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Abstract

This article presents advances and computing optimizations on the CAPTN model which

couples the Cellular Automaton (CA) and the Parabolic Thick Needle (PTN) methods.

This optimized CAPTNmodel, which is developed in 2D for now, is evaluated on its ability

to reproduce two physical quantities developed during directional growth in a constant

temperature gradient G with isotherm velocity vL: the interdendritic primary spacing

and the grain boundary orientation angle between two grains of different orientations. It

is shown that the CAPTN model can reproduce selection between primary branches and

creation of new branches from tertiary branches as long as cell size is sufficiently small

to model solute interactions between branches. In these conditions, simulations converge

toward a distribution of primary branches which depends on the history of the branching

events, as has been observed in in agreement with experimental results studies. Average

primary spacing obtained tend to decrease with G and vL, in agreement with and the

theoretical G−bv−c
L power law. Contrary to the classical CA model, the grain boundary

orientation angle obtained in CAPTN simulations is stable with cell size and in good

agreement with previous phase field studies for various gradients. Moreover, the grain

boundary orientation angle is found to follow an exponential law with the ratio G/vL.
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grain boundary orientation
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1. Introduction10

The prediction of dendritic microstructures formed during metal solidification pro-

cesses is of major scientific and industrial interest [1]. Intragranular quantities such as

the primary dendrite arm spacing and intergranular quantities such as the grain size and

the direction of grain boundaries have consequences on the thermo-mechanical properties

of manufactured parts. Modeling the formation of dendritic structures makes it possible15

to understand and predict how the solidification conditions influence these characteris-

tic scales. However, the physical phenomena governing these characteristic scales extend

over large spatial scales, requiring choices in the approximations and dimensions of the

numerical models chosen.

Phase field (PF) models are currently the models with the finest resolution of dendritic20

structures [2, 3, 4]. However, these models are very expensive numerically and are limited

to small simulation domains of the order of 0.1 mm3. Moreover, PF simulations can usually

not achieve quantitative predictions of non-dilute alloys due to the large separation of scale

between tip radius and diffusion length [5].

The Dendritic Needle Network (DNN) and the Parabolic Thick Needle (PTN) methods25

aim to overtake these numerical limits by approximating dendritic branches to parabolas

paraboloids truncated by cylinders [6, 7, 8]. In this model, originally developed for solidi-

fication conditions such that a scale separation is feasible between tip radius and diffusion

length (so at small Péclet number), solute diffusion and convection are solved in the liquid

phase and dendrite tip growth velocities are computed from the integration of the solute30

composition gradient in the vicinity of dendrite tips. With the original methodologies,

the DNN method is implemented on Graphics Processing Units (GPUs) using the finite

difference method. Simulation domains can reach up to 100 mm3 [9]. However, the solid

fraction generated during grain growth was not modeled with this method and so the

coupling of the microstructure evolution with thermal resolution was not achieved.35

The so-called Cellular Automaton (CA) methods model the growth of dendritic grains

on a grid of cells whose state evolves during the simulation from ”liquid” to ”growing” and

then to ”solid” state according to the local conditions of temperature, composition and

the state of surrounding cells. In these approaches, we distinguish for this article the µCA

models for which an intragranular resolution of the dendrites is performed and the CA40

models, which only model the growth of the grain envelope. For µCA models, the diffusion

and solutal conservation equations are solved by finite difference at the scale of the cell

grid. These models have shown their relevance for modeling the growth of columnar
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grains by comparison with the LGK analytical model [10] and have been validated by

comparison with theoretical and experimental studies on their modeling of secondary45

dendrite arm spacing [11]. However, like the PF method, these models require a fine

spatial resolution which limits the dimensions of the simulated domains to domains of the

order of 10−2 mm3. CA models aim at predicting alloys grain structures by modeling the

nucleation and growth of grain envelopes. Intragranular properties are thus not accessible

with this approach. The grain envelopes develop on the CA grid. Within each CA cell,50

the dendritic microstructure is simplified by an orthodiagonal polygon (polyhedron in

3D), with half diagonals representing the length of the dendrite arms. For cubic crystal

structures, these Their lengths are aligned with the < 1 0 > (resp. < 1 0 0 >) in 2D

(resp. 3D) directions [12]. Simulation domains can be as high as a few liters. The coupling

between the grain structure developed during solidification and the thermal evolution of55

the simulated part can be modeled by coupling CA models with a finite element mesh in

the CA-FE method [13]. However, at the cell scale, the growth kinetics of grain envelopes

are approximated by analytical laws corresponding to stationary kinetics. These growth

laws therefore do not take into account the solutal interactions between neighboring grains,

which limits some quantitative agreement with experiments such as columnar/equiaxed60

transition [14].

The complementary advantages of the CA and PTN methods have motivated their

coupling in the so called CAPTN model [15]. The PTN method is used to compute the

dendrite tip velocity at the apices of the polygons (polyhedrons in 3D) of each CA cell.

A first coupling has been performed in 2D with a FE implementation of the PTN model65

using adaptive mesh. It has been shown that this CAPTN method gives a description of

equiaxed grain growth with a higher precision than the classical CAFE model. However,

the strategy developed for the PTN implementation requires much heavier computational

resources.

CA and PF models have been compared on their ability to predict the grain boundary70

orientation angle between two tilted grains in a temperature gradient moving at constant

velocity in a two-dimensional domain [16]. It has been shown that the orientation angle of

the grain boundary determined by the CA method depends on the CA cell size and is in

agreement with the PF result if the mesh size corresponds to a quantity called ”secondary

dendrite arm spacing preceding tertiary branching”.75

In this article, the CAPTN method is evaluated on its ability to model two charac-

teristic quantities resulting from the growth of dendritic grains placed in a constant tem-

4



perature gradient moving at constant speed: the primary dendrite arm spacing and the

orientation angle of grain boundary between two grains of different orientations. Section

2 recalls the methodology of the CAPTN method and presents optimizations to drasti-80

cally reduce the computational time of the method. A parametric study is performed

in Section 3.1 to analyze the convergence of the model toward the theoretical kinetics in

stationary state for an isolated dendrite tip. Sections 3.2 and 3.3 present the evaluation

on the primary dendrite arm spacing and grain boundary orientation angle. Results are

compared with CA and PF results. Finally, an exponential law on the evolution of the85

grain boundary orientation angle is proposed.

2. Model description

The CAPTN model uses a FE implementation of the PTN method for computing

dendrite tip radius and velocity from liquid composition gradients in the vicinity of tips

according to the method recalled in Section 2.1.1. Therefore, a fine mesh is required in90

the vicinity of each dendrite tip to compute its growth velocity with a good precision

but a fine mesh cannot be applied on the whole domain without numerical cost. A first

strategy of adaptive meshing has been proposed in Ref [15], with the application of a

fine mesh at solid/liquid interfaces and with a mesh size following concentration gradients

in the liquid phase. However, this meshing strategy requires to rebuild the mesh very95

frequently to keep track of the growing parabolic dendrite tips, which is numerically time

consuming. In this paper, a new adaptive meshing strategy is proposed and described

in Section 2.1.2. In Section 2.2 the methodology of coupling between the CA and PTN

methods and improvements compared to the previous implementation are presented.

2.1. PTN finite element implementation100

2.1.1. PTN theory and implementation

The PTNmethod [6, 7] is based on the approximation of dendrite branches as parabolas

paraboloids of curvature radius ρtip truncated by cylinders of radius rcyl (represented in

light green in Fig 1 . In 2D, the truncation is caused by a rectangle, but to be consistent

with 3D notations, the term ”cylinder” is retained, and rcyl is the half thickness of the105

rectangle). To compute the growth velocity of tips, vtip, solute diffusion is solved in the

liquid around tips to obtain the liquid composition field, wl
PTN . For this, the composition

at the nodes of the solid/liquid interfaces and inside paraboloids is imposed by a Dirichlet

condition to the liquid liquidus composition wls corresponding to the temperature of the
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tip, Ttip, i.e., w
ls = (Ttip − TM)/m, where TM is the melting temperature for the solvent,110

and m is the liquidus slope. As for the DNN model [7], the curvature undercooling is

therefore negelected in the PTN model.

Figure 1: Sketch of the FE implementation of the PTN method. The truncated parabola (light green)
moves in a liquid with solute isocomposition lines in pink. The integration area (surface Σ in yellow with
its contour Γ in red) is a truncated disk of radius Rinteg defined by the a parameter. The adaptive mesh
generated for this branch is presented as a gray wireframe. The minimum mesh area with its dimensional
parameters (lb, l, and H) is delimited by the blue dashed box. The edges of the two transitional areas
TA1 and TA2 of parameters e1 and e2 are marked with green dashed lines. The mesh size parameters
hmin, hsolid, h1, h2, and hmax in each zone are written in black. A zoom of the area in the white box is
shown at the bottom of the figure. Parameters a and hmin are discussed in Section 3.1.
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Equations (1a) and (1b) give the relations between ρtip and vtip in two dimensions:

ρ2tipvtip =
Dld0
σ

(1a)

ρtipv
2
tip =

2 Dl2F2

d0
(1b)

where Dl is the interdiffusion coefficient in the liquid, d0 = −Γ ls/m(1 − k)wls is the

solute capillary length, Γ ls is the Gibbs-Thomson coefficient of the interface, and k is

the segregation coefficient. The constant σ is the dendrite tip selection parameter. The115

quantity F in Eq. (1b) is called Flux Intensity Factor (FIF). To compute this quantity,

an integration area of surface Σ (in yellow in Fig 1) and contour Γ (in red in Fig 1)

, parameterized with parameter a, which is the distance along the axis of the branch

between the dendrite tip and the intersection of the contour Γ with the parabola, is

defined in front of the tip. This integration area is a disk of radius Rinteg centered on120

the dendrite tip and truncated by the parabola. This disk is parameterized by parameter

a, which is the distance along the axis of the branch between the dendrite tip and the

intersection of the contour Γ with the parabola (see Fig 1). The scaling of this numerical

parameter will be discussed in section 3.1. with its tip located at the center of the disk.

The radius Rinteg is therefore related to a by Rinteg =
√
a2 + 2 ρtip a. The FIF is thus125

computed at each time step using Eq. (2) where vtip in the equation is taken at previous

time step.

F ≈ −1

4
√

a/d0(1− k)wls

(∫
Γ

∇wl
PTN · ndΓ +

1

Dl

∫∫
Σ

vtip · ∇wl
PTNdΣ

)
(2)

Values of integration parameter a are discussed in Section 3.1. A first FE implementation

with adaptive mesh (called PTN mesh) has been described in Ref [15]. In this implemen-

tation, a minimum mesh size hmin that is an order of magnitude smaller than ρtip or in the130

same order of magnitude as ρtip was imposed at the solid/liquid interface, and the mesh

in the liquid was adapted to the solute composition gradient. This meshing strategy is

efficient to compute (ρtip, vtip) while limiting the number of elements in the mesh. How-

ever, it necessitates to remesh very frequently, which is numerical time consuming (see

section 3.1). In this article, a new meshing strategy is proposed to limit the remeshing135

frequency without degrading the precision on the growth velocity.
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2.1.2. Finite element metric and improved remeshing strategy

As for Same as the first finite element implementation [15], the mesh size in the liquid

far from parabolas is set to a maximum value hmax, because there is no need to compute

the composition gradient ∇wl
PTN with high resolution in this region. In addition, the140

mesh size in areas corresponding to the internal part of parabolas is set to a value hsolid

(see Fig 1). As explained previously, the mesh size has to be small in the vicinity of the

integration area in order to compute the FIF with a good precision. As the integration

area is translated and resized at each time step with the growth of its parabolic branch, the

new mesh strategy is to define a rectangular box of minimum mesh size hmin around the145

dendrite tip. This rectangle, which is defined using the orthogonal query method [17, 18],

is first created at the creation of the parabola with its length aligned with the predefined

parabola trajectory. Its position and dimensions (half-height H, minimum length behind

the tip lb, total box length 2l + 2lb, see Fig 1) are defined according to the dimensions

of the integration area of the parabola at the time of creation of the box, identified by a150

′cr′ subscript in the followings. In simulations presented in Section 3, these parameters

are scaled as H = 1.5Rcr
integ, lb = 1.2acr, and l = 10δcrdIv where δdIv is the diffusion length

along the growth direction at stationary state.

In order to limit the remeshing frequency and to ensure a fine mesh in the integration

area at each time step, a rectangular box is defined in front of each parabola using155

the orthogonal query method [17, 18]. This box, which is aligned with the predefined

parabola trajectory, will be crossed by the growing branch and recreated as soon as the

integration area reaches its edge. Parameters defining the dimensions and position of

the box (half-height H, minimum length behind the tip lb, total box length 2l + 2lb)

are reported in Fig 1. These parameters are defined according to the dimensions of the160

integration area of the parabola at the time of creation of the box, identified by a c

exponent in the followings. In simulations presented in Section 3, these parameters are

scaled as H = 1.5Rc
integ, lb = 1.2ac, and l = 10δdIv where δdIv is the diffusion length along

the growth direction at stationary state. The definition of δdIv is given in Appendix A.

The mesh in this box has minimum mesh size hmin. The rectangle will therefore be crossed165

by the parabolic tip and its integration area during the growth of the branch, and it will

have to be displaced and resized as soon as the integration area is about to get out of it,

which could happen in two situations: (i) the tip has almost crossed the whole rectangle

and the integration area is at the edge of the rectangle (ii) the tip velocity has decreased,

its integration area is larger and is about to exceed the height of the rectangle.170
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To facilitate the transitional transition from hmax to hmin at the creation of the box,

two transition areas TA1 and TA2 of thickness e1 and e2 and mesh size h1 and h2 are

defined (Fig 1). The choice of values of mesh size in the various regions of the simulation

domain (hmin, hmax, hsolid, h1 and h2) is a compromise between the precision and the

necessity to limit the number of elements in the simulation domain. This study will be175

detailed in Section 3 as part of a convergence study. This strategy permits to limit the

remeshing frequency while limiting the number of elements in the simulation.

2.2. CAPTN method

This section is a recall of the CAPTN coupling and the adaptation of the CA model

to this coupling [15]. Some improvements are also presented.180

2.2.1. CA model adapted to the PTN coupling

The CA model aims at predicting the grain structure generated during solidification

processes. This method is based on the approximation of dendritic grains as orthodiagonal

quadrilaterals (resp. orthodiagonal octahedrons) in 2D (resp. in 3D) at the scale of CA

cells (see Fig 2). The diagonals of the polygon are aligned with the dendrite branches.185

Grain growth is thus modeled by the growth of the branches which eventually capture

neighboring cells by entering in their circumscribed circle (Fig 2 shows the time of capture

of the blue cell by the red polygon. The green cell has been captured in a previous

time). A new polygon attached to the captured cell is therefore created with the same

diagonal orientation as the capturing polygon. The way the capturing polygon enters in190

the circumscribed circle of the captured neighboring cell permits to identify a capturing

branch (Sµ
0 for the green cell ν and Sµ

2 for the blue cell ζ in Fig 2), which is propagated

by the new polygon. This branch of the new polygon is called “principal branch” (Sν
0 for

the green envelope, and Sζ
0 for the blue envelope). The branch opposite to this branch is

called “opposite branch” (Sν
1 for the green envelope, and Sζ

1 for the blue envelope) and195

the two other branches are called “side branches” (Sν
2 and Sν

3 for the green envelope, and

Sζ
2 and Sζ

3 for the blue envelope). This method of capturing cells and initializing polygons

induces that a polygon center can be out of its corresponding cell. This is for example

the case in Fig 2 for blue and green polygons, whereas the red polygon is a grain seed (so

not created from capture), with its center locates in its corresponding cell.200

2.2.2. Branches growth velocity

The principle of the CAPTN model is to compute the growth velocity of polygon

branches by using the PTN method. A parabola paraboloid truncated by a cylinder
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Figure 2: Process of grain propagation on the CA grid. At a previous time, the Sµ
0 branch of the red

polygon associated to the red cell µ enters has entered in the circumscribed circle of the green cell ν,
leading to the creation of the green polygon. The length of the principal branch of the green polygon, Sν

0 ,
is denoted as Lν

0 . At the time of the image, the Sµ
2 branch of the red polygon enters in the circumscribed

circle of the blue cell ζ, leading to the creation of the blue polygon and the switch of the cell state from
liquid to containing growing dendritic branches. The distance between the principle branch of the red
polygon Sν

0 and side branch of the blue polygon Sζ
3 is defined as d. A parabola is associated to each

branch except for the opposite branches (Sν
1 for the green envelope, and Sζ

1 for the blue envelope) and

the eliminated side branches (Sζ
2 and Sζ

3 for the blue envelope, if d < 2 rcyl).
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(corresponding to a parabola truncated by a rectangle in 2D) is thus defined on the PTN

mesh for each branch growing on the CA grid (see Fig 2). For polygons created by the205

capture of a cell, the principal branch is the continuity of the already existing capturing

branch. Therefore, its parabola is the same as the one of the capturing branch. Opposite

branches are towards the existing branches, they can not grow, hence there is no parabola

associated to the opposite branches. The initial length of side branches is limited to the

thickness of the principal branch parabola. As shown in Fig 2, for the green polygon,210

the initial length of Sν
2 and Sν

3 are limited to the thickness of Sν
0 . In order to avoid

perturbation of the growth of the principal branch due to the growth of side branches,

the growth of side branches is permitted only when the length of the principal branch Lν
0

is such that Lν
0 > min(3 rcyl, 2

√
2 lCA). Their initial velocity is set to the velocity of the

principal branch at this time. However, the PTN method can be applied to compute the215

growth velocity of a branch only if this branch is longer than the integration distance a.

In this model, for security, the PTN method is used to compute the velocity of a branch

if its length is greater than 1.3 a. Before this, its kinetics is equal to the one at last time

step. Nevertheless, this methodology can lead to the creation of branches which are very

close to already existing branches growing in the same direction (an example is given in220

Fig 2 with branches identified by the distance d). In order to avoid such non-physical

events, branches at a distance lower than 2 rcyl from an already existing branch growing

in the same direction are not allowed to grow. In Fig 2, d < 2 rcyl, so Sζ
2 and Sζ

3 of the

blue polygon cannot grow, so they do not have associated parabolas.

When a polygon associated to a cell has captured all its neighboring cells, the polygon225

associated to the cell is suppressed. In this case, the PTN mesh is coarsened to a mesh

size equal to hmax.

3. Applications

The capacity of the CAPTN model to capture physical quantities of the columnar

growth of dendrites is studied. For this, the growth of dendritic grains in a constant230

temperature gradient G = G · ẑ with isotherms moving at constant velocity vL = vL · ẑ
is modeled, where ẑ is the unit vector in the vertical direction. As the model precision

depends on the choice of numerical parameters, in particular those involved in the FE

implementation of the PTN model, this section starts with a study of the convergence of

the PTN model to theoretical kinetics in Section 3.1. The CAPTN model is then evaluated235

on its ability to reproduce primary dendrite arm spacing in Section 3.2 and grain boundary
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orientation angle in Section 3.3. This study is performed on a succinonitrile - 1.3wt.%

acetone alloy whose properties are given in Table 1. The choice of this alloy, temperature

gradient and isotherm velocity ranges is driven by comparisons of simulation results with

PF and CA simulations published in previous studies in section 3.3. The influence of this240

choice on the precision of CAPTN results is discussed in section 3.1.

Table 1: Properties of the succinonitrile - 1.3wt.% acetone alloy

Quantity Variable Value Unit Ref
Nominal composition w0 1.3 wt.%
Interdiffusion coefficient in liquid Dl 1.270× 10−9 m2 · s−1 [19]
Segregation coefficient k 0.1 [19]
Liquidus slope m −3.02 K · wt%−1 [20]
Liquidus temperature TL 327.314 K [20]
Gibbs-Thomson coefficient Γls 6.4× 10−5 K ·mm [21]
Selection parameter σ 0.057 [16]

For all simulations, the initial temperature at the bottom of the simulation domain

is equal to the liquidus temperature TL (Table 1). At any time t and position z, the

temperature is computed as T (t, z) = TL +G(z − z0)−G · vL(t− t0), with z0 and t0 the

lowest coordinate of the simulation domain and the initial time, respectively.245

3.1. Analyze of numerical parameters

As seen in Section 2.1, the FE implementation of the PTN model necessitates to

calibrate numerical variables. The CAPTN model has been evaluated in a previous study

[15] on this capacity to reproduce analytical solutions of the growth of a single parabolic

branch in isothermal domains for supersaturation values lower than Ω = 0.5. It was250

observed that for a same scaling of numerical parameters on theoretical microstructure

scales, the errors on ρtip and vtip computed compared to analytical solutions increased

with supersaturation. These results are in agreement with DNN simulations [22]. It was

also observed that for a given supersaturation, simulation errors decreased with a decrease

of minimum mesh size and and the increase of the integration distance a. Simulations255

presented in Sections 3.2 and 3.3 analyse the growth of columnar dendritic grains. In

theory, the steady state of an isolated dendrite tip aligned with the temperature gradient

is such that its velocity is equal to vL and its curvature radius corresponds to the solution

of Eq. (1a), giving a Peclet number Pe =ρtipvL/2D
l. The Ivantsov solution [23] gives

an analytical expression of the steady state composition in the liquid according to Pe260

during to the growth of an isolated parabola (see Eq. A.2). Therefore, the analytical
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expression of the equilibium composition in the liquid at the solid/liquid interface is given

by with wls corresponding to the Ivantsov solution wls
Iv [15]. Furthermore, as curvature

undercooling is neglected, In this configuration, the radius of curvature is written as ρtipIv
and ∆TIv = −m(wls

Iv − w0). the tip undercooling ∆Ttip should converge to the solute265

undercooling corresponding to wls
Iv (∆Ttip = −m(wls

Iv − w0)). The curvature radius and

tip undercooling corresponding to this analytical solution are respectively written ρtipIv
and ∆TIv.

In order to calibrate numerical parameters for simulations, a single parabolic branch

is placed in a box of 20 × 20 mm2. It is aligned with a temperature gradient G =270

0.475 K ·mm−1 and a constant isotherm velocity vL = 0.086 mm · s−1. In these condi-

tions, the theoretical curvature radius and undercooling of the tip are given in should

converge to the second row values in Table 2 for three values of the velocity.

Table 2: Ivantsov solutions for different isotherm velocities using the material parameters listed in Table
1

vL (mm · s−1) Ω ρtipIv (mm) δdIv (mm) ∆TIv (K)
0.043 0.2988 2.620× 10−3 0.0176 1.4441
0.086 0.3386 1.805× 10−3 0.0099 1.7208
0.172 0.3811 1.242× 10−3 0.0056 2.0496

The Numerical parameters influencing the kinetics of the tip and analyzed in this

section are the integration parameter a, the minimum mesh size hmin and the time step

∆t. Other parameters are scaled using parameters given in Table 3. The integration

parameter a has to be big enough to compute the solute gradient in front of the tip with

a good precision. It is therefore scaled as a =
δdIv
α

where α is a dimensionless constant

and

δdIv = 2ΩDl/vL (3)

the diffusion length along the growth direction of the Ivanstov Ivantsov solution. Ω is the275

supersaturation, defined as Ω = [wls
Iv − w0]/[(1 − k)wls

Iv]. The minimum mesh size hmin

has to be small enough to describe the parabolic branch tip and the solute composition

field around the tip. Similarly, the time step ∆t has to be small enough to keep track of

the solute composition field. These quantities are thus scaled such that hmin = γ ρtipIv
and ∆t = τ hmin

vL
with γ and τ being dimensionless parameters.280

Fig 3 presents the average undercooling ∆Ttip and curvature radius ρtip computed

at steady state for different values of parameters α, γ and τ . Error bars represent the
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standard deviation of ∆Ttip and ρtip at steady state , within a timescale of 20 s = 953
ρtipIv
vtipIv

.

These errors are due to fluctuations in the calculation of the FIF on a finite number of

elements as the length of the parabolic branch increase. For each curve, other parameters285

are set to the value 0.5. It is observed that whereas the parameter τ has almost no influence

on results, the variation of the minimum mesh size with γ has a large effect on the precision

of the simulation. In this regime of α, larger integration distance leads to more precise

results owing to larger domain near the tip involved in the calculation of kinetics, which

agrees with the results in [15]. It is also observed that numerical parameters have a higher290

influence on the precision of the undercooling than on the curvature radius.

Taking the same simulation domain and parameters α = 0.5, γ = 1 and τ = 1, the

simulation using the PTN mesh described in Ref [15] takes 14 hours on 8 CPU processors

to displace the tip by 9.25 mm, with 2714 times of remeshing, whereas it only takes 2

hours for the same number of processors to displace it by the same distance with the295

new meshing strategy, with only 93 times of remeshing. The simulation time is therefore

drastically reduced with the new mesh strategy.

For a balance between accuracy and the efficiency of computation, dimensionless pa-

rameters are set to α = 0.5, γ = 1.5 and τ = 1 for simulations in Sections 3.2 and 3.3. The

undercooling of this selection of parameters is 1.928K in average with standard deviation300

6.551×10−4K, and the curvature radius of this selection of parameters is 1.775×10−3mm

in average with standard deviation 2.484 × 10−5mm. These results are the same as the

results of α = 0.5, γ = 1.5 and τ = 0.5 in Fig 3, which are 1.924K in average with

standard deviation 4.972× 10−4K for undercooling, and 1.776× 10−3mm in average with

standard deviation 2.624 × 10−5mm for radius curvature. Other numerical parameters305

are set to values given in Table 3. It has to be observed that errors on undercooling

and curvature radius computed compared to analytical solutions are related to the high

supersaturation values studied in this article. The minimum value of the steady state

radius of truncating cylinder is rmin
cyl =

√
2 a ρtipIv . If the radius of truncating cylinder rcyl

is greater than rmin
cyl , the kinetics of the branch is not influenced by the truncation [7, 15].310

Thus, in our application, rcyl is fixed as rcyl = 2 rmin
cyl .

3.2. Primary dendritic arm spacing for a single crystal

The spacing developed between primary branches during directional growth is a com-

plex phenomenon. Experimental studies on various alloys [20, 24, 25] have shown that for

a given temperature gradient and isotherms velocity, this spacing is not unique and can315

vary along the solidification front, giving a λ1 distribution limited by two values λmin
1 and
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Figure 3: Evolution of steady state quantities (a) ∆Ttip and ∆Ttip/∆TIv and (b) ρtipIv
and ρtip/ρtipIv

according to numerical parameters (red) α, (blue) γ, and (green) τ for a single parabolic branch aligned
with a constant temperature gradient G = 0.475 K ·mm−1 and a constant isotherm velocity vL =
0.086 mm · s−1. Black dashed lines correspond to Ivantsov solutions presented in Table 2. For each
curve, only one parameter is varied, while the others are maintained to their minimum value, 0.5.
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Table 3: Simulation parameters used in Sections 3.2 and 3.3

Variable Name Unit Value
Minimum PTN mesh size hmin ρtipIv

1.5
PTN mesh size in TA1 h1 hmin 3
PTN mesh size in TA2 h2 hmin 10
PTN mesh size in solid hsolid hmin 10

Maximum PTN mesh size hmax hmin 50
Integration distance a δdIv

2
Distance from the tip to the center of the fine mesh rectangle at its creation l δcrdIv

10
Distance from the tip to the end of the fine mesh rectangle at its creation lb acr 1.2

Half height of the fine mesh rectangle H Rcr
integ 1.5

TA1 thickness e1 l 1
TA2 thickness e2 l 1

λmax
1 . This result has been retrieved in simulations using the µCA [26] and DNN methods

[27]. This possible range of λ1 values has been proved theoretically by Warren and Langer

[28] who have shown that the spacing between primary branches is history dependent.

Analytical studies using more restrictive assumptions [29, 30] predict that for isotherms320

velocities higher than a transition rate vtr = GDl/[(1/k − 1)mw0], the primary spacing

should evolve as λ1 ∝ v
−1/4
L G−1/2. In experimental studies, dependencies according to

λ1 ∝ v−b
L G−c with scattered values of coefficients b and c have been found.

The CAPTN model is now used to demonstrate its capability to model the branching

of dendrites and the solute interaction between dendrite branches, hence yielding a stable325

selection of the primary dendrite arm spacing during directional growth. To analyze this,

a single seed with 5 µm branch length aligned with the temperature gradient is placed at

the bottom center of a box of 10×17 mm2 in width and height. During the simulation, the

grain captures neighboring CA cells and propagates on the whole width of the domain,

forming a network of dendrite branches which then grow vertically, leading to a selection330

of primary branches. An example of the dendrite network generated during a CAPTN

simulation is presented in Fig 4. The spreading of the grain on the simulation domain

through secondary branches can clearly be observed on the bottom part of the domain.

Elimination and creation of tertiary branches can also be spotted during grain growth.

Fig 5 shows the solidification front at t = 135 s for the same simulation. CA cells335

containing a growing polygon, i.e., with at least one liquid neighboring cell, are presented

as white empty squares and the solute composition field is presented as wireframe on

the PTN mesh. The area with fine mesh defined in Section 2.1 can be observed in front

of each parabolic tip with a liquid composition close to the alloy nominal composition

(in blue). Inside branches, the composition is imposed by the Dirichlet condition to the340
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Figure 4: Dendrite needle network at different times (t = 75 s, t = 90 s, t = 105 s, and t = 135 s) in
a CAPTN simulation for G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.1 mm. The domain
width is 10mm.
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liquidus composition corresponding to the local temperature. One can also observe the

coarse mesh on the lower part of the image, as CA cells are deallocated.

Figure 5: Wireframe of solute composition field in the liquid phase at the solidification front at t = 135 s
in a CAPTN simulation for G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.1 mm. CA cells
containing a growing polygon are represented as white squares. The domain width is 10mm.

To measure primary dendrite arm spacing in simulations, a thickness δy of the solidi-

fication front is defined from the position of the highest primary branch. This thickness

is taken as δy = 1/2λ̄1, where λ̄1 is the average value of λ1 measured in the simulation.345

The spacing between branches with tip aligned with the gradient located in this thickness

is then measured. This measurement is recursive until the λ̄1 used for δy is the same as

the λ̄1 measured at this time. Fig 6 (a) shows the distribution of measured λ1 for various

cell size and Fig 7 (a) shows the evolution of the average λ1, and of the maximum and

minimum value of λ1 with lCA for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1. It350

can be observed on Figures 4 and 5 for lCA = 0.1 mm that the primary spacing around

the central branch corresponding to the initial position of the seed is quite large. This

spacing is the highest measured value in Fig 6 (a). This large spacing can be related to

the solute distribution around secondary branches in Fig 5 at the beginning of the simula-

tion preventing the growth of tertiary branches and so limiting the filling by new tertiary355

branches. Furthermore, the spacing between primary branches far from the center of the

simulation domain (edge branches set apart) is quite small and close to λ1 ≈ 0.2 mm.

These side areas have similar histories with almost no elimination of branches during

growth.

It is observed in Fig 6 (a) and Fig 7 (a) that the distribution of λ1 converges toward360

a distribution with an average value λ̄1 around 0.26 mm with the decrease of cell size.

As explained in section 2.2, in the CAPTN model, the spacing between tertiary branches

of a given grain depends on the process of cell caption by neighbor cells polygons and
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Figure 6: Distribution of λ1 according to (a) cell size for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1,
(b) temperature gradient for lCA = 0.1 mm and vL = 0.086 mm · s−1 (c) isotherm velocity for lCA =
0.1 mm and G = 0.475 K ·mm−1

thus, on the distance to grow for a branch to reach the circumscribed circle of a neighbor

cell. Therefore, as there can be only one polygon associated to a given cell, in average,365

the distance between tertiary branches can not be lower than lCA. As this value is lower

than 0.4mm, It seems therefore logical that the simulation using lCA = 0.4 mm is not

capable to predict this the converged average spacing as the spacing between branches is

artificially constrained to a higher value with this parameter value.

370

Figures 6 (b) and (c) show the evolution of the distribution of λ1 with the temperature

gradient and isotherm velocity respectively. In addition, Figures 7 (b) and (c) present the

evolution of λmin
1 , λ̄1 and λmax

1 according to these two values. These studies use a CA cell

size lCA = 0.1 mm.
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Figure 7: λmin
1 , λ̄1 and λmax

1 according to (a) cell size for G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1,
(b) temperature gradient for lCA = 0.1 mm and vL = 0.086 mm · s−1 (c) isotherm velocity for

lCA = 0.1 mm and G = 0.475 K ·mm−1. Black lines are theoretical laws with G−0.5 (b) and v
−1/4
L

(c) dependencies fitted on λ̄1 simulation values.
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It can be observed that the average value of λ1 tends to decrease with both G and vL.375

Moreover, theoretical laws proportional to G−1/2 and v
−1/4
L are respectively reported in

Figures 7 (b) and (c). It can be observed that whereas the v
−1/4
L dependency fits quite well

the evolution of λ̄1 with vL, the G
−1/2 dependency seems to overestimate the variation of

λ̄1 with the temperature gradient. It is also observed that the variation of temperature

gradient has a stronger effect on the range of λ1 values compared to the velocity, with an380

enhanced gap between λmax
1 and λmin

1 at low G compared to high G.

3.3. Diverging grain boundary orientation angle for a bi-crystal

The inclination of the grain boundary between two grains with different inclinations

growing in a constant temperature gradient G with a constant isotherm velocity vL has

been studied using PF and CA methods [31, 16, 32, 33, 34]. It has been shown that the385

value of the angle of the grain boundary is contained between two theoretical limits: the

Favorably Oriented Grain (FOG) [16, 34, 35] and the Geometrical Limit (GL) [16, 34].

The angle θD of the grain boundary formed by the diverging primary directions of two

grains with inclinations α1 = 30◦ for the left grain and α2 = 10◦ for the right grain with

the direction of temperature gradient has been analyzed in more details using PF and CA390

simulations [16]. In Fig 8 the blue line corresponds to the value given by the GL model and

the red line corresponds to the value given by the FOGmodel. The central line of Figures 8

(West, Center and East) present the diverging grain boundary angle obtained with these

two numerical methods as a function of the CA cell size and for vL = 0.086 mm · s−1

and three values of the temperature gradient: (West) G = 0.2375 K ·mm−1, (Center)395

G = 0.475 K ·mm−1, and (East) G = 1.9 K ·mm−1. The angle given by the PF method

(dashed line) is constant, with a reported variation only for the center configuration (gray

window), G = 0.475 K ·mm−1. The angle given by the CA model (purple dots) varies

continuously from the GL to the FOG value as cell size increases. This result has been

explained by the fact that angle θD is linked to the secondary dendrite arm spacing400

preceding tertiary branching forming the grain boundary Λ̄ indicated by orange dashed

lines in Fig 8. Therefore, whereas this distance is correctly reproduced in PF simulations,

it is cell size dependant in CA simulations, and values given by CA simulations are equal

to the ones obtained with PF simulations if the cell size is equal to this physical spacing.

Simulations are reproduced using the CAPTN model. For this, two seeds with 5 µm405

initial branch length are placed at the bottom of a rectangular domain, the [1 0] branch

of the left one (resp. right one) making an angle α1 = 30◦ with the temperature

gradient (resp. α2 = 10◦). Fig 9 shows the solidification front at a given time for
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Figure 8: Evolution of the diverging grain boundary orientation angle θD according to lCA. The blue
and red lines are respectively the GL and the FOG models. Results of CAPTN simulations are presented
as green squares with error bars corresponding to measurements of θDmin and θDmax presented in Fig 10.
and CA results [16] are presented as purple circles. The black dashed line is the phase field result, with
variations reported as a gray zone [16]. The dashed orange line corresponds to the secondary dendrite arm
spacing preceding tertiary branching. (Center) G = 0.475 K ·mm−1 and vL = 0.086 mm · s−1 (West) G =
0.2375 K ·mm−1 and vL = 0.086 mm · s−1 (East) G = 1.9 K ·mm−1 and vL = 0.086 mm · s−1 (North)
G = 0.475 K ·mm−1 and vL = 0.043 mm · s−1 (South) G = 0.475 K ·mm−1 and vL = 0.172 mm · s−1.
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Figure 9: Wireframe of solute composition field in the liquid phase at the solidification front t = 300 s
for the bi-crystal CAPTN simulation with G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.2 mm.
CA cells containing a growing polygon are represented as black squares for the left grain and red squares
for the right grain. The domain width is 10mm.

G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and a cell size lCA = 0.2 mm. The solute

composition field in the liquid is presented as wireframe on the PTN mesh. As for Fig 5,410

a rectangular zone with fine mesh can be observed in front of each parabolic tip with an

inclination corresponding to the growth direction of the tip. A coarser mesh is observed

in the liquid located far from the solidification front and in the area where cells have been

deallocated, i.e., with no remaining liquid neighboring cell. CA cells containing a growing

polygon appear as black squares for the left grain and red squares for the right grain.415

Fig 10 shows the needle network formed at the end of this simulation (a) and the

corresponding cell structure (b). Black (resp. red) lines and cells are associated to the

left grain (resp. right grain). The distance between highest tips of the two grains is noted

δ. This distance increases at the beginning of the simulation to reach a steady state

value δst (see Fig 10 (a)). The evolution of this distance is theoretically computed using420

velocities given by the Ivantsov growth law described in Section 3.1. It is obtained that

the δ value reaches 99%δst at tst ≈ 100 s. The position of the solidification front at tst is

indicated as a horizontal orange dot line in Fig 10 and is located at a distance dst from the

bottom of the simulation domain. The angle of inclination between the grain boundary

and the temperature gradient, θD, is measured by the inclination of the line between the425

position of the interface at dst and at the end of the simulation (green dashed line on Fig

10). Two extreme angles are also measured for interfaces located above 2 dst (see the cyan
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Figure 10: (a) Needle Network and (b) cell structure at the end of the CAPTN simulation t = 300 s for
G = 0.475 K ·mm−1, vL = 0.086 mm · s−1 and lCA = 0.2 mm. The width of the domain is 10mm. The
black color is associated to the left grain and the red color to the right grain. The CA cells containing
a growing polygon, drawn in Fig 9, are represented in full opacity, and other CA cells at the grain and
domain boundaries are represented in lower opacity. The white area contained within the contour defined
by the black (resp. red) cell belong to the left (resp. right) grain, while the white area at the top of the
domain is liquid. In (a), the branches belonging to the CA cells containing a growing polygon are drawn
in full opacity, and other branches are drawn in lower opacity.
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lines on Fig 10).

Angles measured with the CAPTN method as a function of the CA cell size and

for various couples (G, vL) are reported in Fig 8 as green squares. In Fig 8 Center, it

is observed that, contrary to CA simulations, the angle θD computed with the CAPTN

model is not dependent on cell size, even for lCA much higher than the one corresponding to

the secondary dendrite arm spacing preceding tertiary branching. It is however observed

that if cell size is too large to correctly reproduce solute interactions between branches,

the CAPTN model retrieves the FOG limit (see Fig 8 Center). For cell size lower than

this upper limit, values obtained are in good agreement with the one of the PF method

no matter the value of lCA. This result indicates that the CAPTN model reproduces the

Λ̄ spacing, even for CA cell values much higher than this spacing. The minimum and

maximum values of θD for a cell size lower than the Λ̄ spacing are in excellent agreement

with the range of values predicted by the PF simulations as they coincide with the range

of the gray window. In addition, both models predict a decrease of θD as the temperature

gradient increases for vL = 0.086 mm · s−1. This is verified in Fig 8 West, Center, and

East. CAPTN simulations also predict an increase of θD as the isotherm velocity increases,

as shown in Fig 8 North, Center, and South. These two tendencies lead to the profile of

θD according to G/vL displayed in Fig 11 (a) where the average θD value decreases from

θD ≃ 15◦ at low G/vL values to reach the FOG limit at G/vL ≃ 10 K · s ·mm−2. The

relation between θD and G/vL can be approximated as

θD − θFOG

θGL − θFOG

∝ exp(−β
G

vL
) (4)

where θGL and θFOG are the GL and FOG limits, respectively, and β > 0. The value

β = 0.183 is used in Fig 11 (a).430

The step between stationary primary dendrite tips of two grains at steady state, δst,

was identified as a main parameter for the control of the grain boundary orientation in

Ref [34]. However, it can be observed on Fig 11 (a) that two identical values of G/vL give

similar values of θD but different values of δst (see Fig 11 (b)). Therefore, it seems that

θD is a function of G/vL rather than an function of δst, explaining the form chosen for435

Eq. 4. Possible relations between θD and Λ̄ should be the topic of further investigations,

following the findings reported in Ref [16].
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Figure 11: Evolution of (a) θD computed in CAPTN simulations and (b) δst computed by the Ivantsov
growth law with G/vL. In (a), the GL and FOG limits are indicated as blue and red lines respectively.
The trend of θD is fitted by the mathematical formula (θD − θFOG)/(θGL − θFOG) ∝ exp(−β G/vL),
where θGL and θFOG are the GL and FOG limits, respectively, and β > 0.

4. Conclusions

This article presents advances on the CAPTN model which couples the cellular au-

tomation (CA) and the Parabolic Thick Needle (PTN) methods. Optimizations on the440

meshing strategy are presented which permit to reduce drastically computation time. A

numerical parametric study is performed which shows that the model converges toward

theoretical growth solutions as the thinness fineness of the mesh and the size of the inte-

gration area are increased. This optimized CAPTN model is then evaluated on its ability

to reproduce two physical quantities developed during directional growth in a constant445

temperature gradient G with a constant isotherm velocity vL: the primary dendrite arm

spacing λ1 and the diverging grain boundary orientation angle θD between two grains of

different orientations. The grain selection between primary branches and creation of new

branches from secondary and tertiary branches is well simulated as long as cell size is
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sufficiently small to model solute interactions between branches. In these conditions, sim-450

ulations converge toward a distribution of primary branches which depends on the history

of dendrite branches. This result is in agreement with the theory of Warren and Langer

[28] and experimental results. Gradient and velocity dependencies on average values of

these distributions have been compared with Hunt [29] and Kurz-Fisher [30] theories and

are coherent with G−b and v−c
L power laws Average primary spacings obtained tend to455

decrease with G and vL, in agreement with Hunt [29] and Kurz-Fisher [30] theories. The

study on the grain boundary orientation angle has revealed that, contrary to the classical

CA model, the angle obtained in CAPTN simulations does not depend on cell size for a

large range of cell size. This angle has been computed for various gradients and isotherm

velocities and is in good agreement with previous phase field studies [16]. Moreover,460

the diverging grain boundary orientation angle is found to be a monotonously decreasing

function of the ratio G/vL, and the trend can be expressed by an exponential law. This

article shows therefore the relevance of the CAPTN model to predict dendrite structures

and competition between branches due to solute interactions. This model is now to be

extended in 3D for comparisons with experimental studies.465
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Appendices

A. Diffusion length

A parabola of radius ρtip and velocity vtip moves at steady state in the x direction in

an infinite 2D domain. Cartesian (x, y) coordinates are defined in Fig 12 along with (ξ, η)

parabolic coordinates.475

The relations between these two systems of coordinates is the following:
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Figure 12: Parabolic and Cartesian coordinates used for the calculation of the diffusion length

Parabolic ρtipξ
2 = x+

√
x2 + y2 ρtipη

2 = −x+
√
x2 + y2

Cartesian x =
ρtip
2

(ξ2 − η2) y = ρtipξη
(A.1)

In these steady state conditions, the composition field in the liquid is given by the Ivantsov

solution [23]:

wl(ξ) = w0 + (1− k)wls
√
π Pe · ePe · erfc(ξ

√
Pe) (A.2)

with Pe =ρtipvtip/2D
l.

The diffusion length at the dendrite tip along its growing direction is defined as twice the

intersection of the tangent of the composition along the x axis at the solid/liquid interface

and the nominal composition w0. From Eq. (A.2), the expression of the composition field

on the x axis is derived:

wl(x) = w0 + (1− k)wls
√
πPe · ePe · erfc(

√
Pe · 2x/ρtip) (A.3)

From Eq. (A.3), it is deduced that:

dwl

dx

∣∣∣∣
x=

ρtip
2

= −2(1− k)wls Pe/ρtip (A.4)
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Therefore, the diffusion length becomes

δdIv =
w0 − wls

−(1− k)wls Pe/ρtip
(A.5)

using the definition of the supersaturation Ω given in section 3.1, we obtain

δdIv =
2Ω Dl

vtip
(A.6)
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