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By using the self-consistent Born approximation, we investigate disorder effect induced by short-
range impurities on the band-gap of a seminal two-dimensional (2D) system, whose phase diagram
contains trivial, single-band-inverted and double-band-inverted states. Following the density-of-
states (DOS) evolution, we demonstrate multiple closings and openings of the band-gap with the
increase of the disorder strength. Calculations of the spectral function describing the quasiparticles
at the Γ point of the Brillouin zone evidence that the observed band-gap behavior is unambiguously
caused by the topological phase transitions due to the mutual inversions between the first and second
electron-like and hole-like subbands. We also find that an increase in the disorder strength in the
double-inverted state always leads to the band-gap closing due to the overlap of the tails of DOS
from conduction and valence subbands.

I. INTRODUCTION

The band structure of HgTe quantum wells (QWs)
in the vicinity of the Γ point of the Brillouin zone is
represented by the Dirac fermions with additional terms
quadratic in quasimomentum1. The inherent property of
these fermions is that their band-gap can be varied from
positive to negative values and vice versa by changing
the QW width2–4, temperature5–8 or hydrostatic pres-
sure9. The negative band-gap values in HgTe QWs corre-
spond to the so-called inverted band structure, at which
the lowest electron-like level E1 lies below the top hole-
like level H 1, resulting in quantum spin Hall insulator
(QSHI)10,11. This topologically non-trivial state is char-
acterized by a bulk band-gap and a pair of helical gapless
states at the edges that leads to quantized values of the
conductance. Such conductance quantization is the key
evidence to experimentally confirm the non-trivial topol-
ogy of 2D system11–13.

Unexpectedly, Li et al.14 discovered by numerical sim-
ulations that initially clean HgTe QWs with trivial band
ordering can also feature a quantized conductance value
in the presence of disorder. This disordered state with
quantized conductance was called as topological Ander-
son insulator (TAI). Later, Groth et al.15 have explained
the TAI mechanism as disorder-induced band inversion
arising due to the presence of quadratic terms in the
Dirac-like low-energy Hamiltonian of HgTe QWs1. In
this sense, the phenomenology of TAI is very similar
to that of the QSHI. Interestly, the discovered transi-
tion correspond to weak-disorder topological transition,
and thus can be treated within the self-consistent Born
approximation (SCBA)15–18. By now, disorder-induced
phase transitions have also been studied in 3D topolog-
ical insulators19–21, various topological semimetals22–26,
and even in amorphous solids27.
A distinctive feature of all these works19–27 is that

the theoretical investigations were performed within the
framework of the so-called two-band approximation,
which allows describing the disorder-induced evolution
of only the conduction and valence band edges. In this

FIG. 1. (a) Schematic representation of symmetric double
HgTe QW. Here, d is the thickness of HgTe layers and t is the
middle CdHgTe barrier thickness. The double QW is assumed
to be grown on (001) CdTe buffer with 30% of Hg content
in all the barriers28. (b) The phase diagrams for different
d and t obtained by numerical calculations based on eight-
band k·p Hamiltonian9. The left-hand and right-hand solid
curves correspond to the crossing between E1–H 1 subbands
and E2–H 2 subbands, respectively. These curves divide the
plane into three parts with trivial band ordering (left-hand
white region), single band inversion (grey and blue regions)
and double-band inversion (right-hand white region). The
striped region defines a semimetal (SM) phase with vanishing
indirect band-gap. The red symbols mark the double QWs
considered in this work.

case, questions naturally arise: (i) how the disorder af-
fect the edges of the higher-lying conduction and valence
bands beyond the two-band models; and (ii) whether the
disorder may cause a double-band inversion between sec-
ond electron- and hole-like bands. These double-band-
inverted states are now of interest in the context of
higher-order topology29–31.

In this work, considering double HgTe QWs as a sem-
inal example, we study disorder-induced phase transi-
tions in a 2D system, whose phase diagram contains
trivial, single-band-inverted and double-band-inverted
states28 (see Fig. 1). Different types of these states
were previously probed in realistic samples by mag-
netotransport32–38 and mid-infrared Landau level spec-
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troscopy39–42. By using the SCBA and four-band 2D low-
energy Hamiltonian, describing topological phase tran-
sition in double HgTe QWs28,43, we directly calculate
the DOS and spectral function visualizing quasiparticle
picture at the Γ point of the Brillouin zone. By fol-
lowing the DOS evolution with increasing of the disor-
der strength, we unambiguously demonstrate multiple
topological phase transitions caused by the mutual inver-
sion of both the first and second electron-like and hole-
like subbands. As a source of the disorder, we consider
the electrostatic potential of randomly distributed short-
range impurities, which makes it possible to reduce the
system of self-consistent integral equations to an alge-
braic one.

II. PHASE DIAGRAM

Let us first overview the phase diagram of double HgTe
QWs in the absence of disorder. In what follows, we con-
sider a symmetrical QW grown on (001) CdTe buffer con-
sisting of two d thick HgTe layers separated by a t thick
Cd0.7Hg0.3Te barrier (see Fig. 1). The phase diagram of
double HgTe QWs was obtained on the basis of of eight-
band k·p Hamiltonian9 for the envelope wave functions,
which takes into account the interaction between Γ6, Γ8,
and Γ7 bands in bulk materials. The calculation details
and material parameters can be found in Ref.28.
Unlike single HgTe QWs1, the low-energy physics of

double HgTe QWs is determined by the mutual arrange-
ment of four levels at once – two electron-like (E1, E2)
and two hole-like (H 1, H 2) subbands. Depending on the
thickness of the HgTe layers and the width of the tun-
neling barrier, different subband arrangements at the Γ
point of the Brillouin zone can be implemented. In the
diagram of double HgTe QWs, the left-hand black solid
curve representing the crossing between the first electron-
like E1 and hole-like H 1 subbands divides the d-t plane
into a white region, corresponding to band insulator (BI)
with trivial band ordering, and a grey region of QSHI
with inverted band structure. If the middle barrier is
thick enough, in addition to QSHI, the double HgTe QW
also hold a specific state with a band structure similar to
the one of bilayer graphene (BG) represented by the blue
region in Fig. 1(b). The BG state with the E2-H 1-H 2-
E2 level sequence (see Fig. 2(c)) was previously discussed
in details in Ref.28.
A further increase of d results in the band crossing be-

tween the second electron-like (E2) and hole-like (H 2)
subbands, which is represented by the right-hand black
solid curve in the diagram. This curve, in its turn,
separates the grey and blue regions with single band
inversion from the right-hand white region correspond-
ing to the double band inversion, when two electron-like
E1 and E2 levels lie below two hole-like H 1 and H 2
subbands (the H 1-H 2-E2-E1 sequence). Recently, such
double-inversion insulator state has been identified as a
higher-order topological insulator (HOTI)43 with the cor-

ner states directly attributed to the cubic symmetry of
zinc-blende semiconductors. Finally, at certain d and t
values corresponding to the striped region, the so-called
semimetal (SM) phase is implemented. The SM state
is characterized by a vanishing indirect band-gap when
the side maxima of the valence subband exceed in energy
the conduction subband bottom44. Thus, by varying the
layer thicknesses in double HgTe QWs, one can indeed
realize BI, QSHI, BG state, HOTI or SM state. Typical
band dispersions of double HgTe QWs arising at different
thicknesses of the HgTe layer are shown in Fig. 2.
The multiple band inversions in double HgTe QWs at

the Γ point of the Brillouin zone can be explicitly de-
scribed by means of effective four-band 2D low-energy
Hamiltonian28. Within the following sequence of the ba-
sis states |E1+⟩, |H1+⟩, |H2−⟩, |E2−⟩, |E1−⟩, |H1−⟩,
|H2+⟩, |E2+⟩, the effective 2D Hamiltonian for the
states in the vicinity of the Γ point has the form43:

H2D(k) =

(
H4×4(kx, ky) 0

0 H∗
4×4(−kx,−ky)

)
, (1)

where k = (kx, ky) is quasimomentum in the QW plane
and the asterisk denotes complex conjugation. The di-
agonal blocks of H2D(k), in turn, are split into isotropic
and anisotropic parts:

H4×4(k) = H
(i)
4×4(k) +H

(a)
4×4(k). (2)

The isotropic termH
(i)
4×4(k) preserves the rotational sym-

metry in the QW plane, therefore it is independent of
the orientation of x and y axis. On the contrary, the

anisotropic term H
(a)
4×4(k) results from the cubic symme-

try of zinc-blende semiconductors, and depends not only
on the QW growth orientation but also on the orien-
tation of x and y axes. Since we are not interested in
describing higher-order topological bound states arising
due to the crystal symmetry of zinc-blende semiconduc-

tors43, we will further neglect H
(a)
4×4(k). Its explicit form

for (001)-oriented QWs can be found elsewhere43. Ad-
ditionally, we also neglect the terms resulting from the
anisotropy of chemical bonds at the QW interfaces44 and
the bulk inversion asymmetry of the unit cell of zinc-
blende semiconductors45. These terms do not play sig-
nificant role in HgTe-based heterostructures3,46–50, while
in their absence, H2D(k) takes the block-diagonal form.
The isotropic part ofH4×4(k) in Eq. (2) is written as28:

H
(i)
4×4(k) =


ϵE1 −A1k+ R

(i)
1 k2− S0k−

−A1k− ϵH1 0 R
(i)
2 k2−

R
(i)
1 k2+ 0 ϵH2 A2k+
S0k+ R

(i)
2 k2+ A2k− ϵE2

 , (3)

where

ϵE1(kx, ky) = C1 +M1 − (D1 +B1)(k
2
x + k2y),

ϵH1(kx, ky) = C1 −M1 − (D1 −B1)(k
2
x + k2y),

ϵE2(kx, ky) = C2 +M2 − (D2 +B2)(k
2
x + k2y),

ϵH2(kx, ky) = C2 −M2 − (D2 −B2)(k
2
x + k2y). (4)
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FIG. 2. Band structure of double HgTe QWs with t = 3.5 nm. The values of d are marked by red symbols in Fig. 1. The bold
black curves correspond to realistic band structure calculations on the basis of eight-band k·p Hamiltonian9. The thin curves
represent the energy-dispersion for electron-like (in blue) and hole-like (in red) subbands calculated by using the isotropic part
of H4×4(k). The positive and negative values of k correspond to the [100] and [110] crystallographic orientations, respectively.
The parameters for H4×4(k) are provided in Table I.

TABLE I. Structure parameters involved in isotropic part of H4×4(k) in Eq. (2) for double HgTe/CdHgTe QWs, whose layer
thicknesses are represented by red symbols in Fig. 1. We also note that C2 = C1 − M1 + M2. The structure parameter for
an arbitrary thickness of the HgTe layers in the range from 5.0 nm to 8.00 nm can be obtained by interpolation between the
values presented in the table.

Structure d (nm) t (nm) C1 (meV) M1 (meV) M2 (meV) B1 (meV·nm2) B2 (meV·nm2) D1 (meV·nm2)
A 5.00 3.50 -23.73 15.04 30.91 -494.80 -397.54 -422.00
B 5.97 3.50 -31.37 0.00 15.00 -669.41 -537.84 -600.85
C 6.70 3.50 -35.73 -8.32 6.25 -851.05 -615.76 -786.85
D 7.37 3.50 -38.88 -14.20 0.00 -1071.75 -694.25 -1012.46
E 8.00 3.50 -41.34 -18.74 -4.82 -1431.86 -777.63 -1378.16

Structure D2 (meV·nm2) A1 (meV·nm) A2 (meV·nm) R
(i)
1 (meV·nm2) R

(i)
2 (meV·nm2) S0 (meV·nm)

A -321.67 405.08 391.19 67.50 -92.96 -2.94
B -465.37 387.65 372.25 90.64 -108.30 0.05
C -546.76 374.07 358.11 116.53 -121.70 2.43
D -629.15 361.40 -345.31 -405.09 -135.09 4.73
E -716.99 348.99 -333.11 -501.63 -148.81 7.04

Here, k± = kx + iky, kx and ky are the momentum com-
ponents in the QW plane, and C1,2, M1,2, A1,2, B1,2,

D1,2, S0 and R
(i)
1,2 are isotropic structure parameters be-

ing defined by the QW geometry, the growth orientation
and the layer materials. As can be seen from their physi-

cal meaning, the parameters S0 and R
(i)
1,2, which describe

the coupling between the HgTe layers, vanish if t → ∞.

The most important quantities in H2D(kx, ky) are two
mass parameters M1 and M2 describing the band inver-
sion between E1–H 1 subbands and E2–H 2 subbands,
respectively. The trivial BI corresponds to positive val-
ues of M1 and M2. The QSHI and BG states arise if
M1 < 0 and M2 > 0, and the difference between these
states is defined by the gap between the H 1 and H 2 sub-
bands28. The HOTI state with double band inversion is
represented by negative values of M1 and M2. We note
that since the SM phase represented by the striped ar-
eas in the diagram of Fig. 1 is formed by an overlap at
non-zero quasimomentum of the valence and conduction
subbands, it cannot be described within the low-energy
Hamiltonian valid for the states at the small values of kx

and ky.

Figure 2 also compares the band structure calculations
based on the realistic eight-band k·p Hamiltonian9 and
H2D(k) in Eq. (1) for double HgTe QWs with t = 3.5 nm
at several values of d (marked by the red symbols in the
phase diagram of Fig. 1). One can see a good agreement
between the results from both models at small values.
One can see good agreement between the results of both
models for small quasimomentum values. The structural
parameters used in the calculations are summarized in
Tab. I.

III. SCBA FOR DOUBLE HGTE QWS

So far, we have discussed the “clean” case of double
HgTe QWs. In this section, we focus on the theoretical
description of the disorder effect on the band ordering of
double HgTe QWs, caused by randomly distributed im-
purities in the QW plane. Since we are interested in the
topological phase transitions induced by weak disorder,
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we will treat them within the self-consistent Born ap-
proximation15–18. Further, we represent the calculations
for the upper block of H2D(k) in Eq. (1), while the cal-
culations for the lower block are performed in the same
way.

Let us consider Green’s function defined by

Ĝ(k, ε) = ⟨ 1

ε−H
⟩ =

[
ε−H4×4(k)− Σ̂(k, ε)

]−1

, (5)

with

H = H4×4(k) + Vimp(r), (6)

where ⟨...⟩ denotes average over all disorder configura-

tions, and Σ̂(k, ε) is the self-energy matrix. In Eq. (6),
we have also introduced a disorder potential Vimp(r), con-
sisting of randomly distributed individual impurities:

Vimp(r) =
∑
j

v(r−Rj), v(r) =

∫
d2q

(2π)2
ṽ(q)eiq·r, (7)

where Rj denotes position of impurities and v(r) is the
potential of an individual impurity, which is assumed to
be isotropic, i.e., ṽ(q) = ṽ(q) with |q| = q.

In the absence of H
(a)
4×4(k), which is neglected in

Eq. (2), H4×4(k) possesses full rotational symmetry, and
its wave-function can be presented in the form:

Ψ4×4(k) = U(θk)
−1Ψ4×4(k), (8)

where k = |k|, kx = k cos θk, ky = k sin θk,

U(θ) =


1 0 0 0
0 eiθ 0 0
0 0 e−2iθ 0
0 0 0 e−iθ

 . (9)

Therefore, the Green’s function in Eq. (5) can be pre-
sented in the form

Ĝ(k, ε) = U(θk)Ĝ(k, ε)U(θk)
−1, (10)

with

Ĝ(k, ε) =
[
ε− H̃4×4(k)− Σ̂(k, ε)

]−1

, (11)

which depends only on k. This shows that Ĝ(k, ε) de-
pends on the angle via the terms of U(θk). We note that

H̃4×4(k) differs from H4×4(k) by

H̃4×4(k) = U(θk)H4×4(k)U(θk)
−1. (12)

Within the SCBA, the self-energy matrix in Eq. (5)
has a form

Σ̂(k, ε) = ni

∫
d2k′

(2π)2
ṽ(k− k′)Ĝ(k′, ε)ṽ(k′ − k), (13)

where ni is the concentration of impurities. Similar to
Eq. (8), the self-energy matrix can be represented as

Σ̂(k, ε) = U(θk)Σ̂(k, ε)U(θk)
−1, (14)

with a matrix Σ̂(k, ε) written as

Σ̂(k, ε) = ni

Kc∫
0

k′dk′

2π

×


V 2
0 G

′
11 V 2

−1G
′
12 V 2

+2G
′
13 V 2

+1G
′
14

V 2
+1G

′
21 V 2

0 G
′
22 V 2

+3G
′
23 V 2

+2G
′
24

V 2
−2G

′
31 V 2

−3G
′
32 V 2

0 G
′
33 V 2

−1G
′
34

V 2
−1G

′
41 V 2

−2G
′
42 V 2

+1G
′
43 V 2

0 G
′
44

 . (15)

Here, G′
ij≡Gij(k

′, ε) are the component of the averaged

Green’s function in Eq. (11), and V 2
n≡Vn(k, k

′)2 are de-
fined as

Vn(k, k
′)2 =

2π∫
0

dθ

2π
|ṽ(k− k′)|2 cosnθ. (16)

Importantly, in Eq. (15), we introduce a cut-off wave-
vector Kc = π/a0 (where a0 is the lattice constant in the
QW plane, which is actually the lattice constant of the
CdTe buffer), corresponding to the edge of 2D Brillouin
zone (cf. Ref.26). This naturally limits the integration
over quasimomentum k.
Once the Green’s function is known, one can calculate

the spectral function A(k, ε) and density-of-states D(ε):

A(k, ε) = − 1

π
Im

{
Tr

(
Ĝ(k, ε+ i0)

)}
,

D(ε) = gS

Kc∫
0

kdk

2π
A(k, ε), (17)

where the factor gS = 2 takes into account the contri-
bution from the lower block in Eq. (1). The density-of-
states D(ε) provides the most direct way to trace the
evolution of the effective band-gap as a function of the
impurity scattering, while A(k, ε) represents the renor-
malization of the quasiparticle spectral properties at a
given disorder strength.
As clear, Eqs. (11) and (15) form a system of inte-

gral equations that defines the Green’s function matrix
Ĝ(k, ε). The self-consistent solution of such integral sys-
tems in the general case is a laborious task. However, for
some particular cases of randomly distributed individual
impurities, the solution of the problem can be greatly
simplified. To proceed further, we assume ṽ(q) = u0,
which corresponds to the disorder formed by the short-
range impurities:

v(r) =

∞∫
0

qdq

2π
ṽ(q)

2π∫
0

dθ

2π
eiqr cos θ =

u0

2π

δ (r)

r
. (18)

In this case, Vn(k, k
′)2 = u2

0δn,0 in Eq. (16), resulting in
a diagonal form of the self-energy matrix in Eq. (15):
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Σ̂(ε) =


ΣE1(ε) 0 0 0

0 ΣH1(ε) 0 0

0 0 ΣH2(ε) 0

0 0 0 ΣE2(ε)

 =
W 2

4π

K2
c∫

0

dx


G11 (

√
x, ε) 0 0 0

0 G22 (
√
x, ε) 0 0

0 0 G33 (
√
x, ε) 0

0 0 0 G44 (
√
x, ε)

 ,

(19)

where we define the disorder strength asW 2 = niu
2
0. The

self-energy independence from k allows for an analytical
calculation of the integrals in Eq. (19).

Indeed, first of all, we note that the determinant of

the matrix
[
ε− H̃4×4(

√
x)− Σ̂(ε)

]
for the case of short-

range impurities is represented as a polynomial of the
fourth degree in x:∣∣∣ε− H̃4×4(

√
x)− Σ̂(ε)

∣∣∣ = A4(ε)x
4 +A3(ε)x

3

+A2(ε)x
2 +A1(ε)x+A0(ε), (20)

where A4(ε), A3(ε), A2(ε), A1(ε) and A0(ε) are complex
functions, found by straightforward calculation of 4 × 4
symmetric matrix determinant.

Second, the diagonal components of the Green’s func-
tion Gii (

√
x, ε) (i = 1...4) in Eq. (19) are presented as

Gii

(√
x, ε

)
=

ai(ε)x
3 + bi(ε)x

2 + ci(ε)x+ di(ε)∣∣∣ε− H̃4×4(
√
x)− Σ̂(ε)

∣∣∣ , (21)

where the terms ai, ... di are independent of x. This last
equation can be verified by the direct calculation of the

inverse matrix
[
ε− H̃4×4(

√
x)− Σ̂(ε)

]−1

. As the self-

energy matrix has imaginary part, all the coefficients in
Eq. (21) are complex as well.

In order to calculate the integrals in Eq. (19), we have
numerically found the roots x1, x2, x3, x4 of the polyno-
mial needed for the following expansion:

A4x
4 +A3x

3 +A2x
2 +A1x+A0

= A4(x− x1)(x− x2)(x− x3)(x− x4) (22)

with A0, ... A4 are independent of x. Although the val-
ues of x1, x2, x3, x4 can be found analytically by means
of Ferrari’s method, the numerical procedures also al-
low for the calculations with any needed degree of accu-
racy. Once the roots are known, the integrals are cal-
culated analytically (see Appendix ). In this case, this
self-consistent system of integral equations is transformed
into the set of algebraic equations, which can be numer-
ically solved by iteration procedure.

Finally, the spectral function A(k, ε) and density-of-
states D(ε) for the case of the short-range disorder can

be written as

A(k, ε) = − 1

π
Im

{
4∑

i=1

Gii (k, ε)

}
,

D(ε) = − gS
W 2π

Im
{
Tr

(
Σ̂(ε)

)}
. (23)

We remind that in order to take into account the con-
tribution from the lower block in Eq. (1), one should set
the degeneracy factor of DOS as gS = 2.

IV. RESULTS AND DISCUSSION

As known for “conventional” HgTe/CdHgTe QWs1–4,
if the QW has a trivial band ordering in the “clean”
limit, the presence of disorder leads to the band in-
version and disorder-induced topological phase transi-
tion14,15. A similar behavior can also be expected for
double HgTe QWs with a thick opaque barrier. In the
latter case, the 2D system is described by two identi-
cal copies of Bernevig-Hughes-Zhang (BHZ) model1 (see
Eq. (3)), each of which corresponding to one of the

HgTe QWs with parameters S0 and R
(i)
1,2 set to zero for

the inter-layer coupling. In the presence of a tunnel-
transparent barrier, that actually leads to a rich phase
diagram in Fig. 1, the BHZ-like blocks “1” and “2” of
H4×4(k) in Eq. (3) cease to be identical and become cou-

pled due to non-zero parameters S0 and R
(i)
1,2. Never-

theless, even in this case, it is reasonable to expect a
disorder-induced inversion both between subband pairs
of E1 and H 1, and between E2 and H 2.
Figure 3(a) shows the evolution of DOS with the dis-

order strength W =
√
niu0 for double HgTe QW with BI

state in the “clean” limit (the structure “A” in Fig. 2 and
Tab. I with positive mass parameters M1 and M2). As
clear, the band-gap in the DOS decreases with W until
it vanishes above a critical value Wc1, and then it is re-
opened again at W > Wc2 (see black regions in Fig. 3(a)
where the DOS vanishes). In the range Wc1≤W≤Wc2,
the double QW remains gapless, which is well illustrated
by the non-zero DOS in Fig. 3(b). With a further in-
crease in disorder strength, the newly opened gap closes
again at W ≃ 350 meV·nm. Further, we demonstrate
that such behavior of the DOS is directly attributed to
the disorder effect on the electronic states at the Γ point
of the Brillouin zone.
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FIG. 3. (a) Band structure and color map of the DOS as a function of the disorder strength W =
√
niu0 calculated for double

HgTe QW which has a BI state in the “clean” limit (see the structure “A” in Fig. 1). (b) The DOS as a function of energy at
different values of W . The inset shows in more detail the DOS behavior at Wc1≤W≤Wc2. (c) Band structure and color map
of the spectral function at the Γ point A(k = 0, ε) for the same double HgTe QW. (d) Energy dependence of A(k = 0, ε) at
different disorder strength W > Wc2.

In order to shed light on this point, let us now consider
a spectral function A(k, ε) describing quasiparticle prop-
erties at given disorder strength. As clear, at W = 0 cor-
responding to the “clean” 2D system, the spectral func-
tion is represented by sum of δ-functions centered at the
the eigenvalue energies of H4×4(k) in Eq. (2). Although
the spectral function A(k, ε) widens in the presence of
disorder, its maximum values are still representative of
the quasiparticle energy dispersion, while its broadening
in the vicinity of the maxima values define the quasipar-
ticle lifetime26.

Figure 3(c) provides a disorder-induced evolution of
the spectral function at the Γ point, which perfectly re-
produces two band-gap regions arising in the DOS. As
can be seen from the color map unambiguously identi-
fying the subband edges, the first band-gap closing at
W = Wc1 is indeed attributed to the mutual inversion of
E1 and H 1 subbands. As clear, the band-gap opening
at W = Wc2 is also related to the band inversion but
in the second pair of E2 and H 2 subbands. Thus, the
points with W = Wc1 and W = Wc2 indeed represent
topological transitions into a gapless state with single
band inversion and into an double-inverted insulator, re-
spectively. The latter can be naturally attributed to the
analog of the HOTI state in the clean limit43. Moreover,
since the edges of H 1 and H 2 subbands still coincide
on the color map, a gapless state at Wc1<W<Wc2 with
the band ordering E2-H 1-H 2-E1 at the Γ point condi-
tionally corresponds to the BG state in the clean limit28.
Thus, starting from a band insulator in the clean limit,
the 2D system, under influence of disorder, successively

passes into the BG state, and then into the HOTI state.
This mimics a horizontal movement from left to right at
the phase diagram in Fig. 1.
Let us now discuss the second band-gap closing, which

occurs at W > Wc2. Figure 3(d) shows an energy de-
pendence of the spectral function at the Γ point at dif-
ferent disorder strength. If the disorder strength only
slightly exceeds the critical value Wc2, the spectral func-
tion shows pronounced peaks associated with quasipar-
ticles from different subbands. Here, we underline the
strongly asymmetrical non-Lorentzian shape of the peaks
in A(k = 0, ε). This signals that no perfectly coherent
quasiparticles can be defined, and incoherent processes
associated with the imaginary parts of the self-energy
are relevant in the presence of disorder.
AsW increases, the peaks corresponding to the E1 and

E2 subbands at W > Wc2 broaden and merge into one,
which shifts towards lower energies, while the peak defin-
ing the quasiparticles in the H 1 subband shifts towards
higher energies. Finally, with a further growth of W , the
broadening of both peaks, corresponding to the electron-
like and hole-like states, increases by so much that it
leads to the band-gap closing at W > 350 meV·nm. At
the same time, the peaks defining the electron- and hole-
like subbands are still well separated even in the absence
of a pronounced band gap. This behavior of the spec-
tral function directly indicates that the band-gap closing
is associated with the overlap of the DOS from different
subbands.
Let us now briefly consider disorder-induced phase

transitions in double HgTe QWs with single- and double-
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FIG. 4. (a,b) Band structure, DOS and spectral function at the Γ point A(k = 0, ε) as a function of the disorder strength
W =

√
niu0 for double HgTe QW hosting BG state at W = 0 (M1 < 0 and M2 > 0, the structure “C” in Fig. 1). (c,d) The

same as in (a) and (b) panels but for double HgTe QW hosting HOTI state in the absence of disorder (M1 < 0 and M2 < 0,
the structure “E” in Fig. 1).

band-inversion in the absence of disorder (see the di-
agram in Fig. 1). Figure 4 provides the evolution of
DOS and spectral function at the Γ point with the dis-
order strength for the structures “C” and “E”, hosting
BG and HOTI states in the clean limit, respectively. As
seen from Fig. 4(a), the double HgTe QW with BG state
maintains zero band-gap even in the presence of weak
disorder. When the disorder strength reaches its criti-
cal value Wc2, a band-gap opens in the DOS. As clear
from Fig. 4(b), this moment corresponds to the band
inversion between E2 and H 2 subbands. Such behav-
ior of the spectral function unambiguously indicates that
the 2D system at W < Wc2 is in the same topological
state as at W = 0, which is uniquely identified as the
BG state. This indeed confirms the assumption made for
the structure “A” that the gapless state in the range of
Wc1 < W < Wc2 is attributed to the BG state.

When W exceeds its critical value Wc2, the structure
“C” becomes a double-inverted insulator, whose band-
gap vanishes as the disorder strength increases further
(cf. Fig. 3). A similar behavior of the band-gap is also
seen in the DOS evolution for the structure “E” with a
double-band inversion at W = 0 as shown in Fig. 4(c).
Thus, an increase in the disorder strength always leads
to the band-gap vanishing of double-inverted insulator

due to smearing of the edges of the conduction and va-
lence subbands at high values of W . As clearly seen from
Fig. 4(d), such band-gap behavior is caused primarily by
smearing of the edges of the E1 and H 1 bands at the Γ
that leads to the DOS overlapping between conduction
and valence subbands.

Finally, let us discuss the application of the obtained
results to real samples32–42 with double HgTe QWs. As
clear from Fig. 2, the effective 2D low-energy model used
for the calculation of DOS and spectral function can ac-
tually be applied to the states with the small values of k.
In this sense, the low-energy model used for double HgTe
QWs is analogous to the BHZ model1 proposed earlier for
the low-energy states of single HgTe QWs in the vicinity
of the Γ point of the Brillouin zone. At the same time,
the calculation of the self-energy matrix within SCBA
for the case of short-range scatterers requires the sum-
mation of all states in the entire Brillouin zone. The lat-
ter also involves a large range of quasimomentum values,
far beyond the applicability of the effective 2D low-energy
model. We emphasize that such an internal contradiction
is also inherent in all previous studies performed on the
basis of the BHZ model (including its tight-binding ver-
sion)14–17. This perhaps explains why disorder-induced
phase transitions theoretically studied in the previous
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works have never been observed in solid state systems.
Additionally, it is physically difficult to fine-tune the dis-
order in real semiconductor devices.

Fortunately, there are several non-solid-state systems
implemented in cold atoms, photonic crystals and electri-
cal circuits, whose entire Brillouin zone is fully described
by a tight-binding version of the BHZ model. Recent ex-
perimental observation of TAI state in these systems51–54

evidences that the results of current work can also be of
interest for experimental verification in the “analogues”
of double HgTe QWs also made on the basis of cold
atoms51, photonic crystals52 and electric circuits53,54.

V. SUMMARY

We have investigated the effect of disorder induced by
short-range impurities on the band-gap of double HgTe
QWs hosting trivial, single-band-inverted and double-
band-inverted states in the clean limit. By using the
SCBA and a four-band 2D low-energy Hamiltonian, we
directly calculate the DOS and spectral function describ-
ing the quasiparticles at the Γ point of the Brillouin

zone. By following the DOS and spectral function evo-
lution when increasing the disorder strength, we unam-
biguously demonstrated multiple topological phase tran-
sitions caused by the mutual inversion of both first and
second electron-like and hole-like subbands. We have
found out that an increase in the disorder strength in the
double-inverted state always leads to the band-gap clos-
ing due to the overlap of the tails of DOS from conduction
and valence subbands. Experimental observations of the
disorder-induced phase transitions in non-solid-state sys-
tems based on cold atoms, photonic crystals and electric
circuits evidence that the results of current work can also
be of interest for experimental verification in the “ana-
logues” of double HgTe QWs made on the basis of the
mentioned systems.
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Appendix: Calculation of integrals in Eq. (19)

In order to calculate the integrals in Eq. (19), one should find four complex roots x1(ε), x2(ε), x3(ε) and x4(ε) of
the polynomial in Eq. (20):∣∣∣ε− H̃4×4(

√
x)− Σ̂(ε)

∣∣∣ = A4(ε)x
4 +A3(ε)x

3 +A2(ε)x
2 +A1(ε)x+A0(ε).

The latter is derived by straightforward calculation of 4× 4 symmetric matrix determinant:

det
(
Â
)
= a212a

2
34 − a33a44a

2
12 + 2a44a12a13a23 − 2a12a13a24a34 − 2a12a14a23a34 + 2a33a12a14a24 − a22a33a

2
14

+ a213a
2
24 − a22a44a

2
13 − 2a13a14a23a24 + 2a22a13a14a34 + a214a

2
23 − a11a44a

2
23 + 2a11a23a24a34 − a11a33a

2
24

− a11a22a
2
34 + a11a22a33a44. (A.1)

Once the roots are known, the complex integrals in Eq. (19) are calculated as∫
ax3 + bx2 + cx+ d

A4(x− x1)(x− x2)(x− x3)(x− x4)
dx =

ax3
1 + bx2

1 + cx1 + d

A4(x1 − x2)(x1 − x3)(x1 − x4)
ln (x− x1)

+
ax3

2 + bx2
2 + cx2 + d

A4(x2 − x1)(x2 − x3)(x2 − x4)
ln (x− x2) +

ax3
3 + bx2

3 + cx3 + d

A4(x3 − x1)(x3 − x2)(x3 − x4)
ln (x− x3)

+
ax3

4 + bx2
4 + cx4 + d

A4(x4 − x1)(x4 − x2)(x4 − x3)
ln (x− x4) . (A.2)
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3 B. Büttner, C. Liu, G. Tkachov, E. Novik, C. Brüne,
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