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COMPUTATIONAL NEUROSCIENCE

A faster way to model 
neuronal circuitry
Artificial neural networks could pave the way for efficiently simulating 
large-scale models of neuronal networks in the nervous system.

ANDREW P DAVISON AND SHAILESH APPUKUTTAN

Computational modelling and simulation 
are widely used to help understand the 
brain. To represent the billions of neurons 

and trillions of synapses that make up our nervous 
system, models express electrical and chemical 
activity mathematically, using equations that they 
solve with computational methods.

Coarse-grained models of the brain – where 
each equation represents the collective activity 
of hundreds of thousands or millions of neurons 
– have been valuable in helping us understand 
the coordination of activity across the whole 
brain (Sanz Leon et  al., 2013). The equations 
from these models can be solved using a normal 
computer that any researcher might have on their 
desk. But if we start to investigate how individual 
neurons and synapses interact to give rise to the 
collective activity of the brain, the number of 
equations to be solved becomes enormous. In 
this case, even powerful supercomputers running 
flat out for many hours can only simulate the 
activity of a few cubic millimeters of brain for a 
few seconds (Billeh et al., 2020; Markram et al., 
2015).

Now, in eLife, Viktor Oláh, Nigel Pedersen 
and Matthew Rowan from the Emory University 
School of Medicine report on a promising new 

technique that relies on machine learning tools 
to greatly accelerate simulations of networks of 
biologically realistic neurons, without the need 
for supercomputers (Oláh et al., 2022).

Machine learning approaches have become 
ubiquitous in recent years, whether it be in self-
driving cars, computer-generated art or in the 
computers that have beat grandmasters in chess 
and Go. One of the most widely-used tools for 
machine learning is the artificial neural network, 
or ANN.

First developed around the middle of the 20th 
century, ANNs are based on a highly simplified 
model of how real neurons work (McCulloch and 
Pitts, 1943; Rosenblatt, 1958). However, it was 
only in the early 2000s that their use really took 
off, due to a combination of increased computing 
power and theoretical advances that allowed 
‘deep learning’ (which involves training ANNs 
with many layers of artificial neurons; reviewed in 
Schmidhuber, 2015). Each layer in an ANN takes 
the data from the previous layer as an input, 
transforms it and feeds it into the next layer, 
allowing the ANN to perform complex computa-
tions (Figure 1).

A type of ANN known as a recurrent network 
has proven to be highly effective at learning to 
predict changes over time (Hewamalage et al., 
2021). In these networks, the activity of a layer 
of neurons is fed back into itself or into earlier 
layers, allowing the network to integrate new 
inputs with its own previous activity. Such ANNs 
have been used for stock market predictions, 
machine translation, to accelerate weather and 
climate change simulations (review in Chantry 
et al., 2021), and to predict the electrical activity 
of individual biological neurons (Beniaguev 
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et  al., 2021; Wang et  al., 2022). Oláh et al. 
have now developed ANNs that can predict the 
activity of entire networks of biologically realistic 
neurons with good levels of accuracy.

First, the team tested several different ANN 
architectures, and found that a particular type 
of recurrent neural network – which they call a 
convolutional neural network with long short-term 
memory (CNN-LSTM) – was able to accurately 
predict not only the sub-threshold activity but 
also the shape and timing of action potentials of 
neurons. For single neurons, their approach was 
comparable in speed to traditional simulators. 
However, when they simulated networks made 
up of many similar neurons, the performance of 

the CNN-LSTM was much better, becoming over 
10,000 times faster than traditional simulators in 
certain cases.

In summary, the work of Oláh et al. shows that 
ANNs are a promising tool for greatly increasing 
the scope of what can be modelled with gener-
ally available computing hardware, reducing 
the bottleneck of supercomputer availability. 
Further studies will be needed to better under-
stand the tradeoffs between performance and 
accuracy for this approach. By clearly describing 
the successful CNN-LSTM model and providing 
their source code in a public repository, Oláh et 
al. have laid a strong foundation for such future 
exploration.

Figure 1. Illustration of various types of artificial neural networks (ANN) and their associated components. (A) 
A basic ANN consists of an input layer (red circles), one or more hidden layers (peach circles), and an output layer 
(blue circle). In the case of neuronal modelling, the input could be features such as the membrane potential (Vm), 
and the excitatory (exc) and inhibitory (inh) synaptic inputs. The hidden layers perform computations on the inputs, 
with the actual operations depending on the type of ANN. Their objective is to identify features in the inputs and 
use these to correlate a given input and the correct output. An ANN can have multiple outputs: in this example, 
the output is a prediction of the membrane potential. (B) A deep neural network (DNN) is an ANN with multiple 
hidden layers. (C) A convolutional neural network (CNN) is a type of DNN that can be trained to extract important 
features contained in the input data, which can then be used as inputs to the other hidden layers, significantly 
improving the performance of the overall network. (D) Some details of the feature extraction process of a CNN, 
which consists of several hidden layers. First, it has multiple filters (F1, F2, F3), each configured to capture specific 
features. This process can greatly increase the size of the data, so a pooling layer (P1, P2, P3) is then used to 
reduce this size. The pooling process does not lead to the loss of valuable data; instead, it helps remove noise 
and consolidate meaningful data. The flattening layer converts the pooled data into a 1-dimensional stream. This 
serves as an input for the subsequent fully connected layer, which does the final evaluation to produce the output 
based on the features extracted by the convolution layers. (E) A CNN with a long short-term memory (LSTM) layer. 
The additional LSTM layer enables the network to benefit from long-term memory, in addition to the existent 
short-term working memory. (F) The LSTM layer achieves this long-term memory through its ability to relay both 
the cell state (dashed green arrows) and the output generated by each module (solid maroon arrows) across its 
several modules, allowing the flow of useful information. This enables the network to better identify context in the 
input data over longer time periods. CNN-LSTMs have been found useful for predicting time series data.
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