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Abstract

A generalized model for the kinetics of a dendrite tip with a non-equilibrium interface is presented for10

multicomponent alloys. The model includes full coupling with thermodynamic databases to account for

non-dilute non-ideal solutions, in addition to a full diffusion matrix in the liquid. The consequences of

the computed non-equilibrium phase diagram boundaries on the dendrite tip kinetics are considered,

and substantial deviations from existing theories are observed, especially in the case of zero solute drag.

The model is applied to the rapid solidification of Inconel 718 (a nickel-based superalloy) and 316L (a15

stainless steel), which contain seven and five solute species, respectively. From the model, the phase

diagram properties (i.e., partition coefficients and liquidus slopes) are able to be directly visualized as

a function of velocity and observed to vary non-linearly and, in some cases, non-monotonically due to

the combination of non-linear phase diagrams and kinetic effects. Finally, recent reports in the literature

on the competition between the growth of ferrite and austenite from the melt in 316L are revisited with20

these new developments.
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1. Introduction

Phase transformations in metal alloys influence the material microstructure and its properties. The

complexity of the phenomena that occur during rapid solidification were addressed, both experimen-

tally and theoretically, mainly during the last quarter of the twentieth century [1]. This includes non-

equilibrium effects at a solid/liquid interface [2], which allowed phase diagram boundaries to be drawn as30

a function of the interface velocity [3, 4], as well as for the modeling of the non-equilibrium tip kinetics

of dendrites [5, 6, 7], a ubiquitous type of microstructure formed during the solidification of metal alloys.

However, investigations were primarily directed towards dilute binary alloys, i.e., those containing a small

amount of a single solute element in the solvent metal, and the development of a theoretical basis for

industrial (i.e., multicomponent) alloys was only just beginning [8, 9].35

The necessity to characterize rapid solidification for multicomponent alloys is of prime importance

to meet the future needs of industries. Rapid solidification induces a number of interfacial phenomena

that occur during the growth of a solid “daughter phase”, s, from a liquid “parent phase”, l, at a given

velocity, v [m · s−1]:

• Attachment kinetics. The transformation from a disordered liquid structure into an ordered solid40

structure is a process that dissipates energy, resulting in undercooling. This process is influenced

by various factors, such as the cooling rate and the presence of atomic defects at the growing

interface. The attachment kinetics are subject to a physical limit known as the “maximum speed

of crystallization”, denoted as v0 [m · s−1], which represents the maximum velocity of the interface

at which crystallization can occur. When approaching this limit, an amorphous solid phase may45

form [10]. Note that this phenomenon is also expected in pure metals.

• Solute drag. The parent liquid phase at composition xls
i [mol ·mol−1] transforms into the growing

solid phase of composition xsl
i [mol ·mol−1], where the index i ∈ {1 : N − 1} denotes a solute

component in an N -component alloy. When the interfacial region is at the composition of the

parent phase, a trans-interface diffusion mechanism must occur in order to ensure that its compo-50

sition adjusts to that of the growing phase. This process dissipates energy and is known as “full

solute drag” [2, 3]. First presented for recrystallization [11], it was comprehensively characterized

by Hillert and Sundman [12] to include solidification. However, “partial solute drag” models have

also been proposed, in which the interfacial region is at an effective composition, xeff
i [mol ·mol−1],

which differs from the interfacial compositions of the bulk phases. The value of the effective compo-55

sition is set by the “solute-drag parameter”, λi, which acts as a weighting factor for the interfacial

compositions of the solid and liquid [4, 13]. This parameter will be subsequently discussed in more

detail. The importance of partial solute drag during rapid solidification has been well-established

by recent molecular dynamics (MD) studies [14, 15, 16, 17].

• Solute trapping. As the solidification velocity increases, the process of trans-interface diffusion60

becomes limiting and the composition of the solid phase approaches that of the liquid phase. This

phenomenon is referred to as “solute trapping”. At very high velocities, the partition coefficient at

the interface, k
s/l
i = xsl

i /x
ls
i , can reach unity. In order to describe trans-interface diffusion in this
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regime, Aziz et al. [2, 3] introduced the concept of the diffusion speed of the chemical species i

through the interface, vDi [m · s−1], using vDi = DI
i /δ, where D

I
i [m2·s−1] and δ [m] are the diffusion65

coefficient of solute species i within the interface and the thickness of the interface, respectively. It

is worth noting that both solute drag and solute trapping result from the energy dissipation taking

place at the interface due to trans-interface diffusion, although they are generally described as two

distinct phenomena [4].

In parallel with the above considerations, models have been developed for dendrite tip kinetics. The70

first comprehensive theoretical framework for directional solidification was proposed by Kurz et al. [5].

It combined several previous studies, all of which assumed steady-state growth at a given velocity and in

a constant temperature gradient, including i− identification of a parabolic geometry as a good approx-

imation for a dendrite tip [18], ii− the Ivantsov solution for the diffusion problem ahead of a parabola

[19], iii− the stability analysis of a planar front [20], predicting the velocity interval [vc, va] in which75

the planar interface becomes unstable, and iv− the marginal stability criterion that approximates the

dendrite tip radius as the minimum wavelength that destabilizes the solid/liquid interface [21], the ex-

pression for which is provided by an interfacial stability analysis [20]. The type of microstructure and

the corresponding relationships between the interface compositions and chemical potentials are sketched

in Figure 1 in the simple configuration of a binary alloy of solute composition x0 with an equilibrium80

partition coefficient lower than unity, eks/l < 1. With no interface velocity (Figure 1a), v = 0m · s−1, full

thermodynamic equilibrium between the solid and liquid phases is obtained, which is defined by uniform

compositions, xsl = exsl and xls = exls with eks/l = xsl/xls = exsl/exls, uniform and equal chemical

potentials, µsl = µls, and a planar interface. The latter properties adopt values given by the system

temperature, T , that falls within the solidification interval of the alloy, i.e., between the equilibrium85

solidus temperature, eTS , and liquidus temperature eTL. It is worth noting that the minimum velocity

below which a planar front is predicted (Figure 1b), vc [m · s−1], was already given by the constitutional

supercooling criterion [22]. The maximum velocity above which the interface restabilizes (Figure 1e), va

[m · s−1], is due to the capillary force that counteracts the effect of the segregated solute. Hence, this

latter velocity is not directly related to the above-mentioned phenomenon of complete solute trapping90

where ks/l = 1 (sketched for a higher velocity in Figure 1f). For velocity vc ≤ v ≤ va, cellular/dendritic

microstructures form, shown in Figure 1c-d by a parabolic solid/liquid interface with tip radius r. One

may also be able to identify an intermediate velocity below which interface equilibrium is maintained and

the interface is still described by eks/l (Figure 1c) and above which the partition coefficient departs from

equilibrium, ks/l > eks/l (Figure 1d).95

More recently, Hareland et al. [23] developed a partial solute drag model for non-equilibrium inter-

faces during phase transformations in concentrated multicomponent alloys, where partial solute drag is

shown to affect both the temperature of the interface and the velocity-dependent distribution coefficients.

Although it was only demonstrated for binary alloys, it is capable of dealing with industrial alloys, which

we demonstrate in the present work. Similarly, Guillemot et al. [24] developed a thorough implementa-100

tion of a model for multicomponent dendrite tip kinetics fully coupled with CALPHAD thermodynamic

databases [25, 26]. This model was applied to Inconel 718, a Ni-base superalloy with seven solute species.
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In this model, a full description of the phase diagram was used in direct calls to a CALPHAD database

to determine the equilibrium calculations, which directly computed the effect of interfacial curvature

on equilibrium and allowed the working tie line for the solid/liquid interface at the dendrite tip to be105

accessed. A full diffusion matrix was also accounted for using the multicomponent stability analysis (still

assuming growth at marginal stability [21]) and the analytical expression of the diffusion field around a

paraboloid of revolution provided by Hunziker [27]. However, this advanced multicomponent dendrite

tip model relied on the assumption of thermodynamic equilibrium at the solid/liquid interface. Most re-

cently, Hariharan et al. [28] developed CALPHAD implementations for several existing sets of interfacial110

response functions and dendritic growth models, although their implementation was limited to diagonal

diffusion matrices and did not consider partial solute drag.

With the recent renewed interest in rapid solidification, primarily due to the advent of additive man-

ufacturing (AM) processes, coupling the thermodynamics of a non-equilibrium solid/liquid interface with

the dendrite tip kinetics for multicomponent alloys is required. Hereafter, we couple the above-mentioned115

partial-drag model [23] and dendrite tip kinetics model [24]. We first present the kinetic equations gov-

erning the non-equilibrium interface — the “velocity response function” (VRF) and the “concentration

response functions” (CRF) — which allows the non-equilibrium phase boundaries, such as the liquidus

temperature, TL, and solidus temperature, TS , to be calculated as a function of velocity, enabling the

construction of so-called “kinetic phase diagrams”. The methodology to compute the velocity-dependent120

T0 line is also provided, as it is the high-velocity limit for both the non-equilibrium TL and TS curves.

We then recall the equations for the dendrite tip kinetics and explain the methodology adopted in the

coupling with non-equilibrium interface conditions. Results are first described for a simple Ag–Cu binary

alloy before applying the model to the Ni-base superalloy Inconel 718 and grade 316L stainless steel.
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Figure 1: Schematics of a solidification interface growing at steady state for a binary alloy of (dashed green) solute composi-

tion x0 and partition coefficient at equilibrium lower than unity, with (red) morphology and temperature, (blue) composition

profiles along the z-direction, x, and (dashed yellow) equilibrium compositions. Chemical potentials, µ, are also given for

(a) a static planar interface and full thermodynamic equilibrium, v = 0m · s−1, (b) v < vc plane front with interface

equilibrium only, (c) vc < v ≪ va parabolic dendrite tip with interface equilibrium, (d) vc ≪ v < va parabolic dendrite tip

with non-equilibrium effects, (e) va < v planar front with non-equilibrium effect and interface segregation and (f) (va ≪ v)

partitionless non-equilibrium planar front. Notations distinguishes between equilibrium quantities, e{.}, at the interface,

{.}sl and {.}ls, respectively in the solid and liquid phases, and {.}s and {.}l averaged in the solid and liquid phases, re-

spectively.
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2. Modeling125

The thermodynamics of a non-equilibrium solid/liquid interface including partial solute drag is first

formulated for a multicomponent alloy, followed by a model that describes the growth kinetics of a

constrained dendrite tip. The methodology for coupling the two sets of equations together with computed

non-equilibrium thermodynamics is then introduced.

Figure 2: Graphical constructions for solidification of a binary alloy (solvent = a, solute = b) showing the dissipative

processes at fixed temperature, velocity, and pressure for (a) the partial-solute-drag model in which the interface can adsorb

material at xeff
b ̸= xls

b [23] and (b) its extreme configuration for partitionless solidification, where xsl
b = xls

b = xeff
b ,

∆Gt = 0, ∆Gtot = ∆Gm with λ ̸= 0 and vD/v0 ≪ 1.

2.1. Non-equilibrium solid/liquid interface130

The non-equilibrium interface model with partial solute drag used hereafter was recently developed

by Hareland et al. for multicomponent alloys, yet was only demonstrated for binary alloys [23]. It is

based on the rate of Helmholtz free energy dissipation. In an N -component alloy (where the solutes

are components i ∈ {1 : N − 1} and the solvent is component i = N , such that
∑N

i=1 x
ϕ
i = 1 in any

phase ϕ), the effect of partial solute drag is introduced by considering the (N − 1) independent “effective135

compositions” of the sharp interface, xeff
i :

xeff
i = λxls

i + (1− λ)xsl
i ∀ i ∈ {1 : N − 1} (1)
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where λ [mol ·mol−1] is the “solute-drag parameter”. We note that the dissipation relation used to derive

the current formulation uses a single value of λ that applies to all species [23].

Figure 2a provides graphical schematics of the dissipation processes in binary alloys at fixed tempera-

ture and pressure. The total energy dissipation, ∆Gtot, is the sum of the contribution due to crystalliza-140

tion, or “interface migration”, ∆Gm, and the contribution from solute redistribution, or “trans-interface

diffusion”, ∆Gt. The amount of energy given by ∆Gls→eff in Figure 2 represents the additional energy

required for crystallization to occur at xeff
i (i.e., partial solute drag) instead of xls

i (i.e., full solute drag).

For multicomponent alloys, the total Gibbs free energy change for solidification is given by [8, 29]:

∆Gtot =

N∑
i=1

xsl
i JµiK (2)

where JµiK = µls
i −µsl

i is the difference in chemical potential between the liquid phase and the solid phase145

at their respective interfacial compositions. The expressions for ∆Gm and ∆Gt in the present model are

analogous to those in Refs. [8, 29], but xls
i is replaced by xeff

i when considering partial solute drag [23]:

∆Gm =

N∑
i=1

xeff
i JµiK (3)

∆Gt =

N∑
i=1

(
xsl
i − xeff

i

)
JµiK (4)

Note that the total free energy, ∆Gtot = ∆Gm +∆Gt, is independent of the amount of solute drag, i.e.,

the value of xeff
i [23]. If we consider the case of full solute drag (λ = 1), we have xeff

i = xls
i from Eq.

(1), causing Eqs. (3) and (4) to recover the expressions in Refs. [8, 29], but ∆Gtot is still given by Eq.150

(2).

These Gibbs free energy changes are related to the driving forces for these energy-dissipating processes,

which are in turn linked to the associated interfacial fluxes through a set of kinetic equations known as

“Interfacial Response Functions” (IRFs) [30, 23]. With the additional developments to the derivation in

Hareland et al. [23] presented in Appendix A, the following IRFs—a Velocity Response Function (VRF)155

and (N − 1) Concentration Response Functions (CRFs)—are obtained for a multicomponent alloy:

v =
v0
RT

N∑
i=1

xeff
i JµiK (5)

v
(
xeff
i − xsl

i

)
=

xeff
i vDi
RT

 N∑
j=1

xeff
j JµjK − JµiK

 ∀ i ∈ {1 : N − 1} (6)

It is important to note that, although Eqs. (1) and (6) are also valid for the solvent (i = N), only the

equations for the (N−1) independent species (i.e., the solutes) are required. For given kinetic parameters

λ, v0, and vDi , this system of IRFs can be solved to determine the non-equilibrium phase boundaries, i.e.,

the kinetic phase diagram, as discussed in Section 2.3.160
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We now draw attention to the case of “partitionless solidification”, which corresponds to identical

solid and liquid interfacial compositions, xsl
i = xls

i (= xeff
i ). In this situation, no energy is dissipated by

trans-interface diffusion, i.e., ∆Gt = 0, so the total free energy change of solidification is dissipated by

the migration of the interface, ∆Gtot = ∆Gm. This case is shown in Figure 2b. In this limit, Eq. (5) can

be rewritten as165

T0 =
v0
Rv

N∑
i=1

xsl
i JµiK (7)

where T0 defines the “partitionless temperature”. While T0 is velocity-dependent, it is independent of

the solute-drag parameter, λ, and the trans-interface diffusion speeds, vDi , because the exchange of solute

at the interface vanishes.

We note that the present definition of T0 differs from the one introduced by Baker and Cahn [31] and

commonly found in the literature [3, 32]. The latter temperature, hereafter denoted by eT0, is defined170

by the point at which the free energies of the solid and liquid are equal, i.e., Gl(eT0) = Gs(eT0). The

fact that partitionless solidification is found at eT0, i.e., x
sl
i (

eT0) = xls
i (

eT0), is a consequence of this

definition. Because the Gibbs free energy curves are independent of velocity, the value of eT0 is also

independent of velocity, which is illustrated in Figure 6 of Reference [3]. Figure 2b illustrates the more

general case described by Eq. (7), where xsl
i (T0) = xls

i (T0) when Gl(T0) ̸= Gs(T0). However, we note175

that the low-velocity limit of Eq. (7) recovers the definition of the eT0 temperature, as the summation

in the numerator of Eq. (7) must tend towards zero to obtain a finite value of T0 when v ≪ v0. With

the condition xls
i = xsl

i , this leads to Gl(xls
i , T0) = Gs(xsl

i , T0) and thus T0 = eT0. In Section 3, we

shall furthermore illustrate that, for λ ̸= 0 and vDi /v0 ≪ 1, the definition of partitionless solidification

at T0 by Eq. (7) recovers the expected behavior at high velocity, i.e., TL = TS = T0. Additionally, in180

the limiting case of λ = 0 (no solute drag), Eq. (1) gives xeff
i = xsl

i , reducing Eqs. (5) and (6) to

JµiK = RTv/v0 ∀ i ∈ {1 : N}. If Figure 2b were redrawn under this condition, the magnitudes of the

slopes of the free energy curves at the interfacial compositions would be equal, despite the departure from

thermodynamic equilibrium and the common-tangent construction.

2.2. Dendrite tip kinetics185

The model used hereafter for dendrite tip growth kinetics is derived from the recent work of Guille-

mot et al. [24], which extended the developments by Hunziker [27] that were limited to linear phase

diagrams (i.e., constant liquidus slopes and partition coefficients) and uncoupled with thermodynamic

equilibrium calculations. In the present model, a multicomponent alloy of nominal molar composition

x0 = (x0
i )1≤i≤N−1 [mol ·mol−1] is considered. A dendrite tip of curvature radius r [m] grows steadily190

at a given velocity, v, and temperature, Td [K], in a fixed temperature gradient, G [K ·m−1], which is

imposed in both the solid and liquid phases along the main growth direction of the dendrite. Solute

transfer in the liquid phase is solely governed by diffusion, with a diffusion matrix D = (Dij)1≤(i,j)≤N−1

[m2·s−1]. Unlike the presentation in Reference [24], equations are written with mole fractions rather than

mass fractions. This not only ensures compatibility with Section 2.1, but is also a requirement when195

obtaining the full diffusion matrix from thermodynamic databases [25, 26], as explained in Appendix B.
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2.2.1. Solute diffusion

The composition field in the liquid phase surrounding the growing dendrite tip is provided by the

solution of the mass conservation equation defined in paraboloidal coordinates [18]. While it is available200

for nonaxisymmetric dendritic growth [33, 34], we shall hereafter assume an axisymmetric paraboloidal

dendrite tip. The solution to the latter was originally proposed by Ivantsov [19] and later extended

to multicomponent alloys [27]. Considering the compositions at the dendrite tip, xls = (xls
i )1≤i≤N−1

(resp. xsl = (xsl
i )1≤i≤N−1) in the liquid (resp. solid) phase, the following relations are obtained after

mathematical resolution:205

xls
i = x0

i +

N−1∑
j=1

N−1∑
k=1

(
xls
k − xsl

k

)
Uij U

−1
jk Iv(Pej) ∀ i ∈ {1 : N − 1} (8)

where U.j is the j−th unit eigenvector (with components (Uij)1≤(i,j)≤N−1) of the diffusion matrix,

D. Consequently, the matrix U is the transformation matrix of D composed of its eigenvectors. The

eigenvalues of this diffusion matrix are the B = (Bi)1≤i≤N−1 values, and are associated to the solutal

Péclet numbers, Pei = rv/(2Bi). Lastly, Iv(x) = x exp(x) E1(x) is the Ivantsov function, where E1(x) is

the exponential integral.210

The dendrite tip temperature, Td, is determined by i− the interfacial composition of the liquid, xls,

ii− the excess Gibbs free energy due to curvature in the solid phase (i.e., the Gibbs-Thomson effect),

∆Gs
κ [J ·mol−1], iii− departure from thermodynamic equilibrium at the solid/liquid interface at large

velocities. A general formulation can be written as:

Td = FL

(
xls,∆Gs

κ, v
)

(9)

where the excess Gibbs free energy is proportional to the curvature at the dendrite tip, κ = 2/r [m−1],215

and provided by the relation ∆Gs
κ = κγV s

M , where γ [J ·m−2] is the interfacial energy and V s
M [m3·mol−1]

is the molar volume of the solid phase. Similarly, the set of compositions in the solid phase is dependent

on the liquid compositions, excess Gibbs free energy, and interface velocity, and a similar relation can be

written:

xsl = FS

(
xls,∆Gs

κ, v
)

(10)

It must be noted that xsl and xls are not provided by tie-lines corresponding to thermodynamic equilib-220

rium, as they both depend on the interface velocity. This is the main difference with Ref. [24].

2.2.2. Stability criterion

The microsolvability theory [35, 36, 37, 38] or phase-field simulations [39, 40] should be used to

compute the length scale associated with the dendrite tip radius as a function of the strength of the

crystal anisotropy. In the following, a simple form is used, (r/λmin)
2 = σ∗/σ with σ∗ = (2π)−2, simply225

stating that the radius at the dendrite tip is proportional to the minimal unstable wavelength of a

perturbation developing at the solid/liquid interface, λmin [m]. This formulation is a pragmatic choice,

as the constant σ is often unknown for multicomponent alloys. The condition σ = σ∗ corresponds to the

marginal stability criterion [41], which directly states that r = λmin. The value of λmin can be evaluated

9



following the original stability analysis of Mullins and Sekerka [20] extended to dilute multicomponent230

alloys [42, 9] and including cross-diffusion of the chemical species in the liquid. Finally, the mathematical

expressions given by Hunziker [27] are applied to a non-dilute multicomponent alloy using direct calls to

thermodynamic equilibrium calculations [24]. The following equation for the so-called “neutral stability

curve” provides the wavenumber, ω [m−1], at the boundary between stable and unstable perturbations,

which corresponds to λmin = 2π/ω:235

N−1∑
i=1

mls
i

N−1∑
j=1

UijFj − Γω2 −G = 0 (11)

where (mls
i )1≤i≤N−1 [K ·mol.%

−1
] are the liquidus slopes of the kinetic phase diagram at the temperature

and composition of the s/l interface, Γ [K · m] is the Gibbs-Thomson coefficient of the alloy, and the

(Fi)1≤i≤N−1 coefficients are solutions of the following system [24]:

N−1∑
j=1

Ukj ζj − 2

N−1∑
i=1

Uij Kki

Fj = −
N−1∑
j=1

v
Ukj Aj

Bj
ζj ∀ k ∈ {1 : N − 1} (12)

where the (ζi)1≤i≤N−1 coefficients are given by:

ζi = 1−

√
1 +

(
2ωBi

v

)2

∀ i ∈ {1 : N − 1} (13)

TheA vector, with coefficients (Ai)1≤i≤N−1, depends on the concentration difference at the solid/liquid240

interface, ∆x = xls − xsl [24]:

A = U−1 ·∆x (14)

The K = (Kij)1≤(i,j)≤N−1 [mol ·mol−1] matrix in Eq. (12) defines the partitioning of solute species.

The element Kij represents the effect of a change in the liquid composition of element j on the solid

composition of element i at the solid/liquid interface:

Kij =
∂xsl

i

∂xls
j

∣∣∣∣∣
xls
k ̸=j

∀ (i, j) ∈ {1 : N − 1} (15)

Note that these coefficients are not the equilibrium partition coefficients of the chemical elements, but245

depend on the non-equilibrium effects taking place at the interface, i.e., the kinetic phase diagram. In

this analysis, these velocity-dependent quantities, as well as the velocity-dependent liquidus slopes, are

substituted into the standard expression for the neutral stability curve obtained from a stability analysis

at local interfacial equilibrium. The stability analysis by Coriell, Sekerka, and McFadden [43, 44, 45] shows

that this approach is valid for a binary alloy with non-equilibrium interfaces. Performing the analysis for250

a binary alloy shows that any derivatives with respect to velocity that appear when considering velocity-

dependent quantities will be multiplied by the growth rate of the perturbation, and will thus disappear in

the neutral stability curve defined by a zero growth rate, so it is reasonable to assume that this approach

is also valid for multicomponent alloys. Additionally, the velocity-dependent derivatives disappear for the
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neutral stability curve in the multicomponent stability analysis of Ludwig et al. [46], further validating255

this approach. Solving Eqs. (11)–(15) gives the minimum unstable wavelength for a planar interface, and

thus provides an estimate of the dendrite tip radius.

2.3. Calculating non-equilibrium thermodynamic quantities

The interface response functions presented in Section 2.1 can be used to calculate quantities from

phase diagrams under non-equilibrium thermodynamic conditions, i.e., high solidification rates. The260

systems of equations used to calculate the quantities discussed hereafter are summarized in Table 1.

Regardless of the unknown variables, the strategy used to solve the appropriate system of equations is

based on the Newton-Raphson algorithm, which requires the derivatives of each equation with respect to

each unknown variable.

• Kinetic phase diagram. To compute the kinetic phase diagram for an N -component alloy, the265

unknown variables are the 2N − 2 interfacial solid/liquid compositions, xls and xsl, that define the

phase boundaries at a given temperature. For fixed values of the kinetic parameters (λ, v0, v
D
i ) at

a given value of the temperature, T , and the velocity, v, the system of equations is composed of

one VRF (Eq. 5) and N − 1 CRFs (Eqs. 6). However, this leads to an underdetermined system

of N equations in 2N − 2 unknowns, so a method of choosing the values for N − 2 unknowns is270

required when N > 2. Solving this system over a range of temperatures allows the phase diagram

to be constructed.

• Kinetic liquidus and solidus. It is simpler to compute the kinetic liquidus and solidus temperatures

for a given composition and velocity; for a nominal alloy composition, x0, we have xls = x0 on the

kinetic liquidus and xsl = x0 on the kinetic solidus. For fixed values of the kinetic parameters (λ,275

v0, v
D
i ), velocity, v, and nominal composition, x0, the system has N unknowns: the temperature,

T , and N − 1 interfacial compositions, xsl (resp. xls) for the liquidus (resp. solidus). After solving

this system, the partition coefficients, k
s/l
i = xsl

i /x
ls
i , and liquidus slopes, mls

i = ∂T/xls
i |xj ̸=i

, can

be calculated at both the liquidus and solidus temperatures from the compositions at these tem-

peratures. In general, non-linear phase boundaries will result in different values of these quantities280

at the liquidus and solidus temperatures.

• T0 curve. To obtain the T0 curve, only the modified VRF from Eq. (7) is needed. Because the T0

transformation is partitionless, we take x0 = xls = xsl. For fixed values of the kinetic parameter v0,

velocity, v, and nominal composition, x0, the partitionless temperature, T0, is the only unknown

quantity.285

2.3.1. Integration in the model of dendrite tip kinetics

To incorporate kinetic effects into the calculation of the working point of a dendrite tip, it is necessary

to replace any uses of classical thermodynamic equilibrium with calls to the solution of the system of

IRFs (one VRF and N − 1 CRFs). For example, the interfacial compositions xsl
i can be calculated with

the same methodology used to compute the kinetic liquidus described above. Additionally, quantities290

corresponding to derivatives along the kinetic phase diagram, i.e., the non-equilibrium liquidus slopes

11



Output property Inputs Unknowns (number) Equations (number)

Phase diagram λ, v0, v
D
i , v, T xls, xsl (2N − 2) (5), (6) (N)

Liquidus λ, v0, v
D
i , v, x0 (= xls) xsl, T (N) (5), (6) (N)

Solidus λ, v0, v
D
i , v, x0 (= xsl) xls, T (N) (5), (6) (N)

T0 line v0, v, x
ls (= xsl = x0) T (1) (7) (1)

Table 1: Systems of equations used to obtain non-equilibrium thermodynamic properties, with the lists of inputs and

outputs [4, 29, 23].

and segregation matrix, are calculated numerically using the system of IRFs. With this approach, the

model of dendrite tip kinetics developed in Ref. [24] can be improved at high velocities by accounting

for non-equilibrium effects at the interface. We note that removing the velocity dependence from Eqs.

(9) and (10) when solving the equations in Section 2 retrieves the local equilibrium results in Ref. [24]295

(although with slight differences due to the use of weight percents in Ref. [24], as discussed in Appendix

B).

The present model directly computes the tip temperature of the dendrite by simultaneously accounting

for interfacial curvature, non-equilibrium kinetic effects, and solute diffusion. These three effects con-

tribute to the total undercooling of the dendrite tip, ∆Td = eTL − Td [K], which is defined with respect300

to the equilibrium liquidus temperature of the alloy with a planar front, eTL = FL

(
x0,∆Gs

κ = 0, v = 0
)

[K]. However, the model is never explicitly based on expressions for the curvature undercooling, ∆Tκ [K],

kinetic undercooling, ∆Tv [K], and solutal undercooling, ∆Tχ [K], as is usually found in the literature [5],

because neither a linear phase diagram nor an ideal dilute system is assumed. For illustrative purposes,

these three contributions to ∆Td can be individually evaluated. For instance, it is possible to remove the305

effect of the excess Gibbs free energy due to curvature and recompute the working point of the dendrite

tip, which gives an estimate of the curvature undercooling. Similar procedures can be used to obtain the

kinetic undercooling and the solutal undercooling. With the dendrite tip temperature given by Eq. (9),

we proceed as follows:

∆Td = eTL − Td = ∆Tv +∆Tκ +∆Tχ (16)

∆Tv = TL

(
x0,∆Gs

κ = 0, v = 0
)
− Tv

(
x0,∆Gs

κ = 0, v
)

(17)

∆Tχ = Tv

(
x0,∆Gs

κ = 0, v
)
− Tχ

(
xls,∆Gs

κ = 0, v
)

(18)

∆Tκ = Tχ

(
xls,∆Gs

κ = 0, v
)
− Td (19)

3. Discussion in the context of binary alloys310

To illustrate the physics of the above model, we examine the binary Ag–Cu system with free energies

from the thermodynamic database TCAL4 [47]. The other parameters necessary to compute the kinetic

phase diagram boundaries are the solute-drag parameter, the maximum crystallization speed, and the

trans-interface diffusion speed, all listed in the first part of Table 2.
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Property Symbol Value Unit Ref

Thermodynamic database TCAL4 [47]

Solute-drag parameter λ 0., 1. [mol ·mol−1] [23]

Maximum crystallisation speed v0 850 [m · s−1] [23]

Trans-interface diffusion speed vD 0.4 [m · s−1] [23]

Mobility database MOBAL3 [48]

Equilibrium liquidus temperature eTL 1189.2 [K] [47]

Diffusion of Cu in liquid at eTL DCu 7.61 · 10−9 [m2·s−1]

Interfacial energy γ 0.168 [J ·m−2] [49]

Selection parameter σ (2π)−2 [−] [5]

Temperature gradient G 107 [K ·m−1] [5]

Table 2: Material properties for alloy Ag–5 wt% Cu. The first set of properties is used to compute the phase diagram

boundaries with the PDM [23] and CGM [3, 4] models. Both sets of parameters are needed for the dendrite tip kinetics

[24].

In the following analysis, we compare the interfacial response functions of the present model, which315

we will hereafter refer to as the “Partial-Drag Model” (PDM), to the version of the “Continuous-Growth

Model” (CGM) incorporating partial solute drag by Aziz and Boettinger [4] and its recent extension to

multicomponent alloys by Du et al. [29]. The VRF and CRFs for binary and multicomponent alloys

from both models are summarized in Table A.1 of Appendix A. We note two key differences between the

PDM and the CGM (see Ref. [23] for further discussion). First, the CGM describes the flux of atoms320

with an Arrhenius equation, while the PDM assumes linear kinetics, as is common in typical force-flux

laws found in irreversible thermodynamics. Second, because the PDM self-consistently incorporates the

effect of partial solute drag, the effective concentration, xeff
i , appears in both the VRF and CRFs of the

PDM, while it only appears in the VRF of the CGM1.

3.1. Planar interface kinetics (phase boundaries)325

Figure 3 shows the full metastable binary phase diagram calculated for the Ag–Cu system using the

IRFs with the parameters listed in Table 2. Both the “zero-drag” (top row: λ = 0 =⇒ ∆Gt = 0) and

“full-drag” (bottom row: λ = 1) cases are shown at an interfacial velocity of v = 0.1m · s−1. At this

velocity, the effects of attachment kinetics are not yet significant (i.e., v ≪ v0). Because of this, the zero-

drag case of the PDM (top left) reproduces the equilibrium phase boundaries, as expected, although the330

zero-drag limit of the CGM (top right) does not. Moving to the full-drag case, the liquidus temperature

is depressed from the zero-drag case in both models (bottom row). This occurs because increasing λ from

zero requires the redistribution of solute across the interface, consuming energy that that would otherwise

be used to move the interface. Additionally, the regions of solid spinodal decomposition are also shown

1One could also notice that, when combining Eqs 14a and 14b in Reference [29], Du et al. consider a mathematical

approximation to derive their Eq. 14c. It is based on the assumption that the concentration of each component is very low

compared to the concentration of the solvent. This should not be the case when dealing with non-dilute alloys.
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in Figure 3 (sparsely dotted black curve); while the PDM (left) shows retrograde behavior of the solidus335

curves at the velocity for both the zero- and full-drag limits, the CGM (right) does not reproduce the

retrograde behavior in either limit at this velocity.

Figure 3: Phase diagram boundaries for the Ag–Cu system (top, plain and short dash) without solute drag (λ = 0) and

(bottom, long and short dash) full solute drag (λ = 1) for (left) the PDM of Hareland et al. [23] and (right) the CGM of

Aziz and Kaplan [3]. Only the stable and metastable solid/liquid boundaries are drawn, with (red) liquidus temperatures,

TL, and (blue) solidus temperatures, TS , for both the Ag-rich and Cu-rich solids. The equilibrium liquidus temperatures,
eTL, and solidus temperatures, eTS , are represented by dotted black curves. The spinodal of the solid phases is shown by

the sparsely dotted black curve. Portions of the phase boundaries entering the region of solid spinodal decomposition are

represented by short dashed curves. Kinetic parameters: v = 0.1m · s−1, vD = 0.4m · s−1, and v0 = 850m · s−1.

Figure 4 shows the Ag-rich part of the phase diagram at various values of the interfacial velocity for

an intermediate solute drag parameter, λ = 0.5. As expected, the liquidus temperature, TL, decreases

monotonically for all compositions as the interfacial velocity increases in both the PDM and the CGM.340

This is a direct visualization of the kinetic undercooling at these various velocities. Additionally, as the

velocity increases, both the kinetic liquidus and solidus converge. As will be shown in Figure 5, this line

of convergence is the T0 line, which itself monotonically decreases with increasing velocity. Because the

kinetic solidus approaches the T0 line from below, neither a monotonic increase or decrease in TS with v

is observed. Additionally, note that the retrograde solidus seen at v = 0.1m · s−1 in the PDM (Figure 3)345

disappears as v increases to 1m · s−1. Although not visible in Figure 4, the CGM still does not capture
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the retrograde solidus, even at a velocity of 0.01m · s−1, an order of magnitude smaller than that in

Figure 3.

Figure 4: Phase diagram boundaries for the Ag-rich side of the Ag–Cu system computed with (left) the PDM of Hareland

et al. [23] and (right) the CGM of Aziz and Boettinger [4] as a function of the velocity, v ∈ {0.01, 1, 100} [m · s−1]. Curves

are (red) the liquidus temperatures, TL, (blue) the solidus temperatures, TS , (black dot) the equilibrium liquidus, eTL,

and solidus, eTS , temperatures, and (sparse black dot) the spinodal of the solid phases. Kinetic parameters : λ = 0.5,

vD = 0.4m · s−1, and v0 = 850m · s−1.

Figure 5 shows the effects of v and λ on the thermodynamic quantities for Ag–5 wt%Cu for both

the PDM (top) and CGM (bottom). First, we note that the behavior of the kinetic liquidus and solidus350

curves reflect the behavior described by Aziz and Boettinger [4]: the liquidus temperature decreases

monotonically with increasing v, while the solidus temperature initially rises with increasing v before

falling. The solidus curve shows this behavior because the solid composition is fixed at the nominal

alloy composition for steady-state plane-front solidification. Initially, as solute trapping increases due to

increasing velocity, the partitioning is reduced, causing a decrease in the solutal undercooling and causing355

the interfacial temperature to rise . However, as velocity continues to increase, the effects of attachment

kinetics in the VRF begin to dominate, leading to an overall decrease in the liquidus temperature.

The kinetic T0 curve decreases monotonically with v. As v increases and complete solute trapping (i.e.,
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partitionless solidification) is approached, the TS , TL, and T0 curves converge. The effects of partial solute

drag, i.e., the value of λ, on TS , TL, and T0 are as follows. In the PDM, the value of TL is observed to360

decrease monotonically with increasing λ, while a monotonic decrease of both TL and TS with increasing

λ is observed in the CGM. However, the behavior of TS with λ in the PDM is neither a monotonic

increase nor decrease, which is a consequence of the coupling between the VRF and CRF due to partial

solute drag in this model. Additionally, a rather large discrepancy in interfacial temperatures is observed

between the two models for v ≳ 10−2 m · s−1. This behavior is expected because the CGM requires a365

trans-interface diffusion speed 3–4 times larger than that in the PDM to predict the same amount of

solute trapping [23, 17]. Here, since the value of vD is the same for both models, the onset of solute

trapping begins at lower velocities in the CGM than the PDM. Even in this relatively dilute binary alloy,

the effect of partial solute drag can lead to unexpected behaviors and deviations from classical theory

when treated self-consistently. Finally, because the T0 curve is independent of the effects of partial solute370

drag and relies only on the VRF, it is identical between the two models over the range of velocities shown

here, i.e. for v/v0 ≪ 1 so that the VRF equations for the CGM and PDM models reported in Table A.1

are equivalent.

The behavior of the TS and TL curves in the zero-drag case (λ = 0) of the PDM is also worth

mentioning. It corresponds to the limit in which material can always solidify at the composition of the375

solid (i.e., λ = 0 =⇒ xeff
i = xsl

i ). Thus, ∆Gt = 0, so all the energy is dissipated by interface motion in

the VRF and the solidus temperature only begins to decrease when the effects of interfacial attachment

kinetics become significant. Because the trans-interface flux of the CGM does not account for partial

solute drag, this effect is not observed in the CGM. However, as soon as any amount of solute drag is

added, the aforementioned increase in solidus temperature with velocity is observed as the effect of trans-380

interface diffusion becomes active. Additionally, the width of the two-phase region, i.e., the difference

between TL and TS , remains nearly constant in the PDM for the entire range of velocities, reflecting

a partition coefficient that also remains nearly constant with velocity. Hence, without solute drag, no

solute trapping is predicted by the PDM.

3.2. Dendrite tip kinetics385

Figure 6 displays various quantities from the calculations of dendrite tip kinetics for the Ag–5 wt%

Cu alloy, using the PDM [23] with λ = 0.5 and the parameters listed in Table 2. Figure 6a shows the

dendrite tip temperature alongside the planar solidus, liquidus, and T0 curves. The latter three curves

show the same behavior as observed in Figure 5. For v < 10−1 m · s−1, the dendrite tip temperature

(black, Td) is only slightly lower the equilibrium dendrite tip temperature (dotted black, eTd) due to a390

minor contribution from kinetic effects at these velocities, and then merges smoothly into the kinetic

solidus curve at the absolute stability limit. Figure 6b shows the tip radius of the dendrite as a function

of velocity. The primary difference between the equilibrium dendrite tip (dotted black) and the non-

equilibrium dendrite tip (dash-dotted black) is the value of the absolute stability limit, which is nearly an

order of magnitude lower in the non-equilibrium case, even for this relatively dilute alloy. This behavior395

is consistent with the original simulation results for Ag–Cu alloys [5]. However, models of dendritic

growth using the marginal stability criterion, even for the case of zero solute drag, have been known to
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Figure 5: Velocity-dependent (red) liquidus temperature, TL, (blue) solidus temperature, TS , and (green) T0 temperature,

(grey dot) the equilibrium liquidus temperature, eTL, and equilibrium solidus temperatures, eTS and the eT0 temperature

for the Ag–5 wt% Cu alloy with (top) the PDM of Hareland et al. [23] and (bottom) the CGM of Aziz and Boettinger [4].

Kinetic parameters : λ ∈ {0, 0.1, 0.5, 1}, vD = 0.4m · s−1 and v0 = 850m · s−1.

underpredict the experimentally observed limit of absolute stability [50], so using the solvability condition

as described earlier may be necessary in order to obtain agreement with experiment. Figure 6c shows

the composition in the liquid at the dendrite tip as a function of velocity. Notably, including kinetic400

effects (dash-dotted black) begins to decrease the composition above v ≈ 0.3m · s−1 from the equilibrium

result (dotted black) as the effect of solute trapping starts to become significant. Finally, Figure 6d

shows the various contributions to the total undercooling described by Eqs. (16) – (19). In this case,

the solutal undercooling, ∆Tχ, completely dominates the total undercooling at low velocities, and is the

most significant contribution at all velocities in the window of dendritic growth. The behavior of the405

solutal undercooling curve reflects that of Figure 6c, that is, a decrease around v ≈ 0.2m · s−1 as solute

partitioning decreases due to the onset of solute trapping. The curvature undercooling, ∆Tκ, mirrors the

behavior in Figure 6b, reflecting a curvature undercooling inversely proportional to the tip radius. Finally,

as expected, the kinetic undercooling, ∆Tv, is negligible at low velocities, but increases monotonically

with velocity.410

The effect of solute drag on the interfacial temperatures is shown in Figure 7. The interfacial tem-

peratures in the zero-drag and full-drag limits of both the PDM and CGM are shown for the parameters
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Figure 6: Dendrite tip kinetics for a Ag–5 wt% Cu alloy with (a) tip temperature, Td, (b) tip radius, r, (c) tip composition

in the liquid, wls
Cu, (d) total tip undercooling, ∆Td, summation of the contributions due to curvature, ∆Tκ, solute diffusion,

∆Tχ, and non-equilibrium effects, ∆Tv , using the PDM model of Hareland et al. [23]. Kinetic parameters : λ = 0.5,

vD = 0.4m · s−1 and v0 = 850m · s−1. The calculation assuming thermodynamic equilibrium at the solid-liquid interface

[24] is displayed as dotted curves for comparison, labelled with superscript e{.}, (a-c) in black and (d) in color.

listed in Table 2. The behavior of the planar interface, i.e., the TS , TL, and T0 curves, is analogous to

that seen in Figure 5. Figure 7a shows the zero-drag case of the PDM. As before, because the CRF of the

PDM incorporates partial solute drag, deviations from the equilibrium case (i.e., kinetic undercooling)415

only occur at large velocities, as the only active kinetic effect in this limit is that of interfacial attachment

kinetics. Note that the dendrite tip temperature dips slightly below the solidus temperature near the

absolute stability limit due to the effects of interfacial curvature. Interestingly, the zero-drag limit of

the CGM (Figure 7b) predicts an increase in dendrite tip temperature from the equilibrium case. This

is rather counterintuitive, as the kinetic effects are expected to reduce the driving force available for420

interface motion, lowering the interfacial temperature at a given velocity. Here, the active kinetic effects

are both attachment kinetics due to v0 and solute trapping due to the absence of λ in the CRF of the

CGM. The full-drag cases of both models (Figure 7c and 7d) reflect the expected behavior: a decrease

in dendrite tip temperature due to the effect of solute drag dissipating energy that would otherwise be

used to advance the interface. Additionally, note that the change in the absolute stability limit between425

the zero-drag and full-drag cases of the CGM is very small, while the decrease in the absolute stability

limit when moving from the zero-drag to the full-drag case is nearly an order of magnitude in the PDM;
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the same trend is observed in Figure 6b.

It is also interesting to note that the value of λ affects the rate at which TL and TS approach T0

with increasing velocity, which implies that the kinetic liquidus and solidus are not necessarily centered430

around the T0 line. As λ → 1, the kinetic liquidus meets the T0 line at a lower velocity than the

solidus. Conversely, as λ → 0, the kinetic solidus meets the T0 line at a lower velocity than the liquidus.

For values of λ ≈ 1/2, as in Figure 6a, the kinetic liquidus and solidus will converge to the T0 line at

approximately the same velocity. This behavior is a consequence of solute trapping—as the solidification

velocity increases, the system tends towards complete solute trapping, so the behavior of CRF becomes435

increasingly negligible relative to the VRF and the system of interfacial response functions increasingly

resembles the single T0 equation. If the velocity is sufficiently high such that the contribution of the CRF

is negligible, the VRF with λ → 0 (i.e., xeff
i → xsl

i ) recovers the T0 equation with x0 = xsl, and the VRF

with λ → 1 (i.e., xeff
i → xls

i ) recovers the T0 equation with x0 = xls. Thus, the value of the solute-drag

parameter affects the relative rates at which the kinetic phase boundaries approach the T0 line.440

Figure 7: Dendrite tip temperature, Td, for the Ag–5 wt% Cu alloy with non-equilibrium kinetics using (a, c) the PDM

model of Hareland et al. [23] and (b, d) the CGM model of Aziz and Kaplan [3] with parameters (a, b) no solute drag,

λ = 0, and (c, d) full solute drag, λ = 1. Kinetic parameters: vD = 0.4m · s−1 and v0 = 850m · s−1. The calculation

assuming thermodynamic equilibrium at the solid-liquid interface [24] is displayed as dotted grey curves for comparison,

labelled with superscript e{.}.
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4. Application to multicomponent alloys

In this section, the present model is applied to multicomponent alloys of industrial interest. The main

advantages compared to usual pseudo-binary methodologies encountered in the literature are shortly

summarized hereafter:

• Coupling with CALPHAD thermodynamic databases provides a full description of the multicom-445

ponent tie lines from assessed thermodynamic properties [25, 51], avoiding the need to directly

compute segregation coefficients and liquidus slopes, and/or use linear phase diagrams where the

effects of individual solute elements are superimposed.

• Coupling with CALPHAD mobility databases [26, 52] provides the full diffusion matrix in the liquid

phase, avoiding the need to define an equivalent diffusion coefficient [53]. This is enabled by450

integrating the multicomponent dendrite tip theory developed by Hunziker [27].

• Direct computation of the Gibbs-Thomson effect is achieved by adding the excess Gibbs free energy

due to curvature to the chemical potential of the solid phase. This allows the effects of curvature

on the temperature and composition in both the solid dendrite tip and the liquid phase to be

incorporated directly in the calculation instead of relying on the addition of the typical curvature455

undercooling term, ∆Tκ = 2Γ/r.

• Direct computation of the non-equilibrium phase boundaries [23], as demonstrated above, allows the

velocity-dependent liquidus temperature, solidus temperature, and T0 temperature to be computed

directly. This eliminates the need for the typical approximations developed for binary dilute-ideal

solutions [2, 3, 4] yet commonly applied to non-dilute alloys.460

• Accounting for partial solute drag improves the estimates of the constitutive kinetic parameters (i.e.,

λ, v0, and vDi ) in the computation of the non-equilibrium phase boundaries, which can be obtained

directly from atomistic simulations and physically represent interfacial behavior when partial solute

drag is considered [17]. Although there are only a few such studies for binary alloys [14, 15, 16, 17],

and (to the best of the authors’ knowledge) none for multicomponent systems, the existing results465

for binary alloys provide a much better approximation of the kinetic coefficients than the typical

order-of-magnitude estimates. Here, as a first approximation, we use values of vDi obtained from

atomistic simulations of relevant binary systems, and assume the value of vDi is the same for each

solute species.

4.1. Application to Inconel 718470

IN718 is an industrial Ni-base superalloy used in many different solidification-based processes to

produce components for a variety of high-temperature applications. The composition and the relevant

material parameters are reported in Table 3 and in Table 4, respectively. The kinetic parameters v0 and

vDi are taken from Ref. [23], in which the MD study of the rapid solidification behavior of Ni–Cu by

Yang et al. [14] is fit with the interface response functions used herein, thus accounting for the effects of475
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Chemical elements Cr Fe Nb Mo Ti Al C Ni

Nominal composition, w0
i [wt%] 18.2 18.9 5.1 3.1 0.9 0.29 0.025 Balance

Liquidus slope, emls
i [K·wt%−1] -2.65 -0.74 -9.57 -4.34 -18.16 -10.25 -44.98

Segregation coefficient, ek
s/l
i [wt·wt−1] 1.03 1.12 0.39 0.71 0.46 0.97 0.10

Nominal composition x0
i [mol%] 20.37 19.69 3.19 1.88 1.09 0.63 0.12 Balance

Liquidus slope, emls
i [K·mol%−1] -2.53 -0.78 -14.42 -6.23 -15.22 -5.54 -10.45

Segregation coefficient, ek
s/l
i [mol·mol−1] 1.02 1.10 0.38 0.70 0.46 0.96 0.10

Table 3: Chemical composition and phase diagram properties at the equilibrium liquidus temperature, eTL = 1613.3K for

alloy IN718 [54, 25]

Property Symbol Value Unit Ref

Thermodynamic database TCNI10 [25]

Solute-drag parameter λ 0., 0.1, 0.5, 1. [mol ·mol−1]

Maximum crystallisation speed v0 850 [m · s−1] [23]

Trans-interface diffusion speed vDi 0.4 [m · s−1] [23]

Mobility database MOBNI5 [26]

Equilibrium liquidus temperature eTL 1613.3 [K] [25]

Diffusion matrix in liquid at eTL D − [m2 · s−1] [24]

Interfacial energy γ 0.37 [J ·m−2] [24]

Selection parameter σ (2π)−2 [−] [5]

Temperature gradient G 104 [K ·m−1] [5]

Table 4: Material parameters for IN718.

partial solute drag. Due to the scarcity of such MD studies, this is the best available estimate of these

parameters.

Figure 8 shows the interfacial temperature as a function of velocity for various values of the solute-

drag parameter using the multicomponent equations of both the PDM and CGM. The behaviors are

qualitatively identical to those observed in the binary case (Figure 5): the CGM displays a monotonic480

decrease in TL, TS , and T0 with λ, while the PDM displays a monotonic decrease in TL and T0 with λ

and non-monotonic behavior of TS as described in Section 3.1. Additionally, the evolution of the kinetic

solidus and liquidus towards the T0 line reflects the λ-dependence described in Section 3.2.

Figure 9 shows the interfacial conditions at the dendrite tip as a function of velocity using the PDM

with λ = 0.5. The observed behavior in (a)–(d) is qualitatively identical to that in Figure 6. Figure 9e485

shows the partition coefficients for each element computed at the dendrite tip (solid curves), the non-

equilibrium liquidus temperature (dashed curves), and the non-equilibrium solidus temperature (dotted

curves). Due to the relatively low temperature gradient and the non-linear phase diagram, the partition

coefficient for each solute at the dendrite tip begins near the value at the liquidus temperature at low

velocity and evolves smoothly to end at the value at the non-equilibrium solidus temperature at high490

velocity. This behavior mirrors the evolution of the tip temperature from Figure 9a. Additionally,

21



Figure 8: Velocity-dependent (red) liquidus temperature, TL, (blue) solidus temperature, TS , and (green) T0 temperature,

(dotted grey) the equilibrium liquidus temperature, eTL, and equilibrium solidus temperatures, eTS and the eT0 temperature

for the IN718 alloy with (top) the PDM of Hareland et al. [23] and (bottom) the CGM of Du et al. [29]. Kinetic parameters

: λ ∈ {0, 0.1, 0.5, 1}, vDi = 0.4m · s−1, and v0 = 850m · s−1.

all partition coefficients smoothly evolve towards unity as the velocity increases and complete solute

trapping is approached. Due to the combined effects of non-linear phase boundaries and solute trapping,

the evolution of partition coefficients at the dendrite tip can be highly non-monotonic. For example, kAl

computed at the dendrite tip (solid orange curve) is less than unity at low velocities, i.e. very close to495

the value computed at the liquidus temperature (dashed orange curve). It increases monotonically as

the velocity increases and the dendrite tip temperature evolves towards the kinetic solidus temperature,

hence catching up with the kAl curve computed at the solidus temperature (dotted orange curve). At

velocities higher than ≈ 0.1m · s−1, kAl begins to decrease as the kinetic effects become significant.

These observations are the results of both the non-linearity of the phase diagram and the kinetic effects.500

Additionally, while the partition coefficients spanning the two-phase regions for all other elements are

either entirely above or below unity, the range for Al is relatively very large and spans values ranging

from approximately 0.95 ≤ kAl ≤ 1.6. Finally, Figure 9f shows the liquidus slopes for each element

computed at the dendrite tip (solid curves), the non-equilibrium liquidus temperature (dashed curves),

and the non-equilibrium solidus temperature (dotted curves). Qualitatively similar trends are observed505
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for the liquidus slopes at the dendrite tip as for the partition coefficients at the dendrite tip in Figure

9e; they begin at values close to those at the liquidus temperatures and evolve smoothly towards values

at the solidus temperatures as velocity increases. As with the partition coefficients, the evolution of the

liquidus slopes can be highly non-monotonic due to the combination of non-linear phase boundaries and

kinetic effects (e.g., C). It is interesting to note from Figure 9e and 9f that mls
i < 0 for all elements, while510

the values of k
s/l
i are both above and below unity. While solidification in binary alloys requires either

ks/l < 1 and mls < 0 or ks/l > 1 and mls > 0, multicomponent alloys can deviate from this behavior

[55], as is observed here.

In Figure 10, we revisit the velocity/undercooling power law for IN718 that was presented with the

full multicomponent kinetic theory assuming (dotted) interface equilibrium, e∆Td, and (solid red) the515

CGM approximation, CGM∆Td, established for an ideal dilute alloy with zero solute drag [24]. The figure

also includes the (red) predictions for CGM∆Td with (dashed dotted) partial solute drag λ = 0.5 and

(dashed) full solute drag λ = 1 using the classical formulation for the kinetic liquidus slope [4]:

mls
i = emls

i

1− k
s/l
i +

[
k
s/l
i + λ

(
1− k

s/l
i

)]
ln
(
k
s/l
i /ek

s/l
i

)
1− ek

s/l
i

(20)

The three blue curves show the CGM solution coupled with CALPHAD data [29], CGM∆Td, again with

full solute drag λ = 1, zero-solute drag λ = 0, and partial solute drag λ = 0.5. Finally, the curves deduced520

from using the present model with the PDM, ∆Td, are shown in black. The data corresponding to the

(dashed dotted) PDM λ = 0.5 and (dotted) interface equilibrium curves are the same as in Figure 9d.

Detailed explanations of the methodology to compute the total undercooling with the CGM approxima-

tion established for an ideal-dilute alloy is provided in Reference [24], and data for the equilibrium values

using the TCNI10 thermodynamic database are reported in Table 3. Note that, for comparison with the525

present simulations, values of parameters v0 and vDi are the same as in Figure 9, also reported in Table 4,

and hence differ from the values in Reference [24]. All other values of the parameters, i.e. the computed

Gibbs-Thomson coefficient, Γ = 3.355 · 10−7 K ·m, the entropy of fusion, ∆Sf = 9.1016 J ·mol−1 ·K−1,

and the diffusion matrix are the same as in Reference [24]. A first observation when comparing the

curves is that, for a given value of the solute-drag parameter, the ranges of undercooling and velocity530

progressively increase when going from the CGM∆Td to CGM∆Td to ∆Td. This means that the absolute

stability limit for dendritic growth is reached at a lower velocity and a lower undercooling with the CGM

model than with the PDM, and the minimum values are obtained when using the ideal-dilute alloy ap-

proximations. It is also clear that all the curves remain almost superimposed up to approximately 35K,

reflecting the absence of non-equilibrium effects for velocities lower than ∼ 0.1m · s−1, and implying that535

a velocity/undercooling power law determined under the assumption of interface equilibrium remains

valid for low undercoolings. Additionally, in the PDM, increasing λ causes the kinetic curve to depart

from the equilibrium curve at lower velocities as the effect of solute drag becomes more significant. The

non-linear evolution of the solidus temperature with λ for the PDM, reported and discussed in Figure 8,

is retrieved here; the undercooling reached at the velocity of the absolute stability limit decreases from540

λ = 0 to λ = 0.5 and then increases from λ = 0.5 to λ = 1. The expected trends for the CGM are

retrieved as well with maximum undercooling and velocity increasing with λ. The same behaviors are
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Figure 9: Dendrite tip kinetics for the IN718 alloy with (a) tip temperature, Td, (b) tip radius, r, (c) tip composition in

the liquid, wls, (d) total tip undercooling, ∆Td, summation of the contributions due to curvature, ∆Tκ, solute diffusion,

∆Tχ, and non-equilibrium effects, ∆Tv , (e) segregation coefficient, ks/l [wt%·wt%−1], and (f) liquidus slope, mls. The

PDM model [23] is considered with kinetic parameters: λ = 0.5, vD = 0.4m · s−1 and v0 = 850m · s−1. The calculation

assuming thermodynamic equilibrium at the solid-liquid interface [24] is displayed as dotted curves for comparison, labelled

with superscript e{.}. Note that the liquidus slope of C in (f) is divided by 5 for the sake of visualization. In (e) and (f),

quantities are plotted (dashed) at the liquidus temperature, (dotted) at the solidus temperature and (solid) at the dendrite

tip temperature.

present for the Ag–5 wt% Cu alloy in Figure 5.

4.2. Application to 316L stainless steel

The various solidification paths observed during the welding of steels [56, 57, 58] have recently at-545

tracted much interest due to a wide range of experimental observations of the primary solidification mode
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Figure 10: Dendrite tip velocity as a function of the total undercooling for the IN718 alloy comparing (solid) zero-drag

λ = 0, (dashed dotted) partial drag λ = 0.5 and (dashed) full-drag λ = 1 solutions using (black) the present PDM model

[23], ∆Td, (blue) the CGM model, CGM∆Td, and (red) the CGM approximation established for an ideal dilute alloy [4, 24],
CGM∆Td. Solutions ∆Td and CGM∆Td are fully coupled with CALPHAD. The local equilibrium dendrite tip model [24],
e∆Td, is added (dotted). Both e∆Td and ∆Td(λ = 0.5) are extracted from Figure 9.

during AM [59, 60, 61, 53, 62]. Hereafter, we focus on the reported results by Godfrey et al. for 316L [53],

which considered the origin of the so-called “fish-scale” structure formed at the boundaries of the melt

pool during AM using laser powder-bed fusion. Their interpretation suggests that this structure results

from the competition between primary δ−ferrite dendrites and primary γ−austenite dendrites formed550

from the melt and relies on a model of dendritic growth incorporating interfacial response functions to

calculate the velocity/temperature relationships for both δ−ferrite and γ−austenite dendrites. In light

of the shortcomings of their dendrite tip model, summarized at the beginning of Section 4, we revisit the

results with the present multicomponent theory.

Chemical element Cr Ni Mo Mn Si Fe

Nominal composition, w0
i [wt%] 16.81 11.92 2.43 0.99 0.36 Balance

Table 5: Chemical composition of the 316L in Ref. [53] considered here.

The composition of 316L in the Gulliver–Scheil calculations of Ref. [53] and examined herein is listed555

in Tab. 5. The minor elements (0.08 Co – 0.05 O – 0.01 N – 0.005 P – 0.001 C) reported in Ref. [53]

are omitted. The kinetic parameters are taken from the study of the binary Fe–Cr system by Antillon

et al. [17] because atomistic simulations of solute trapping have not been performed for multicomponent

stainless steels. The temperature field is estimated from a heat flow simulation [53], and the authors

report temperature gradients and isotherm velocities between [106, 108] K · m−1 and [10−2, 1] m · s−1,560

respectively. For the transport of the chemical species in the liquid, the full diffusion matrix is extracted

from the CALPHAD databases TCFE10 [51] and MOBFE5 [52] at the equilibrium liquidus temperature
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Property Symbol Value Unit Ref

δ−ferrite γ−austenite

Thermodynamic database TCFE10 [51]

Solute-drag parameter λ 0.58 0.52 [mol ·mol−1] [17]

Maximum crystallisation speed v0 759 614 [m · s−1] [17]

Trans-interface diffusion speed vDi 0.72 0.36 [m · s−1] [17]

Mobility database MOBFE5 [52]

Equilibrium liquidus temperature eTL 1725.9 1714.3 [K] [51]

Diffusion matrix in liquid at eTL D − [m2 · s−1] [51, 52]

Interfacial energy γ 0.27 [J ·m−2] [49]

Selection parameter σ (2π)−2 [−] [5]

Temperature gradient G 106 − 109 [K ·m−1] [53]

Table 6: Material parameters for the 316L stainless steel phases δ−ferrite and γ-austenite, respectively referred to as

BCC A2 and FCC A1 in the CALPHAD databases TCFE10 [51] and MOBFE5 [52].

for δ−ferrite and γ−austenite (BCC A2 and FCC A1 in the databases, respectively). The equilibrium

liquidus temperatures for both phases are reported in Table 6. The 5×5 terms of each diffusion matrix are

easily computed with Thermo-Calc software [63]. Because the composition of the liquid is the same for the565

two diffusion matrices and the difference between the equilibrium liquidus for δ−ferrite and γ−austenite

is only 11.6K, little difference is exhibited between the terms of the two diffusion matrices. Extremum

values on the diagonal for BCC are DMoMo = 2.6 · 10−9 m2 · s−1 and DMnMn = 3.8 · 10−9 m2 · s−1,

with off-diagonal terms in the range [−3.2 · 10−9, 6.7 · 10−10] m2 · s−1, demonstrating that interdiffusion

for some solute species is of the same order of magnitude as self-diffusion. The other relevant material570

properties are the energy of the solid/liquid interface, γ, and the dendrite tip selection parameter, σ; the

same values of these parameters are used for both the δ−ferrite and γ−austenite phases, as summarized

in Table 6.

Figure 11a shows the liquidus (dashed), solidus (dotted), and dendrite tip (solid) temperatures for

the δ−ferrite (red) and γ−austenite (black) structures. The predictions give a transition from primary575

δ−ferrite dendrites to primary γ−austenite dendrites at around v ≈ 3 · 10−2 m · s−1, which is well within

the range reported for the liquidus isotherm velocity at the edges of the melt pool [53]. The dendrite tip

radius for both structures is drawn in Figure 11b as a function of velocity. A difference in length scale can

be expected given the difference in tip radii; the γ−austenite dendrites are predicted to be larger than

δ−ferrite dendrites at a given velocity. This is indeed reported by measurements of “dendrite arm spacing580

of 1µm or below” for γ−austenite and “0.5 µm or below” for δ−ferrite in Ref. [53]. Figures 11c and 11d

show the partition coefficients calculated for the δ−ferrite and γ−austenite structures, respectively, at

the liquidus temperature (dashed), solidus temperature (dotted), and dendrite tip temperature (solid).

As observed for IN718 in Figure 9, the partition coefficients at the dendrite tip at low velocity lie between

the equilibrium values at the liquidus and solidus temperatures due to the non-linear phase diagram. As585

before (as in Figure 9), all the partition coefficients are predicted to smoothly evolve towards unity as
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the velocity increases and the system approaches complete solute trapping, and the partitioning of solute

species at the dendrite tip (solid) progressively evolves from values close to the non-equilibrium liquidus

temperatures (dashed) at low velocity to the values at the non-equilibrium solidus temperatures (dotted)

when reaching the stability limit at high velocity, i.e., plane-front solidification. It is worth noting that590

partitionless solidification is only predicted to occur for plane-front solidification at very high velocities

(around 50m · s−1). The effects of solute trapping are relatively minor at the absolute stability limits

for dendritic growth, which are approximately 0.3m · s−1 for δ−ferrite and 0.1m · s−1 for γ−austenite.

Figure 11c indicates interdendritic segregation of Ni in the ferritic structure (k
δ/l
Ni ≤ 1) while Figure 11d

indicates interdendritic segregation of Mo and Cr in the austenitic structure (k
γ/l
Mo ≤ 1 and k

γ/l
Cr ≤ 1).595

The same behavior was observed via energy-dispersive X-ray spectroscopy (EDS) in Ref. [53], validating

the present full multicomponent theory.

Competition between ferritic and austenitic growth from the melt was only reported at the boundaries

of the melt pool, where the liquidus isotherm velocity is low and the temperature gradient is high. At the

center of the melt pool, the microstructure suggests that only ferritic growth takes place, corresponding600

to increased velocity and decreased temperature gradient. However, the curves drawn in Figure 11a

for G = 107 K · m−1 suggest the selection of γ−austenite at high velocities, and thus do not explain

the observations. Godfrey et al. addressed this by considering both the effect of the velocity and the

temperature gradient on the dendrite tip kinetics. The additional effect of the temperature gradient on the

dendrite tip temperature is shown in Figure 12. Table 7 reports the predicted velocity interval defined for605

non-plane-front growth, i.e., the lower limit of constitutional supercoolings, vc, and the absolute stability

limit, va, and the corresponding solidus temperature at various values of the temperature gradient. The

absence of values in Table 7 means that no solution was found for non-plane-front growth from the melt.

In other words, only planar-front solidification is possible at G = 108 K · m−1 for γ−austenite and at

G = 109 K ·m−1 for both δ−ferrite and γ−austenite. In the latter case, because the solidus temperature610

for planar δ−ferrite is always lower than for planar γ−austenite, only γ−austenite growth should be

selected at G = 109 K ·m−1. This is due to the fact that the phase boundaries are independent of the

temperature gradient: the computed non-equilibrium liquidus temperature and solidus temperature in

Figure 11a are simply reproduced in Figure 12. Figure 12 also reproduces the effect of the temperature

gradient known from classical theory, in which vc is proportional to G and changes in G only affect this615

low-velocity regime of non-planar growth. Thus, as shown by Figure 12, the onset of non-plane-front

solidification is always higher for γ−austenite compared to δ−ferrite.

At the boundary of the melt pool, where the isotherm velocity and temperature gradient are typically

10−2 m · s−1 and 108 K · m−1, respectively, γ−austenite is able to compete with δ−ferrite. Indeed,

Figure 12 shows that plane-front solidification is expected for the two microstructures, but note that the620

solidus temperature for γ−austenite is higher than that for δ−ferrite. Thus, if γ−austenite was the initial

solid-state microstructure, it could survive the competition against δ−ferrite close to the vicinity of the

melt pool boundaries. Hence, the role of the temperature gradient in the interpretations of the observed

microstructure is a common feature with the work by Godfrey et al. [53]. However, we note the following

differences from their analysis. First, their solidus temperature for δ−ferrite is higher than for γ−austenite625

at all velocities, which contradicts the results using TCFE10 [51], even for the equilibrium behavior at low
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δ−ferrite γ−austenite

Temperature gradient Velocity Temperature Velocity Temperature

G [K ·m−1] [m · s−1] TS [K] [m · s−1] TS [K]

106

v c

1.25 · 10−4 1690.14

v c

3.15 · 10−4 1700.06

107 1.32 · 10−3 1690.14 4.59 · 10−3 1700.09

108 2.18 · 10−2 1690.42 − −
109 − − − −

v a 0.290 1693.52 v a 0.128 1700.71

Table 7: Predicted velocity interval, [vc, va], for non plane-front growth in 316L stainless steel for the δ−ferrite phase and

the γ−austenite phase, together the corresponding interface temperature. Dashes indicate that a solution was not found

for dendritic growth at the given thermal gradient.

velocities. It has been checked that addition of the minor elements Co, N, O, and P in the calculation of

the equilibrium phase diagram boundaries does not change this result. Second, their model is calibrated

to predict the FCC structure by increasing the diffusion coefficient in the liquid when computing the

growth kinetics of δ−ferrite by one order of magnitude from the value used for γ−austenite. This results630

in values of vc that are consistently higher for δ−ferrite than for γ−austenite, which is opposite to the

behavior observed in Figure 12 and Table 7. As mentioned before, the temperature difference between

the growth temperatures of the two phases from the melt is only a few Kelvin, which does not justify

such a drastic adjustment of the diffusion coefficient.
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Figure 11: Dendrite tip kinetics for the δ−ferrite phase and the γ−austenite phase of the 316L alloy of composition [wt%]

Fe–16.81 Cr–11.92 Ni–2.43 Mo–0.99 Mn–0.36 Si [53] with the material parameters in Table 6 using PDM by Hareland et al.

[23] and G = 107 K ·m−1: (a, solid) dendrite tip temperature, Td, (b) tip radius, r, (c–d) partition coefficients for δ−ferrite,

kδ/l [wt%·wt%−1], and γ−austenite, kγ/l [wt%·wt%−1], respectively, at (dashed) the liquidus temperature, (dotted) the

solidus temperature and (solid) the dendrite tip temperature.

29



Figure 12: Dendrite tip temperature, Td, for (red) the δ−ferrite phase and (black) the γ−austenite phase of the 316L alloy

of composition [wt%] Fe–16.81 Cr–11.92 Ni–2.43 Mo–0.99 Mn–0.36 Si [53] with the material parameters in Table 6 using

PDM by Hareland et al. [23] and temperature gradient from (Thick) G = 106 K · m−1 to (thin) G = 108 K · m−1, with

(dashed) liquidus temperature and (dotted) solidus temperature.
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5. Conclusions635

A model for multicomponent dendritic growth incorporating the effects of interfacial non-equilibrium

and partial solute drag has been developed and coupled with CALPHAD methodology. The present

Partial Drag Model (PDM) features a thermodynamically self-consistent treatment of partial solute drag,

which leads to deviations from the classical Continuous-Growth Model (CGM) [2, 3, 4], especially for

small values of the solute-drag parameter. In the present model for dendritic growth, increasing solute640

drag depresses the tip temperature from its equilibrium value and decreases the absolute stability limit.

Applications to industrial alloys are discussed: the model is used to calculate a velocity/undercooling

relation for the non-equilibrium solidification of IN718, demonstrating the importance of considering

the implementation of kinetics developed for concentrated multicomponent alloys versus applying those

for a dilute-ideal solution. Phase selection in 316L stainless steel is also discussed. The model is used645

to understand previously reported microstructure selection during additive manufacturing using laser

powder bed fusion [53]. Compared to previous interpretations, which also assume the phase formed

from the liquid is that with the highest interfacial temperature, we do not require any adjustment of

the phase diagram properties, the values of the diffusion coefficients of the chemical species, nor the

Gibbs-Thomson coefficient (needed to account for the effect of curvature). Additionally, the present work650

computes the kinetic phase diagram directly and does not rely on the dilute-ideal approximations of the

CGM. Therefore, the interpretations of the role of the solidification velocity and temperature gradient

on the primary solidification microstructure are more consistent using the present model.

Experimental comparisons with multicomponent alloys are needed to ensure the accuracy of the model

and the chosen kinetic parameters. This might require indirect comparisons with experimental data, such655

as the work started to couple the computation of solidification paths with the dendrite tip undercooling

during rapid solidification in order to improve the descriptions of the fraction of interdendritic phases

[64]. While this work is primarily motivated by the advent of additive manufacturing processes, it could

also serve for analyses of levitated droplet experiments for which very high levels of undercooling can

be reached prior to solidification. This will require the addition of the diffusion field for energy, as660

proposed by Lipton et al. [65], but will enable the comparison to the large amount of readily available

experimental data. This would be beneficial, as most interpretations of undercooled melt solidification for

multicomponent alloys still rely on multilinear phase diagram properties and ideal-dilute approximations

for the non-equilibrium effects [7]. However, in this regime of ultra-rapid solidification, it is necessary to

consider the effects of local non-equilibrium diffusion [66, 67]. A model combining the effects of partial665

solute drag and local non-equilibrium diffusion and coupled with CALPHAD methodology would thus

be a powerful tool to characterize solidification at any interface velocity.

Appendix A: Interfacial response functions

• Velocity Response Function (VRF)

The velocity of the interface, v, is assumed proportional to the driving force for interface migration670

31



through the interfacial mobility, Mm = v0/(RT ), giving the VRF [23]:

v =
v0
RT

N∑
i=1

xeff
i JµiK (A.1)

• Concentration Response Function (CRF)

For an N -component alloy with solute elements i ∈ {1 : N − 1} and balance element i = N , the flux

of component i due to trans-interface diffusion, J t
i [mol · m−2 · s−1], is related to the driving force for

trans-interface diffusion via [23]:675

J t
i = −ρ0

N∑
j=1

M t
ij(JµjK − JµN K) (A.2)

where the M t
ij coefficients [mol · s ·m−1 ·kg−1] represent the mobility of component i across the interface:

M t
ij = xeff

i

(
δij − xeff

j

) vDi
RT

(A.3)

Assuming a no-flux condition in the solid phase, the mass balance for component i at the solid/liquid

interface gives [23]:

J t
i = ρ0v

(
xeff
i − xsl

i

)
(A.4)

Combining Eqs. (A.2)–(A.4), the CRF becomes:

v
(
xeff
i − xsl

i

)
=

xeff
i vDi
RT

N∑
j=1

(δij − xeff
j )(JµN K − JµjK) (A.5)

v
(
xeff
i − xsl

i

)
=

xeff
i vDi
RT

JµN K − JµiK −
N∑
j=1

xeff
j (JµN K − JµjK)

 (A.6)

v
(
xeff
i − xsl

i

)
=

xeff
i vDi
RT

JµN K − JµiK −
N∑
j=1

xeff
j JµN K +

N∑
j=1

xeff
j JµjK

 (A.7)

Using
∑N

i=1 x
eff
i = 1 reduces Eq. (A.7) to Eq. (6):680

v
(
xeff
i − xsl

i

)
=

xeff
i vDi
RT

 N∑
j=1

xeff
j JµjK − JµiK

 (6)

Finally, it is worth mentioning that substituting Eq. (A.1) in Eq. (6) leads to a combined form of the

CRF:

v
(
xeff
i − xsl

i

)
= xeff

i vDi

(
v

v0
− JµiK

RT

)
(A.8)

Note, however, that Eq. (A.8) is still dependent on all i ∈ {1 : N − 1} independent components, as,

in general, µϕ
i = µϕ

i (T, {x
ϕ
i }) for phase ϕ. Comparison with the formulation of the IRFs by Aziz and

Boettinger [4] for a binary alloy and by Du et al. [29] for a multicomponent alloy are provided in Table685

A.1.
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PDM CGM

Hareland et al. [23] Aziz and Boettinger [4]

b
in
a
ry

VRF xeff
a JµaK + xeff

b JµbK = RT
v

v0
xeff
a JµaK + xeff

b JµbK = −RT ln

{
1− v

v0

}

CRF v
(
xeff
b − xsl

b

)
=

vDxeff
b

RT

(
1− xeff

b

)
(JµaK − JµbK) v

(
xls
b − xsl

b

)
= vD(1− xls

b )x
sl
b

(
1− exp

{
JµbK − JµaK

RT

})

Hareland et al. [23] Du et al. [29]

m
u
lt
i−

c
o
m
p
o
n
e
n
t VRF

N∑
i=1

xeff
i JµiK = RT

v

v0

N∑
i=1

xeff
i JµiK = −RT ln

{
1− v

v0

}

CRFs v
(
xeff
i − xsl

i

)
=

vDi xeff
i

RT

 N∑
j=1

xeff
j JµjK − JµiK

 v
(
xls
i − xsl

i

)
= vDi (1− xls

i )x
sl
i

(
1− exp

{
JµiK − JµN K

RT

})

Table A.1: Summary of the Interfacial Response Functions (IRFs) — Velocity Response Function (VRF) and the Com-

position Response Functions (CRFs) — of the Partial-Drag Model (PDM) [23] incorporating partial solute drag and the

Continuous-Growth Model (CGM) [4, 29]. In the IRFs corresponding to the binary alloy, the solvent is component a and

the solute is component b. The solute-drag parameter λ is equivalent to the β parameter in the CGM models [4, 29].

Appendix B: molar flow versus mass flow

Guillemot et al. [24] presented a model for dendritic growth considering compositions in mass fraction,

(wi)1≤i≤N−1 [(wt%)·(wt%)−1]. Assuming a constant molar volume of the liquid, the solute fluxes, φi,mass

[m·s−1·(wt%)·(wt%)−1], were expressed by:690

φi,mass = −
N−1∑
j=1

Dij∇wj (B.1)

However, the diffusion coefficients, D = (Dij)1≤(i,j)≤N−1 [m2·s−1], were defined for solute fluxes using

compositions in mole fraction, φi,mol [m·s−1·mol·(mol)−1]:

φi,mol = −
N−1∑
j=1

Dij∇xj (B.2)
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where (xi)1≤i≤N−1 [mol · (mol)−1]. Considering the following:

φi,mass =
Mi

{M}
φi,mol (B.3a)

φi,mass = − Mi

{M}

N−1∑
j=1

Dij∇xj (B.3b)

φi,mass = − Mi

{M}

N−1∑
j=1

Dij
{M}
Mj

∇wj (B.3c)

φi,mass = −
N−1∑
j=1

Mi

Mj
Dij︸ ︷︷ ︸∇wj (B.3d)

φi,mass = −
N−1∑
j=1

Dij,mass∇wj (B.3e)

where {M} =
N∑
i=1

xiMi is the average molar mass, it is apparent that Eq. (B.1) is only valid when the

effects of cross-diffusion are neglected (i.e., when Dij = 0 for i ̸= j). Thus, the model computing the695

dendrite growth kinetics using mass fractions [24] was inaccurate, as all off-diagonal diffusion coefficients

should have been corrected by the ratio Mi/Mj , as shown in equation (B.3d). The formulation used in

this work corrects this issue and consistently uses mole fractions rather than mass fractions.
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