N

N

Handwriting for Efficient Text Entry in Industrial VR
Applications: Influence of Board Orientation and
Sensory Feedback on Performance
Nicolas Fourrier, Guillaume Moreau, Mustapha Benaouicha, Jean-Marie

Normand

» To cite this version:

Nicolas Fourrier, Guillaume Moreau, Mustapha Benaouicha, Jean-Marie Normand. Handwriting for
Efficient Text Entry in Industrial VR Applications: Influence of Board Orientation and Sensory Feed-
back on Performance. IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (11),
pp.4438-4448. 10.1109/TVCG.2023.3320215 . hal-04304498

HAL Id: hal-04304498
https://hal.science/hal-04304498
Submitted on 29 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04304498
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Handwriting for efficient text entry in industrial VR applications:
influence of board orientation and sensory feedback on performance.

Nicolas Fourrier (%, Guillaume Moreau (», Mustapha Benaouicha (%, and Jean-Marie Normand
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Fig. 1: The user can write words by hand on a board in the virtual environment. Handwriting recognition technology converts the
handwritten word into usable text data (left). During the user study, participants are presented with phrases they have to write one
word at a time (right). The yellow word is the selected word. Green words are correctly recognized and red words are not. Users are
presented with multiple recognition results they can choose from.

Abstract—Text entry in Virtual Reality (VR) is becoming an increasingly important task as the availability of hardware increases and
the range of VR applications widens. This is especially true for VR industrial applications where users need to input data frequently.
Large-scale industrial adoption of VR is still hampered by the productivity gap between entering data via a physical keyboard and VR
data entry methods. Data entry needs to be efficient, easy-to-use and to learn and not frustrating. In this paper, we present a new data
entry method based on handwriting recognition (HWR). Users can input text by simply writing on a virtual surface. We conduct a user
study to determine the best writing conditions when it comes to surface orientation and sensory feedback. This feedback consists of
visual, haptic, and auditory cues. We find that using a slanted board with sensory feedback is best to maximize writing speeds and
minimize physical demand. We also evaluate the performance of our method in terms of text entry speed, error rate, usability and
workload. The results show that handwriting in VR has high entry speed, usability with little training compared to other controller-based
virtual text entry techniques. The system could be further improved by reducing high error rates through the use of more efficient
handwriting recognition tools. In fact, the total error rate is 9.28% in the best condition. After 40 phrases of training, participants reach
an average of 14.5 WPM, while a group with high VR familiarity reach 16.16 WPM after the same training. The highest observed textual
data entry speed is 21.11 WPM.

Index Terms—YVirtual reality, handwriting, text entry, industry.
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1 INTRODUCTION

physical keyboards [16]. This loss in efficiency in VR limits productiv-
ity gains and makes data entry, which is a recurring and performance
critical task in industry, an additional barrier to adoption. There is

Text entry in Virtual Reality (VR) is an increasingly common task used
in social, collaborative, and industrial applications. Whether for authen-
tication, communication, or more specific operations such as filtering

databases, VR users face short yet frequent typing tasks. In industrial
environments, there are many barriers to VR adoption such as integra-
tion difficulties in current workflows or lack of expertise which can be
offset by productivity and quality gains [2,31]. However, current VR
text input techniques are less efficient than their traditional computer
counterparts [10], even for techniques that rely on the use of external
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currently a need for efficient, easy-to-learn text entry in VR that does
not generate any frustration. Text entry systems that rely on external
devices, such as actual keyboards, may not only be inconvenient and
costly due to the technologies they use like hand and finger-tracking,
they can also break immersion and reduce usability of VR [10]. Virtual
keyboards solutions are far more flexible but their performance, typing
speed and learnability do no meet industrial requirements. Some tech-
niques are based on entirely different principles such as gestures [53]
or voice recognition [34]. While they can sometimes rival virtual key-
boards in terms of entry speed, they are not suitable for all use-cases,
including industrial applications, for many reasons including privacy
or learnability. As such, there is still a need to find an innovative way
to input textual data that is efficient and easy-to-learn while not gener-
ating frustration. Indeed, none of the current techniques fulfill all three
criteria simultaneously. For industrial purposes, it is not only the perfor-
mance of a system that needs to be studied, but also its usability [22],
which is not a primary concern in most VR data entry studies.

In this paper, we present a handwriting recognition system that
allows VR users to manually write text on a virtual board. This text
is then turned into usable textual data. The system is designed to
maximize efficiency, learnability and to make the writing task as natural
as possible through the study of different types of writing boards and the
use of sensory feedback. A within-participant user study is conducted
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with 40 participants to determine the best implementation of the system
and its performance. The best performing implementation (slanted
writing board with sensory feedback) achieved an average speed of
14.3 words per minute (WPM) and 9.28% total error rate (TER). In
this implementation, the best participant reached a writing speed of
21.11 WPM. After 40 training phrases, the average writing speed is
14.5 WPM and 16.16 WPM for VR experienced participants. Our
proposed method only relies on the use of a single controller and could
be further optimized using state-of-the-art handwriting recognition, as
reducing error rate would contribute greatly to improve writing speed.
Nevertheless, we still need a long-term learnability evaluation and a
direct comparison with state-of-the-art entry systems of our system.

In summary, our contributions in this work are (1) a user study
to determine the performance and usability of a text entry handwrit-
ing system in VR depending on board orientation and sensory feed-
back, (2) a set of metrics adapted to word-by-word systems based on
character-level metrics definitions and (3) a list of criteria VR text entry
techniques must meet in order to be usable in industrial settings.

The remainder of this paper is as follows: Sect. 2 presents a review
of state-of-the-art virtual text entry methods in VR, Sect. 3 details
the design rationale and Sect. 4 describes our handwriting recognition
system for text entry. Our user study that aims to determine the best
writing conditions and overall performance of the system is presented
in Sect. 5. Finally, in Sect. 6 we discuss our findings as well as future
work leads before concluding in Sect. 7.

2 RELATED WORK

Text entry techniques in VR can be divided into two groups: physical
or virtual techniques. Physical techniques rely on the use of real key-
boards or external tools. Virtual techniques, on the other hand, only
rely on a traditional VR setup such as a tracked Head-Mounted Dis-
play (HMD) and controllers [10]. Overall, physical techniques show
considerably higher typing speed than virtual ones. However, they are
often not compatible with VR applications that require moving around.
Moreover, keyboard users often rely on looking at the keyboard or at
their hands, which is difficult when immersed in VR [24]. Virtual text
entry techniques, while often displaying considerably slower typing
speed, can be used in any VR scenario without needing additional tools,
sometimes without even using controllers. These virtual techniques
often also rely on displaying fairly large user interface element that
may a problem in spatially constrained virtual environments (VEs).

This section will focus solely on virtual techniques as physical ones
are not suited for the industrial use-case we study. Indeed, we focus on
standard HMD and controllers VR setups that do not rely on external
devices. Virtual techniques can be divided in two categories: selection-
based techniques that use keyboard-like input systems, and innovative
techniques that rely on entirely different principles such as gestures,
voice recognition or handwriting.

2.1 Virtual keyboard-based text entry

Head-based Head-based techniques have been developed for typing
text in VR. Head movement can be used to point at a virtual keyboard
using different interaction strategies. Lu et al. [28] compare dwell,
eye blink, and neck forward interactions. Blinking is shown to be the
most efficient interaction type and reaches 13.47 WPM. Obviously,
this requires eye-tracking, a feature that producers of VR devices are
increasingly embracing. Head and eye movements should be used
with caution in VR as they may cause sickness [7]. Yu et al. [51] also
explore head-based typing techniques and show that using a gesture-
based swipe keyboard results in higher performance. Users achieve
24.73 WPM after typing 80 phrases with an “acceptable” subjective
rating score of fatigue (2.61 on a 1-5 scale). The downside of such
systems is that they cannot be used to type words that are not in the
dictionary such as passwords or technical data. Gaze-based text entry,
using eye movements to aim at a keyboard, has also been studied.
In [36], Rajanna et al. shows that such a system achieved 10.15 WPM
with a 7% error rate, provided that users should not experience motion
in their field of view as it can induce strain and motion sickness.

Controller-based Head pointing techniques have also been directly
compared to raycast (or point-and-click) and drum-like methods by Bo-
letsis et al. [4] and Speicher et al. [40]. Drum techniques are highly effi-
cient as they achieve 21 WPM, followed by raycast with a performance
of ~16 WPM and head pointing reaching ~10 WPM. Drum-based and
pointing techniques can be found physically demanding as some users
commented that using two controllers can be tiring. To the best of our
knowledge, single controller versions of these virtual keyboard tech-
niques have not been extensively studied even if dual raycast “clearly
outperforms” single raycast according to Outerelo [33]. Controller-
based pointing systems can be combined with a word-gesture text entry
to improve performance as is shown by Chen et al. [8] where users
achieve 16.43 WPM after only writing 10 phrases.

Mid-air typing Using hand-tracking for typing on virtual keyboards is
a promising concept that performs best when aligning the virtual key-
board with a physical surface to provide passive haptic feedback [11].
High typing speeds of 55.6 WPM are reported in this condition. Mid-air
keyboard typing can be improved by personalizing keyboards sizes and
layouts [37]. Hand gestures can be used to switch efficiently between
keyboard types to improve special character entry [38]. Historically,
mid-air typing relies on expensive extra devices such as gloves [5]
or sensors [50]. However, hand-tracking is an increasingly common
built-in feature in Mixed Reality devices so mid-air typing might get
more popular in applications that do not need controllers.
Non-traditional layouts Selection-based techniques not based on typ-
ical QWERTY-layout keyboards also exist. Indeed, many studies in-
vestigate circular and radial layouts. RingText [48] users can choose
characters from a circular layout keyboard with head movements. Us-
ing some amount of auto-completion, this system achieves 11.30 WPM
after 60 minutes of training for novice users. PizzaText [52] uses two
thumbsticks to manually choose characters on a keyboard shaped as a
slice of pizza. It reaches 8.59 WPM for novice users using a regular
gamepad, not tracked VR controllers. HiPad [20] uses a keyboard
layout similar to PizzaText with different interactions such as moving
the controller in the virtual environment or using a touchpad. Novice
users with 50 training phrases achieve 13.57 WPM in the VE condi-
tion. Flower Text Entry uses 3D hand translation to select letters in a
flower-shaped keyboard [27]. Novice users reach 17.65 WPM after 80
phrases of training. This technique requires some amount of physical
space, which might not be suitable for crowded environments. Yanag-
ihara et al. study a cubic keyboard in which users can select keys by
moving the controller in a 3 x 3 x 3 spatial grid [49]. Slowing down
movement below a certain threshold validates the currently selected
key. The average entry speed of this technique is 21.59 WPM in a pilot
study. BlueTap maps letters onto fingers that can be selected by taping
different parts of the fingers with the thumb [9]. It reaches 10 WPM
in pilot studies but used external sensors such as a wrist-worn camera
which might limit freedom of movement in VR.

2.2 Virtual non keyboard-based techniques

Voice & gesture Some data entry techniques do not rely on selection-
based paradigms. Voice recognition is an alternative that can reach
high entry speeds but cannot be used in all situations. It may be
difficult to use such systems in collaborative settings or when privacy
is needed [16]. Moreover, speech-based error correction may prove
difficult [45]. Users of SWIFTER, a voice recognition input system,
reach an average input speed of 23.6 WPM [34]. Alternatively, many
investigate gestures as a data entry method. 2-Thumbs Typing is a
gesture-based method that uses touchpads to draw lines [53]. It requires
two touchpads and learning gestures for each character. Users achieve
8.5 WPM with extensive training but the systems presents the advantage
of being comfortable and not relying on sight. Hand gesture is also
explored to draw letters in mid-air with fingers [32]. Typing speed is not
measured in this study but the algorithm achieves 96.12% recognition
rate. A similar system using disturbances in WiFi signal for tracking
hand movement achieves 12.5 letters per minute (about 2.5 WPM) and
74.84% recognition rate [14].

Handwriting techniques are studied as early as 1998 by Poupyrev et
al. [35]. Their Virtual Notepad uses a tracked tablet and a pen to let



users draw on it. The system is not designed for text entry but rather for
taking notes or annotating scenes. In 2009, Macias et al. [15] compare
a character-by-character handwriting entry tool to other systems but
it scores low on typing speed and high on error rate. In 2017, in a
system that lets users draw characters on boards from a long distance
by pointing, it is noted that handwriting is a fun and engaging way
to input textual data, but that it performs poorly in terms of typing
speed and error rate [12]. More recently, Venkatakrishnan et al. [44]
study the best conditions for handwriting in VR, using state-of-the-art
recognition technology that performs way better than previous attempts.
They find that writing on a flat surface by directly putting a virtual pen
in contact with the writing surface performs best compared to curved
surfaces, controller-pointing writing and finger-tracking writing. Users
achieve a typing speed of around 10 WPM with near perfect accuracy.
Hsu et al. [19] highlight the need to further study and develop tools for
fine motor tasks in VR such as writing.

2.3 Text entry task and metrics

Task Text entry systems are evaluated by doing a transcription task
where participants must type given phrases as fast and as accurately
as possible. Different phrase sets exist for evaluating text entry. Some
focus more on internal validity i.e., they aim that variation in dependent
variables does not originate from the phrases themselves, while some
focus more on external validity i.e., they aim for the phrases to be
representative of real-life applications of text entry systems. Ideally, a
phrase set should respect those two criteria [25]. The most commonly
used phrase set since its release in 2003 is the MacKenzie phrase
set [29]. It is composed of 500 phrases that contain no punctuation
and a low amount of uppercase characters. It has high correlation with
the English language when it comes to character frequency. In VR
text entry studies, the MacKenzie phrase set seems to be exclusively
used [4,8,20,24,27,28,36,40,51,52]. During the text entry task, users
can be instructed not to correct errors, invited to correct errors or forced
to correct errors. These instructions can have a major impact on entry
speed and error rate metrics and it is important to choose wisely [1].
Text entry speed Measuring speed in text entry tasks can be done using
the WPM metric [30] defined as:

WPM = ((|T|—1)/S) x 60 x 1/5, (1)

where |T| is the length of the transcribed string, and S the time it
took to enter said string from first to last entry [30]. One character
is subtracted from |T'| since the timer often starts after validating the
first character. This is not always taken into account [52]. WPM is the
most commonly used metric for text entry speed [1]. Adjusted WPM
(AdjWPM) is similar but compensates for errors in the final transcribed
text [30]. Other metrics exist such as KeyStrokes per Second (KSPS)
and Gesture per Second (GPS) that aim to provide indication to what
happens during text entry, while WPM only looks at the final transcribed
text. AdjWPM, KSPS, and GPS are not commonly used [1].
Error rates Error rate is usually reported by using two metrics: Total
Error Rate (TER) that includes both corrected and uncorrected errors,
and Not Corrected Error Rate (NCER) that only includes uncorrected
errors that are present in the final transcribed string. NCER is often only
called Error Rate (ER). Reporting both these metrics is often necessary
because ER alone does not tell any information about the effort made
to correct errors during the transcription task. The definitions of these
metrics, in percentage (%), are as follows:

ER = (INF/|T]|) x 100, 2)

TER = ((IF +INF)/(C+INF +1F)) x 100, 3)

where INF is the number of Incorrect Not Fixed characters, /F is the
number of Incorrect Fixed characters, and C is the number of Correct

characters, where fixed means corrected. The Levenshtein Minimum
String Distance algorithm (MSD) is often used to compute ER as:

MSD ER = (MSD(P,T)/MAX (|P|,|T|)) % 100, (4)

where P is the presented text and T the transcribed text [39]. This
algorithm aims to find the number of required transformation to change
the transcribed text into the presented text in terms of deletions, in-
sertions or subtractions. ER and MSD ER are “almost equivalent”
according to Arif et al. [1] and can be used interchangeably. Dube et al.
state that most studies report ER and TER but that they may compute
ER differently [10]. Indeed, there seems to be some ambiguity when
it comes to the definition of ER and the computation of /NF. Another
metric rarely used in VR text entry studies is the KeyStroke per Char-
acter (KSPC). This metric, categorized as an efficiency measure by
MacKenzie et al. [30], aims to determine the mean effort made to enter
each character, taking into account errors. Arif&Stuerzlinger show that
there is no significant difference between a forced and recommended
correction condition when it comes to KSPC and TER as users usually
correct errors as soon as they spot them if given the chance [1].

This section shows the difficulty of effectively comparing systems
as the metrics used are not always the same. Even when they are, they
still may not be computed in the same way. In the case of handwriting,
which is a word-by-word entry process, there is also a need to define
metrics that remain comparable to keyboard-like character-by-character
metrics. A word uncorrected error rate is mentioned in SWIFTER [34],
a voice recognition input system, but this metric alone is not sufficient
to highlight the effort made to correct words during the text entry
task and no clear definition is given. There is a need to expand these
word-level definitions and to properly state how to compute them.

3 DESIGN RATIONALE

As we have seen in Sect. 2, no current VR text entry system appears
to be well suited for repeated typing activities that need to be han-
dled quickly and without frustration. This is especially true when
considering our industrial use case of VR i.e., using a typical HMD
setup with controllers in an empty room. Indeed, physical text-entry
techniques impose spatial and technological constraints. The best per-
forming virtual keyboard-based techniques reach about 25 WPM [4,51]
which is far lower than average typing speeds of experienced typists
of 67 WPM on physical keyboards [24]. Innovative virtual techniques
such as using hand-tracking for mid-air typing can reach 55 WPM in
VR [11] but rely on complex and expensive technologies to prevent
users from holding a controller in their hand while typing. Techniques
that are not selection-based can rival in some circumstances with virtual
keyboard-based techniques like voice recognition [34]. However, this
technology is not well suited for industrial use for many reasons: it is
noise-sensitive, does not work well in collaborative settings, and there
may be privacy concerns. Handwriting is an alternative natural method
of text entry that has potential as there does not seem to be any possible
performance breakthroughs with virtual keyboards. New innovative
paradigms need to be tested for VR. The first studies of handwriting in
VR as a data entry tool describe some conditions under which it can
perform adequately [44]. However, these studies have not focused on
reaching high text entry performance.

Aiming to design a text entry system in VR that is efficient, easy-
to-learn, that does not generate frustration and is usable in industrial
environments leads us to develop a handwriting system that respects
the following design rationales for these aspects.

3.1 Efficiency

Most current industrial computer-aided design tasks are performed on
computers but many have studied the use of VR to replace or assist
users [17,23,26,41,43,46]. Indeed, VR presents many advantages when
it comes to 3D data visualization and collaboration. However, design
and industrial tasks are mingled with data entry situations: filtering
databases, naming parts, settings dimensions, etc. This makes it difficult
to use VR for industrial tasks because overall productivity and efficiency
are limited by basic interactions in VR such as inputting textual data.
Using a single controller, we want to design an efficient system that
does not rely on traditional selection-based techniques for data entry
because their performance is not up to par with industrial standards.
Handwriting comes as the second most natural way to efficiently create
textual data when one is not able to use a computer keyboard. Indeed,



it is estimated the average writing speed of young adults is around 40
WPM [42] in note-taking or fast writing situations. Reaching such
speeds in VR would be a great improvement and it mostly depends
on two factors: (i) how well the writing task is translated in VR and
(ii) how well the recognition software performs. We decide to use an
ink recognition software that, contrary to optical character recognition
(OCR) algorithms, also uses a temporal information to recognize hand-
writing. This can help differentiating words thanks to the way letters
are drawn without only relying on the final handwriting picture. Addi-
tionally, ink recognition software is mainly designed for handwriting
recognition while OCR usually performs better on printed or typed text.
Recognition performance is also improved by letting users choose from
some of the most likely recognized words, which can change the output
without having to rewrite the whole word. Efficiency is maximized
by letting users write complete words and validate them with a simple
button press. Button presses are indeed more efficient than dwelling or
time-based validation methods [51]. A single controller button press is
necessary per word. It could be argued that writing whole sentences
would be more efficient but the writing board would have to be scaled
accordingly. This would take up too much space in the virtual environ-
ment as handwriting tends to be larger in VR than in real life based
on preliminary trials. Moreover, writing whole sentences will likely
negatively impact correcting parts of a sentence. We believe writing
at a word-scale is a good compromise between ease-of-use, flexibility
and having more control over the output of the recognition software.

3.2 Ease-of-learning & familiarity

Making the VR writing task as natural as possible is crucial for perfor-
mance and efficiency because familiarity will help learning the system.
The time it takes to learn and master a system is key when it comes to
its adoption in industrial settings. Performance is expected from the
get-go and this must be accounted for. Handwriting is a task virtually
everyone is trained for from a young age. As such, if VR handwriting is
similar to real handwriting, the system should be easy-to-learn. We de-
cide to focus for this study on standing-up handwriting with no physical
supports as that would cover more potential industrial use cases of the
system. A familiar task that fits with this use case is writing on white-
boards or blackboards. We focus on making the virtual handwriting
task as natural as possible to maximize efficiency and learnability. The
main difference between virtual and real writing is the lack of physical
support, as one cannot rest on a virtual board. To enhance familiarity,
we decide to present users with a blackboard type writing surface which
can be written on with a virtual pen by direct contact [44]. A particular
focus on sensory feedback (visual, audio, haptic) is needed for the task
to feel natural. Indeed in a real handwriting task, it is expected that the
pen will write on a surface with varying width depending on the force
applied, without the pen and the board intersecting, and that the pen
and hand cast shadows on the writing surface (see Fig. 2). It is also
expected that the pen makes some sound when writing. Finally, haptics
are also involved when writing most notably through the contact with
the writing surface and vibrations. We hypothesize all these sensory
feedback can be simulated and integrated into the handwriting tool in
VR to improve familiarity, learnability and by extension, performance.

4 IMPLEMENTATION DETAILS

With the previous design rationale and industrial use-case in mind, we
design a VR input solution as a single-controller textual data entry
system based on handwriting recognition technology.

4.1 Handwriting

According to Venkatakrishnan et al. [44] findings regarding handwriting
in VR, we develop a system that uses a planar surface to write on by
direct contact of a pen (see Fig. 3). We use a blackboard with white
ink to reduce eye strain compared to using a whiteboard with black
ink [13]. A particular attention is given to developing sensory feedback
as stated in Sect. 3 as we hypothesize it will make the task more natural
and facilitate learning. Visual feedback (see Fig. 2) is composed of (i)
the varying width of the writing line depending on the force applied,
(ii) the collision between the pen and the board, and (iii) a circle that

Fig. 2: Visual feedback of the handwriting system. Line width, circle
size and color vary depending on the applied force (top). Collision
between pen and board can be activated or not (bottom). When it is not,
the pen and hand clip through the board (bottom-right).

changes size and color depending on the force applied. The writing
force is computed as a function of the depth of the intersection between
the pen and the board. When collision is on, we introduce a small
visuo-proprioceptive conflict by disaligning the real and the virtual
hands. The collision is not physics-based, it is only a displacement in
the contact normal direction. The presence of a non-animated virtual
hand is an additional visuo-motor feedback, that also acts as a visual
feedback since the hand projects an additional shadow on the board.
Active haptic feedback is provided by controller vibrations which vary
depending on the writing force. Finally, audio feedback is given through
different sounds: when first touching the board with the pen and when
writing. The sounds are recorded from real writing on a board.

4.2 Recognition

An offline handwriting recognition software called WritePad SDK [47],
claiming to reach 96% accuracy, is adapted for integration in Unity. Its
customizability, flexiblity, response times and the privacy provided by
offline tools were chosen over using online handwriting recognition
APIs. WritePad SDK expects not only a list of points, but also a
temporal information. More precisely, this recognition software is
given a temporally ordered list of 2D coordinates (x,y). Transforming
the 3D positions of the contacts between the pen and the writing surface
into the 2D ink data expected by the recognizer is trivial since our
writing surfaces are planar. Using handwriting recognition lets us turn
ink strokes into an exploitable textual data as described in Fig. 1. The
goal of our study is not to evaluate the recognition software, but to
provide insight on the usability of handwriting as a text entry tool in
VR. As such, the system is designed so that the recognizer can easily
be changed. The recognizer returns a list of possibly recognized words
and an associated confidence score. When users write a word and
validate it, they are also given the opportunity to choose between the
three best recognition alternatives as seen in Fig. 1. Confidence score is
usually too low for the remaining alternatives which is why we settle on
displaying only three. There is no autocompletion and alternatives only
appear after a word is validated. The recognizer can use dictionaries
to help recognition but it remains possible to write technical data, like
product references, by either using custom dictionaries or disabling
dictionaries altogether. It is possible to choose between full sentence
or individual word recognition. We choose word-by-word writing
as it makes it easier to correct errors. Number and special character
recognition can also be turned on which is necessary for industry.

4.3

Steam Index controllers are used as their handling lets us simulate
holding a pen. Other controllers are compatible. The user may validate
words to start the recognition process by pressing a button under their
thumb. This interaction is analog to pressing a key on a keyboard so

Interaction



High (1,3m)
Medium (1,2m) [__|N=6
Low (1,1m) D N=1 Slanted board height

High (60°)
Medium (459) [ |N=15

Low (30°) N=0 Slanted board angle

Fig. 3: Two boards are studied: a vertical one and a slanted one. The
slanted board’s height (1.1, 1.2, 1.3 in Unity spatial units) and angle
(30°, 45°, 60°) can be configured by users. A high angle means a more
vertical slanted board. Histograms show a breakdown of user choices
for slanted board height and angle.

we add a space after each validated word in the transcribed text. After
validating a word, users are presented with recognition alternatives that
show up as virtual interactive buttons on the writing board (see Fig. 1).
The user can replace the recognized word by one of the alternatives by
pressing the associated virtual button with the pen. This interaction does
not involve physically pressing a button on the controller. Users can
erase the board by pressing a button on the controller which removes
all ink present on the writing board. The user can select the previous
word to rewrite it by moving the joystick to the left.

5 USER STUDY

We determine the optimal system design for handwriting in VR, in terms
of board type, sensory feedback but also performance and usability
through a user study. In this study, the recognizer uses the built-in
English dictionary and special characters and numbers are disabled
since the MacKenzie phrase set does not contain them. The system is
set to recognize one word at a time. Considering our industrial use case
i.e., users wearing an HMD in an empty room, we restrict this study to a
standing condition (see Fig. 3). We consider two board types. A vertical
board, similar to a blackboard writing situation, is hypothesized to ease
learning thanks to familiarity. A slanted and lower board, is believed
to reduce physical load at the cost of familiarity. Indeed, writing on a
virtual vertical board can be tiring due to the lack of physical support.
A slanted and lower board does not require users to raise their arm for
writing. We do not consider horizontal surfaces because they did not
work well in early tests of our standing-up writing use case. We also
study the impact of sensory feedback on writing in VR. Two conditions
are studied: (i) the presence or (ii) the absence of all (visual, haptic,
auditory and hand visibility, see Sect. 4) sensory feedback, which are
hypothesized to have effects on error rates and writing speeds.

5.1 Hypotheses

We have formulated five hypotheses for this user study:

H.1. Writing on a vertical board will be faster than writing on the
slanted board since users are more familiar with a vertical board.

H.2. Writing with sensory feedback will be faster than writing without
since it will make the task more natural.

H.3. Writing on a slanted board will result in higher error rates since it
will be harder to estimate the distance between the pen and the board
than with the vertical board.

H.4. Writing without sensory feedback will result in higher error rates
since users have less indications of the pen’s contact with the board.
H.5. Writing on the slanted board will be easier from a physical
workload standpoint.

5.2 Participants

We have recruited 43 participants in local universities and 3 participants
are excluded from the study: 2 due to physical discomfort (eye strain

and back pain) and 1 due to distraction (answering his phone multiple
times during the experiment). Out of the N = 40 participants considered,
there are 26 males and 14 females aged between 20-67 (M = 29.1,
SD =10.4). There are 9 participants who use VR regularly and 31 who
used VR once at most. A minimum of Common European Framework
of Reference for Languages (CEFRL) B1 English level is required to
participate. No participants are native English speakers. A total of 38
participants are right-handed and 2 are left-handed.

5.3 Apparatus and materials

The user study run on a laptop with an Intel Core i7 CPU and dedicated
NVIDIA GeForce RTX 2070 Super GPU. The program is developed in
Unity 2020.3.17.f1 using C# scripting. The WritePad SDK [47] is used
for the handwriting recognition and is integrated into the Unity3D ap-
plication. We use a HTC Vive Pro 2 HMD and Steam Index controllers.

5.4 Task and procedure

The experiment uses a 2 x 2 within-subject design. The independent
variables are the orientation of the writing board (2 levels: vertical
and slanted) and the use of sensory feedback (2 levels: all feedback
and no feedback). Condition order is controlled with a balanced latin
square. The task is to write 10 phrases that are randomly generated in
advance from the MacKenzie phrase set. Phrases remain visible during
the writing task since no participants are native english speakers and
this can help reduce error rates [25]. A particular attention is put into
generating phrases sets that are representative of the MacKenzie set
by generating sets that fall in a standard deviation range of measures
such as words per phrase, etc. 32 phrases are excluded from the set
because they either contain proper nouns or words that cannot be found
in the English dictionary such as ”jedi”; or are deemed to difficult to
understand for non-native English speakers. Phrases can be found in
Supplemental Materials. Phrases cannot appear in multiple sessions and
all participants write the same phrases in the same order. Each condition
has a total of 53-55 words (238-246 characters) to write. Only the order
of the conditions changes per participant. All participants perform 4
writing sessions (one per condition, which order is counterbalanced).
Before each session and writing task, participants are instructed to write
as naturally, as fast and as accurately as possible.

Participants first fill out a consent form and a demographics ques-
tionnaire before performing a baseline handwriting task on paper. It
consists of writing 10 predetermined phrases randomly chosen from
the MacKenzie phrase set. This task is timed from the first contact of
the pen on paper till the end of the writing session. A training session
in VR is then carried out where participants write one phrase on each
board (first the vertical one then the slanted one) and get familiar with
the controls. The training phrase contains all alphabet characters so par-
ticipants can find out if they need to adapt their handwriting according
to the recognizer’s abilities. During training, participants are also asked
to configure the slanted board’s height and angle, see Fig. 3 so that they
write comfortably without having to raise their arm, to avoid physical
strain. The effect of these parameters on performance is not studied
as it depends on user preferences and morphology, and is not enforced
nor counterbalanced for statistical analysis. This is discussed in Sect. 6.
The goal is mainly to maintain a similar posture between participants to
keep physical demand consistent. For example, we want to prevent mis-
matches between one’s height and the board’s height. Most participants
have chosen a high (N = 33) and as vertical as possible (N = 25) slanted
board. More details can be found in Fig. 3. A second training is then
carried out for participants to understand how the phrases are displayed,
see Fig. 1, how they can choose between recognition alternatives if
needed and how they can correct the previous word if the recognition
did not work properly. During the whole experiment, correction is
not forced i.e., users can choose to correct or not an erroneous word,
as the literature has shown that there is no significant differences in
typing speed and total error rate between forced and recommended
correction [1]. Additionally, we wanted to prevent participants from
getting stuck on a word if there was some incompatibility between
one’s handwriting and the recognizer. This second training consists of
writing 3 phrases. In total, during both training phases, participants



have to write 5 phrases. The main study is then carried out in a vir-
tual classroom. Participants are asked to write 10 phrases. After each
writing session, participants fill out the System Usability Scale (SUS)
and the NASA Task Load Index (NASA-TLX) questionnaires. There
are 4 writing sessions in total per participant as there are two different
writing boards and two different sensory feedback types. Participants
write 40 phrases in total. At the end, participants are able to freely
comment the experiment and give feedback. The experimenter also
explains the goal of the experiment which lasts about 1 hour in total. A
video of the experiment can be found in Supplemental Materials.

With 40 participants, each writing 10 phrases per condition, a total of
4 conditions, we collect 40 x 10 x 4 = 1600 phrases. Training phrases
are not analyzed. This experiment is approved by Nantes University’s
ethics committee with number 17112022.

5.5 Measures

This section states the different measures used in this study and defines
some new metrics adapted to word-level systems.

55.1 WPM

For measuring text entry speed, we use the WPM metric (1). However,
in our case, the timer starts as soon as the pen gets in contact with the
board, which means the first character written is taken into account. As
such, the definition we use for measuring entry speed is the following:

WPM = (|T|/S) x 60 x (1/5). (5)

Additionally, the timer runs from the first contact between the pen
and the board after a phrase is displayed until the validation of the
phrase’s last word. The timer stops after each phrase and resumes
after the next contact to let participants read phrases before writing
them [1]. Since the system uses a word-by-word entry paradigm, we
automatically add spaces after each validated word in the transcribed
string. Since validating a word requires a button press, it is equivalent
to pressing the space bar on a keyboard.

5.5.2 Errorrates

In this study, we use MSD ER (4) and TER (3) to report error rates.
MSD ER is used over ER as it is a robust and well defined way to
compute error rate. Error rate metrics work at a character-level and are
used for comparison purposes with other text entry systems. However,
since our system works at a word-level, we need to introduce new
metrics that better represent the performance of the word recognition
system. Adapted Word Error Rate (WER) and Total Word Error Rate
(TWER) are defined as follows:

WER = (INF,,/|T,,|) x 100, (6)
TWER = (INF, +1F,)/(Cy + INF, +1F,) x 100, ©)

where INF,, is the number of Incorrect Not Fixed words, |T,,| is
the number of words in the transcribed string, I/F,, is the number of
Incorrect Fixed words, C,, is the number of Correct words.

Finally, since the system lets users choose between three recognition
alternatives after each word is validated, we design a metric for keeping
track of the ratio between alternatives words and total written words,
called Alternative Rate (AR):

AR = A,,/(Cyy + INF,, +IF,,) x 100, ®)

where A,, is the number of times an alternative is chosen. Indeed,
choosing an alternative is only considered an error if the alternative
itself is wrong. Being able to choose between alternatives is part of the
design rationale of the system so correct choices do not count as errors
nor corrections.

5.5.8 Usability and workload

Usability is measured with the SUS questionnaire [6]. Results can
be compared to other systems and interpreted with descriptive adjec-
tives [3]. Higher scores means higher usability and vice versa. Work-
load is measured with the NASA-TLX questionnaire that aims to quan-
tify physical, mental and temporal demand, subjective performance,
frustration and effort [18]. Lower scores are better for NASA-TLX.
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Fig. 4: Writing speeds (WPM) across board and feedback types. Dark
(resp. light) grey shows results averaged over the vertical (resp. slanted)
board. Blue (resp. Red) shows results with (resp. without) sensory
feedback. Circles show average.

5.6 Results

We use a two-way repeated measures ANOVA and Tukey’s HSD cor-
rection for pairwise comparisons. Since there are only two levels per
dependant variable, no correction for violations of the sphericity as-
sumption is used. The two independent variables are *board’, which
represents the orientation of the board (either vertical or slanted) and
*feedback’. This part describes the results of this analysis.

5.6.1

Fig. 4 shows writing speeds across all conditions and averaged for each
board. ANOVA results show that *board’ (Fy 39 = 7.164, p = 0.011,
11[% = 0.155) has a significant effect on text entry speed. We find that
the slanted board has higher WPM than the vertical one. Participants
reached on average 14.15 WPM (SD = 2.26) on the slanted board
while they reached a significantly lower 13.72 WPM (SD = 2.45)
on average on the vertical board. No significant effect of *feedback’
(F139 =3.944, p = 0.054, 77,% =0.092) is found on writing speed. No
significant interaction effect is found. The overall average text entry
speed is 13.94 WPM (SD = 2.36). The best overall performance is
reached on the slanted board with sensory feedback to attain 14.3 WPM
(SD = 2.32). In the baseline condition, participants reach an average
30.36 WPM (SD = 5.02) when writing with a pen on paper.

Text entry speed

5.6.2 Errorrate

Fig. 5 shows average TWER across all conditions, ER and WER av-
eraged for each feedback type. ANOVA results show no significant
main or interaction effect on TER. The overall average TER is 9.85%
(SD = 7.1). When using the slanted board and sensory feedback,
which is the best condition in regards to entry speed, average TER
5 9.28% (SD = 6.92). There is a significant main effect of ’feedback’
(F139 =6.01, p=10.019, n,% =0.134) on ER. With sensory feedback,
participants have an average 1.05% (SD = 1.86) ER which is signifi-
cantly lower than the 1.63% (SD = 2.96) reached without any sensory
feedback. There is no significant main effect of ’board’ nor any in-
teraction effect on ER. The overall average ER is 1.34% (SD = 2.48).
Similar results are found on WER, with a significant main effect of
"feedback’ (F{ 39 = 7.665, p = 0.009, 711% =0.164). With sensory feed-
back, participants have an average 1.7% (SD = 2.65) WER which is
significantly lower than the 2.54% (SD = 3.90) reached without any sen-
sory feedback. The overall average WER is 2.12% (SD = 3.35). There
is a significant main effect of *feedback’ (F 39 = 8.198, p = 0.007,
11[% =0.174) on TWER. We find that with sensory feedback TWER is
significantly lower (M = 13.85%, SD = 8.49) than without any feedback
M =15.65%, SD = 9.43). No significant main effect of *board’ nor
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Fig. 5: TWER across all conditions averaged on feedback type (top)
and influence of feedback on ER and WER (bottom). Dark (resp. light)
grey shows results for the vertical (resp. slanted) board. Blue (resp.
red) shows results averaged with (resp. without) sensory feedback.

interaction effect are found. The overall average TWER is 14.75%
(SD = 8.99). There is one extreme outlier in TWER in the vertical
board with sensory feedback condition (TWER = 39.5%) that is not
removed during analysis because no evidence supports technical issues.
There are no significant main or interaction effects on AR. The overall
average AR is 10.39% (SD = 5.74).

5.6.3 Usability

The ANOVA shows no significant main effect nor interaction effect
on SUS results. The overall average SUS result is 80.05 (SD = 12.67)
which places the system in the "Good” to "Excellent” range [3]. In the
vertical board condition with feedback (resp. without), SUS score is
79.75 (resp. 78.38). In the slanted board condition with feedback (resp.
without), SUS score is 80.88 (resp. 81.19).

5.6.4 Workload

Fig. 6 shows NASA-TLX results across all conditions and averaged
for each board type. It also shows complete NASA-TLX results when
using the slanted board. ANOVA results show a significant main ef-
fect of "board’ (F 39 =9.759, p = 0.003, n; =0.200) on NASA-TLX
results, but no significant main effect of "feedback’ nor any interac-
tion effect. Participants rate the workload significantly lower when
using the slanted board (M = 40.11, SD = 16.09) over the vertical
board (M = 43.56, SD = 15.62). Overall NASA-TLX average score
is 41.84 (SD = 15.90). There is a significant main effect of *board’
(F139 =17.821, p < 0.001, nl% =0.314) on NASA-TLX physical work-
load component, but no significant main effect of *feedback’ nor any
interaction effect. Participants rate the physical workload significantly
lower with the slanted board (M = 42.31, SD = 22.97) over the vertical
board (M = 50.94, SD = 23.13). No other significant effect is found on
other components of NASA-TLX.

5.6.5 Learnability

We conducted a one-way repeated measures ANOVA with Tukey’s HSD
correction for pairwise comparisons to study learnability. Sphericity
is verified by a Mauchly’s test (p = 0.167). Fig. 7 shows the evolu-
tion over 4 sessions of (left) entry speed for all participants based on
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Fig. 6: NASA-TLX results across board and feedback type (top) and
NASA-TLX profiles for the board types (bottom). Dark (resp. light)
grey shows results averaged over the vertical (resp. slanted) board.
Blue (resp. red) shows results with (resp. without) sensory feedback.

their experience with VR and (right) the evolution of ER for all par-
ticipants. ANOVA results show a significant main effect of ’session’
(F3,117 = 8.197, p < 0.001, ng = 0.879) on WPM when considering
all participants. Pairwise comparisons show significant differences
between sessions 1vs3, 1vs4, 2vs3, 2vs4. Overall average writing speed
after 10 phrases is 13.48 WPM and raises to 14.5 WPM after 40 phrases.
For VR experienced participants, average writing speed after 10 phrases
is 14.93 WPM and raises to 16.16 WPM after 40 phrases. A similar
study is conducted on all error rates but no effects are found.

5.6.6 VR familiarity

We conduct a two-way mixed repeated measures ANOVA with Tukey’s
HSD correction for pairwise comparisons to study the impact of VR
experience on entry speed. The between independent variable is "ex-
perience’ and has 2 levels : high and low extracted from answers to
the demographic questionnaire. Low experience means having used
VR at most one time. The within independent variables are *feedback’
and ’board’. ANOVA results show there is a significant main effect
of “experience’ (Fj 33 = 6.919, p = 0.012, ng =0.154), a significant
main effect of *feedback’ (Fy 33 = 5.223, p = 0.028, n,% =0.121) but no
significant main effect of ’board’ on writing speed. Users with low VR
experience reach on average 13.49 WPM (SD = 1.88) while users with
VR experience reach a significantly higher 15.46 WPM (SD = 3.12).

6 DISCUSSION
6.1 Handwriting results

Average entry speed across all participants for handwriting after 40
training phrases is 14.5 WPM. Users with VR experience reach 16.16
WPM after the same training. Using a slanted board is best for writing
speed as it comes with a significantly reduced physical demand as
shown by NASA-TLX physical score of 42.31 against 50.94 on the
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Fig. 7: The effect of learning on WPM (left) and on ER (right). Black
lines show results for all participants, green (resp. orange) lines show
results for participants with high (resp. low) VR experience.

vertical board. We observe a trend on the effect of sensory feedback on
entry speed that might be confirmed with more participants or a finer
study of feedback. The best overall writing condition is the slanted
board with sensory feedback which lets users reach an average of
14.3 WPM and 9.28% TER. Overall TER is 9.85% and there is no
learning effect on any error metric. The board type does not have any
effect on any error metric. However, the presence of sensory feedback
reduces ER, WER and TWER. We hypothesize the presence of sensory
feedback gives users more indications of the contact between pen and
board which reduces unwanted strokes. Sensory feedback also helps
reduce TWER, which is not visible on TER. This can be explained by
how the recognizer works: it is more prone to errors on short words
since it is easier to mistake them for other words as less data is available
for recognition. Moreover, average English words length is low which
means there are more candidates for shorter words. Errors are mainly
observed in short words, with a low amount of characters and errors on
short words have greater impact on TWER than on TER. Character and
word-level metrics are thus not to be used interchangeably since they
do not show the same results but word-level metrics provide additional
insight into the performance of word-based systems. This is especially
true for techniques where performance varies depending on the length
of words. On average, participants rely on recognition alternatives
10.39% of the time. The system is deemed usable with a "Good”
rating of 80.05 on the SUS questionnaire. NASA-TLX results show the
system has high subjective performance (M = 30.81) and low frustration
(M = 32.31), with a moderately high physical demand (M =42.31) that
is comparable to virtual keyboard techniques.

Results support our hypotheses H.4. and H.S.. Sensory feedback
indeed helps reduce ER, WER, and TWER, moreover physical work-
load is lower when using the slanted writing board. However, H.1.,
H.2. and H.3. are not supported by our results. While users reported
that writing on the vertical board is indeed more familiar, the higher
physical workload of this condition makes it less effective when it
comes to writing speed. There is no effect of using a slanted board
on any error rate metric. Finally, the effect of sensory feedback on
writing speed is not shown during this study, however a non-significant
trend (p = 0.054, ng =0.092) suggests a more refined study of feedback
might show effects on writing speed. Some participants report being
overwhelmed by the sounds and vibrations when sensory feedback is
activated. Disabling only one of those would maybe yield better results.
The experimental design does not allow for analysis of the influence
of slanted board height and angle which depends on user preference.
Participants are instructed to find comfortable writing conditions with-
out having to raise their arm, to maintain a coherent physical demand
across participants. Fig. 3 shows the disparity in group sizes especially
when it comes to board height. Condition order is not balanced in each
group. No statistical trends of the effect of height and angle appear on
any metric but further work would be required to draw any conclusions.

The design rationale of our system is based around the fact that adult
handwriting speed is said to be around 40 WPM [42]. In our baseline
observations, participants reach an average of 30.36 WPM for a 10
MacKenzie phrases task when writing on paper. While the evaluation

of handwriting speed is different, this means the performance ceiling of
the system is potentially lower than expected. However, it is important
to remember that participants are not native English speakers which
might have also impacted handwriting speed on the baseline condition
and in VR. A similar effect is observed in PizzaText with differences in
typing speed for native and non-native Latin alphabet users [52].

As stated in the system’s description, we introduce a visuo-
proprioceptive conflict when simulating collisions between the pen
and the writing board. We believe this conflict had little to no impact
on performance as no participant report having noticed the conflict.
Additionally, when collision is activated — as part of the sensory feed-
back condition — we notice participants usually write at the limit of
losing contact between pen and board. This means in most cases the
displacement between the real and virtual hand is small.

The study shows the efficiency of handwriting as a text entry method
in VR. We believe however that our system still has room for improve-
ment. In its current iteration, editing written text can be challenging as
one must rewrite whole words. The editing process must be improved
to provide an optimal user experience. Moreover, the recognizer is
trained on English handwriting but tested on non-native English writers.
There are differences in cursive letters between different Latin alphabet
languages which makes certain words hard to recognize. From our
observations, a consequent proportion of the registered errors are due
to participants getting stuck on particular words, even if they had the
possibility to leave them uncorrected. For participants that reported
a high frustration on the NASA-TLX questionnaire, this was often
the main culprit. In real-life applications, we would recommend us-
ing a recognizer that can learn the handwriting of its users, which is
something we did not study here.

6.2 Analysis of results from the literature

According to Sect. 2, we compare our system with state-of-the-art
controller-based virtual text entry techniques that are compatible with
our industrial use case such as the raycast keyboard [4], the drum-like
keyboard [4], HiPad [20] and Flower Text Entry [27]. We decide not
to compare our entry speed and error rate measures to Speicher et
al. [40] results for the raycast keyboard (called controller pointing)
because they do not use the same phrase set and they only write 5
phrases per condition. However, since Boletsis et al. [4] did not study
NASA-TLX scores, we compare them against Speicher et al. [40]
raycast keyboard and controller tapping. Indeed, there is no available
evaluation of NASA-TLX scores on the drum-like keyboard to the best
of our knowledge and controller tapping seems like a good-enough
approximation for indirect comparison. We also discuss the recent
study of handwriting in VR by Venkatakrishnan et al. [44].

There are many differences in the demographics of each study which
should be taken into consideration. Our 40 participants, only 9 of which
have notable VR experience, are on average older (M =29.1, SD =10.4)
than in other studies. With our target of industrial VR applications, we
believe our population is more representative of this use case. In [4], a
raycast vs. drum-like keyboards study has 22 participants (8 with major
VR experience), aged on average 25.77. HiPad has 15 participants aged
on average 22.5 and no precision is given regarding VR experience.
Flower Text Entry has 10 participants aged between 21 and 25. All
of them have VR experience and 5 of them have already participated
in previous pilot studies. By having participated in previous studies,
these participants have closer to 240 phrases of training than the 80
phrases claimed in the discussion. As such, it seems fair to compare
our VR experienced users to novice users of Flower Text Entry. For the
comparison with the raycast vs. drum-like keyboards study, we have a
higher proportion of inexperienced VR users.

Regarding entry speed, handwriting reaches 14.02 WPM for inex-
perienced VR users and 16.16 WPM for experienced VR users after
40 phrases of training. Overall average entry speed after 40 phrases
is 14.5 WPM across all participants. Raycast keyboard users reach an
average of 16.65 WPM after 10 phrases. Drum-like keyboard users
reach an average of 21.01 WPM after 10 phrases. However, these
results come from Boletsis et al. [4] which used only one phrase set
to evaluate 4 techniques, meaning those results might be slightly over-



evaluated as participants were able to learn the phrases. HiPad users
reach 13.57 WPM after 60 phrases. Flower Text Entry novice users, to
be compared with our VR experienced users, reach 13.05 WPM after
~40 training phrases (after Day 3) and attain 17.65 WPM after ~80
phrases. In writing conditions similar to ours, participants in Venkatakr-
ishnan et al.’s [44] study reach ~10.5 WPM on a random selection of
the 200 most commonly used English words. The higher writing speed
displayed in our study can be explained by multiple reasons: writing
random words instead of coherent phrases might be more difficult and
we use a similar principle than the best writing condition studied in [44]
i.e., direct contact of a virtual pen on a planar virtual board, but we
refine board orientation and sensory feedback. Moreover, our validation
and erase interactions that use a single controller button press rather
than a VE interaction are likely more efficient as they do not require
any arm movement. Compared to HiPad [20], our method is also faster
after less training. While Flower Text Entry’s authors [27] conclude
that their method is faster than raycast and drum-like keyboards, we
believe that training time is a major factor that must be taken into ac-
count. The performance of these keyboards is evaluated after 10 phrases
which makes them faster, after equivalent training, than our handwriting
method (13.48 WPM) or Flower Text Entry (8.96 WPM). However,
raycast and drum-like keyboards are dual-handed techniques unlike the
other compared techniques. To the best of our knowledge, there is no
available evaluation of one-handed versions of these keyboards which
makes comparison difficult [4, 10,40]. Keyboards have the advantage
of having great performance from the get-go but it would be interesting
to compare their long-term performance to the other techniques, as
Flower Text Entry’s novice but VR experienced users surpass raycast
keyboards (with only 10 training phrases) after 80 training phrases.
Since keyboards are a very familiar way to input text, their performance
might be capped earlier than techniques that rely on different princi-
ples and there are no long-term performance studies to the best of our
knowledge [4,40]. We believe the speed of handwriting in VR is still
raising after 40 training phrases even if results show no significant
difference between sessions 3 and 4. We suspect that participants were
less precise when writing words, thus requiring more corrections, in
the fourth session which they knew was the last one considering our
experiment was quite long (1h on average). This is supported by the
fact that ER is higher in the fourth session than in the third one, and is
comparable to the first session.

Regarding error rates, handwriting’s ER is 1.05% with sensory feed-
back and TER is 9.85% overall across all participants. For the raycast
and drum-like keyboards, TER is respectively 11.05% and 12.11% [4].
HiPad’s ER is 0.22% and TER is 4.94%. Flower Text Entry has low
ER (0.09%) and TER (2.50%). Both HiPad and Flower Text Entry
have lower total error rates than handwriting. Our Handwriting TER
is comparable with that of raycast and drum-like keyboards. However,
handwriting TER is in most cases not due to user error, as they write
the correct words, but to recognition errors which means using a better
handwriting recognition tool could greatly improve the TER, and by
extension entry speed of handwriting in VR. On the other hand, errors
in raycast and drum-like keyboards, HiPad, or Flower Text Entry errors
are mainly due to users. Handwriting recognition can already rival the
accuracy of state-of-the-art text entry methods, and has the potential
to become even more accurate in the future. Indeed, with a ~12%
corrected word error rate (difference between TWER and WER) and a
~10% AR (the rate at which users relied on recognition alternatives),
our system has a ~22% failure rate on main recognition proposition. In
the Venkatakrishnan et al.’s [44] study on VR handwriting, the recog-
nizer used [21] is claimed by its developers to have only 10.4% WER
and 4.3% ER. This performance is actually similar to that claimed
by WritePad SDK [47], which is the recognizer we used. However,
Venkatakrishnan et al. [44] do not clearly state how handwriting accu-
racy is computed — it seems the authors only look at ER — and it is hard
to say whether the claimed recognizer performance is actually reached.

As for workload, the overall NASA-TLX score (the lower the bet-
ter) for handwriting on a slanted board is 40.11 with a 42.31 physical
workload score, a 30.12 subjective performance score, and a 31.31 frus-
tration score. In Speicher et al. [40], the controller pointing keyboard,

similar to the raycast keyboard in [4], has a 37.86 physical workload
score, a 28.10 frustration score, and a 28.33 subjective performance
score. The controller tapping keyboard [40], which we believe can be
used as an approximation of the drum-like keyboard for physical work-
load, has a 51.90 physical workload score. Flower Text Entry reports a
low overall workload of 28.06 with audio and tactile feedback in a QW-
ERTY layout in a pilot user study. No detail is given about the different
NASA-TLX items such as physical workload. Our handwriting entry
exhibits similar workloads as the controller pointing keyboard, even
in the physical workload category. It performs better than a controller
tapping keyboard in terms of physical demand which may be due to the
fact that our system is one-handed. According to NASA-TLX results,
handwriting is a viable alternative to virtual keyboards for text entry in
VR regarding performance and frustration, which were the main items
of the design rationale, without compromise on physical demand.

6.3 Limitations

This study has known limitations. First, it would be interesting for
the baseline comparison to be done on an actual whiteboard, maybe
even wearing an HMD with pass-through vision. This would give an
indication of the real performance ceiling of the handwriting task in VR.
Indeed, after writing 40 phrases, participants are still improving, even
if the frequently changing writing conditions hinders learnability of the
system. Thus, the performance ceiling is not quantified. Moreover, the
Mackenzie task is vastly different from industrial data entry scenarios
that we designed the system for. For example, symbols, numbers, and
special characters are not studied. A direct comparison of handwriting
to state-of-the-art data entry methods in VR on a more industry-focused
task is needed. Additionally, this study is focused on standing up
handwriting with no passive haptic feedback which corresponds to our
industrial use case. Other scenarios, such as using tangible surfaces for
passive haptic feedback could be studied for other practical applications
of VR. Finally, in this study, sensory feedback is made of visual, haptic
and auditory feedback that are all turned off or on simultaneously. A
more refined study of sensory feedback could confirm or disprove the
observed trend of sensory feedback on writing speeds.

7 CONCLUSION

In this paper, we present a handwriting system to input textual data
in VR with a focus on industrial applications. Our technique uses
handwriting recognition to transform handwritten words on a virtual
board into exploitable textual data. Using a single controller, we rely
on the playfulness of writing in VR to achieve high typing speed
and high adoptability. The system is designed around 3 main criteria:
efficiency, ease-of-learning and familiarity. This makes it a suitable tool
for inputting textual data in industrial settings that require efficiency
and low frustration for repetitive tasks, as proven by a usability and
workload study. Our user study shows that after 40 phrases, users
reach an average writing speed of 14.5 WPM with 9.3% error rate. The
highest observed speed is 21.1 WPM in a 10-phrase writing task. The
physical demand is comparable with the most commonly used virtual
keyboards techniques such as head or controller pointing [40], while
frustration is low and subjective performance is high. Handwriting is
a great alternative to virtual keyboards that could be further improved
by using more efficient handwriting recognition to lower error rate
thus increasing writing speeds. Future work will reevaluate the system
after recognition improvements by comparing our system with state-
of-the-art data entry methods in an industrial task that better represents
our envisioned use-case. An evaluation of our system and virtual
keyboards learnability and performance ceilings should be performed
over multiple sessions.

SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://doi.
org/10.17605/0SF.I0/NBV2G, released under a CC BY 4.0 license.
In particular, they include (1) .csv files of the used and removed
MacKenzie phrases and (2) a video that describes the different ex-
perimental conditions.
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