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We present numerical and analytical predictions of mucociliary clearance based on the9

continuum description of a viscoelastic mucus film, where momentum transfer from the10

beating cilia is represented via a Navier-slip boundary condition introduced by Bottier et al.11

(PLoS Comp. Biol., 13(7), 2017). Mucus viscoelasticity is represented via the Oldroyd-B12

model, where the relaxation time and the viscosity ratio have been fitted to experimental13

data for the storage and loss moduli of different types of real mucus, ranging from healthy14

to diseased conditions. We solve numerically the fully nonlinear governing equations for15

inertialess flow, and develop analytical solutions via asymptotic expansion in two limits:16

(i) weak viscoelasticity, i.e. low Deborah number; (ii) low cilia beat amplitude (CBA). All17

our approaches predict a drop in the mucus flow rate in relation to the Newtonian reference18

value, as the cilia beat frequency is increased. This relative drop increases with decreasing19

CBA and slip length. In diseased conditions, e.g. mucus properties characteristic of cystic20

fibrosis, the drop reaches 30% in the physiological frequency range. In the case of healthy21

mucus, no significant drop is observed, even at very high frequency. This contrasts with the22

deterioration of microorganism propulsion predicted by the low-amplitude theory of Lauga23

(Phys. Fluids, 19(8), 2007), and is due to the larger beat amplitude and slip length associated24

with mucociliary clearance. In the physiological range of the cilia beat frequency, the low-25

amplitude prediction is accurate both for healthy and diseased conditions. Finally, we find26

that shear-thinning, modelled via a multi-mode Giesekus model, does not significantly alter27

our weakly-viscoelastic and low-amplitude predictions based on the Oldroyd-B model.28

Key words:29

1. Introduction30

Mucociliary clearance (MCC) designates the transport of pulmonary mucus toward the31

trachea via the coordinated beating of cilia, which cover the epithelium within the first32

† Email address for correspondence: anjishnu.choudhury@espci.fr
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Figure 1: Continuum model of mucociliary clearance. (a) Schematic situating our model of the mucus
layer (dashed blue frame) within the mucus/PCL bilayer system. Momentum transfer from the beating
cilia is represented via a Navier condition (2.4b) applied at H★=0 (Bottier et al. 2017a), introducing the

wave function: D★F=0★l★ cos(\) + Z 1
2
(0★)2l★:★ [1 − cos(2\)], with :★=2c/Λ★, \=:G +lC, and l=2c 5 ;

(b) flow structure within the mucus layer for viscoelastic mucus. DNS with the code Basilisk, using
the Oldroyd-B model (2.2) and periodic boundary conditions: _=52 ms, V=0.1, ℎ★

0
= 10 µm, Λ★=20 µm,

0★=1.6 µm, q★ = 0, 5★=10 Hz, C★l★
=9c. Streamlines in the laboratory reference frame.

16 airway generations of the human respiratory network. The cilia are organized in a dense33

brush-like array (Button et al. 2012) and immersed in a layer of low-viscosity Newtonian34

liquid, called the periciliary liquid (PCL), as shown in figure 1a. On top of the PCL layer35

lies a layer of viscoelastic mucus, which is responsible for capturing and evacuating alien36

particles and pathogens (Grotberg 2021). The non-symmetric beat cycle of individual cilia,37

composed of an active forward and a passive backward stroke, propagates in the form of a38

so-called antiplectic metachronal wave (Mitran 2007) with frequency 5★, wavelength Λ
★,39

and wave speed 2★ (star superscripts designate dimensional variables throughout), which40

imparts momentum to the mucus layer and produces a net flow in the opposite direction41

(Bottier et al. 2017a). In the present manuscript, we study the effect of viscoelasticity on this42

net MCC flow, both under healthy conditions and in the case of pulmonary diseases that are43

known to exacerbate mucus viscoelasticity (Fahy & Dickey 2010), e.g. cystic fibrosis (CF),44

chronic obstructive pulmonary disorder (COPD), and bronchiectasis. According to Spagnolie45

(2015), the reason for reduced MCC in such diseases is an open question and there is a need46

for predictive models that evaluate clearance efficiency versus viscoelastic characterization.47

Relatively few studies have accounted for the viscoelastic nature of mucus (Vanaki et al.48

2020; Sedaghat et al. 2023), which is imparted by mucins produced by goblet cells situated49

in the epithelium (Levy et al. 2014).50

Smith et al. (2007) developed a three-layer model, where a thin traction layer was51

introduced between the PCL and mucus to account for the protrusion of cilia tips into52

the mucus layer (Fulford & Blake 1986). Mucus viscoelasticity was modelled via the linear53

Maxwell model, introducing the relaxation time _. The authors reported a significant and54

non-monotonic variation of the net mucus flow rate with increasing _. Owing to the use of55

the linear Maxwell model, the observed viscoelastic effect stems entirely from the traction56

layer. As we will show, viscoelastic corrections in the force-free mucus layer can enter the57
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problem only at $ (De2), where De denotes the Deborah number De=_l★, based on the58

angular frequency l★=2c 5★. We go beyond this limitation by accounting for non-linearity59

in the constitutive model, allowing us to uncover the role of viscoelasticity within the mucus60

layer itself, where an intricate flow pattern of counter-rotating vortices develops (figure 1b).61

Sedaghat et al. (2016) used the immersed boundary method (IBM) to simulate arrays62

of cilia beating within a layer of airway surface liquid (representing mucus and PCL).63

Viscoelasticity was described with the Oldroyd-B model, introducing the viscosity ratio64

V=`s/(`s + `p), where `s and `p denote the solvent and polymer viscosities. However, the65

authors used a cilia density of 0.1 cilia per µm2 which is significantly lower than typical66

physiological values, i.e. 5-8 cilia per µm2 (Bottier et al. 2017a). It was not clear from this67

study whether viscoelasticity helps or hinders MCC in real mucus.68

In the current study, we analyze MCC via an inertialess continuum hydrodynamic model69

sketched in figure 1a. We focus only on the mucus layer of height ℎ★
0
, and model momentum70

transfer from the beating cilia via an experimentally-validated moving-carpet Navier-slip71

boundary condition (BC) applied at H=0 (Bottier et al. 2017a,b). This BC introduces a72

tangential wall velocity Dw(G, C) that mimicks the metachronal wave. Mucus viscoelasticity73

is described with the Oldroyd-B model. Following Vasquez et al. (2016), we fit the model74

parameters, _ and V, to experimental mucus data for the storage and loss moduli �′ and �′′
75

(Hill et al. 2014).76

We solve our continuum model via two approaches. Firstly, we perform direct numerical77

simulations (DNS) based on the full governing equations via the finite-volume solver78

Basilisk (Popinet & collaborators 2013–2020). Secondly, we derive analytical solutions79

for the stream function within the mucus film, based on asymptotic expansion in two different80

limits: (1) the weakly-viscoelastic limit (De≪1), and (2) the limit of small cilia beat amplitude81

(0≪1). The low-amplitude expansion is inspired by Lauga (2007), who used this approach to82

investigate the effect of mucus viscoelasticity on the propulsion of microorganisms modelled83

as swimming sheets. As discussed in Lauga (2020), that problem is in some ways equivalent84

to the mucociliary transport problem considered here. However, there is one important85

difference. The discrete nature of the cilia, which are packed with some finite density,86

implies the existence of slip between the mucus and the imaginary envelope of the cilia tips.87

This effect is accounted for in the moving-carpet Navier BC used in the current manuscript,88

where we have set the slip length q based on an empirical relation (Bottier et al. 2017b),89

linking q to the cilia density. Accounting for slip represents an extension of the low-amplitude90

analytical solution of Lauga (2007), and we find that this effect is significant in the case of91

MCC. In contrast to the work of Man & Lauga (2015), who investigated the effect of wall92

slip on the propulsion of sheet-like microorganisms swimming in a Newtonian fluid, slip93

affects our problem only in the presence of viscoelasticity. This is because of the stress-free94

boundary condition imposed at the free surface, which implies zero average shear within the95

mucus layer in the Newtonian limit.96

In terms of physical insights, we find that mucus elasticity significantly reduces MCC97

relative to the Newtonian limit, causing a drop in mucus flow rate that increases with98

increasing De, decreasing 0, and decreasing slip-length q. In the case of diseased mucus99

(characteristic of cystic fibrosis), we find a 30% reduction of MCC in the physiological100

frequency range, 5★∼10 Hz. By contrast, Vasquez et al. (2016), who also applied a continuum101

approach but assumed a spatially-invariant (temporally-asymmetric) wall velocity Dw(C),102

concluded that the mucus flow rate is insensitive to mucus rheology. It turns out that our103

account of the metachronal cilia wave via Dw(G, C) is necessary for capturing the effect of104

viscoelasticity on MCC. Interestingly, a flow rate reduction also occurs in the limit of a zero-105

mean wall velocity D̄w=
∫
Λ

0
Dw3G=

∫ 1/ 5

0
Dw3C=0. In that case, viscoelasticity produces a net106
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negative flow rate, i.e. in the direction of the metachronal wave, as a result of memory effects.107

This result contrasts with Stokes’ second problem for viscoelastic liquids (Mitran et al. 2008;108

Ortı́n 2020), where Dw=Dw(C) is spatially invariant and the net flow rate is zero, and it further109

underlines the importance of the metachronal wave in MCC. Past studies have shown that110

a change in the waveform underlying the swimming motion of sheet-like microorganisms111

(Riley & Lauga 2015) or the geometry of the swimmer itself (Angeles et al. 2021) can switch112

the effect of viscoelasticity from hindering to enhancing propulsion.113

Although we mainly focus on the role of viscoelasticity by using the Oldroyd-B model,114

we have also checked the additional effect of shear-thinning, another known non-Newtonian115

property of mucus (Jory et al. 2022). For this, we have employed the Giesekus model,116

which accurately accounts for both viscoelasticity and shear-thinning properties of mucus117

(Vasquez et al. 2016; Sedaghat et al. 2022). We find that neither our low-amplitude nor our118

weakly-viscoelastic predictions are significantly affected by shear-thinning. This is due to119

the nature of the associated nonlinear terms in the Giesekus model, which are quadratic120

in the stresses and scaled by the Deborah number. As a result, shear-thinning is weak at121

small amplitudes and subordinate to viscoelasticity. We find that this leads to a qualitatively122

different MCC response versus a generalized Newtonian description of mucus via the Carreau123

model (Chatelin et al. 2017).124

Our manuscript is structured as follows. In section 2, we introduce the governing equations125

constituting our mathematical model of MCC. Next, in section 3, we quantify the viscoelastic126

properties of the different types of mucus considered in our computations, as well as relevant127

kinematic parameters linked to MCC. Section 4 details the methods employed. In subsection128

4.1, we derive analytical solutions for the mucus flow rate based on asymptotic expansion129

in different limits. In subsection 4.2, we describe the solver employed for our DNS. Results130

are presented in section 5, where we first focus on characterizing the effect of viscoelasticity131

on the mucus flow rate (subsection 5.1) by comparing with the Newtonian limit. Then, in132

subsection 5.2, we discuss the additional effect of shear-thinning via calculations based on133

the (multi-mode) Giesekus model. Conclusions are drawn in section 6, and the manuscript is134

completed by appendices A and B, where we have written out several expressions intervening135

in the analytical solutions derived in subsection 4.1.136

2. Mathematical description137

We consider a viscoelastic mucus layer of constant height ℎ★
0

on the interval H★=0 to H★=ℎ★
0
,138

as sketched in Figure 1a. The mucus rheology is represented via the Oldroyd-B model, with139

solvent and polymeric viscosities `s and `p, and relaxation time _. Both the Reynolds number140

Re=d ℎ★2
0
l★/`s∼10−3 and the capillary number Ca=`sℎ

★
0
l★/f∼10−3, where d and f denote141

the liquid mass density and surface tension, are small and thus we assume inertialess flow142

and a flat surface of the mucus layer (Smith et al. 2007). In this limit, the flow is governed143

by the (dimensionless) continuity and Stokes equations with additional polymeric viscous144

stresses g8 9 :145

mGD + mH3 = 0, (2.1a)146

0 = −mG ? +
(

mGGD + mHHD
)

+ mGgGG + mHgGH , (2.1b)147

0 = −mH ? +
(

mGG3 + mHH3
)

+ mGgGH + mHgHH , (2.1c)148

where we have scaled lengths with L=ℎ★
0
, velocities with U=ℎ★

0
l★, and g8 9 as well as149

pressure ? with P=`sU/L, using the angular frequency of the cilia beat cycle l★. The150

components of the polymeric stress tensor g8 9 are governed by the upper-convected Maxwell151

Focus on Fluids articles must not exceed this page length
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(UCM) model:152

gGG + De
[

mCgGG + DmGgGG + 3mHgGG − 2gGGmGD − 2gGHmHD
]

=2
1 − V

V
mGD, (2.2a)153

gGH + De
[

mCgGH + DmGgGH + 3mHgGH − gGGmG3 − gHHmHD
]

=
1 − V

V

(

mHD + mG3
)

, (2.2b)154

gHH + De
[

mCgHH + DmGgHH + 3mHgHH − 2gGHmG3 − 2gHHmH3
]

=2
1 − V

V
mH3, (2.2c)155

156

where we have scaled time with T=1/l★, yielding the Deborah number De = _l★, and the157

viscosity ratio V=`s/(`s + `p). The system is closed with the following boundary conditions.158

At the film surface, H=1, we impose:159

mHD + gGH =0, (2.3a)160

3 =0, (2.3b)161162

where we have assumed impermeability and neglected viscous stresses in the gas above the163

mucus layer. At the bottom boundary, H=0, we impose the Navier-slip boundary condition164

introduced by Bottier et al. (2017b) for modelling momentum transfer from the beating cilia:165

166

D − qmHD = Dw(G, C), 3 = 0, (2.4a)167

where q denotes the (dimensionless) slip length. Here, the cilia kinematics is represented via168

the wave function Dw(G, C):169

Dw(G, C) = 0 cos(:G + C) + Z
1

2
02: [1 − cos{2(:G + C)}] , (2.4b)170

introducing the cilia beat amplitude 0, and the metachronal wave number :=2c/Λ, where171

the dimensionless wavelength Λ=Λ★/ℎ★
0
, due to the scaling chosen, sets the aspect ratio of172

our geometry. Without loss of generality, we have phase shifted Dw(G, C) by c/2 w.r.t. the173

classical formulation of Bottier et al. (2017b). The parameter Z is a binary parameter that174

takes values Z=0 and Z=1, and can be used to deactivate the second and third RHS terms in175

(2.4b). In that limit, i.e. Z=0, the phase average D̄w is zero, which, in the case of a Newtonian176

fluid, leads to a symmetrical cellular flow pattern (e.g. figure 2a). This reference case is177

convenient for illustrating the signature of viscoelasticity, which tends to break the symmetry178

of the flow field (e.g. figure 6e). The moving carpet boundary condition written in (2.4) has179

been validated versus particle image velocimetry (PIV) measurements in the vicinity of live180

beating cilia (Bottier et al. 2017a).181

As a key observable in our study, we evaluate the net mucus flow rate @:182

@ =

∫ 1

0

D 3H, (2.5)183

which is spatially invariant due to continuity and the flat-surface assumption, i.e. mG@=-mCℎ=0,184

and time invariant due to the wave-nature of Dw (2.4b). In the Newtonian limit (subscript185

N), the governing equations become linear, and, thus, the flow field is a simple superposition186

of the solutions associated with the three terms in the wave function (2.4b). Because the187

phase-average of the two harmonic terms is zero, only the constant term contributes to the188

net flow, yielding:189

@N = Z@ref , with @ref ≡
1

2
02:, (2.6)190
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Mucus type �′ (Pa) �′′ (Pa) _ (ms) V 0★ (µm)

HBE-2 FC% 0.02 0.179 3 0.4 5

HBE-3 FC% 0.12 0.3 10 0.19 4

HBE-4 FC% 0.3 0.5 16 0.13 3

HBE-5 FC% 9.09 2.98 52 0.002 1.6

Table 1: Human bronchial epithelium (HBE) mucus types and cilia beat amplitude 0★ used in our simulations.
Measurement data for �′ and �′′, ranging from healthy to diseased mucus, are taken at 5★∼10 Hz from
Hill et al. (2014). Oldroyd-B model parameters _ and V were fitted via (3.1), assuming `s =1 mPa·s.

which corresponds to a plug flow with wall velocity Dw=Z02:/2. Throughout the paper, we191

will use @N (and @ref) as a reference value to quantify the effect of viscoelasticity.192

3. MCC scenarios: mucus types and cilia parameters193

Experimentally, the mechanical response of viscoelastic mucus is quantified via the complex194

modulus �=�′+8�′′, containing the storage and loss moduli �′ and �′′, which are related195

to the parameters of the Oldroyd-B model according to Siginer (2014):196

�′

`sl★
=

(1 − V)

V

_l★

1 + (_l★)2
,

�′′

`sl★
= 1 +

(1 − V)

V[1 + (_l★)2]
. (3.1)197

198

We focus on four types of mucus corresponding to Human Bronchial Epithelial (HBE)199

cultures with varying mucin concentration (Hill et al. 2014), ranging from healthy patients200

(2 FC%) to patients diagnosed with CF or COPD (5 FC%). The properties of these mucus201

types are provided in table 1. We have assumed water as the solvent phase, i.e. `s=1 mPa·s,202

and fitted V and _ to experimental values of �′ and �′′ (Hill et al. 2014) at a representative203

cilia beat frequency 5★∼10 Hz. Accounting for the frequency dependence of V and _ does204

not change our results significantly (as will be shown in figure 3a).205

In the case of CF, the PCL layer is depleted in favor of the mucus layer, which can206

considerably reduce the mucus velocity imparted by the cilia (Guo & Kanso 2017). We207

account for this by adjusting the beat amplitude 0 in terms of the mucin concentration208

(see table 1), by interpolating between experiments for healthy mucus (Bottier et al. 2017a),209

0★=5 µm, and diseased mucus (Bottier et al. 2022), 0★=1.6 µm.210

Bottier et al. (2017a) established experimentally a relation between the cilia density and211

the slip length q★. We use a cilia density of 86% in our simulations, which is representative212

of the patient data reported in that reference, yielding a slip length of q★=10 µm.213

4. Methods214

4.1. Analytical solutions via asymptotic expansion215

We obtain analytical solutions for our boundary value problem (2.1)-(2.4) in two different216

limits: (i) small Deborah number (De≪1), and (ii) small cilia beat amplitude (0≪1). For217

this, we introduce the stream function Ψ:218

mHΨ = D, −mGΨ = 3, (4.1)219

to which we apply a regular perturbation expansion:220

Ψ(G, H, C) = Ψ0(G, H, C) + nΨ1(G, H, C) + n
2
Ψ2(G, H, C), (4.2)221
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Figure 2: Flow structure within the mucus film. Newtonian limit: De=0, Λ★=20 µm. (a,b) Streamlines for
two forms of the wave function (2.4b): 0★=1.6 µm, q★=0, C=c. Solid red: analytical solution (4.3a), dashed
blue: DNS using ΔG=1/64, dotted black (almost perfectly overlapping solid red): DNS using ΔG=1/128. (a)
Z=0: cellular flow pattern; (b) Z=1: meandering flow; (c) estimation of maximum film surface deflection

according to (4.5) for different values of the slip length q★: 0★=5 µm, Ca=1 × 10−3. Dashed: q★=0, dotted:
q★=2 µm, dot-dashed: q★=5 µm, solid: q★=10 µm.

where the small parameter n is either De or 0, depending on the expansion considered. Then,222

introducing (4.2) into (2.1)-(2.4) and truncating appropriately, we may obtain Ψ8 order by223

order. We point out thatΨ0 is the solution of the biharmonic equation, obtained by eliminating224

pressure from the truncated forms of (2.1b) and (2.1c) via cross differentiation.225

In the weakly-viscoelastic limit, we expand in terms of n=De and obtain at $ (De2):226

Ψ0(G, H, C) =
[

(�1 + �1:H)4
:H + (�1 + �1:H)4

−:H
]

cos(:G + C) + Z �2H227

+Z
[

(�3 + 2�3:H)4
2:H + (�3 + 2�3:H)4

−2:H
]

cos{2(:G + C)}, (4.3a)228

Ψ1(G, H, C) = 0, (4.3b)229

Ψ2(G, H, C) = Ψ� (G, H, C) + Ψ% (G, H, C), (4.3c)230

where �8 , �8 , �8 , and �8 are integration constants, and Ψ� (G, H, C) and Ψ% (G, H, C) denote231

homogenous and particular solutions, which are all written out in appendix A, and in a232

supplementary Mathematica notebook. A simple relation for the flow rate @=Ψ|H=1-Ψ|H=0233

can be obtained by considering (4.3) in the limit Z=0:234

@

@ref

�
�
�
�
Z=0

= −(1 − V)De2 ((
2 + 6:q(�)

(( + 2:q�)2
+$ (De3), (4.4)235

where (=sinh(2:)-2: and �=cosh(2:)-1. We see that viscoelasticity enters at $ (De2), and236

constitutes a negative flow rate contribution. The full form of @/@ref for Z=1 is too long to237

be written here. Instead, we provide it in the supplementary Mathematica notebook. In the238

Newtonian limit (De=0), (4.2) reduces to Ψ0, which we have plotted in figures 2a and 2b for239
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the reduced (Z=0) and full (Z=1) form of (2.4b), respectively. In the former case, the flow240

pattern is cellular (figure 2a), and, in the latter, it is meandering (figure 2b).241

The leading-order solution Ψ0 can also be used to estimate the deflection of the liquid-gas242

interface ℎ′:244

ℎ′ = Ca

{

40 cosh(:)

( + 2:q�
−

402:Z cosh(2:) cos(:G + C)

(′ + 2: ′q�′

}

sin(:G + C), (4.5)245

where (′=sinh(2: ′)−2: ′ and�′=cosh(2: ′)−1, introducing : ′=2: . This relation is obtained246

by balancing the normal stress acting at our flat liquid-gas interface, H=1, with the capillary247

pressure jump of a deformable film surface, ℎ=1+ℎ′:248

? − 2mH3 − gHH = −Ca−1mGGℎ, (4.6)249

where we have neglected the gas stresses, then truncating at O(De0), and substituting the250

leading-order solutions for Ψ (4.3a) and for ? (4.7) into (4.6). The leading-order pressure,251

?0, is obtained by integrating (2.1c) in H-direction and (2.1b) in G-direction, after having252

applied (4.2), truncated, and substituted (4.3a):254

?0 = 24−2:H:2 sin(:G + C){4:H (�1 + �14
2:H) + 8Z cos(:G + C)(�3 + �34

4:H))}, (4.7)255

where, without loss of generality, we have assumed ?0(G=0, H=0, C)=0.256

Figure 2c represents the maximum displacement ℎ′max obtained from (4.5) versus the257

dimensional film height ℎ★
0
, demonstrating that our flat-surface assumption (mGℎ=mGGℎ=0)258

is valid within the physiological film thickness range ℎ★
0
=5-20 µm, for the largest cilia beat259

amplitude considered, i.e. 0★=5 µm.260

In the low-amplitude limit, we expand (4.2) in terms of n=0 and seek a solution for the261

time-averaged stream function Ψ(H). For Z=1, we obtain:262

Ψ(H) = 02
Ψ2(H) +$ (03), (4.8)263

Ψ2(H) =
(

�0 + �1H + �2H
2
)

42:H +
(

�0 + �1H + �2H
2
)

4−2:H +  1H +  2H
2,264

where the constants �8 , �8 , and  8 are given in appendix B. Based on (4.8), we obtain the265

normalized flow rate:266

@

@N

= 1 −
(1 − V)De2((2 + 6q:(�)

(1 + De2)(( + 2q:�)2
+$ (03). (4.9)267

In the no-slip limit q=0, (4.9) collapses with equation (26) in Lauga (2007), which predicts268

the normalized swimming speed*/*# of microorganisms represented as Taylor swimming269

sheets. In figure 3a, we have plotted the average mucus velocity D̄★=@★/ℎ★
0

based on (4.9)270

versus the cilia beat frequency 5★. The dot-dashed and dashed red curves correspond to271

viscoelastic mucus, assuming constant (dot-dashed) or frequency-dependent (dashed) values272

of �′ and �′′, based on experimental data of Hill et al. (2014). Comparing these curves,273

we may conclude that our approximation to neglect the frequency-dependence of �′ and274

�′′ is reasonable in the considered frequency range. The solid black curve in figure 3a275

corresponds to the Newtonian limit (De=0), where @★ increases linearly with 5★ (Blake276

1973; Sedaghat et al. 2016). The exact relation underlying this curve is @★=@★
N

=c0★2: 5★,277

which follows from (2.6) upon re-dimensionalizing with the scale UL=ℎ★2
0
l★.278

4.2. Direct numerical simulation279

We solve numerically the fully nonlinear governing equations (2.1)-(2.4) on a periodic280

domain using the academic code Basilisk, which employs the log-conform approach281
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Figure 3: Features of the flow within a viscoelastic mucus layer: HBE-5FC% mucus, ℎ★
0

=10 µm, Λ★=20 µm,

0★=1.6 µm, q★=10 µm. (a) Average mucus velocity D̄★=@★/ℎ★
0

. Solid: Newtonian limit, dot-dashed: based

on (4.9) with _=52 ms, V=0.1, dashed: based on (4.9) with frequency dependent _ and V according to
�′ and �′′ data in Hill et al. (2014), symbols: our DNS. Circles: ΔG=1/32, squares: ΔG=1/64, plus signs:
ΔG=1/128; (b) streamlines and contours of the trace tr(C) of the conformation tensor C=De g8 9+I based on

the Oldroyd-B model: _=52 ms, V=0.1, 5★=19 Hz, C=9c.

(López-Herrera et al. 2019) for resolving the constitutive relations (2.2). It is a pressure-282

based solver, and thus the Poisson equation for the pressure is solved instead of (2.1a) to283

enforce continuity (Popinet 2015), using the boundary conditions mH ? = 0 at H = 0 and (4.6) at284

H=ℎ, in the limit ℎ=1. The same code was recently used by Romano et al. (2021) to investigate285

the effect of viscoelasticity on airway occlusion, and validated versus several relevant286

benchmarks. The code relies on a finite-volume spatial discretization, using the second-287

order upwind Bell–Collela–Glaz advection scheme (Bell et al. 1989). Time discretization is288

implicit for diffusion and explicit for advection terms, and the time step is adapted according289

to a CFL criterion. Our DNS were typically performed on a uniform quadtree grid, with grid290

size ΔG=2−6=1/64, and the time step was limited by a lower bound ΔC=10−7. A typical DNS291

run took 5-18 hours on 8 CPUs to reach a fully developed state (after 3-10 periods).292

In figures 2a and 2b, we have included grid convergence results obtained with our DNS293

for the Newtonian reference case. Dashed blue curves correspond to a grid size of ΔG=1/64,294

and dotted black curves to ΔG=1/128. Agreement with our analytical predictions (solid red295

curves) according to (4.3a) is visually perfect for the fine grid and remains excellent for296

the reference grid. The same conclusion can be drawn from figure 3a, which confronts DNS297

using three different grids (symbols) with our low-amplitude asymptotic solution (dot-dashed298

curve) according to (4.9), for a viscoelastic mucus film.299

Figure 3b represents streamlines for one of our DNS from figure 3a. In the same plot,300

we have represented contours of the trace tr(C) of the conformation tensor C=Deg8 9+I301

based on the Oldroyd-B model, where I is the identity matrix. The quantity tr(C) allows to302

gauge the polymer extension associated with our flow field. We find that the maximum value,303

observed near the cilia-mucus interface, is tr(C)∼2.5, which implies a moderate fluid element304

extension relative to the Newtonian limit tr(C)=2. Thus, the Oldroyd-B model employed here305

is expected to behave well for our flow.306

In our problem, the mucus viscosities `s and `p intervene only via V. Thus, the total307

viscosity `=`s+`p can be chosen freely. For numerical convenience, we choose a low value308

`=1 mPa·s, allowing us to limit the viscous-diffusion time scale. The log-conform approach309

is an effective remedy against numerical instabilities associated with large values of De310

(Fattal & Kupferman 2005), and we have encountered no such instabilities in our DNS.311

However, in our simulations of HBE-5FC% mucus, we needed to increase V from its target312

value V=0.002 to V=0.1, because of the degeneracy of the constitutive relations (2.2) in the313
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Figure 4: Effect of slip length q and CBA 0 on the MCC flow rate of viscoelastic mucus: Λ★=20 µm.
(a) Effect of slip-length: De=3, V=0.1. Low-amplitude prediction (4.9). Dashed: q★=0, dotted: q★=2 µm,
dot-dashed: q★=5 µm, solid: q★=10 µm. (b) Effect of CBA: q=0, V=0.5, ℎ★

0
=10 µm. Dotted: based on low-

De prediction (4.3), dashed line: (4.9), symbols: DNS. Circles: 0★=1.6 µm, triangles: 0★=3 µm, squares:
0★=5 µm, diamonds: 0★=8 µm.

limit V → 0. We have checked via (4.9) that this change in V has no appreciable effect on the314

MCC flow rate.315

5. Results and discussion316

Our main results are presented in subsection 5.1, where we focus solely on the effect317

of viscoelasticity. In subsection 5.2, we will discuss the additional implications of shear-318

thinning, which is another non-Newtonian property of mucus.319

5.1. Role of viscoelasticity320

We seek to quantify the effect of mucus viscoelasticity on MCC by comparing the actual flow321

rate @ (2.5) to its Newtonian limit @N. For this, we characterize the ratio @/@N versus three322

control parameters of our problem, i.e. De, q, and 0. We start with figure 4 by establishing323

the effect of the slip length q and beat amplitude 0, in order to assess to what extent the no-324

slip low-amplitude theory of Lauga (2007) is applicable to the MCC problem studied here.325

Figure 4a shows predictions of @/@N based on our low-amplitude solution (4.9) for different326

slip lengths q and representative values of De and V. Firstly, we see that viscoelasticity can327

greatly reduce the MCC flow rate (@/@N<1). Secondly, this effect is much larger in the no-slip328

limit (long dashes) than for realistic values of q (solid curve). Thirdly, the no-slip limit cannot329

represent the @/@N variation in terms of the film height ℎ★
0
.330

Figure 4b represents the effect of the CBA 0 in the no-slip limit q=0 via DNS data331

(symbols). We see that @/@N becomes very small at the lowest CBA (circles, 0★=1.6 µm),332

which corresponds to CF conditions. The low-amplitude analytical prediction (4.9) (black333

dashed curve) is able to accurately capture this scenario versus the DNS (open circles).334

By contrast, a significant discrepancy is observed for the CBA corresponding to healthy335

conditions (diamonds, 0★=8 µm). Thus, the low-amplitude asymptotic expansion is not336

applicable in the entire physiological range of MCC, owing to potentially large values of337

CBA. The dotted curves in figure 4b represent our low-De solution (4.3). These show good338

agreement with the DNS for low values of De, but cannot predict the levelling off of @/@N339

with increasing De. The deviation from the DNS data sets in at lower values of De the larger340

0 becomes.341

We now turn to the MCC scenarios characterized in table 1. If not otherwise mentioned, we342

use ℎ★
0
=10 µm, q★=10 µm, and Λ

★=20 µm. Figures 5a and 5b represent DNS and analytical343

Rapids articles must not exceed this page length
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Figure 5: Viscoelasticity-induced flow rate reduction for mucus types from table 1: q★=10 µm, ℎ★
0

=10 µm,

Λ
★=20 µm. Symbols: DNS. Blue circles: HBE-2FC%, cyan triangles: HBE-3FC%, magenta squares: HBE-

4FC%, red diamonds: HBE-5FC%, dotted lines: (4.3), dashed lines: (4.9). (a) Versus Deborah number
De=_l★; (b) versus cilia beat frequency 5★. Dot-dashed lines (right ordinate): normalized swimming speed
*/*N of microorganisms according to Lauga (2007). Green/pink shaded regions mark frequency range for
MCC and microorganism propulsion, respectively.

predictions of @/@N for the four considered mucus types versus the Deborah number De and344

versus the cilia beat frequency 5★, respectively. In the case of healthy mucus (HBE-2 wt%,345

blue circles), which is characterized by a rather small relaxation time_, viscoelasticity reduces346

MCC only slightly (@/@#∼0.995 − 0.98) within the physiological frequency range 5★=5-347

20 Hz (green shaded region in figure 5b). This contrasts with the very significant reduction348

in the swimming speed * of non-ciliated microorganisms (dot-dashed blue curve), which349

operate at much greater frequencies ( 5★ > 80 Hz, pink shaded region) and do not experience350

slip, as predicted by the theory of Lauga (2007). We point out however that particular types of351

swimming motions and swimmer geometries can lead to a viscoelasticity-induced increase352

of the swimming speed (Riley & Lauga 2015; Angeles et al. 2021).353

In the case of mucus corresponding to CF conditions (HBE-5wt%, red diamonds in figure354

5), which displays a much greater relaxation time _, the MCC flow rate drops by as much355

as 30% versus the Newtonian limit. This is mainly due to the reduced CBA associated356

with CF conditions. Dashed curves in figure 5b represent our low-amplitude analytical357

prediction (4.9). Upon comparing these with our DNS data (symbols), we may conclude358

that the analytical prediction accurately captures @/@N in the MCC frequency range for the359

healthy mucus (circles) and for the most unhealthy mucus (diamonds). However, significant360

deviations are observed for the intermediate mucus types (triangles and squares).361

Next, we turn to the mechanism underlying the viscoelasticity-induced flow rate drop362

observed in figure 5. To this end, it is useful to reduce the problem to a simpler version363

by setting q=0 and Z=0 in (2.4b), which leads to D̄w=0. We have shown in figure 2a that364

the corresponding flow pattern in the Newtonian limit is cellular and symmetrical, and,365

consequently, @=@N=0. Adding viscoelasticity, which we now know to affect the flow rate @,366

will thus cause a topological change in the flow field.367

Figure 6a demonstrates via DNS data (symbols) that a similar flow rate reduction is368

observed for the reduced form of the wave function (2.4b), i.e. Z=0 (squares), as compared to369

the full form, i.e. Z=1 (circles). Further, the mucus flow rate @ becomes negative for Z=0, and370

this effect holds at arbitrarily low De. The effect is captured by our low-De solution (4.4),371

which is represented via a dotted blue curve in figure 6a. Figure 6b shows how viscoelasticity372

modifies the flow field in this limit, by plotting Ψ0 and Ψ2 according to (4.3). We see that373

the $ (De2) correction (dashed lines) causes a net flow to the left, which distorts the $ (De0)374

cellular flow pattern (solid lines) when superimposed on the latter. Figures 6c-6f display the375
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Figure 6: Change in flow topology within a viscoelastic mucus film under an increase of the cilia beat
frequency: HBE-5 FC% (see table 1), q=0, 0★=1.6 µm, Λ★=20 µm, ℎ★

0
=10 µm. (a) Normalized flow rate

for two forms of (2.4b). Circles: DNS for Z=1, squares: DNS for Z=0, dotted blue curves: low-De solutions
based on (4.3); (b) Ψ0 (solid) and Ψ2 (dashed) according to (4.3): De=0.1; (c-f) streamlines from DNS
corresponding to filled squares in panel a, showing the emergence of a negative meander (black lines)
sandwiched between clockwise (red lines) and anti-clockwise (blue lines) vortices, as De is increased. (c)
De=0.1; (d) De=0.5; (e) De=1; (f) De=2.
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Figure 7: Mechanism underlying the negative meander in figure 6: q=0, Z=0, ℎ★
0

=10 µm, Λ★=20 µm,

De=0.1. (a) Profiles of terms Ξ8 in the G-momentum equation (2.1b) evaluated at H=0, based on

our low-De solution (4.3), and their phase averages Ξ8 . Dashed: Ξ1=mGGD+mHHD, Ξ1=0.18, solid:

Ξ0=Ξ1 |De=0=mGGD
(0)+mHHD

(0) , Ξ0=0, dotted: Ξ2=mGgGG , Ξ2=0.004, dot-dashed: Ξ3=mHgHG , Ξ3=-0.16,

dot-dot-dashed: Ξ4=mG ?, Ξ4=0.024 (long dashes); (b) polymeric wall shear stress gVE
GH according to (5.1).

Solid: gVE
HG , gVE

HG =0.013 (dot-dashed), dashed: gres
HG , gres

HG=0.0003, dotted: gmem
HG , gmem

HG =0.0127.

total flow field obtained from DNS for the points marked by filled symbols in figure 6a. We see376

that viscoelasticity causes a negative meander (as opposed to the positive meander observed377

in figures 1b and 2b), which winds between the counter-rotating vortices and increases in378

thickness as De is increased (from panels 6c to 6f). This negative meander transports mucus379

in the direction of the metachronal wave, i.e. in the negative G-direction, and, thus, the wrong380

direction from the point of view of MCC. It is associated with the cos (:G + C) term in the381

wall velocity Dw (2.4b), and, in the full MCC problem (Z=1), it opposes the positive flow382

induced by the term with the form 02:/2.383

To unravel what causes the negative meander observed in figure 6, we analyze the different384

terms in the G-momentum equation (2.1b) evaluated at H=0, based on our low-De solution385
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(4.3) in the limit Z=q=0. Profiles of these terms, which we denote Ξ8 , are plotted in figure 7a,386

and their phase averages Ξ8 are given in the caption. The dashed blue curve represents387

the contribution of the solvent stresses Ξ1=mGGD+mHHD, which allows to gauge the degree388

of symmetry of the flow field. This curve is shifted toward positive values compared to389

the Newtonian limit Ξ0=Ξ1 |De=0=mGGD
(0)+mHHD

(0) (solid blue curve, Ξ0=0), i.e. its phase390

average is non-zero (Ξ1=0.18), indicating a viscoelasticity-induced loss of symmetry. This is391

mainly caused by the contribution of the tangential polymeric stress Ξ3=mHgHG (dot-dashed392

red curve, Ξ3=-0.16), the contributions of the normal stress Ξ2=mHgHG (dotted red curve,393

Ξ3=0.004) and the pressure Ξ2=mG ? (dot-dot-dashed black curve, Ξ2=0.024) being weaker.394

We focus next on the tangential polymeric stress at H=0:395

gHG
�
�
H=0

=
1 − V

V
mHD

(0)
�
�
�
H=0

+ De g
(1)
HG

�
�
�
H=0

+ De2 g
(2)
HG

�
�
�
H=0

︸                            ︷︷                            ︸

gVE
HG

+$ (De3), (5.1a)396

where gVE
HG is the viscoelastic contribution, which we decompose formally into a memory397

term gmem
HG , containing all time derivatives intervening through (2.2), and a residual term gres

HG ,398

containing all other contributions:399

gVE
HG ≡ gmem

HG + gres
HG . (5.1b)400

Figure 7b represents profiles of gVE
HG (solid black), gmem

HG (dotted magenta), and gres
HG (dashed401

green), and the corresponding phase averages are given in the caption. We see that gVE
HG is402

positive (dot-dashed black line, gVE
HG =0.013), which corresponds to a negative tangential stress403

acting on the mucus, and that this non-zero phase average is mainly due to the memory term404

(gmem
HG =0.0127). Thus, it is the memory terms in the viscoelastic constitutive relations (2.2)405

that causes a non-symmetrical stress distribution, breaking the symmetry of the cellular flow406

pattern observed in the Newtonian limit. We point out that gmem
GH contains time derivatives407

stemming from (2.2a) and (2.2c), due to the nonlinear terms in the upper-convected derivative.408

5.2. Additional role of shear-thinning409

It has been demonstrated by Jory et al. (2022) that mucus also exhibits a shear-thinning410

behavior over a considerable range of strain rate ¤W, which we quantify via the second411

principal invariant of the deformation tensor D:412

¤W = �GG�HH − �GH�HG , D = �8 9 =
1

2

{

mG8D 9 + mG 9
D8
}

, (5.2)413

G8 = [G, H]) , D8 = [D, 3]) , (5.3)414

where we have used Einstein notation. In figure 8a, we have reproduced the steady-state415

rheometry data (open circles) measured by Jory et al. (2022) via a viscosity ` versus ¤W plot.416

The green shaded region marks the range of ¤W observed in one of our MCC computations417

from section 5.1, for which figure 8b represents streamlines and ¤W contours. Based on these418

data alone, one would expect the shear-thinning nature of mucus to greatly affect MCC in419

our configuration. However, the extent of this effect depends on how shear-thinning enters420

the constitutive relations for the viscous stresses.421
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Figure 8: Additional effect of shear-thinning on MCC. (a) Steady-state stress-strain responses for constitutive
models according to table 2. Total mucus viscosity ` versus strain rate ¤W★ (5.2). Thin red curves: HBE-5FC%,
thick blue curves: HBE-2FC%. Circles: experimental data of Jory et al. (2022), dot-dashed: Carreau-Yasuda

model (5.6) with _=1 × 103 s, `0=200 Pa · s, `∞=0, <=2, ==0.15, solid: Oldroyd-B, dashed: single-mode
Giesekus, dotted: 5-mode Giesekus; (b) streamlines and contours of ¤W★ for parameters according to figure
3b; (c) corresponding low-De predictions of MCC flow rate for the three viscoelastic models from panel (a);
(d) corresponding MCC flow rate for Carreau-Yasuda model (5.6) from panel a. Squares: DNS, dot-dashed:
low-_ asymptotic solution, dashed/solid: Giesekus/Oldroyd-B predictions from panel (c).

Vasquez et al. (2016) have shown that a five-mode Giesekus model is required to capture422

quantitatively both the viscoelastic and shear-thinning behavior of mucus:423

3 =

#∑

<=1

3<, 3< + De<

[

∇
3< + U<

1 − V<

V<
3< · 3<

]

=
1 − V<

V<
D, (5.4a)424

∇
3< = mC3< + u · ∇3< − (∇u)) · 3< − 3< · ∇u, (5.4b)425

where # is the number of modes (#=5 for the 5-mode model), < is the mode index,426

De<=_<l
★, V<=`B/(`s + `

(<)
p ), and U<60.5 denotes the so-called mobility parameter.427

Here, we have used Gibbs notation for brevity, and the decoration ∇ denotes the upper-428

convected derivative. For #=1 and U=0, (5.4) reduces to the (single-mode) Oldroyd-B model429

(2.2), which is devoid of shear-thinning.430

The shear-thinning property of mucus is imparted by the U< term in (5.4). From the431

quadratic nature of this term, it is straightforward to show that it intervenes only at O(04)432

in a low-amplitude expansion of the governing equations. Thus, our result in (4.9) remains433

unaltered when using a (single-mode) Giesekus constitutive model (5.4). The equivalence of434

the Oldroyd-B and Giesekus models in the low-0 limit has been demonstrated by Lauga435

(2007), and we have confirmed it for our current configuration. As our low-amplitude436

predictions based on (4.9) in figure 5 (dashed curves there) agree very well with our DNS437

(symbols in figure 5) for the HBE-2 FC% (circles) and HBE-5 FC% (diamonds) mucus in the438

MCC frequency range, we may conclude that these results are unaffected by shear-thinning.439
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HBE # [V′
1
,. . . , V′

#
] [_1,. . . , _# ] (s) [U1,. . . , U# ]

5FC% 5 [64,32,3.2,0.3,0.03]×10−2 [521,201,51,0.06,0.03] [0.5,0.5,0.5,0.3,0.2]

2FC% 5 [9994,2,2,0.2,0.2]×10−4 [1453,1.85,1.2,0.91,10−5] [0.01,0.1,0.1,0.5,0.5]

5FC% 1 [0.998] [0.052] [0.5]

2FC% 1 [0.6] [0.003] [0.5]

5FC% 1 [0.998] [0.052] [0]

2FC% 1 [0.6] [0.003] [0]

Table 2: Parameters according to (5.4) for the constitutive models underlying curves in figure 8c, i.e. 5-mode

Giesekus, single-mode Giesekus, and Oldroyd-B models. The solvent viscosity is `B=1 × 10−3 Pa · s. All
other parameters have been fitted to the complex modulus data of Hill et al. (2014), listed in table 1, and the
shear-thinning rheology measured by Jory et al. (2022). The steady-state stress-strain responses of the three
models are plotted in figure 8a.

We now consider the low-De limit. For this, we assume _1>_< in (5.4), and define440

De<=Π<De, where De=_1l
★ and Π<=_</_1. This allows us to apply the regular perturba-441

tion expansion (4.2) using n=De. In the limit Z=0, we obtain:442

@

@ref

�
�
�
�
Z=0

= −De2
#∑

<=1

V′<Π
2
<

((2 + 6:q(�)

(( + 2:q�)2
+$ (De3), (5.5)443

where V′<=`
(<)
p /

(

`s+
∑#

<=1 `
(<)
p

)

. In the limit #=1, we obtain V′
1
=1 − V1, and (5.5) reduces444

to our solution (4.4) obtained from the Oldroyd-B model (2.2). This is because the mobility445

parameters U< do not enter (5.5), and, thus, shear-thinning plays no role, at least in the446

Z=0 limit, which was considered in figures 6 and 7. The U< do appear in the full analytical447

solution (Z=1), which is too long to reproduce here. Instead, we plot this solution in figure448

8c for parameters corresponding to HBE-2 FC% (thin blue curves) and HBE-5 FC% (thick449

red curves) mucus.450

All curves in figure 8c represent low-De predictions of @/@N for Z=1. Dotted and dashed451

curves correspond to the Giesekus model (5.4) with #=5 and #=1, respectively, and solid452

curves to the Oldroyd-B model (2.2). The associated rheological parameters, V′<, _<, and453

U<, are given in table 2. These were fitted to recover the complex moduli �′ and �′′ in table454

1 based on (3.1), and, in the case of the Giesekus model, additionally to recover the shear-455

thinning rheology measured by Jory et al. (2022), based on the material functions given in456

Bird et al. (1987). The steady-state ` versus ¤W relationships underlying the different curves457

in figure 8c are plotted in figure 8a using the same line styles. Whereas the total viscosity458

` is constant for the Oldroyd-B model (solid curves in figure 8a), the 5-mode Giesekus459

model (dotted curves in figure 8a) reproduces the shear-thinning behavior displayed by the460

experimental data (open circles).461

Comparing the dashed and solid curves in figure 8c, we may conclude that the shear-462

thinning nature of mucus does not significantly affect the MCC flow rate in the low-De limit.463

Thus, all our conclusions based on (4.3) in section (5.1) remain valid. This is due to the way464

in which shear-thinning enters the problem via (5.4), i.e. the U< term there is multiplied by465

De<. As a result, the shear-thinning property of mucus is enslaved to its viscoelastic nature.466

In that sense, the former effect is subordinate to the latter. In other words, shear-thinning467

only enters our MCC problem via viscoelasticity-induced perturbations of the flow field.468
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Of course, a final account of the role of shear-thinning requires full DNS based on the469

Giesekus model (5.4). In particular, this concerns the intermediate mucus types in figure 5,470

where neither the low-0 nor the low-De predictions accurately follow the DNS within the471

MCC frequency range. Such new DNS are outside the scope of our manuscript, as they would472

require substantially modifying the Basilisk solver to implement the Giesekus model (5.4).473

To emphasize the particular way in which shear-thinning enters the Giesekus model, we474

compare our results with predictions based on a generalized Newtonian description for a475

shear-thinning fluid. In this case, the mucus is purely viscous, and we choose the Carreau-476

Yasuda model (Carreau et al. 1979) to describe its viscosity:477

`( ¤W) = `∞ + (`0 − `∞)
[

1 + (_ ¤W);
] =−1

; , (5.6)478

where the relaxation time _ is not to be confused with an elastic relaxation time, `0 and `∞479

are the low- and infinite-strain-rate limits, and ;>0 and =<1 are adjustable parameters. We480

set `∞=0 and ;=2, and we fit _, `0, and = to the experiments of Jory et al. (2022), which481

yields the dot-dashed magenta curve in figure 8a.482

Figure 8d compares predictions of the MCC flow rate @ based on (5.6), as obtained483

from our own DNS (open squares) and a low-_ asymptotic solution (dot-dot-dashed black484

curve), with our low-De predictions based on the 5-mode Giesekus (dot-dashed red curve)485

and Oldroyd-B (solid red curve) models. In the case of the Giesekus model, shear-thinning486

amplifies (very slightly) the flow rate reduction caused by viscoelasticity. By contrast, an487

increase in flow rate is observed in the case of the Carreau-Yasuda model (@/@ref>1). At first488

sight, the latter observation seems to contradict the conclusions of Chatelin et al. (2017),489

who reported conditions where the MCC velocity is reduced due to shear-thinning. However,490

these authors also found that the shear-thinning effect is highly non-monotonic, and their491

figure 3 exhibits regions of parameter space where the MCC velocity is increased.492

6. Conclusion493

We have studied analytically and numerically the effect of viscoelasticity on MCC in a494

continuous force-free mucus layer, where momentum transfer from the beating cilia is495

modelled via the experimentally-validated Navier-slip moving-carpet boundary condition496

of Bottier et al. (2017a). In our continuum model, we have represented physiologically497

realistic conditions by appropriately choosing the mucus rheology (healthy and diseased498

conditions), cilia kinematics, and cilia density (which controls the slip length), based on499

literature data. We find that viscoelasticity can reduce the MCC flow rate by as much as 30%500

versus the Newtonian limit, under conditions representative of cystic fibrosis (CF), whereas501

no significant reduction is observed under healthy conditions. Moreover, the observed flow502

rate reduction is highly sensitive to the slip length and the cilia beat amplitude (CBA).503

Translating the data reported in this study into dimensional terms, our calculations predict504

a 90% reduction of the MCC flow rate under CF conditions versus a healthy configuration,505

i.e. the average mucus velocity drops from 24-61 µm /s for healthy mucus (0★=5-8 µm, HBE-506

2FC%) to 1.7 µm /s for CF mucus (0★=1.6 µm, HBE-5FC%). This is a result of two effects507

associated with respiratory illnesses: reduced CBA and increased viscoelasticity. The role of508

CBA is both direct (via the imparted mucus velocity) and indirect (via viscoelasticity).509

Thus, accurately predicting the effect of diseased conditions on CBA is an important510

modelling task. For example, in the case of CF, the PCL layer is depleted and so the cilia511

beat far into the viscoelastic mucus, reducing the CBA. Predicting this requires modelling512

the retro-action of mucus rheology on cilia kinematics. Very few studies have accounted513
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for such a retro-action. A promising route is the traction-layer model of Smith et al. (2007),514

which could be extended to account for a nonlinear viscoelastic rheology in the mucus layer.515

Our analytical solution in the low-amplitude limit, which extends the theory of Lauga516

(2007) by accounting for wall slip, accurately predicts MCC flow rates versus our DNS for517

healthy and unhealthy conditions. Such low-cost predictions could be highly useful in large-518

scale models of the pulmonary network (Filoche et al. 2015). On the other hand, our low-De519

asymptotic solution has allowed us to elucidate the mechanism of viscoelasticity-induced520

MCC flow rate reduction. We find that memory effects associated with the metachronal521

wave are responsible for this, explaining why earlier studies that did not account for522

metachronicity (Vasquez et al. 2016; Ortı́n 2020) did not observe any effect of rheology523

on the net mucus flow rate. In the case of microorganisms swimming in an unbounded fluid524

domain and modelled via Taylor’s swimming sheet approach, Riley & Lauga (2015) have525

shown that a waveform consisting of two superimposed counter-travelling waves can lead526

to a viscoelasticity-induced increase in the swimming speed. However, such a waveform527

has not been reported in the context of MCC. Our analytical asymptotic solutions in528

the low-amplitude and low-De limits are not significantly affected by the shear-thinning529

nature of mucus, which we have represented via a multi-mode Giesekus model following530

Vasquez et al. (2016); Sedaghat et al. (2022). This is because shear-thinning enters this model531

via a quadratic stress term that is enslaved to viscoelasticity. As a result, all our conclusions532

based on the Oldroyd-B model remain valid when the additional effect of shear-thinning is533

accounted for.534

Our continuum model can be extended in several ways. Firstly, the effect of an adjacent gas535

flow can be incorporated, in order to study the role of viscoelasticity in cough-induced536

clearance (Modaresi & Shirani 2022). Secondly, our model can be adapted to account537

for altered metachronicity, either due to gaps in the cilia carpet (Loiseau et al. 2020;538

Choudhury et al. 2021) or due to ciliary dyskinesia. Thirdly, the model can be modified539

to account for mucus secretion and occlusion in axisymmetric configurations (Halpern et al.540

2010; Romano et al. 2021). Finally, DNS based on the multi-mode Giesekus model would541

allow us to elucidate the role of shear-thinning for arbitrary CBA and De. For this, the542

Basilisk solver needs to be significantly modified.543

Acknowledgements. The authors thank the anonymous referees for their suggestions and for checking544

several of our derivations.545

Funding. The authors gratefully acknowledge funding provided by Labex LaSIPS at Université Paris-Saclay546
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Appendix A. Expressions intervening in the low-De solution (4.3)552

The coefficients �8 , �8 , �8 , and �8 appearing in (4.3a) are given by:553

�1 = −
0

( + 2:q�
, �1 =

04−: sinh(:)

: (( + 2:q�)
, �1 = −�1, �1 = �14

2: , (A 1)554

�2 =
1

2
02:, (A 2)555

�3 =
02: ′

4((′ + 2: ′q�′)
, �3 = −

02(1 − 4−2:′)

8((′ + 2: ′q�′)
, �3 = −�3, �3 = �34

2:′ , (A 3)556
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where we have introduced (=sinh(2:) − 2: , �=cosh(2:) − 1, (′=sinh(2: ′) − 2: ′, and557

�′=cosh(2: ′) − 1, with : ′=2: . The homogenous and particular solutions Ψ� (G, H, C) and558

Ψ% (G, H, C) in (4.3c) are:559

Ψ� (G, H, C) =�10H + �10H
2

560

+

6∑

==1

{

cos(=\)
(

4=:H (�1= + �1=:H) + 4
−=:H (�1= + �1=:H)

)}

, (A 4)561

Ψ% (G, H, C) =
∑

==1,2

3∑

?=0

(

42=:H �?=H
? + 4−2=:H�?=H

?
)

562

+
∑

==1,2

5∑

?=2

{

cos(=\)
(

4=:H.?=H
? + 4−=:H/?=H

?
)}

563

+ cos(\)
∑

==1,2

3∑

?=0

(

4 (2=+1):H&?=H
? + 4−(2=+1):H'?=H

?

)

564

+ cos(2\)
∑

==0,2,3

3∑

?=0

(

42=:H ?=H
? + 4−2=:H!?=H

?

)

565

+ cos(3\)
∑

==0,2

3∑

?=0

(

4 (2=+1):H�?=H
? + 4−(2=+1):H�?=H

?

)

566

+ cos(4\)

3∑

?=0

(

42:H"?H
? + 4−2:H#?H

? + -?H
?)

)

567

+ cos(5\)
∑

==0,1

3∑

?=0

(

4 (2=+1):H� ?=H
? + 4−(2=+1):H�?=H

?

)

568

+ cos(6\)

3∑

?=0

(

42:H$ ?H
? + 4−2:H%?H

?

)

, (A 5)569

570

where \=:G + C and !?0 = 0. The constants �8 9 , �8 9 , �8 9 , . . ., and "8 , #8 ,$8 , %8 , and -8 can571

be obtained in a straightforward manner via the method of undetermined coefficients. The572

fully substituted forms of Ψ� and Ψ% are given in the supplementary Mathematica notebook.573

Appendix B. Coefficients intervening in the low-amplitude solution (4.8)574

The coefficients contained in (4.8) are given by:575

�0 =
(1 − V)De2:

(

2: + 4−2: − 1
)

4
(

1 + De2
)

(( + 2:q�)2
, �1 = −

(1 − V)De2
(

42: − 1
)

:
(

4−2: (4: − 1) + 4−4:
)

8
(

1 + De2
)

(( + 2:q�)2
,576

�2 =
(1 − V)De24−4:

(

42: − 1
)2
:2

8
(

1 + De2
)

(( + 2:q�)2
, �0 = −

(1 − V)De2:
(

2: − 42: + 1
)

4
(

1 + De2
)

(( + 2:q�)2
577

�1 = −
(1 − V)De2

(

42: − 1
)

:
(

4: − 42: + 1
)

8
(

1 + De2
)

(( + 2:q�)2
, �2 = −

(1 − V)De2
(

42: − 1
)2
:2

8
(

1 + De2
)

(( + 2:q�)2
, (B 1)578

579
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 1 =
1

2
4−2:

[

− 8:q(�0: + �1(: − 1)) − 4�2(2(: − 2): + 1)q + 42:
(

4�0: (2:q + 1)580

− 2�1(4:q + 1) + 4�2q + �0: (8:q − 4) + 8�1:q + : + 4�2q − 2�1

)

581

− 444:
(

2: (�0: + �1(: + 1)) + �2(2: (: + 2) + 1)
)

q

]

,582

 2 =4−2:

[

2: (− (�0 + �1 + �2) : + �1 + 2�2) − �2 − 4
4:
(

2: (�0: + �1(: + 1))583

+ �2(2: (: + 2) + 1)
)
]

, (B 2)584

585

where we have once again used (=sinh(2:) − 2: and �=cosh(2:) − 1.586
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