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Identification and evolution 
of nsLTPs in the root nodule 
nitrogen fixation clade 
and molecular response of Frankia 
to AgLTP24
Mélanie Gasser 1, Jean Keller 2, Pascale Fournier 1, Petar Pujic 1, Philippe Normand 1 & 
Hasna Boubakri 1*

Non-specific lipid transfer proteins (nsLTPs) are antimicrobial peptides, involved in several plant 
biological processes including root nodule nitrogen fixation (RNF). Nodulating plants belonging to the 
RNF clade establish symbiosis with the nitrogen-fixing bacteria rhizobia (legumes symbiosis model) 
and Frankia (actinorhizal symbiosis model) leading to root nodule formation. nsLTPs are involved in 
processes active in early step of symbiosis and functional nodule in both models. In legumes, nsLTPs 
have been shown to regulate symbiont entry, promote root cortex infection, membrane biosynthesis, 
and improve symbiosis efficiency. More recently, a nsLTP, AgLTP24 has been described in the context 
of actinorhizal symbiosis between Alnus glutinosa and Frankia alni ACN14a. AgLTP24 is secreted at 
an early step of symbiosis on the deformed root hairs and targets the symbiont in the nitrogen-fixing 
vesicles in functional nodules. nsLTPs are involved in RNF, but their functions and evolutionary history 
are still largely unknown. Numerous putative nsLTPs were found up-regulated in functional nodules 
compared to non-infected roots in different lineages within the RNF clade. Here, results highlight 
that nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have 
independently specialized nsLTPs for this interaction, suggesting a possible convergence of function, 
which opens perspectives to investigate nsLTPs functions in RNF.

Root nodule nitrogen fixation symbioses (RNF) are established between plants belonging to the Fabales, Fagales, 
Cucurbitales, and Rosales orders and the nitrogen-fixing bacteria rhizobia and Frankia. In these mutualistic RNF, 
diazotrophic bacteria rhizobia establish symbioses with plants of the Fabales order and the genus Parasponia 
(Rosales). The filamentous actinobacteria Frankia have a wider spectrum, they establish symbiosis with Fagales, 
Cucurbitales, and Rosales comprising approximately 220  species1. These four plant orders form RNF clade 
grouping nodulating and non-nodulating plants. This distribution is likely due to the acquisition of nodulation 
by a common ancestor of the RNF clade, followed by multiple losses in the descendant  lineages2,3. It should be 
noted that certain traits, such as haemoglobin, which is crucial for maintaining nitrogen fixation in the nodule, 
would have been gained after the acquisition of nodulation to adapt to the  symbiont3,4. At the early steps of this 
interaction, the diazotrophic symbiont in contact with the plant roots enters in the plant tissue. Depending on 
the host plant, two modes of invasion are known: the intercellular infection and the intracellular infection via 
the root hairs, leading to nodule  formation5,6. Into the nodule, the symbiont fixes atmospheric nitrogen and thus 
provides nitrogenous compounds to the plant, which in exchange transfers organic compounds derived from 
 photosynthesis7. The recognition, entry, and maintenance of the bacterium in the nodule require fine coordina-
tion on the part of both partners, which is established through cellular pathways and molecular dialog between 
them. Studies of plant cellular mechanisms during nodulation have revealed the involvement of hosts’ secreted 
peptides classified as antimicrobial peptides (AMPs) to improve the interaction. In plants, AMPs are mainly 
described in the innate immune response of organisms to fight against biotic and abiotic  stresses8,9. Their produc-
tion by the host plant in a context of mutualistic symbiosis questions their biological roles in these interactions. In 
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the two models of RNF symbiosis, three AMP families are described; the Nodule Cysteine Rich peptide (NCRs) 
and NCRs-like peptides secreted by Fabales plants of the IRLC and Dalbergioid  clades10,11, the defensins secreted 
by actinorhizal  plants12–15, and a third family investigated in this study, the non-specific lipid transfer protein 
(nsLTPs) secreted by nodulating plants belonging to the Fabales order and described in only one actinorhizal 
plant, Alnus glutinosa16–19. The nsLTPs are peptides with a hypervariable amino acid sequence of less than 100 
residues and an N-terminal signal sequence that allows them to be addressed to target cell compartments as 
mature  peptides9. They are characterized by 4 disulfide bridges formed by a conserved 8 Cysteines Motif (8CM) 
in the mature peptide: "C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C"20 where “X” represents any amino acid residue and 
“n” the number of amino acids. These disulfide bridges stabilize 4 alpha helices and give rise to a hydrophobic 
tunnel-like cavity allowing the binding and transport of hydrophobic  molecules21. This structure allows them 
to resist heat, denaturing agents, and  proteases22. This AMPs family is widely distributed in plant tissues among 
all land plants suggesting that nsLTPs were originally acquired in their common  ancestor23,24. They may have 
been gained even earlier, as a putative nsLTPs in a green alga was  predicted25. In plants, nsLTPs are involved in 
plant innate immunity and are classified as pathogenesis-related proteins (PR-14) but are also involved in several 
biological processes such as stress resistance, reproduction, germination, plant defense against pathogen attacks, 
cuticle formation, pollen tube formation, and RNF  symbiosis17–19,21,26.

In RNF symbiosis, nsLTPs were first described in legumes (Fabales) at the early step of nodulation and in 
nodules of Medicago truncatula, Astragalus sinicus (Chinese milk vetch), and Phaseolus vulgaris24,27,28. The nsLTPs 
MtN5 and MtLTP7 are secreted by M. truncatula to regulate symbiont entry into the root epidermis and promote 
infection in the root  cortex16,17,27–29. In A. sinicus a nsLTPs named AsE246 is also expressed at early and late steps 
of nodulation and is localized on the symbiosome membrane, which could be involved in membrane biosynthe-
sis and to promote symbiosis  efficiency19. Little is known about the involvement of AMPs during actinorhizal 
symbiosis due to the lack of genetic tools. However, a transcriptomic analysis at early and maturing steps of 
nodulation permitted to identify a gene encoding an nsLTPs up-regulated in deformed root hairs and functional 
nodule of A. glutinosa in symbiosis with Frankia alni ACN14a compared to non-infected  roots18. This peptide 
named AgLTP24 is addressed to deformed root hairs at an early step of symbiosis and targets the nitrogen-fixing 
vesicle cells of Frankia at a later step in nodules. As AgLTP24 targets the symbiont in the nodule, the effect of this 
peptide on the physiology of Frankia was tested in a previous article and showed that high concentration (5 µM) 
decreased metabolic activity and lower concentration (100 nM) inhibited nitrogen  fixation18.

This study aimed to retrace the evolutionary history of nsLTPs in RNF symbiosis as they are involved in 
both symbiotic models. For this purpose, putative nsLTPs were identified in proteomes of nodulating and non-
nodulating plants belonging to the RNF clade and the differential expressions of nsLTPs in nodules for five 
nodulating plants of the four orders were retrieved from available transcriptomics data. We showed that the 
nsLTPs family was widespread in nodulating plants as nsLTPs genes were expressed in the functional nodules 
(which are nodules with an active nitrogen fixation activity) of plants belonging to the four orders. Regarding 
their evolution in relation to the RNF symbiosis, this family would have been independently co-opted in differ-
ent lineages suggesting a possible convergence of function. It is important to note that nsLTPs must share the 
same function in RNF symbiosis to show convergence, so more functional studies are required to conclude on 
this point. To deepen our understanding of their function during symbiosis, AgLTP24 secreted by A. glutinosa 
was further studied by investigating the molecular response of the symbiont F. alni ACN14a to subinhibitory 
concentrations of this nsLTP.

Results
nsLTPs identification and characterization
The identification of nsLTPs was done using 15 proteomes of nodulating and non-nodulating plants distributed 
in the RNF clade and Arabidopsis thaliana belonging to the Brassicales order (Fig. 1).

The nsLTPs are characterized by a hypervariable amino acid sequence and an N-terminal signal sequence. 
The signal sequence that is responsible for facilitating peptide secretion, which is cleaved during the secre-
tion, resulting in the generation of mature peptides. The mature nsLTPs possess a conserved 8-cysteine motif 
(8CM) “C-Xn-C-Xn-CC-Xn-CXC-Xn-C-Xn-C”, where ’X’ represents any amino acid residue and ’n’ the number 
of amino acids. Due to the sequence hypervariability, conventional approaches such as keyword searches and 
BLAST analyses are not suited for exhaustively retrieving these  peptides9. To identify nsLTPs a wrapper script, 
nsLTPFinder, was made to identify proteins containing an N-terminal signal peptide, with a mature sequence 
containing a conserved 8 Cysteine Motif (8CM), characteristic of this peptide family.

From the 15 proteomes, an overall number of 705 putative nsLTPs was identified ranging from 23 in the 
Casuarina glauca proteome to 91 in the Medicago truncatula proteome (Fig. 1 and Supplementary Table S1). 
Plants belonging to the Fagales order had between 23 and 48 putative nsLTPs, those belonging to the Cucurbi-
tales between 33 and 36, the Rosales had between 35 and 45 putative nsLTPs and the Fabales between 34 and 91 
(Fig. 1). The number of putative nsLTPs in plant proteomes was compared with non-parametric Mann–Whitney 
tests as the data do not follow a normal distribution (Shapiro test) and all p-values were above the threshold of 
0.05. This indicated that the number of putative nsLTPs in plant proteomes was not significantly different across 
the 5 different plant orders nor different based on the capability of the plant to establish RNF symbiosis. Plant 
proteomes used in this study did not have the same annotation level, thus, the number of nsLTPs predicted for 
these proteomes are subject to change with the increasing number of genome sequencing or proteomic studies.

Putative nsLTPs were then grouped according to the classification proposed by Boutrot et al.20 with the addi-
tion of the XI type proposed by Li et al.30 (Fig. 1, Supplementary Table S1). Only 54% of the putative nsLTPs in 
this dataset could be classified; the most represented was type I with 24% and type VII was not retrieved in our 
data. The absence of the type VII in our data can be attributed to its specificity to  monocotyledons31. Among 
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the 326 nsLTPs unassigned to a type, some had a large domain rich in proline, aspartic acid and histidine com-
posed of more than 40 amino acids between the second and third cysteine of the 8CM. This lack of assignation 
underlines the fact that the current classification is not exhaustive.

nsLTPs expression during nodulation and evolution history in nodulating plants
The phylogeny of nsLTPs was assessed using putative nsLTPs identified in nodulating and non-nodulating plants 
belonging to the four orders of the RNF clade and A. thaliana (Brassicales order), as an outgroup. It is worth 
noting that the clades are more representative of the different types of nsLTP than of the different plant orders. 
Furthermore, within each plant order, different types of nsLTP were found. In the phylogenetic tree, nsLTPs of 
all plants were present in all clades suggesting that they would have undergone several duplication events. The 
untyped nsLTPs were grouped in phylogenetic clades with typed nsLTPs and shared the same conserved protein 
motifs (Fig. 2).

A conserved protein motif analysis using the MEME suite was conducted and showed that the majority of 
nsLTPs grouped in the same clade and mostly shared the same conserved protein motifs (Fig. 2).

We then identified nsLTPs that might be involved in symbiosis and investigated their distribution in the 
phylogenetic tree. For that, the expression levels of nsLTPs in functional nodules were retrieved from pub-
lished transcriptomic data for five plants belonging to the four orders of the RNF clade: Medicago truncatula 
(Fabales), Parasponia andersonni (Rosales), Datisca glomerata (Cucurbitales), Alnus glutinosa and Casuarina 
glauca (Fagales). For A. glutinosa in association with Frankia alni ACN14a, transcriptomic data based on EST 
microarrays were complemented in this study using qRT-PCR targeting 23 genes encoding putative nsLTPs 
(AgLTPs) to characterize differential expression in the nodule compared to non-infected roots.

Up- and down-regulated genes encoding nsLTPs in functional nodules were identified in plants belonging 
to the 4 orders of the RNF clade (Log2FoldChange ≥ 1 or ≤ − 1) (Fig. 3).

The databases used (see “Materials and methods”), enabled the identification of the differential expression 
of 26% to 62% of genes encoding nsLTPs within the functional nodules compared to non-infected roots. In 
nodules of the Fabales M. truncatula and the Rosales P. andersonni capable of establishing symbioses with 
rhizobia, 7 and 10 up-regulated and 1 and 2 not-regulated nsLTPs were retrieved, respectively. They were no 
down-regulated nsLTPs found for P. andersonni while 21 nsLTPs were down-regulated in M. truncatula nodules. 
Concerning actinorhizal plants, D. glomerata had at the nodule step, 9 up-regulated, 4 not-regulated and 3 down-
regulated DgLTPs. For the Fagales, C. glauca, no CgLTPs was up-regulated, 5 were not-regulated and 5 CgLTPs 
were down-regulated in nodule. For A. glutinosa, previous transcriptomic data based on EST microarrays led 
to the identification of four genes (corresponding to 4 ESTs) up or down regulated in the nodule compared to 
non-infected roots (Log2FoldChange ≥ 1 or ≤ − 1) (see Supplementary Table S2). One of these EST matches with 

Figure 1.  Putative nsLTPs characteristics. Graphical representation of the number of putative nsLTPs retrieved 
in plants proteomes belonging to the RNF clade and A. thaliana. Plant orders are represented with colored boxes 
on the y-axis. Nodulating and non-nodulating plants are identified by a schematic representation of a root with 
or without a nodule. The number of nsLTPs for each plant is represented by the number of typed and untyped 
(NA) nsLTPs. The percentages of the different types of nsLTPs in this dataset are shown in the legend.
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two putative AgLTPs (AgLTP1 (Alngl907S06353) and AgLTP3 (Alngl66059S34270)) with a high percentage of 
identity. Thus, for A. glutinosa in association with F. alni ACN14a EST data were refined using qRT-PCR target-
ing genes encoding putative AgLTPs. The expressions of 23 AgLTPs, including 8 up-regulated, 8 not-regulated 
and 7 down-regulated (Log2FoldChange ≥ 1 or ≤ − 1), in the functional nodule compared to uninfected roots 
were assessed and the differential expression of AgLTP1 and AgLTP3 was refined (Fig. 3 and Supplementary 
Table S2). We also confirmed that AgLTP24 (Alngl424615S03856) is the most up-regulated gene encoding an 
nsLTP at the functional nodule step.

The nsLTPs described as involved in symbiosis in the literature and those up-regulated in the functional 
nodule were retrieved in different phylogenetic clades, had different conserved protein motifs and different iso-
electric points and molecular weights (Fig. 2 and Supplementary Table S1). MtN5 (MtrunA17_Chr5g0445131), 
AgLTP24 and MtnsLTP54 (MtrunA17_Chr7g0234401), (The annotation of MtnsLTPs was done according to 
the one proposed in the LEGOO database : MtnsLTP54 corresponds to MtLTP7 described by Santi et al.28,32,33) 
already described as involved in RNF symbiosis were grouped in the same phylogenetic clade with the same 
conserved protein motif predicted by MEME. MtN5 and AgLTP24 mature peptides had close isoelectric points 
(IP) and molecular weights but shared only 21% of sequence  identity18. MtN5 and MtnsLTP54 mature peptides 
had a higher sequence identity (38%) but a different molecular property with an IP of 8.8 and 4.4, respectively 
(see Supplementary Table S1). Overall, these results indicate that nsLTPs up-regulated in functional nodules 
compared to uninfected roots have diverse protein motifs in their protein sequence and that nsLTPs described 
in the literature as functionally involved in symbiosis share the same conserved protein motifs.
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Figure 2.  Phylogenetic tree representing nsLTPs evolution in the RNF clade. A graphical representation of the 
unrooted maximum-likelihood phylogenetic tree of nsLTPs from RNF plants was constructed with IQ-TREE. 
Typed nsLTPs are represented by colored circles. The unannotated ones are those that do not correspond to 
any type. The triangles represent the nsLTPs that are up-regulated in functional nodules, of M. truncatula 
(MtnsLTPs), P. andersonii (PaLTPs), A. glutinosa (AgLTPs) and D. glauca (DgLTPs). For A. glutinosa, AgLTPs 
up-regulated in nodules compared to non-infected roots are represented by qRT-PCR data (this study). For 
the tree other plant, up-regulated MtnsLTPs, PaLTPs and DgLTPs in functional nodules were retrieved from 
databases (see “Materials and methods”). Names of nsLTPs already described in the literature as involved in 
RNF symbiosis are specified next to the gene name. The scale bar represents the number of substitutions per site 
(under the selected evolutionary model). The schematic representation of conserved protein motifs predicted 
using the MEME suite is shown outside the tree.
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Molecular response of Frankia alni ACN14a to AgLTP24
To further investigate the role of nsLTPs in symbiosis, we investigated the function of AgLTP24 secreted by A. 
glutinosa in symbiosis with F. alni ACN14a. Our previous work demonstrated that AgLTP24 was highly expressed 
in A. glutinosa both at an early step of infection with F. alni ACN14a and at the functional nodule  step18. In 
planta, AgLTP24 is secreted at deformed root hairs during the early step of symbiosis when the host recognizes 
Frankia and later when it targets the nitrogen-fixing vesicles of the symbiont inside the nodule cells. This previ-
ous work has showed that AgLTP24 at 5 µM impacted Frankia physiology by inhibiting cellular activity and 
nitrogen fixation at 100 nM and above. As Frankia in the nodule is viable and has an active nitrogen fixation to 
provide nitrogen to the plant, we investigated the molecular response of F. alni ACN14a under N-free condi-
tions in contact or not with a sub-inhibitory concentration of AgLTP24 (1 nM) using RNAseq method (Table 1).

Physiological measurements such as nitrogen fixation (ARA), respiration (IRA), and growth  (OD600nm) were 
conducted on these assays and confirmed that AgLTP24 at this concentration did not affect Frankia physiology 
as shown earlier (see Supplementary Fig. S1)18.

Transcriptomic analysis identified 107 up-regulated genes and 35 down-regulated genes (Table 1) when F. 
alni ACN14a was in contact with a sub-inhibitory concentration of AgLTP24 compared to the control condi-
tion. Some encoded chaperones involved in refolding proteins and proteins for repairing DNA damages were 
up-regulated, such as groL, groS, lon, and a gene cluster (FRAAL6639-FRAAL6643) with dnaK, grpE, dnaJ, and 
clpB. Genes encoding putative proteins involved in cell wall/membrane/envelope biogenesis were up-regulated 
such as FRAAL6118 and FRAAL6119 encoding a glycosyltransferase and a succinoglycan biosynthesis protein, 
respectively. Other upregulated genes encoding membrane transporters such as ABC transporters, manganese 
transport, cation transporting P-type ATPase A, and a citrate transporter (fecD) were retrieved. Several genes 
involved in energy conversion and metabolism, aerobic respiration (succinate dehydrogenase sdhC, sdhA, sdhB), 
cytochromes, and nitrogen fixation (nif genes, nifB, nifK, nifX, nifH, nifV, nifZ, nifD) were up-regulated while 
narK allowing nitrate and nitrite import was repressed. Among the down-regulated genes, only one gene was 
annotated (narK), the others were not described enough to provide further information.

Discussion
Plant AMPs are involved in many plant functions, such as innate immunity or RNF symbiosis. Some legumes 
belonging to the IRLC and Dalbergioids clades secrete NCRs and NCR-like respectively to coordinate the ter-
minal differentiation of rhizobia into polyploid bacteroids in the nodule. These NCRs and NCR-like are char-
acterized by a conserved cysteine motif in their protein sequence that is close to the cysteine motif of defensins 
and neurotoxins. In actinorhizal symbioses, less information is available due to the lack of genetic engineer-
ing tools developed. Based on transcriptomic analysis of nodules, AMPs of the defensins family have been 
identified in the three actinorhizal plants Ceanothus thrysiflorus (Rosales), D. glomerata (Cucurbitales), and A. 
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Figure 3.  Differential expression of genes encoding putative nsLTPs in functional nodules. Graphic 
representation of differential expressions of the genes encoding nsLTPs at nodule stage compared to control 
conditions. The x-axis carries the gene name and the nsLTP annotation, on the y-axis expression level is in 
Log2FoldChange (up-regulated: Log2FC ≥ 1 and down-regulated: Log2FC ≤ -1). For A. glutinosa, differential 
expression of AgLTPs in nodules is represented by qRT-PCR data (this study). Differential expressions of nsLTPs 
were retrieved from databases (see “Materials and methods”).
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Label Name Log2 FoldChange padj Annotation

FRAAL1882 5.01 5.57E−03 Small heat shock protein

FRAAL4716 4.14 3.89E−02 Putative oxidoreductase

FRAAL6701 groL 4.10 4.24E−04 Chaperone Hsp60 (GroEL), part of GroE chaperone system

FRAAL4715 3.87 3.95E−02 Putative transcriptional regulator of the TetR family

FRAAL1884 ribD 3.55 1.10E−03 Putative riboflavin/cytosine deaminase (partial)

FRAAL0166 3.46 4.42E−03 Conserved hypothetical protein; putative membrane protein

FRAAL5655 sdhB 3.40 4.90E−03 Succinate dehydrogenase iron-sulfur protein

FRAAL1764 lon 3.29 2.11E−03 DNA-binding ATP-dependent protease La; heat shock K-protein

FRAAL2325 3.23 4.90E−03 putative 3-(3-hydroxy-phenyl)propionate hydroxylase, FAD/NAD(P)-binding

FRAAL5654 sdhA 3.10 5.06E−03 Succinate dehydrogenase flavoprotein subunit A

FRAAL6439 3.07 1.30E−02 Putative MoxR-like regulatory protein

FRAAL5653 sdhC 3.04 5.57E−03 Succinate dehydrogenase cytochrome B subunit

FRAAL6438 2.95 8.43E−03 Hypothetical protein

FRAAL6814 nifV 2.94 4.90E−03 Nitrogenase-associated homocitrate synthase

FRAAL5037 livG 2.88 7.01E−03 High-affinity branched-chain amino acid transport protein (ABC superfamily, atp_bind)

FRAAL6643 clpB 2.82 4.90E−03 ATP-dependent protease, Hsp 100, part of multi-chaperone system with DnaK, DnaJ, and GrpE

FRAAL0168 2.81 1.56E−02 Hypothetical protein; putative signal peptide; putative Dyp-type peroxidase domain

FRAAL6804 nifZ 2.79 5.06E−03 NifZ protein

FRAAL4308 copD 2.79 7.90E−03 Copper resistance membrane protein

FRAAL2326 2.76 2.55E−02 Hypothetical protein; putative serine-threonine protein kinase

FRAAL0988 2.69 5.06E−03 Putative regulator

FRAAL6807 2.62 4.62E−03 Conserved hypothetical protein

FRAAL6813 nifH 2.62 1.11E−02 Nitrogenase iron protein (NITROGENASE component II) (nitrogenase Fe protein) (nitrogenase reductase, dinitrogenase 
reductase)

FRAAL1134 groL 2.61 5.55E−03 Chaperone Hsp60 (GroEL), part of GroE chaperone system

FRAAL0989 2.61 1.16E−02 Cation-transporting P-type ATPase A

FRAAL6812 nifD 2.60 9.91E−03 Nitrogenase molybdenum-iron protein alpha chain (nitrogenase component I) (Dinitrogenase)

FRAAL6811 nifK 2.59 1.65E−02 Nitrogenase molybdenum-iron protein beta chain (nitrogenase component I) (dinitrogenase)

FRAAL1133 groS 2.58 6.17E−03 Chaperone Hsp10 (GroES), part of GroE chaperone system

FRAAL6638 2.57 1.41E−02 Hypothetical protein

FRAAL6640 grpE 2.56 1.52E−02 Heat shock protein (HSP-70 cofactor)

FRAAL4648 2.50 3.88E−02 (2,3-dihydroxybenzoyl)adenylate synthase (2,3-dihydroxybenzoate-AMP ligase; Dihydroxybenzoic acid-activating 
enzyme)

FRAAL4645 cetJ2 2.48 2.55E−02 Cupin domain-containing protein; fralnimycin synthesis

FRAAL6859 2.47 1.43E−02 Cupin domain-containing protein; fralnimycin synthesis

FRAAL4644 cetJ3 2.42 2.98E−02 Conserved hypothetical protein

FRAAL2286 2.42 1.16E−02 Putative WhiB-family transcriptional regulator; putative role in cell cycle control

FRAAL6639 dnaK 2.41 2.01E−02 Chaperone Hsp70 in DNA biosynthesis/cell division

FRAAL5036 2.38 1.21E−02 Putative high-affinity branched-chain amino acid transport protein (ABC superfamily, atp_bind)

FRAAL1506 2.36 4.90E−03 Hypothetical protein

FRAAL4245 2.35 7.01E−03 Hypothetical integral membrane protein

FRAAL1607 2.34 4.35E−02 Putative integral membrane protein

FRAAL6437 2.34 1.64E−02 Putative transglutaminase, putative cysteine proteases, putative membrane protein

FRAAL5911 2.33 1.63E−02 Hypothetical protein; putative signal peptide

FRAAL6335 2.32 2.91E−02 Hypothetical protein

FRAAL6641 dnaJ 2.32 1.98E−02 Heat shock protein (Hsp40), co-chaperone with DnaK

FRAAL6197 2.28 4.92E−02 Hypothetical protein; putative signal peptide

FRAAL6808 nifX 2.26 4.59E−02 NifX protein

FRAAL0596 2.20 4.24E−04 Putative regulator

FRAAL1002 2.13 3.31E−02 Putative cytochrome C biogenesis membrane protein

FRAAL6802 erpA 2.13 2.19E−02 Conserved hypothetical protein; Thioredoxin-like domain

FRAAL6860 2.13 3.70E−02 Putative 1L-myo-inositol-1-phosphate synthase

FRAAL0060 2.11 1.21E−02 Putative transcription regulator protein

FRAAL6803 nifB 2.08 2.09E−02 FeMo cofactor biosynthesis protein nifB

FRAAL1763 2.07 2.19E−02 Hypothetical protein

FRAAL6337 2.06 1.68E−02 Hypothetical protein

FRAAL5912 sigE 2.01 4.97E−02 Putative RNA polymerase ECF-subfamily sigma factor

Continued
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Label Name Log2 FoldChange padj Annotation

FRAAL1001 1.98 2.55E−02 Thiol:disulfide interchange protein helX precursor (Cytochrome c biogenesis protein helX)

FRAAL4136 1.98 3.31E−02 Putative iron sulphur protein (Putative secreted protein)

FRAAL4747 1.97 2.80E−02 Putative stress-inducible protein; putative adenine nucleotide-binding domain

FRAAL6642 1.97 1.72E−02 Putative heat shock protein hspR

FRAAL6118 1.91 1.43E−02 Putative glycosyltransferase

FRAAL5016 1.91 4.59E−02 Hypothetical protein

FRAAL5461 1.82 2.25E−02 Putative Epoxide hydratase

FRAAL5462 1.80 5.06E−03 Putative TetR-family transcriptional regulator

FRAAL3287 1.76 2.20E−02 Glycine-rich cell wall structural protein

FRAAL1786 1.74 2.20E−02 Hypothetical protein

FRAAL4148 1.73 2.91E−02 Hypothetical protein

FRAAL3704 1.73 4.65E−02 Putative TetR-family transcriptional regulator

FRAAL5121 1.70 4.15E−02 Putative integral membrane protein

FRAAL4491 oxyR 1.69 5.06E−03 Transcriptional regulator of oxidative stress, regulates intracellular hydrogen peroxide (LysR family)

FRAAL4781 1.68 4.22E−02 Conserved hypothetical protein

FRAAL0075 1.67 2.98E−02 Conserved hypothetical protein

FRAAL3899 1.66 1.98E−02 Putative ATP/GTP binding protein; putative beta WD-40 repeat and TPR domains

FRAAL0863 1.66 1.21E−02 RicinB lectin

FRAAL0081 1.65 1.21E−02 Manganese transport system ATP-binding protein

FRAAL1576 1.63 4.22E−02 Hypothetical protein; putative signal peptide

FRAAL6408 1.63 5.06E−03 Conserved protein of unknown function

FRAAL6119 1.62 1.64E−02 Putative succinoglycan biosynthesis protein

FRAAL5109 qcrB 1.61 2.19E−02 Ubiquinol-cytochrome c reductase cytochrome b subunit

FRAAL1508 1.59 5.06E−03 Hypothetical protein; putative membrane protein

FRAAL5649 1.59 1.21E−02 Integral membrane protein with Succinyl-CoA ligase domain

FRAAL6227 1.52 1.86E−02 Putative NADH dehydrogenase

FRAAL5552 1.51 2.58E−02 Hypothetical protein; putative signal peptide

FRAAL4430 1.47 1.21E−02 Hypothetical protein; putative signal peptide

FRAAL1766 1.45 3.88E−02 Putative pirin-like protein

FRAAL1505 murI 1.43 2.98E−02 Glutamate racemase

FRAAL0938 1.43 3.56E−02 Putative molybdopterin converting factor

FRAAL1699 groL 1.39 1.56E−02 Chaperone Hsp60 (GroEL), part of GroE chaperone system

FRAAL4024 1.38 2.79E−02 Putative monooxygenase with luciferase-like ATPase activity

FRAAL1427 1.35 4.97E−02 Short-chain dehydrogenase/oxidoreductase with several Glucose/ribitol dehydrogenase and 17-Beta hydroxysteroid 
dehydrogenase domains

FRAAL6502 1.35 6.17E−03 conserved hypothetical protein

FRAAL1154 accD 1.33 2.55E−02 Acetyl-coenzyme A carboxylase carboxyl transferase subunit beta (ACCASE beta chain)

FRAAL0924 1.33 4.97E−02 Putative MarR-family transcriptional regulator; putative signal peptide

FRAAL2626 1.33 1.43E−02 Hypothetical protein

FRAAL5351 1.31 4.90E−02 Putative Na + /H + antiporter; putative membrane protein

FRAAL5685 1.29 4.45E−02 Membrane-bound Ribonuclease BN

FRAAL5137 1.29 1.88E−02 Hypothetical protein

FRAAL4890 1.25 2.19E−02 Putative transcriptional regulator (partial match)

FRAAL1577 1.24 3.56E−02 Short-chain dehydrogenase, NAD(P)-binding domain

FRAAL1016 1.23 1.65E−02 Hypothetical protein

FRAAL0229 1.22 4.57E−02 Hypothetical protein

FRAAL6260 1.22 2.55E−02 Secreted subtilisin-like serine protease

FRAAL2542 1.21 2.01E−02 Non-ribosomal peptide synthetase

FRAAL1157 sucD 1.13 3.88E−02 Succinyl-CoA synthetase, alpha subunit, NAD(P)-binding

FRAAL5156 lipB 1.11 4.85E−02 Lipoyltransferase (Lipoyl-[acyl-carrier protein]-protein -N-lipoyltransferase) (Lipoate-protein ligase B)

FRAAL5646 fecD 1.02 4.97E−02 Citrate-dependent iron (III) transport protein (ABC superfamily, membrane)

FRAAL4818 1.02 1.16E−02 Hypothetical protein

FRAAL6723 1.01 3.51E−02 Hypothetical protein; putative ATPase domain

FRAAL3352 − 1.02 1.63E−02 Putative phosphatidylinositol diacylglycerol-lyase

FRAAL0541 − 1.05 2.19E−02 Putative dehydrogenase/oxidoreductase

FRAAL0375 − 1.11 2.97E−02 Putative GntR-family transcriptional regulator

FRAAL0640 − 1.13 1.21E−02 Putative secreted cell wall peptidase

Continued
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glutinosa (Fabales). These in silico analyses were complemented with functional analyses of AgDef5, a defensin 
secreted by A. glutinosa at the early step of symbiosis and in the nodule. In vitro, AgDef5 permeabilizes F. alni 
ACN14a’s nitrogen-fixing vesicles, leading to the leakage of nitrogen-rich metabolites, which could improve 
trophic exchanges between the two partners in  planta34.

The nsLTPs family is involved in RNF symbiosis in both rhizobia/legumes and Frankia/actinorhizal symbi-
oses. These peptides are secreted early in the symbiosis and in the nodule. In P. vulgaris, nsLTPs have a putative 
role and possible interaction with respiratory burst of oxidase homologs (RBOH)-dependent reactive oxygen spe-
cies (ROS)  production24. In M. truncatula and A. sinicus, MtN5 and AsE246 respectively, could regulate symbiont 
invasion, promote root cortex entry, membrane biosynthesis, and symbiosis  efficiency16,17,19,27–29. In actinorhizal 
symbiosis, only one nsLTP has been studied in A. glutinosa, AgLTP24, which targets Frankia’s nitrogen-fixing 
vesicle in  nodules18. Purified AgLTP24 peptide inhibited F. alni ACN14a nitrogen fixation activity above 100 nM 
and reduced metabolic activity above 5 µM in vitro.

As this family is widespread in RNF symbiosis, the evolutionary history of nsLTPs in symbiosis was analyzed 
in this study. First, nsLTPs were predicted using 15 plant proteomes of nodulating and non-nodulating plants 
within the RNF clade and one Brassicales A. thaliana. These data permit to perform a phylogenetic analysis, 
which showed that nsLTPs from diverse plant species were distributed across all clades. nsLTP are grouped by 
type, independently of plant order, suggesting their ancient acquisition prior to the emergence of the RNF clade. 
Furthermore, we observed several copies of the same nsLTP type in each plant species, suggesting that several 
duplications took place within each node. This also showed that nsLTPs had an evolutionary history marked 
by both ancient but also recent duplications in plants and groups of plants. This observation suggests that the 
nsLTPs gain predates the emergence of the RNF clade. This conclusion is consistent with Edstam who argued that 
nsLTPs would have emerged in the first land plants since no nsLTPs in their dataset were identified in algae at 
that  time23. A recent study predicted a novel nsLTP lineage in green alga thus nsLTPs could have emerged in the 
common ancestor of green  plants24,25. Our results also showed a high percentage of nsLTPs not corresponding to 
any of the types proposed by Boutrot et al. but grouped in the same phylogenetic clade with conserved protein 

Label Name Log2 FoldChange padj Annotation

FRAAL2594 − 1.16 1.98E−02 Putative epoxide hydrolase

FRAAL1590 − 1.19 2.80E−03 Putative conserved protein; glyoxalase and dihydroxybiphenyl dioxygenase domain

FRAAL2705 − 1.19 2.98E−02 Hypothetical protein

FRAAL6479 − 1.20 3.47E−02 Short− chain dehydrogenase

FRAAL3995 − 1.22 3.58E−02 Putative hydrolase

FRAAL2484 − 1.32 2.19E−02 Conserved hypothetical protein

FRAAL3997 − 1.38 7.64E−03 Conserved hypothetical protein

FRAAL4133 − 1.42 3.45E−02 Putative glutathione S-transferase enzyme with thioredoxin-like domain

FRAAL2519 − 1.43 3.09E−02 Putative short-chain dehydrogenase

FRAAL2937 − 1.45 2.25E−02 Hypothetical protein

FRAAL3838 − 1.46 4.97E−02 Hypothetical protein; putative signal peptide

FRAAL3585 − 1.48 3.31E−02 Putative esterase

FRAAL3774 − 1.54 2.55E−02 hypothetical protein

FRAAL1571 − 1.57 1.64E−02 Putative acyl-CoA dehydrogenase

FRAAL0744 − 1.59 5.55E−03 Hypothetical protein; putative endonuclease domain

FRAAL2938 − 1.62 8.43E−03 Putative protein kinase

FRAAL3965 − 1.63 2.11E−02 Hypothetical protein; putative signal peptide

FRAAL2509 − 1.63 3.31E−02 Putative 3-ketoacyl-CoA thiolase

FRAAL0201 − 1.67 2.98E−02 Putative cytochrome P450 reductase

FRAAL3923 − 1.69 4.22E−02 Putative cytochrome P450

FRAAL0376 − 1.71 1.88E−02 Cytosine/purine/uracil/thiamine/allantoin permease family protein

FRAAL4527 − 1.71 5.57E−03 Putative Glycoside hydrolase

FRAAL2508 − 1.73 2.63E−02 Protein associated with acetyl-CoA C-acyltransferase

FRAAL0316 − 1.76 1.43E−02 Carveol dehydrogenase

FRAAL0200 − 1.87 6.87E−04 NAD+-dependent aldehyde dehydrogenase

FRAAL2706 − 1.89 1.98E−02 Hypothetical protein

FRAAL0348 − 1.90 1.30E−02 Putative 6-methylsalicylic acid synthase

FRAAL2076 narK − 2.00 2.91E−02 Nitrite membrane extrusion protein

FRAAL2707 − 2.00 1.43E−02 Coenzyme PQQ synthesis protein

FRAAL2513 − 2.00 2.19E−02 Putative Acyl-CoA dehydrogenase

FRAAL3766 − 2.65 1.52E−02 Hypothetical protein

Table 1.  Frankia alni ACN14a genes up and down regulated in N-free condition supplemented with AgLTP24 
versus N-free condition. p-value adjusted  (padj) ≤ 0.05, up-regulated genes: Log2FoldChange ≥ 1, Down-
regulated genes Log2FoldChange ≤  − 1. Gene label, name and annotation come from the Genoscope database.
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motifs. As there is no official classification for these peptides, it would be relevant to complete or establish a new 
classification of nsLTPs from plants covering the whole plant kingdom and improve the identification of these 
peptides in proteomes. Studying nsLTPs from plants representing the entire plant kingdom, as they have recently 
been identified in algae, would also improve analysis of the evolutionary history of  nsLTPs25.

To deepen our understanding of the evolutionary history of nsLTPs in RNF symbiosis, the expression of 
genes encoding putative nsLTPs in nodules of 5 plants was retrieved with available transcriptomics data. This 
permitted the identification of genes encoding putative nsLTPs up-regulated in the functional nodule of plants 
belonging to the four orders of the RNF clade except for C. glauca. The only nsLTP studied in actinorhizal plants 
targets the nitrogen-fixing vesicle of F. alni ACN14a, however, in the symbiosis model between C. glauca and 
Frankia casuarinae CcI3, the nsLTPs might not be present in the nodules because F. casuarinae Cci3 does not 
differentiate cells into vesicles in nodule as the oxygen flow is controlled by the host  plant35. The differential 
expression data of CgLTPs in the functional nodule were not available for all putative nsLTPs, further analysis 
could improve these data as we have done here for the putative nsLTPs found in the proteome of A. glutinosa. 
The nsLTPs already described in RNF symbiosis in the literature, MtN5, MtnsLTP54 and, AgLTP24 grouped 
in the same phylogenetic clade and share conserved protein motifs but other putative nsLTPs up-regulated in 
functional nodules had different type and conserved motif and were distributed in all phylogenetic clades. It 
should also be noted that among the nsLTPs already studied in RNF symbiosis in the literature, AsE246 is so far 
the only one described as belonging to the type  I19,20. This raises the question of whether the motifs conserved 
between MTN5 and AgLTP24 are crucial for their involvement in nodulation, and whether they have the same 
functions. Furthermore, functional analyses of nsLTPs with different protein motifs belonging to other clades 
would be required to determine their involvement in nodulation and whether their function is similar or dif-
ferent. Regarding the evolutionary history of nsLTPs in the RNF symbiosis, within the RNF clade, nsLTPs dif-
ferentially expressed during nodulation belong to different subclades, suggesting that symbiotic functions may 
have been independently co-opted in different lineages of RNF symbioses. This independent co-option could 
suggest a convergence of function however, more functional data are required to conclude on this point. It is 
important to keep in mind that nsLTPs could exhibit the same or diverse functions during the symbiosis. In 
order to ascertain whether the peptides derived from various nodulating plants, whose encoding genes are up-
regulated during symbiosis, possess a single function indicative of functional convergence, or exhibit diverse 
functions within this association, it is imperative to conduct comprehensive functional studies.

More broadly, concerning the evolutionary history of RNF symbiosis, two hypotheses have been proposed, 
one with an evolutionary model based on several independent  acquisitions36 of the ability to form nodulation 
and another based on a single gain of this trait in a common ancestor followed by multiple losses. Recently, 
strong arguments have been published supporting the second hypothesis and indicated also that some additional 
functions have been acquired in a convergent manner such as plant  hemoglobin2–4. This convergence of function 
was also described for AMPs involved in RNF symbiosis. NCRs and NCRs-like secreted respectively by legumes 
belonging to IRLC and Dalbergioids have different structures, but both induce the differentiation of the symbiont 
into bacteroids with different shapes in the  nodule10,11. This convergence of function was recently challenged due 
to their possible origin from within defensins. A recent phylogenetic study between defensins involved in acti-
norhizal symbioses and NCRs of legumes shows that these peptides would have a common  origin37. Concerning 
nsLTPs, their symbiotic functions may have been independently co-opted in different lineages of RNF symbioses 
to take part of in the symbiosis process in each nodulating plant. That may be a sign of convergent evolution, 
but it needs to be established first that all nsLTPs up-regulated in functional nodule share a common function.

This study focuses only on RNF symbiosis, but it would be worthwhile to determine the involvement of 
nsLTPs in other mutualistic symbioses such as mycorrhizal symbioses that has not been documented to our 
knowledge. Only one publication reports the overexpression of a gene encoding nsLTPs in Oryza sativa roots dur-
ing appressoria formation and penetration of the mycorrhizal fungus Glomus mosseae. This gene is subsequently 
down-regulated upon mycorrhization, during the intracellular development of fungal hyphae in the root and is 
also induced upon treatment with salicylic acid or with the pathogen Pseudomonas syringae indicating that this 
nsLTP is not involved in mycorrhization but probably part of the plant’s defense  system38. In M. truncatula, two 
nsLTPs (MtnsLTP104 and MtnsLTP103 corresponding to Medtr4g077180 and Medtr4g076150; respectively) are 
up-regulated during mycorrhizal symbiosis with the arbuscular mycorrhizal fungi Rhizophagus irregularis but 
no functional studies have been performed. The nsLTPs are described as part of the plant’s immune response 
against many pathogenic organisms such as bacteria, fungi, viruses, nematodes, and  insects39–44. More broadly 
this raises the question of how these diverse interactions have shaped the evolution of nsLTPs in plants.

Focusing on RNF interaction, to further investigate the evolution of nsLTPs in nodulating plants, their func-
tions should be explored in nodulating plants of different lineages. This should permit to identify if nsLTPs of 
a given phylogenetic clade have similar functions or multiple functions during symbiosis. For this purpose, we 
studied the function of AgLTP24 which is the most expressed nsLTPs gene in the A. glutinosa  nodule18. This 
peptide inhibits the metabolic activity of F. alni ACN14a at 5 µM and inhibits the nitrogen fixation activity at 
100 nM, however, the symbiont in the nodule is viable and metabolically active to fix nitrogen to supply the host 
with nitrogen compound. Thus, in this study, we were interested in the molecular response of the symbiont to 
subinhibitory concentrations of AgLTP24.

Transcriptomic analysis of F. alni ACN14a under N-free conditions supplemented with subinhibitory con-
centrations of AgLTP24 compared to N-free medium without nsLTP addition indicated that the bacterium 
copes with stress to ensure its survival by maintaining nitrogen fixation, growth, and respiration and that it was 
preparing for symbiosis. Several stress-related genes coding for chaperones were up-regulated, as well as genes 
coding for transporters and transcriptional regulators involved in the management of oxidative  stress45,46. These 
genes involved in stress response were also up-regulated at an early step of symbiosis when the bacterium is 
in indirect contact with the  plant47. The response of F. alni ACN14a to AgLTP24 is comparable to that of the 
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Sinorhizobium meliloti symbiont when exposed to NCR247 and NCR335. In both cases, there is an up-regulation 
of genes encoding heat shock proteins, proteins with potential involvement in transcriptional regulation, and 
ABC-type membrane  transporters48. Genes encoding nitrogenase and proteins involved in respiration and the 
TCA cycle were up-regulated and the gene encoding the nitrite transporter NarK was down-regulated when 
Frankia was in contact with AgLTP24. Under N-free medium in vitro, F. alni ACN14a nif genes are up-regulated 
as well as narK encoding a nitrite transporter. The nif genes are up-regulated and narK is down-regulated when 
the symbiont is in nodule condition compared to an N-free  medium49. The same expression profile of nif and 
narK genes was seen when Frankia was in contact with AgLTP24 suggesting that the bacteria had a similar 
nitrogen management to nodule conditions in planta.

F. alni ACN14a in contact with AgLTP24 at subinhibitory concentrations could undergo stress. To overcome 
this, Frankia could establish resistance systems to adapt to the effects of AMPs. Some up-regulated genes encod-
ing ABC transporters that could be a mechanism of resistance to nsLTPs. An ABC transporter, BacA, essential 
for the survival of the symbiont in the nodule, allows Sinorhizobium meliloti to cope with the toxicity of NCR 
peptides secreted by M. truncatula.50,51. Two genes encoding peptides possibly involved in succinoglycan syn-
thesis were up-regulated by Frankia in contact with AgLTP24. The succinoglycan produced by rhizobia allows 
them to resist to  NCRs52. It was described that sub-inhibitory concentration of AMP can act at the membrane 
or intracellular level, it would be relevant to identify whether this response is induced following the interaction 
of AgLTP24 with Frankia membranes or intracellular target  molecules53.

Conclusion
Nodulating plants that are co-evolving with their nitrogen-fixing symbionts appear to have independently special-
ized nsLTPs for this interaction, suggesting a possible convergence of function. To better understand the various 
functions of these nsLTPs in RNF symbiosis we identified genes encoding putative nsLTPs in plants distributed 
in the four orders of the RNF clade which opens new perspectives. Concerning actinorhizal symbioses, we con-
firmed that AgLTP24 was the most up-regulated gene in the functional nodule of A. glutinosa in symbiosis with F. 
alni ACN14a. Thus, the function of this nsLTPs was further investigated with the study of the molecular response 
of the symbiont to sub-inhibitory concentrations of AgLTP24, which permitted to show a similar response to 
that found in symbiotic conditions and highlighting possible adaptation mechanisms of Frankia to AgLTP24.

Materials and methods
nsLTPs identification and characterization
nsLTPs detection was performed using 15 plant proteomes: Datisca glomerata (GCA_003255025.1)2, 
Chamaecrista fasciculata (GCA_003254925.1)2, Nissolia schottii (GCA_003254905.1)2, Alnus glutinosa 
(GCA_003254965.1)2, Casuarina glauca (GCA_003255045.1)2, Discaria trinervis (GCA_003254975.1)2, Dryas 
drummondii (GCA_003254865.1)2, Cucumis sativus PI18396 (PI183967)54, Lupinus albus (WOCE00000000)55, 
Medicago truncatula (PSQE00000000)56, Parasponia andersonii (GCA_002914805.1)3, Arabidopsis thaliana 
(TAIR10, GCA_000001735)57, Juglans regia (GCF_001411555.2)58, Pyrus communis (PRJEB5264)59 and Quercus 
lobata (GCF_001633185.2).

A wrapper script, nsLTPFinder, was used to identify putative nsLTPs peptides in plant proteomes (https:// 
github. com/ jeank eller/ nsLtp Finder. git). As input, a directory containing the proteomes was used to be analyzed 
in FASTA format. First, a HMMSEARCH from the HMMER v3.3 package was performed using the Hidden 
Markov Model (HMM) profile of Probable lipid transfer (PF14368.6), Hydrophobic seed protein (PF14547.6) 
and Protease inhibitor/seed storage/LTP family (PF00234.22) (PFAM34 database). Searches were performed 
using an e-value threshold of 10 for full and domain hits. The nsLTPs were also searched with the regular 
expression "C.(6,15)C.(6,80)CC.(8,29)C.C.(8,37)C.(4,25)C" in proteomes. Results from HMMSEARCH and 
the regular expression search were merged and protein sequences were then extracted from proteomes. Signal 
sequences were searched using SignalP 5.060. The isoelectric point, molecular weight, and grand average hydropa-
thy (GRAVY) were retrieved for peptides and mature peptides, which correspond to the peptides without signal 
sequence using Expasy ProtParam  tool61. Proteins identified by the regular expression search and HMMSEARCH 
with an identified signal peptide and containing 8 cysteines in the mature sequence were extracted as "top 
candidates" and proteins identified only with the regular expression search with a signal peptide, 8 cysteines in 
the mature sequence were extracted as low confidence candidates. Conserved motifs were predicted using the 
 MEME62 suite on the top and low confidence mature peptides for each plant proteome and on all top and low 
confidence for all proteomes.

Once nsLTPFinder ran to completion, the 8CMs were manually checked in the mature peptide’s amino 
acid sequences for top and low-confidence candidates. The identified nsLTPs were grouped according to the 
classification proposed by Boutrot et al.20 and completed with the type XI proposed by Li et al.30. The graphi-
cal representation of the number of nsLTPs and their classification in each plant was performed using RStudio 
2021.09.2. The comparison of the number of putative nsLTP in plants belonging to four orders of the RNF clade 
and the comparison of the number of nsLTPs present in nodulating and non-nodulating plants belonging to the 
RNF clade was performed using Shapiro normality test and Mann–Whitney test to analyze the distribution of 
data using GraphPad Prism 9.5.0.

Phylogenetic analysis and sequence alignment
Multiple sequence alignments of nsLTPs CDS sequences were performed using Mafft v7 with local pairwise. 
The alignment was cleaned using TrimAl 1.4.163 to remove positions with more than 50% of gaps. A Maximum-
likelihood phylogenetic tree was reconstructed using IQ-TREE2 2.1.4_beta64 (SH-aLRT test and ultrafast boot-
strap with 10,000 replicates) and the model GTR + F + R9 determined with ModelFinder (https:// doi. org/ 10. 
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1038/ nmeth. 4285) according to the Bayesian Information Criteria. Branch supports were tested using 10,000 
replicates of Ultrafast  Bootstrap65. The tree was visualized with iTOL 6.3.2  platform66. The maximum-likelihood 
phylogenetic tree reconstructed with IQ-TREE2 with bootstrap values in Newick format can be found as Sup-
plementary File S1.

nsLTPs differential expression during nodulation
To analyze differential expressions of genes encoding nsLTPs in the nodule, previously calculated transcriptomic 
data from five nodulating plants were recovered from available transcriptomics data. For M. truncatula, expres-
sion data were obtained after 14 days post-inoculation (dpi) with Sinorhizobium meliloti  102167 via the MtSSBPdb 
 platform32. Gene annotation correspondence was done using the LeGOO  database33. The P. andersonii expres-
sion data were obtained at stage 3 (corresponding to functional nodule) after inoculation with Mesorhizobium 
plurifarium  BOR23. Differential expressions data of D. glomerata were obtained after 24 dpi with nodule  crush68. 
For C. glauca the expression data had been obtained on 21 dpi nodules with Frankia casuarinae  Cci369 using 
SESAM  database70.

nsLTPs of A. glutinosa (AgLTPs) genes expression in nodule (21 dpi) infected with F. alni ACN14a were ana-
lyzed using EST (Expressed Sequence Tag) database and microarray analysis, which are publicly available on the 
Gene Expression Omnibus database (www. ncbi. nlm. nih. gov/ geo; accession number GSE24153). Correspondence 
between EST and A. glutinosa gene  name2 was determined with a Blast search using percentage identity > 90% 
and EST-gene coverage > 85% parameters. Differential expression of genes encoding AgLTPs was determined 
using the microarray dataset with a p-value threshold of 0.05. Briefly, Student’s t-test was applied to compare 
nodules versus non-inoculated roots and average Fold Changes (FC) were calculated and false discovery rate 
(FDR) adjusted p-value (FC are considered as significative if p-value adj < 0.05). To complement and confirm 
these microarray data, reverse transcription (RT) and quantitative real-time PCR (qRT-PCR) using nodules from 
3 plant biological replicates obtained after infection with F. alni ACN14a (21 dpi) were performed. The results 
obtained were compared to uninfected roots as reference. RT was performed using 5 µg of total mRNA using 
Transcriptor Reverse Transcriptase and oligo (dT)15 primer (Roche, Mannheim, Germany). qRT-PCR was run 
on BioRad QX 100 using iTaq Universal SYBR Green Supermix (Bio-rad) under the following conditions: 95 °C 
for 5 min; 44 cycles of 95 °C for 20 s, 60 °C for 20 s 72 °C for 15 s. Primer sets were designed using Primer3Plus 
software and can be found in Supplementary Table S3. Expression values were normalized using the expression 
level of the Ag-ubi gene that encodes  ubiquitin71.

Strain and plant growth condition
Frankia alni strain  ACN14a72 was grown at 28 °C with 200 rpm stirring in FBM medium with 5 mM ammonium 
as described  earlier73 to the exponential phase. The cells were then harvested, sedimented by centrifugation 
(5000×g, 10 min), and washed twice with corresponding  NH4

+-free FBM medium (FBM-). Plant growth, inocu-
lation and nodule harvesting were done as described  earlier13.

Molecular response of F. alni ACN14a to contact with AgLTP24
AgLTP24 was produced and purified as described  earlier18. Three independent cultures of F. alni ACN14a were 
made in 240 ml of FBM-liquid medium (N-free condition) supplemented or not with 1 nM of AgLTP24 and 
grown for 7 days at 28 °C. The pellets were collected by centrifugation at 5100×g. Then, mRNAs were extracted 
and converted into cDNA as described  previously49. Ribosomal RNAs were depleted using Truseq stranded total 
RNA (Illumina) and the cDNA were sequenced using Novaseq6000 (Illumina at the MGX, Montpellier, France). 
Bioinformatic and statistical treatments were made by the MGX (Montpellier GenomiX Platform) platform. The 
sequences were aligned on the F. alni strain ACN14a genome using the BWA 0.7.17-r1188  software74. Statistical 
analyses were made using DESeq2 1.26.0 with R 3.6.175.

Bioassays were conducted by growing F. alni strain ACN14a in FBM- and incubating it for 7 days at 28 °C, 3 
replicates per condition were performed as described  previously18. Frankia’s nitrogen fixation activity (or ARA), 
respiration (IRA), and growth  (OD600nm) were tested as described in previous  work18. Statistical analyses were 
computed using RStudio 4.1.2. The normality of the distribution was tested with a Shapiro–Wilk normality test, 
variances homogeneity was tested with a Fisher’s test. Means comparisons were performed with a Student’s t-test. 
Graphics were made using GraphPad Prism 9.2.0 (GraphPad Software Inc; San Diego, CA, USA).

Data availability
The raw reads have been deposited into the European Nucleotide Archive (ENA) (Accession number 
PRJEB61075).
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