in the feedforward-only model configuration, for different sizes (color code on
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the left corresponding to the radius). For both lower panels, the PSTA amplitude is not tuned for stimulus size

(see main text figure 8c-d). The PSTA width is monotonically growing across sizes. And the PSTA lag is smaller

(~2ms) compared to the full model.
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Figure S4

Parameter searches to assess stability of intra-thalamic and corticothalamic arborizations. (a)

Suppression index (color code on the bar) resulting from changing the arborisation extent (σ) of LGN→PGN and

PGN→LGN for the without-cortex configurations. (b) Suppression index resulting from changing the arborisation

extent (σ) of V1→PGN for the full and without-cortex configurations. In both figures, the dashed square in the

middle is the chosen parameter combination, and the arrowheads on the color bars are reference values from

the literature (a: Jones and Sillito 1987; b: Jones et al. 2012).
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