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ABSTRACT Palm-vein recognition has been the focus of large research efforts over the last years.
However, despite the effectiveness of deep learning models, in particular Convolutional Neural Networks
(CNNs), in automatically learning robust feature representations, thereby obtaining good accuracy, such
good performance is usually obtained at the expense of annotating a large training dataset. Labeling vein
images, however, is an expensive and tedious process. Although handcrafted schemes for data augmentation
usually increase slightly performance, they are unable to cover complex variations inherently characterizing
such images. To overcome this issue, we propose a new unsupervised domain adaptation model, called
CycleGAN-based domain adaptation (CGAN-DA), that extracts discriminant representation from the palm-
vein images, without requiring any image labeling. Our CGAN-DA models allows a conjoint adaptation,
at the image and feature levels. Specifically, in order to enhance the extracted features’ domain-invariance,
image appearance is transformed across two domains, palm-vein domain and retinal domain. We employ
several adversarial losses namely a segmentation loss and a cycle consistence loss to train our model without
any annotation from the target domain (palm-vein images). Our experiments on the public CASIA palm-vein
dataset demonstrates that our models significantly outperforms the start of the art in terms of verification
accuracy.

INDEX TERMS Palm-vein Authentication, Domain Adaptation, Generative adversarial network, Convo-
lutional Neural Network.

iological or behavioral characteristics for personal identity
authentication. Currently, commonly used biometric features
can be divided into two categories: Biometric verification
harnessing modalities such as fingerprint [1], iris [2] and face
[3] is a mature technology reflected in the deployment of vari-
ous solutions. These modalities, however, are not only easy to
collect without user consent, but their fake versions have been
seamlessly applied to spoof such biometric systems. Because
intrinsic modalities, like palm-vein [4], [5], finger-vein [6],
and dorsal hand-vein [7], are concealed beneath the skin and

I. INTRODUCTION

With the rapid application of internet technology and the 
increasing trend of online fraud cases, the privacy and se-
curity have been received more and more attention. Tradi-
tional identity methods, such as passwords, ID card, and 
keys, suffer from the drawbacks: the ID card may be lost, 
the passwords may be forgotten or stolen. To solve this 
problem, biometric recognition technology has been widely 
investigated and become a hot research topic in past years. 
Biometric recognition technology refers to use human phys-
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are thus difficult to spoof, they have become the focus of
wide research effort over the recent years. Intrinsic traits offer
higher security and privacy in critical applications as the vein
patterns are generally not visible in visible light. They can,
nonetheless, be collected through infrared illumination with
a wavelength of 850 nm [4], [6], [7]. An additional advantage
is that several studies [8], [9] have demonstrated that the
blood vessel network is unique for each individual [8], and
can distinguish even identical twins [8], [10], which shows
the high person specificity, of vein biometrics. These reasons
explain why person authentication based on vein biometrics
has been so widely investigated in the last decade [4], [6], [7],
[11]–[23].

A. RELATED WORKS
Despite its appealing characteristics, vein recognition ac-
curacy may be compromised by several factors affecting
the captured image quality including lighting, temperature,
acquisition device, as well as user habits [4], [6], [11],
[24]–[26]. The factors above may produce noisy regions
with irregular shadow that ultimately will make it hard to
distinguish actual vein patterns from the background, de-
creasing thereby matching verification accuracy. To tackle
these issues, several endeavors have been made to effectively
segment the palm-vein patterns; We can split them into two
main categories:

(1) Handcrafted texture extraction approaches: Observing
that the cross-profile of vein patterns shows a valley-like
shape, some researchers have proposed some mathematical
models to detect these valleys. Line tracking methods [11],
[12], and curvature-based measures [13]–[16] are some of
these techniques. Other works, making the assumption that
the vein vessels appear as line-like textures in a prede-
fined neighborhood region, propose Gabor filters [6], [17],
matched filters [18], wide line detector [19] and neural net-
works [20], to extract vein textures.

(2) Deep learning-based texture extraction methods: By
contrast to handcrafted methods, segmentation methods re-
lying on Deep Neural Networks (DNNs), in particular CNNs
[21]–[23], [27], [28], make no a priori assumption on the
vein pattern distribution, as they can extract vein patterns in
an end-to-end manner. Qin et al. [21] were among the first
to propose a CNN to predict the probability of each pixel to
belong to a vein pattern. Subsequently, to correct mislabeled
data, an iterative deep neural network [22] was proposed
to extract the hand vein pattern. A generative adversarial
network (GAN) [23] has also been proposed, for the same
task, to extract the finger-vein texture.

The handcrafted methods [4], [6], [7], [11]–[20] men-
tioned above assume that the veins structures usually show
valleys and line segment-like shapes. These prior assump-
tions may not hold in real application, however, as the
vein pixel values may generate more complicate shape
distributions than ones above. The performance of such
vein texture extraction methods, therefore, may be com-
promised. As deep learning-based methods [21]–[23] are

able to automatically learn robust feature representation for
the vein texture segmentation without requiring any prior
assumption, they usually outperform handcrafted approaches
in terms of verification accuracy. Some researchers have
brought them into medical image segmentation tasks [29]–
[32], such as brain segmentation, retina image segmentation,
and neuronal membranes segmentation. DNNs like CNNs
[31], [33]], DBNs (Deep Belief Networks) [34], and Auto-
Encoders (AE) [33], when fed with a large annotated training
dataset, can extract more robust features than handcrafted
approaches. Unlike image segmentation in the medical field,
however, pixel-level ground-truth labels in biometric are not
available in general, in particular for vein imaging, which
prevents from training pixel-based supervised training mod-
els to solve the segmentation problem. The lack fine-grained
pixel annotations is explained by the huge cost for collecting
and annotating pixel-wise large biometric datasets. To tackle
this issue, some studies [21], [23] have proposed the use
of several segmentation baseline models or their fusion to
generate the vein and background labels at the pixel level,
that serve to train DNNs which, in turn, seek to improve the
initial vein segmentation performance. Although increasing
the number of baselines to combine may lead to more accu-
rate initial labels, these pseudo annotations may still include
several mislabelled pixels. Additionally, a large number of
initial baselines may be hard to obtain, especially if we bear
in mind that the accuracy of each should be good enough to
benefit the combination scheme. These reasons explain why
existing DNNs used for vein segmentation [13], [23], may
not be highly robust in real-life verification tasks. Owing to
these issues, learning a more robust feature representation for
vein segmentation is till a challenging problem.

Domain adaptation is a smart data generation technique
that has been investigated in several medical image segmen-
tation tasks [32], [35]–[37]. Domain adaptation is a peculiar
scheme of transfer learning that leverage labeled data in one
(or more) relevant source domain to carry out new tasks in a
target domain. This allows DNNs to reach competitive accu-
racy on unlabeled target data, by exploiting annotations from
the source domain only. Previous studies have categorized
domain shift mainly into two classes: the first, image adapta-
tion, seeks to align image appearance between domains with
pixel-to-pixel transformation. This allows to alleviate domain
shift at the input level for deep learning models. The second,
unsupervised domain feature adaptation, seeks, by contrast,
to extract domain invariant DNN features, irrespective of the
difference between the input domains in terms of appearance.

As pointed out above, DNN-based techniques have ob-
tained good performance for medical image segmentation, in
tasks like MR prostate segmentation or retinal segmentation,
based on annotated training data. As retinal images (source)
and hand-vein images (target) both correspond to vessel
images, and their domains are hence related, knowledge
inferred from the retinal image segmentation task can be
transferred to the hand-vein segmentation task. In real-life
tasks, nonetheless, a domain shift or pixel distribution change
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II. THE PROPOSED MULTI-SCALE RECYCLE GAN
METHOD
Domain adaptation operates under the assumption of known
relationship between the target and source domains, and
that this knowledge can be transferred in one step from the
latter to the former. Owing to factors like image quality,
illumination, physiology, pose and object shape, nonetheless,
a domain shift, i.e. change in input distribution, always
occurs between the two domains, implying thereby solely
a low overlap between the two domains (retinal image and
hand-vein image). Carrying out domain adaptation in one
step for hand-vein segmentation is, therefore, doomed to
failure. To tackle this issue, we propose a latent domain that
relates the two domains by smoothly transferring knowledge
for vein segmentation, whereby synthesized retinal images
are stylized as hand-vein images. Fig. 1 shows a graphical
representation of our unsupervised domain adaptation ap-
proach for hand-vein image segmentation. We perform our
image and feature adaptations under the framework of a novel
learning scheme that reduces the performance gap emanating
from domain shift in an effective way.

A. IMAGE ADAPTATION
The retinal image dataset [38] consists of retinal images and
their associated manual vasculature annotations, that produce
reliable segmentation knowledge to be transferred to other
domains like hand vein segmentation. Because of the large
difference between source domain (original retinal images)
and target domain (original hand-vein images), which may
impair vein segmentation accuracy, we propose a cycle GAN
that seeks minimizing the shift between these two domains.
We denote {xs

i , y
s
i }Ni=1 as a set of annotated samples from

source domain {Xs} (retinal image) and {xt
i}Mj=1 as a set

of unlabeled samples from target domain {Xt} (hand-vein
image), respectively. Our goal is to transform the source
images xs into the appearance of target ones xt, knowing
that the latter exhibits different visual appearance from the
former due to domain shift. We reduce this shift between the
source and target domains by image appearance alignment.

To this end, we consider Cycle GAN [39], a highly suc-
cessful model in the pixel-to-pixel unpaired image transfor-
mation task, by designing two generators G and F and two
discriminators Ds and Dt. The mapping function G : xs →
xt aims at transforming the source images into target-like
ones G(xs) = xs→t while Dt seeks to distinguish between
the real target images xt and translated images xs→t. In the
target domain, a minimax two-player game is set based on G
and Dt, which are trained according to the following object
function optimization.

Ladv(G,Dt) = Ext∼Pg
[log[Dt(xt)]]+

Exs∼Pr
[log[1− (Dt(G(xs)))]]

(1)

It is worth noting that it is hard to train the classic GAN
as the latter seeks minimizing the divergences that may be
not continuous w.r.t the generator’s parameters. To stabilize

always exists between the two domains, which may hamper 
segmentation accuracy. Domain adaptation is able to tackle 
this problem by drawing the source and target domains closer 
than they were initially.

B. OUR WORK

In this paper, we propose a novel unsupervised domain 
adaptation model, called CycleGAN-based domain adapta-
tion (CGAN-DA), which we apply to adapt domain shift for 
cross-modality vein image segmentation. Instead of a single 
adaptation procedure, we perform conjointly two adaptation 
procedures, namely image adaptation and feature adapta-
tion (Fig.1). Our contributions can be summarized as fol-
lows: 1) Our proposal is the first t o a ccommodate domain 
adaptation to hand-vein texture segmentation for vein bio-
metrics. Concretely, we propose, for the vein segmentation 
task, a CycleGAN-based domain adaptation scheme, named 
CGAN-DA, that conjointly combines image domain adapta-
tion and feature domain adaptation. Unlike DCNN segmen-
tation models, like CNN+FCN [21] and FV-GAN [23], that 
seek learning feature representations based on pixel labels 
output by verification baselines, our scheme reduces the gap 
between the source (retinal image) and target (hand-vein 
image) domains, so as the hand-vein patterns are extracted 
by leveraging learning knowledge inferred from the densely 
annotated retinal images. Consequently, our model is not 
related to the performance of the baselines. Our experiments 
demonstrate that our model significantly o utperforms the 
state of the art in terms of verification accuracy.

2) To extract robust vein patterns, We propose CGAN-DA,
a CycleGAN-based domain adaptation (DA) approach lever-
aging a a cycle-consistency GAN and a GAN segmentation 
model. CGAN-DA performs a synergistic fusion of adapta-
tions, both image based (retinal image to hand-vein image) 
and feature based (hand-vein image to hand-vein feature). To 
degrade domain shift, we first transform the annotated source 
images (real retinal images) into the appearance of images 
drawn from the target domain (hand-vein image), based 
on a generative adversarial network with cycle-consistency 
constraint. We then train a segmentation model on the gen-
erated target-like images, and perform feature adaptation to 
decrease further the remaining domain shift. In the proposed 
CGAN-DA scheme, the feature encoder is shared, to enable 
it conjointly transforming image appearance and extracting 
domain-invariant representations for the segmentation task.

3) We have performed rigorous experiments on a large
public dataset to assess the performance of our vein segmen-
tation model. The results we obtain show that the proposed 
model does not only effectively extract the vein patterns from 
raw hand vein images without any hand-vein pixel-based 
annotation, but it significantly outperforms the state of the 
art in terms of authentication accuracy.
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FIGURE 1. Framework of our unsupervised domain adaptation framework. Our image adaption schemes aims to transform the source images towards the
appearance of target ones, while the feature adaption trains a network to learn an invariant-feature representation between the two domains for the segmentation
task. The network for image adaption is a cycle-Consistent adversarial network, including two discriminators and two generators G and F . The generator G serves
for the source-to-target image transformation and the generator F serves for the target-to-source image transformation. The network for feature adaption consists of
an encoder E, two classifiers C1 and C2 and a discriminator Dp. Two feature maps from encoder E are input into the two classifiers C1 and C2 for image
segmentation. The blue and red arrows indicate the source and target data flows, respectively. To further reduce the domain shift, the discrepancy of the two
prediction maps is employed to produce a local alignment score map. This map evaluates the category-level alignment degree of each feature and is used to
adaptively weight the raw adversarial loss map.

training, we consider the WGAN-GP loss [40] with gradient
norm penalty for random samples x̂ ∼ Px̂ on both mapping
functions for training. This loss is defined as:

Ladv_w(G,Dt) = Exs∼Pg
[Dt(G(xs))]− Ext∼Pr

[(Dt(xt))]

+λEx̂∼Px̂
[(∥∆x̂Dt(x̂)∥2−1)2]

(2)
where Pr is the data distribution and Pg indicates the model
distribution implicitly defined by x̃ = G(x) and x ∼ p(x)
(the input x of the generator is sampled from noise distribu-
tion). Px̂ is a distribution sampling uniformly along straight
lines between pairs of points sampled from Pr and Pg , and λ
is a penalty factor of gradient norm. The constraint is added
as a penalty on the gradient norm in adversarial loss, which
effectively alleviates the gradients vanishing nor exploding.
Therefore, the WGAN-GP has better stability for training.

We also use a Cycle Consistency Loss as the regulariza-
tion term to further reduce the space of possible mapping
functions so that xs is mapped into the source domain, i.e.
xs → G(xs) → F (G(xs)) ≈ xs. Similarly, for each image
xt from the target domain, G and F should also satisfy back-
ward cycle consistency, i.e. xt → F (xt) → G(F (xt)) ≈ xt.
Then the pixel-wise cycle-consistency loss Lcyc is defined as
follows

Lcyc(G,F ) = Ext∼Pg
[||G(F (xt)− xt)||1]+

Exs∼Pr
[[||F (G(xs)− xs)||1]]

(3)

Our image adaptation scheme allows transforming the
source images xs into target-like images G(xs) = xs→t with
semantic contents preserved, based on the two losses defined
above, i.e., adversarial loss and cycle-consistency loss. This
pixel-to-pixel transformation has the potential to transform
G(xs) = xs→t into the data distribution of the target domain.
The resulting synthesized images can then be harnessed to

train a neural network classifier for the segmentation task in
the target domain.

B. FEATURE ADAPTATION

To attenuate the domain shift between the source and target
domains, existing adaptation techniques transform the im-
ages from the source domain into realistic target-like images.
Then we train a network based on these resulting target-
like images to produce an effective pixel-to-pixel segmen-
tation on the target data. Owing to the wide gap between
the retinal and hand-vein image domains, however, such a
domain adaptation is usually ineffective. To tackle this fea-
ture adaptation problem, we design an additional GAN that
seeks mitigating the remaining shift between the synthesized
target images xs→t and the actual target ones xt. To further
bridge domain gap, we introduce Category-level Adversaries
[36] to promote the alignment of the two domains’ feature
distributions, with the objective of enforcing local feature
consistency during the global alignment process.

For the prediction of segmentation tasks from U , we
propose, as shown in Fig. 1, a two-classes discriminator Dp

to classify the outputs of U corresponding to xs→t or xt.
Unspired by the standard co-training algorithm [41], the gen-
erator U is split into a feature extractor E and two classifiers
C1 and C2, where E extracts features from input images and
C1 and C2 predict the probability of the features generated
from E belonging to predefined classes ( background and
vessel). As suggested in the co-training scheme [42], a cosine
distance loss is considered to favor diversity of the weights of
C1 and C2, which promotes distinct views/classifiers to make
different predictions for vein features. Finally, the two diverse
prediction tensors p1 for C1 and p2 for C2 are combined as
feature map p for vein vessel prediction. Specifically, after
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the features from the adapted image are extracted xs→t, the
feature maps E(xs→t) are input to the two classifiers C1

and C2 to output the pixel-level ensemble prediction p =
C1(E(xs→t)) + C2(E(xs→t)) for segmentation masks. For
the sample pairs with the ground-truth label of (xs→t, ys),
the segmentation loss is defined as:

Lseg(E,C1, C2) = H(ys, p) + βDice(ys, p) (4)

where the H represents cross-entropy loss, the second term
is the Dice loss, and β is the trade-off hyper-parameter
balancing them. The hybrid loss function is designed to solve
the class imbalance in image segmentation.

As shown in the standard co-training algorithm [42], to
provide two different feature representations, the two clas-
sifiers C1 and C2 should have possibly diverse parameters.
Therefore, cosine similarity is employed to enforce the diver-
gence of the weights of the convolutional layers of classifiers
C1 and C2, which results in the following weight discrepancy
loss:

LW (C1, C2) =

−→
Ω 1 ·

−→
Ω 2

||
−→
Ω 1 || ||

−→
Ω 2 ||

(5)

where
−→
Ω 1 and

−→
Ω 2 are produced by flattening and concate-

nating the weights of the convolution filters of C1 and C2 .
As shown in Fig 1, a binary discriminator Dp is employed

to classify the outputs. The discrepancy between predictions
p1 and p2 is employed to weight the adversarial loss. There-
fore, the traditional adversarial loss is changed to obtain

Ladv(U,Dp) = −Exs→t∼Po [log[Dp(U(xs→t))]]−
Ext∼Pr [(γC(p1, p2) + ϵ)log[1− (Dp(U(xt)))]]

(6)

where p1 and p2 are predictions obtained from C1 and C2,
respectively, C(x, y) denotes the cosine distance between x
and y, and the parameter ϵ is the weight for the adversarial
loss. We experimentally fix γ and ϵ to 10 and 0.4. First,
we select initial values and then train our model for domain
adaption. The results for image adaption and feature adaption
are analyzed. If continuous and smooth vein patterns are ex-
tracted, the corresponding values are determined as optimal
values. Otherwise, we increase or reduce the values of γ and
ϵ with an interval of 2 and 0.1 until the vein patterns are
effectively segmented from the original images.

C. SYNERGISTIC LEARNING
The image adaptation and feature adaption are fused to obtain
a synergistic learning diagram for vein segmentation. Given
the above loss terms, the overall objective of our framework
can be written as

L = Ladv(G,Ds, xt, xs) + Ladv(G,Dt, xs, xt)+

λcycLcyc(G,F ) + λsegLseg(E,C1, C2)+

λWLW (C1, C2) + λadvLadv(U,Dp)

(7)

FIGURE 2. The retinal image samples from the DRIVE dataset: (a) original
image, (b) manual segmentation vasculature and (c) mask.

D. NETWORK ARCHITECTURE OF THE MODULES
This section details the network architecture of each module
in the proposed framework, as shown in Fig.1. As the Cy-
cleGAN [39] has shown promising results for neural style
transfer and object transfiguration, we adopt it for image
adaptation to minimize the gap between the source and
the target domains. The generative network consists of 3
convolutional layers with 64, 128 and 256 feature maps in
each layer, 9 residual blocks [43] with 256 feature maps
in each layer, and three fractionally convolutions with 256,
128 and 64 feature maps in each layer. For the first three
convolutional layers, the kernel sizes are 7 × 7, 3 × 3, and
3×3 and the last three layers and the residual blocks employ
3× 3 convolutional kernels for feature extraction. The ReLU
is used as activation function. For the discriminator networks
Dt and Ds, we design 70 × 70 PatchGANs [39], [44], that
predict whether the 70 × 70 overlapping image patches are
real or fake. The networks includes 5 convolutional layers
with 64, 128, 256, 512 and 1 feature maps for each layer,
respectively. We employ the convolutional kernels with a size
of 4× 4 and a stride of 2 in the first three layers and 2×
2 convolutional kernels with a stride of 1 in last two layers,
respectively. For the first four layers, each convolutional layer
is followed by a layer normalization and a active function of
leaky ReLU with parameter 0.2. As mentioned in [39], [44],
there are fewer parameters in the patch-level discriminator
architecture, compared to a full-image discriminator. This
discriminator can be applied to any image with arbitrary size
in a fully convolutional manner [44].

For feature adaption, the network architecture comprises
a generator G and a discriminator D. G consists of one
feature encoder E and two classifiers C1 and C1. E extracts
features from input images and C1 and C1 classify the
features from E into one of the predefined semantic classes.
E comprises 32 residual bottlenecks, each consisting of three
convolutional layers, followed by three batch normalization
layers. The two classifiers C1 and C1 have the same network
architecture with four convolutional layers. We forward an
image into the generator G which outputs two feature maps.
The discriminator has a typical CNN architecture that takes
an input image of size 128 × 128 and outputs one decision:
is this image sample of the the source domain or is it from
the target domain? In this network, there are five convolu-
tional layers with a kernel size of 4 × 4. To reduce spatial
dimensionality and computation cost, 2 stride convolutions
instead of pooling layers are employed to each convolution
layer. The Leaky ReLU activation function is employed for
all convolutional layers except the output layer.

where λcyc,λseg ,λW ,λadv are trade-off parameters control-
ling the importance of each term. In the experiments, the 
values of these parameters are 10, 1, 0.01, and 0.001, respec-
tively.
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FIGURE 3. The palm-vein samples: (a) original image, and (b) ROI.

(a)

(b)

FIGURE 4. Generated retinal patches: (a) Three cropped retinal patches and
(b) corresponding ground-truth vasculatures

III. EXPERIMENT AND RESULTS
To test our approach, we have carried out rigorous exper-
iments on a known public hand-vein dataset. All retinal
images with ground truth from dataset [38] and half of hand-
vein images from the hand-vein dataset are employed to train
the proposed model, as shown in Fig.1. For testing, we take a
hand-vein image as input of our trained model that outputs
a probability map with the same size. The resulting map
is further encoded using a threshold of 0.5. We match the
vein patterns stored in the resulting binary image for verifi-
cation by matching approach [21]. We compare our approach
with the Maximum principle curvature [16], Repeated line
tracking [11], Gabor filters [6], Hessian phase [4], and CNN
[21] techniques. For CNN training, as described in [21],
we label the palm-vein pixels based on several handcrafted
segmentation methods [6], [11], [16] and construct a training
set accordingly. The performances of all methods are shown
in the following experiments.

A. DRIVE DATASET
The retinal image set named DRIVE [38] contains 40 retinal
images, which have been divided into training and test sets.
For each training image, there is a single manual segmen-
tation vasculature. For the test images, two ground truth
vasculatures are obtained by manual labeling. In addition, a
mask image is available for each retinal image to extract the
region of interest. The original images are in RGB with a
resolution of 768 by 584 pixels (Fig. 2).

B. CASIA DATASET
The CASIA Multi-Spectral Palm-print Image Dataset [45]
consists of 7200 palm images from 100 different people.
The images, collected by a self-designed multiple spectral
imaging device, are captured through six different wave-
length bands, in two separate sessions. For each session, each

(a)

(b)

FIGURE 5. The result for image adaption. (a) The retinal patches and (b) The
synthesised retinal patches stylized as palm-vein images

subject provided left and right hands and 3 image samples
are collected from each hand. So, there are 12 (3 images × 2
hands × 2 sessions ) images from one subject. As our work
focuses on hand-vein verification, the images collected under
the 850 nm wavelength are employed in our experiments.
Totally, there are 1200 images (100 subjects × 2 hands × 2
sessions × 3 images) from 100 subjects. To facility matching,
the region of interest (ROI) image is extracted by a pre-
processing method [22] and the resulting images are further
subject to normalization. We obtain, in this way, images with
a resolution of 128 × 128, as shown in Fig.3.

C. EXPERIMENTAL SETUP
There is a large vein pattern difference between the retinal
image obtained in the two datasets (as shown in Fig.2 (a)
and Fig.3(a)). To reduce the gap, all retinal images are
transformed into gray-scale images and we randomly crop
the resulting images to 100×100 and scale them to 128×128
so that the width of the veins in the two images become
similar (as shown in Fig.3(b) and Fig.4(a) ). In this way, we
have generated 9000 retinal patches (Fig.4(a)) and their cor-
responding ground truth images (Fig.4(b)) from 40 original
retinal images with manually labeled vasculatures images,
respectively. For each retinal image, we have generated about
225 cropped images. For CASIA, half of the palm-vein
images, i.e. 600 images (50 subjects × 2 hands × 2 sessions
× 3 images) are employed for training and the remaining
for test. As a result, the training set includes 9000 DRIVE
retinal patches along with their 9000 ground truth patches
and 600 CASIA palm-vein images for our model training.
The performance of all methods is evaluated on the test set
with 600 palm-vein images.

D. VISUAL ASSESSMENT
In this section, we visually analyze and assess the perfor-
mance of various approaches, so that more insights into our
proposed approach can be derived. Our approach consists of
image adaption and feature adaption. The image adaption
model aims at aligning the image appearance between dif-
ferent domains with pixel-to-pixel transformation, in such a
way that the distribution of retinal images becomes similar
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to the palm-vein images’ distribution. For feature adaption,
our model aims to extract the vein network from palm-vein
images after the appearances between the input domains
becomes similar. Fig.5 shows the experimental results for
image adaption. From Fig.5 and Fig.3(b), we observe that the
retinal images have been transferred into the style of palm-
vein images, which reduces the domain shift between the
two domains. In particular, the generated images are more
blurred than the original retinal images. Also, the distribution
style of the vascular veins in the synthesised images is more
similar to the ones in the palm-vein images. Fig.6 shows
the extracted vein networks from a palm-vein image by the
benchmarking approaches and ours. Compared to existing
approaches, our approach, without using any annotation from
the target domain (palm-vein), achieves better segmentation
results, as the vein patterns are more connected, smooth and
less noisy. By contrast, there are more noise and isolated
regions in the segmented images obtained from Repeated line
tracking, Hessian phase and Maximum principle curvature.
The reason may be that these three approaches compute the
curvature of the cross-sectional profile to detect the vein
patterns. However, the curvature is usually sensitive to noise,
which may affect the quality of the segmentation results.
Gabor filters can extract more connected and smooth vein
patterns but may generate over-segmentation regions where
some non-vein regions are mislabeled as vein patterns. The
CNN is capable of learning robust a feature representation.
However, similar to Repeated line tracking, Hessian phase
and Maximum principle curvature, the vein patterns show
noise poor connectivity for the CNN-based approach. Such
results may be attributed to the following facts. The ground
truths are generated based on four baselines according to
a voting scheme (a threshold of 0.5 for each pixel). Some
incorrect vein pixels in the resulting ground truths may occur
accordingly. Therefore, the CNN model [21] trained on such
ground-truth may achieve weak segmentation performance
on similar patches. Compared to the CNN model [21], our
approach learns rich segmentation knowledge based on the
retinal dataset where accurate ground truths are provided for
segmentation. As a result, by minimizing the gap between the
two domains (palm-vein and retinal images), our approach
improves domain-invariance of the extracted features towards
the segmentation task.

E. VERIFICATION RESULTS

(a)

(b) (c) (d)

(e) (f) (g)
FIGURE 6. Segmentation results of the different approaches. (a) Original
palm-vein image; (b) vein patterns extracted from (a) using Repeated line
tracking; (c) vein patterns extracted from (a) using Maximum principle
curvature; (d) vein patterns extracted from (a) using Gabor filter; (e) vein
patterns extracted from (a) using Hessian phase; (f) vein patterns extracted
from (a) using CNN; and (g) vein patterns extracted from (a) using the
proposed approach.
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FIGURE 7. Receiver operating characteristics of various methods.

remaining 3 images from the second session are used as
testing data, respectively. The genuine scores are produced
by matching the images from the same hands. Similarly, we
match different hands to compute the impostor scores. In
this way, 300 (100 × 3) genuine scores and 178200 (6 × 6
× 100 × 99 / 2) imposter scores are obtained, respectively.
Computing such impostor matching scores, however, is time
consuming. To reduce computation cost, similar to work [22],
we randomly split all hands into 10 groups and then compute
the impostor matching scores of each group, respectively.
For each group, we calculate the matching scores of the
first three images against the remaining three images to
generate 270 impostor scores. In this way, we obtain 2700
(270 × 10 groups) imposter scores for the 10 groups. The
False Rejection Rate (FRR) and the False Acceptance Rate
(FAR) are computed according to the genuine scores and the
impostor scores. The Equal Error Rate (EER) is the error

We have performed extensive experiments to verify the veri-
fication performance of the proposed approach on the CASIA
dataset; collected from both sessions. First, the deep learning
based approach, i.e CNN [21], and hand-crafted approaches
[4], [6], [11], [16] are employed to segment the vein texture.
Then, the resulting binary vein image is matched by the
method in [21]. The test set includes 600 vein images (50
subjects × 2 hands × 2 sessions × 3 images) associated
with 100 hands. All images are captured in two separate
sessions. In our experiments, the first 3  h and-vein images
from the first session are selected as training data and the
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TABLE 1. Result (%) of different methods

Method EER
Repeated line tracking [11] 4.00
Maximum principle curvature [16] 2.33
Gabor filters [6] 1.00
Hassian phase [4] 1.33
CNN [21] 0.74
The proposed approach 0.52

rate when FAR is equal to FRR. Table 1 has shows the
verification accuracy of the various approaches described in
the previous section and the corresponding receiver operating
characteristics (ROC) curve (the FAR against the the Genuine
acceptance rate (GAR=1-FRR)) is illustrated in Fig.7.

The experimental results (Table 1 and Fig.7) demonstrate
that our approach achieves the lowest EER and outperforms
all the benchmarking approaches considered in our work.
The handcrafted approaches, e.g. Repeated line tracking,
Maximum principle curvature, Gabor filters, Hessian phase
approaches and CNN achieve high verification errors, i.e.
4.00% EER, 2.33% EER, 1.00% EER and 1.33 % EER,
respectively, while our model obtains the lowest verification
error, i.e. 0.52% on the CASIA dataset. The corresponding
ROC curve (as shown in Fig.7) also shows that our model
obtains the highest GAR at different FAR regions, compared
to existing works. Overall, the deep learning based models
(i.e. CNN and our GAN-based approach) obtain much lower
verification error w.r.t the segmentation approaches based on
handcrafted feature extraction. Such a performance may be
explained by the fact that latter approaches leverage image
processing to explicitly extract low level features (e.g. edge)
based on descriptors defined according to human expertise.
This may overlook, however, some key information which is
related to vein segmentation. The deep learning models, by
contrast, objectively learn high-level features directly related
to discriminating vein patterns in end-to-end way without
any human’s feature selection, based on the loss function
and back propagation. Also, we observe furthermore that our
CGAN-DA model outperforms CNN in terms as it signifi-
cantly reduces the verification error. This may be attributed
to the training of the CNN based on ground truth produced
by four automatic vein segmentation baselines [4], [6], [11],
[16], that might provide, therefore, some incorrect labels as
ground truth to the CNN, and this may occur even when the
four baselines are combined, as shown in [21]. Therefore,
training the CNN on such incorrect labels degrades inevitably
the overall performance. Our model avoids this issue by
extracting the vein patterns with no palm vein ground truth,
and significantly outperforms the CNN-based approach (33%
decrease of the EER). The reason is twofold/ First, the retinal
images rely on accurate annotations made by domain experts.
Second, our model manages to reduce the domain shift,
harnessing thereby the rich segmentation knowledge from
retinal images and transferring it to extract the hand-veins in

an effective way. Overall, the proposed approach is capable
of reducing the shift between the source and target domain
and improve the accuracy of vein recognition. The image
prepossessing of patch division is also important because the
thickness of vascular in eyes and hands are different, which
can not been scaled by the domain adaption model.

IV. CONCLUSIONS
This paper proposes a novel domain adaption approach to
extract the palm-vein texture based on retinal vascular ground
truth instead of any palm-vein pixel annotation. Our model is
able to conjointly reduce the appearance shift across the two
domains by image adaption and minimize domain-invariant
feature learning by feature adaptation. The two adaptive
schemes are conducted by adversarial learning to exploit
their mutual benefits for reducing domain shift. We test our
method on unpaired retinal images to palm-vein ones by min-
imizing domain shift from medical images to biometric ones.
The experimental results on a large public dataset shows that
the proposed approach outperforms various benchmarking
palm-vein segmentation methods, and achieves state-of-the-
art verification results.

Although the verification performance achieved by our
approach for hand-vein verification outperforms the state of
the art, several improvements can be envisaged in the future.
First, we can employ our model as baseline to generate
ground-truth vein images in order to train existing deep
learning models for vein segmentation. Second, we will carry
out more experiments on other large vein datasets to further
verify the efficiency of our model. Third, we currently encode
the output of deep learning models with a threshold of 0.5
to extract the vein patterns from the background. Such a
threshold may not be suitable for vein encoding as it is not
objectively related to the reduction of verification error but
determined by our prior knowledge. A search approach will
be investigated to find the optimal threshold for verification.
Fourth, we will explore more domain adaption approaches to
vein pattern segmentation.
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