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Abstract. Optimal control is a valuable tool for quantum simulation, allowing for the optimized preparation,
manipulation, and measurement of quantum states. Through the optimization of a time-dependent control
parameter, target states can be prepared to initialize or engineer specific quantum dynamics. In this
work, we focus on the tailoring of a unitary evolution leading to the stroboscopic stabilization of quantum
states of a Bose–Einstein condensate in an optical lattice. We show how, for states with space and time
symmetries, such an evolution can be derived from the initial state-preparation controls; while for a general
target state we make use of quantum optimal control to directly generate a stabilizing Floquet operator.
Numerical optimizations highlight the existence of a quantum speed limit for this stabilization process, and
our experimental results demonstrate the efficient stabilization of a broad range of quantum states in the
lattice.

Résumé. Le contrôle optimal est un outil précieux pour la simulation quantique, qui permet la préparation, la
manipulation et la mesure optimisée d’états quantiques. Par la variation optimale d’un paramètre de contrôle
dépendant du temps, des états cibles peuvent être préparés pour initialiser ou façonner des dynamiques
quantiques spécifiques. Dans ce travail, nous nous concentrons sur le façonnage d’une évolution unitaire
menant à la stabilisation stroboscopique d’états quantiques d’un condensat de Bose–Einstein dans un réseau
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optique. Nous montrons comment une telle évolution peut être dérivée de contrôles préparant l’état, pour
des états avec des symétries d’espace et de temps, puis nous nous consacrons à l’optimisation directe d’un
opérateur de Floquet stabilisant un état cible. Les optimisations de contrôle numériques mettent en évidence
l’existence d’une vitesse quantique limite pour ce processus de stabilisation, et nos résultats expérimentaux
montrent la stabilisation efficace d’une large gamme d’états quantiques dans le réseau.

Keywords. Quantum optimal control, Ultracold atoms in optical lattices, Bose–Einstein condensates, Stro-
boscopic stabilization.

Mots-clés. Contrôle optimal quantique, Atomes ultrafroids dans un réseau optique, Condensats de Bose–
Einstein, Stabilisation stroboscopique.
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1. Introduction

In any experimental platform that aims to perform quantum simulation, it is desirable to im-
plement a wide range of control capabilities, allowing for the preparation and detection of di-
verse quantum states, and the implementation of various dynamics [1]. Periodic modulation of
parameters, or Floquet engineering, is an expanding direction of research that seeks to broaden
the scope of quantum simulators, achieving effective Hamiltonians [2, 3], emulating dissipative
environments [4], or accessing synthetic dimensions [5].

Bose–Einstein condensates (BEC) are very-well suited to quantum simulation, owing to the
exquisite degree of control available in cold atoms experiments, and the possibility they offer
to manipulate the collective macroscopic wavefunction of the condensate. Cold atoms can be
placed in a wide range of potentials, an emblematic case being the periodic potentials generated
with optical lattices; an extensive review on atomic gases in periodically driven optical lattices
can be found in [6].

In previous work [7, 8], we have demonstrated how the external quantum state of a BEC in
a one-dimensional optical lattice could be optimally prepared in target states characterized by
their momentum wavefunction, or their phase space distribution. This relied on an optimal
modulation of a single parameter – the lattice position, derived from quantum optimal control
(QOC) theory [9]. QOC has been applied successfully to quantum systems in various contexts,
especially for quantum technology applications [10], the most closely related to this work being
quantum interferometry [11–14] and quantum simulation [15, 16] with cold atoms.

While our previous work aimed at preparing specific, non-stationary quantum states starting
from the ground state of the system, we extend in this work the scope of the optimal state-to-state
manipulation to address the optimal transfer between two non-stationary states of the system.
We focus on the optimized transfer of a non-stationary state to itself in a finite duration, i.e. the
stroboscopic stabilization of the state. This task effectively amounts to engineering an optimal
Floquet operator for which the state of interest is an eigenstate. It can be seen as a promising
new tool for the field of Floquet engineering, in which most studies only consider a periodic
modulation with a simple single-frequency shape. Note that related optimal control problems
have been recently formulated in the context of material science [17, 18] or to realize “undo”
operations on the internal state of cold atoms [19].
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Using a squeezed Gaussian state as a case study, we show how such an optimal “stabilizing”
Floquet operator may be derived from existing preparation controls by exploiting state symme-
tries, or can be obtained by a direct numerical optimization of the lattice phase modulation.
The optimization of the Floquet operator for different control durations reveals the existence of a
minimum time from which stroboscopic stabilization can be achieved. This minimum time can
be interpreted as a quantum speed limit [20, 21] to transform a quantum state into itself. Physi-
cally, it corresponds to the minimum duration required by the control to compensate for the free
dynamics of the system.

In the following, after introducing the experimental setup and the main tools of our QOC
protocol, we present experimental results, including full state reconstruction after a variable
number of Floquet periods, that demonstrate efficient state stabilization of our study case with
both methods. The control technique is then extended to states for which the absence of
symmetries requires a direct optimization of the Floquet operator.

2. Experimental setup and numerical algorithms

2.1. Experimental setup

Our experiments are performed on pure 87Rb BECs of typically 5·105 atoms obtained in an hybrid
trap formed by a crossed optical dipole trap and a magnetic quadrupole trap [22]. The BEC is
adiabatically loaded into a one-dimensional optical lattice created by two counter-propagating
laser beams along the x-axis, with a wavelength of λ= 1064 nm. Along the optical lattice axis, the
atoms experience the potential

V (x) =− s

2
EL cos

(
kLx +ϕ(t )

)+Vhyb(x), (1)

where kL = 2π/d = 2π/(λ/2) and EL = ħ2k2
L/2m (with ħ the reduced Planck constant and m

the atomic mass of 87Rb) are the wavenumber and the characteristic energy associated with
the lattice, respectively, with d the lattice spacing. The dimensionless depth of the lattice s is
calibrated for each experiment [23]. The hybrid trap potential Vhyb(x) is characterized by an
angular frequency of ωx = 2π× 10 Hz along the lattice axis. In what follows, we neglect this
contribution considering the short duration of a typical control ramp. Likewise, the dilute nature
of the BEC makes the impact of repulsive interactions on the lattice dynamics negligible. As
shown below, the dynamics are therefore governed, to a good approximation, by a Schrödinger
equation driven by the lattice potential.

The lattice phase ϕ(t ) sets the spatial position of the lattice over time, and is our control
parameter. It is varied by setting the relative phase between the drives of two acousto-optic
modulators controlling the lattice beams. Once loaded into the ground state of the optical lattice,
the BEC wavefunction subsequently evolves in the null quasi-momentum subspace and can be
written as a superposition of plane waves:

|Ψ〉 = ∑
ℓ∈Z

cℓ
∣∣χℓ〉 , (2)

with cℓ complex coefficients verifying
∑
ℓ |cℓ|2 = 1, and

∣∣χℓ〉 the momentum eigenstate with
eigenvalue ℓħkL (χℓ(x) = e iℓkL x /

p
d). At the end of an experiment, all traps are turned off and

the atoms fall for a time-of-flight of 35 ms, allowing us to access the final in-trap momentum
distribution. An absorption image of the atomic distribution after time-of-flight yields equally-
spaced diffraction orders from which we extract the populations |cℓ|2.
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2.2. Quantum optimal control (QOC) algorithm

The design of the control field follows the strategy presented in [7]. A piecewise constant phase
ϕ(t ) = {ϕ(0),ϕ(∆t ), . . . ,ϕ((N −1)∆t )} is optimized to prepare a desired target state

∣∣Ψtg
〉

from an
initial state |Ψ0〉 within an optimal control time toc = N∆t in a lattice with constant depth s.
Typically ∆t ≃ 250ns and we use 400 phase values. To determine the piecewise phase values, we
apply a gradient based optimal control algorithm either of first or second order [24] to iteratively
maximize the figure of merit F , which is given by the usual quantum fidelity F = |〈Ψ(toc)

∣∣Ψtg
〉 |2,

where |Ψ(toc)〉 is the state obtained from the numerical evolution of |Ψ0〉 in a lattice with the
phase modulation ϕ(t ).

The optimization is performed considering the lattice potential only, and the dynamics is
governed by the Hamiltonian (in dimensionless units x̃ = kLx, p̃ = p/ħkL):

H̃ = H/EL = p̃2 − s

2
cos

(
x̃ +ϕ(t )

)
. (3)

From this general procedure, we derive preparation ramps, where the initial state |Ψ0〉 is the
ground state of the lattice, as well as stabilization ramps for which |Ψ0〉 =

∣∣Ψtg
〉

. The control
duration is chosen to be of the order of the period T0, which is the inverse of the transition
frequency between the two lowest lattice energy bands at null momentum for the considered
depth s (T0 ≃ 60µs at s = 5). This choice results from a compromise: for shorter times, the atomic
state does not have time to evolve under the lattice dynamics, and the algorithm cannot converge
toward sufficient fidelity (we generally consider the optimization converged when the fidelity
crosses the threshold F > 0.995); for very long control times, the algorithm reaches numerical
fidelities very close to 1, but experimental fluctuations or imperfections can have a detrimental
impact on the actual outcome.

2.3. State reconstruction

Once a state has been prepared using a QOC ramp, a maximum likelihood reconstruction
algorithm can be used to characterize the prepared state. In particular, we can thus verify its
experimental fidelity to the target state and its purity. The state reconstruction is performed
following the procedure presented in [8].

The algorithm uses supplemental measurements of the time evolution of the prepared state,
held after preparation in a static lattice of fixed depth, and determines from these measurements
the density matrix ρ̂ML maximizing the likelihood function L , ρ̂ML = arg max{L [ρ̂]}. The
likelihood is defined as

L
[
ρ̂
]=∏

ℓ,t
π

fℓ,t

ℓ,t ,

where the experimental measurements fℓ,t = 1
Nt

|cℓ(t )|2 measure the fraction of atoms in the
momentum order ℓ at time t , with Nt the number of equally spaced time steps. The the-
oretical measurement probabilities πℓ,t = Tr{ρ̂Êℓ,t } are associated with the operators Êℓ,t =

1
Nt

Û †(t , toc)
∣∣χℓ〉〈

χℓ
∣∣Û (t , toc), where Û (t , toc) is the evolution operator in the static lattice be-

tween times toc and t , which altogether form a positive operator-valued measure (POVM).
The likelihood maximization algorithm [25,26] iteratively transforms a density matrix, initially

chosen proportional to the identity, until it converges toward a fixed point, which is ρ̂ML. For the
results presented in this article, we apply the optimal control and then sample, after preparation,
the evolution of the momentum distribution in the static lattice with ϕ = 0 and same depth s,
considering the plane-wave components with |ℓ| ≤ 4, over a total time of 100µs with a time step
of 5µs (Nt = 21). Once ρ̂ML is determined, the fidelity of the experimental preparation to the
numerically expected state Fexp = 〈Ψ(toc)| ρ̂ML |Ψ(toc)〉 and the purity of the reconstructed state
γ= Tr(ρ̂2

ML) can be calculated.
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Figure 1. Flip-Flop stroboscopic stabilization. The target state is a Gaussian state cen-
tered at the origin of the phase-space of each lattice cell with a squeezing of ξ = 0.5. The
control time is toc = 0.86T0. (a) Numerical evolution of the momentum distribution. The
initial state is prepared from optimal control with a ramp yielding a numerical fidelity
F = 0.996 in a lattice of dimensionless depth s = 6.01. The first five momentum distribu-
tions show the evolution over one period (corresponding to 2toc as the stabilization ramp
consists in one reverse preparation then one preparation each of duration toc). The fol-
lowing momentum distributions, measured for an integer number of stabilization periods
demonstrate efficient stabilization up to ten periods. (b) Experimentally measured evolu-
tion of the momentum distribution in the same conditions as (a), with s = 6.01±0.07. (c)
Husimi representation of the initial state, as obtained numerically using the optimal prepa-
ration ramp, with fidelity of F = 0.997 at s = 5.8 (matching the experimental conditions of
(d)). (d-g) Husimi representations of the experimentally reconstructed stabilized state at
different times. (d) is the reconstructed initial state,(e-g) are the reconstructed Husimi dis-
tributions for 1, 5 and 10 periods respectively. The corresponding figures of merit (fidelity
and purity) are given in Table 1.

3. Stabilization using space and time symmetries

We choose first, as a case study for
∣∣Ψtg

〉
a squeezed Gaussian state

∣∣g (x0, p0;ξ)
〉

centered in
the phase-space of one lattice cell. The squeezing parameter ξ quantifies the reduction of the
position standard deviation ∆x = ξ∆x0 where ∆x0 = k−1

L s−1/4 is the non-squeezed standard
deviation at a given depth s (approximately the width of the lattice ground state). In the null
quasi-momentum subspace, this Gaussian state can be expressed on the plane-wave basis as:∣∣g (x0, p0;ξ)

〉= ∑
ℓ∈Z

cℓ
(
x0, p0;ξ

)∣∣χℓ〉,

where the coefficients are given by

cℓ
(
x0, p0;ξ

)= (
2ξ2

π
p

s

)1/4

e i x0p0/2e−iℓx0 e−ξ
2(ℓ−p0)2/

p
s . (4)
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We henceforth consider a state with parameters (x0, p0;ξ) = (0,0;0.5) for our case study.
We can first determine with our QOC algorithm a control ϕ(t ) that prepares a state |Ψ(toc)〉,

with a numerical fidelity F > 0.995 to the Gaussian target state
∣∣Ψtg

〉
, starting from the ground

state |Ψ0〉 of the lattice with a depth s ≃ 6, and in a control time toc. Note that this preparation
would be difficult to achieve by other means. As a Gaussian state at the bottom of the lattice well,
this squeezed state is analogous to the ground state of a lattice with an effective depth seff = s/ξ4 ∼
100. This state is technically inaccessible through adiabatic ground state preparation, as it would
require too high laser intensities. Moreover, once prepared in the lattice of depth s, this state is
highly non-stationary and the question of its stroboscopic stabilization then naturally arises.

In a first approach, one can try to reuse the preparation ramp from the ground state, exploiting
the state symmetries. Let Û be the evolution operator generated by the piecewise constant phase
ϕ(t ) (such that in the ideal case Û |Ψ0〉 =

∣∣Ψtg
〉

) and Π̂ and Θ̂ denote the parity and time-reversal
operators, respectively. Then from the properties of the Hamiltonian (3), it can be shown that
the propagator given by the opposite control, −ϕ(t ) = {−ϕ(0),−ϕ(∆t ), . . . ,−ϕ((N −1)∆t )} is Π̂Û Π̂,
and the one given by the time-reversed modulation, ϕflip(t ) = {ϕ((N − 1)∆t ), . . . ,ϕ(∆t ),ϕ(0)} is
Θ̂Û †Θ̂. These transformed controls can then be combined to stabilize

∣∣Ψtg
〉

, depending on its
symmetries, with two main cases (see Appendix A for more details):

• if both |Ψ0〉 and
∣∣Ψtg

〉
exhibit time-reversal symmetry of the wavefunction, Θ̂ |Ψ〉 = |Ψ〉,

one finds: ∣∣Ψtg
〉= Θ̂ ∣∣Ψtg

〉 Θ̂Û †Θ̂−−−−→ Θ̂ |Ψ0〉 = |Ψ0〉 Û−→ ∣∣Ψtg
〉

(5)

which means that a concatenated piecewise control ϕT = [ϕflip(t ),ϕ(t )] stabilizes the
state

∣∣Ψtg
〉

. States with this symmetry can be described by a real wavefunction Ψ∗(x) =
Ψ(x), and their Husimi representation (see Eq. (7) below) is symmetric with respect to
the x-axis in phase space.

• if both |Ψ0〉 and
∣∣Ψtg

〉
exhibit a combined time-reversal and parity symmetry of the

wavefunction, Θ̂Π̂ |Ψ〉 = |Ψ〉 (or equivalently Π̂ |Ψ〉 = Θ̂ |Ψ〉), one finds:∣∣Ψtg
〉= Θ̂Π̂ ∣∣Ψtg

〉 Θ̂Π̂Û †Π̂Θ̂−−−−−−→ Θ̂Π̂ |Ψ0〉 = |Ψ0〉 Û−→ ∣∣Ψtg
〉

(6)

which means that a concatenated piecewise control ϕT = [−ϕflip(t ),ϕ(t )] stabilizes the
state

∣∣Ψtg
〉

. States with this symmetry can be described by a wavefunction that verifies
Ψ∗(x) =Ψ(−x), and their Husimi representation is symmetrical about the p-axis in phase
space.

For the squeezed Gaussian state that we have chosen, prepared from the ground state, both∣∣Ψ0,tg
〉

have time-reversal symmetry. Therefore, given the preparation control ϕ(t ), the flip-flop
control ϕT = [ϕflip(t ),ϕ(t )] allows us to stabilize the state with a period T = 2toc.

Table 1. Figures of merit obtained from the reconstruction of the squeezed state stabilized
with a flip-flop phase ramp (see Figure 1).

Figure 1 d e f g
Fexp 0.96 0.97 0.82 0.86
γ 0.93 0.97 0.8 0.83
s 5.8±0.06 5.91±0.05 5.84±0.06 5.74±0.05

In Figure 1, we present the experimental results for such a stabilization approach based on
a preparation ramp for the squeezed state

∣∣g (0,0;0.5)
〉

in a control time toc = 0.86T0. The
target state is initially prepared by optimal control, then a series of stroboscopic stabilization
controls are applied, during which measurements are taken to characterize the system evolution.
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Panels (a-b) show the numerical and experimentally measured time evolution of the plane-wave
populations, respectively. The first five images depict the evolution over one period T = 1.72T0:
as expected, we recover the ground state distribution at the intermediate time t/T = 0.5. At
this time, the reversed control ϕ(−t ) has effectively undone the preparation. At t/T = 1, the
distribution is similar to the first image, representing a momentum distribution of a state close
to the target.

The density matrix of the state obtained after a varying number of periods of stroboscopic
stabilization is reconstructed (see Section 2.3) to characterize the state purity and its fidelity to
the target during the stabilization process. The resulting Husimi distributions of the maximum-
likelihood density matrices

Q[ρ̂ML](x, p) ≡ 1

2π

〈
g

(
x, p;1

)∣∣ρ̂ML
∣∣g

(
x, p;1

)〉
(7)

can be computed and represented on the phase space of a lattice cell. Figure 1(c) shows the
Husimi distribution of the prepared numerical state obtained using ϕ(t ), while (d-g) represent
the distributions deduced from experimental reconstructions for t/T = 0,1,5 and 10 periods.
Although the Husimi distributions exhibit some small variations compared to the prepared state,
they remain very similar stroboscopically, demonstrating the efficient stabilization of the highly
non-stationary Gaussian squeezed state. We quantify the efficiency of the stabilization process
from the fidelity to the numerically prepared state, and the purity of the reconstructed state (see
Table 1), and these quantities are larger than 0.8 for all the measurement times considered. In
order to account for small fluctuations of the experiment, the lattice depth was systematically
re-calibrated for each panel presenting experimental data, and the control ramps slightly re-
optimized. Specific lattice depth values are therefore also indicated in Table 1.

4. A generic optimal stabilization scheme

The previous use of symmetry allows a stroboscopic stabilization, but only for a fraction of
accessible states. In the general case, where the target state does not necessarily have any time-
reversal or parity symmetry, we can resort to optimal control for a direct search of a stabilizing
control. Using our QOC protocol (see Section 2.2) we search for an optimal phase modulation
that transforms the target state into itself in a finite fixed control time toc. From this control
procedure, the state of the system is allowed in principle to explore the full Hilbert space, and
this target-to-target approach does not require the system to reach any specific state, with a
given symmetry, at half-period. The control is thus expected to be shorter because of the single
constraint to satisfy, as opposed to the concatenated control presented above, which effectively
imposes two constraints in a stabilization period.

In Fig. 2(a), we compare the stroboscopic fidelity after one period obtained from the optimal
(numerical) phase control, as a function of total control time, for both flip-flop and target-to-
target methods, to stabilize the out-of-equilibrium state

∣∣Ψtg
〉 = ∣∣g (x0 = 0, p0 = 0;ξ= 0.5)

〉
in a

lattice of depth s = 5.5. This result is also compared to the fidelity obtained from a free evolution
in the static lattice potential. One can first notice that for the state and depth studied here, a
“revival” of the state occurs in the free evolution in the lattice, at around 1.75T0. This is an
accidental phase synchronization of the lattice eigenstates decomposing the target state. This
phenomenon is neither generic, nor periodic (as opposed e.g. to what would happen in an
harmonic oscillator), and there is no certainty on the time at which it may occur or the value of
the stroboscopic fidelity that may be reached this way for other depth and squeezing parameters.

Both approaches of optimal control achieve a better fidelity more reliably. One observes
that, for very short control durations, both methods fail to achieve a better result than the free
evolution in a static lattice: this highlights that there is a minimum time related to the natural
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Figure 2. Direct target-to-target stabilization and minimum time. (a) Numerical com-
parison of the performance of the flip-flop and target-to-target methods with the evolution
in a static lattice: optimal numerical fidelity for stabilization over one period, depending on
the control time toc, starting from

∣∣Ψtg
〉 = ∣∣g (x0 = 0, p0 = 0;ξ= 0.5)

〉
for s = 5.5. The black

line is the evolution of the state in the static lattice (ϕ(t ) = 0), the red squares are the result
of an optimized preparation and flip-flop stabilization and the green circles are the result of
optimal target-to-target stabilization. (b) The optimal phase modulation ϕ⋆(t ) obtained to
prepare the squeezed Gaussian state from itself for a depth s = 5.92 with fidelity F > 0.995
during the minimum time control T⋆ = 0.86T0. (c) (resp. (d)) Numerical (resp. experimen-
tal) evolution of the momentum distribution after preparation of the initial state, using the
phase ramp plotted in (b) to hold the state stroboscopically during ten periods in a lattice
of depth s = 6.04±0.06. The first five momentum distributions show the evolution over one
period, and the following ones demonstrate efficient stabilization up to ten periods. (e)
Numerical Husimi representation of the initially prepared state obtained using an optimal
ramp, with fidelity F = 0.995, for a depth s = 5.94. (matching the experimental conditions
of (f)). (f-i) Husimi representations of the reconstructed stabilized state at different times.
(f) is the experimental reconstructed initial state,(g-i) are the reconstructed Husimi distri-
butions for 1, 5 and 10 periods respectively. The corresponding figures of merit are given
Table 2.
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dynamics of the system below which optimal control cannot be achieved. In other words, for such
short times the phase modulation cannot compensate the field-free evolution of the system. This
originates from the inertia of the atoms in the lattice, and happens below a timescale of order T0

(which scales as T0 ∼ 1/(
p

2sνL) for s large, with νL = EL/h the lattice characteristic frequency).
As expected, we then see that the target-to-target method yields fidelities larger than 0.995 for
shorter control times (< T0) compared to the flip-flop method. A time control of T⋆ = 0.86T0 is
enough for this threshold, and almost twice the duration is required with the flip-flop method. In
an intermediate regime, the flip-flop method may even perform worse than the free evolution, as
only the preparation ramp is optimized.

Figure 2(b) shows the stabilization ramp obtained for a time T⋆ and (c) (resp. (d)) the
corresponding numerical (resp. experimental) evolution after preparation of the state with a
distinct control ramp at t = 0 and the following periodic application of the stabilization control.
As in the previous case, the state can be reconstructed during the evolution, after a variable
number of periods t/T⋆ = 0,1,5,10, and the results are presented in Figure 2(e-i). The figures
of merit from these reconstructions are listed in Table 2: fidelities of the prepared state are always
greater than 0.9, and the purity of the reconstruction higher than 0.88.

In obtaining a control ramp that stabilizes the squeezed Gaussian state, we effectively engineer
a Floquet unitary operator for which this state is (to a good approximation) an eigenstate.
Residual variations on the experimental data can be interpreted as originating from interferences
with small amplitudes on Floquet states with different quasi-energies1.

The optimal control search highlights the existence of a minimum time T⋆ for which the
stabilization can be achieved. A quantum speed limit can thus be defined for this complex
control problem [20, 21], here more precisely for the exact transfer of a delocalized state of the
lattice to itself. This minimal time is close to the natural timescale of the dynamics, as the control
inherently depends on the inertial behavior of the atoms in the lattice, a scaling also found in
other quantum brachistochrone problems 2 [27].

Table 2. Figures of merit obtained from the reconstruction of the squeezed state stabilized
with a target-to-target phase ramp (see Figure 2).

Figure 2 f g h i
Fexp 0.98 0.97 0.92 0.91
γ 0.98 0.97 0.89 0.88
s 5.94±0.06 5.93±0.09 6.03±0.07 6.08±0.07

1If the maximum overlap of the target state with a Floquet state
∣∣φ0

〉
is smaller than 1, |〈Ψtg

∣∣φ0
〉 |2 = 1−η, η≪ 1, the

target state can be written
∣∣Ψtg

〉=√
1−η ∣∣φ0

〉+p
η

∑
k>1 ck

∣∣φk
〉

, with {
∣∣φk

〉
} the Floquet states of the evolution operator

with quasi-energies ϵk , and the state after an evolution of n periods T can be written as:

|Ψ(nT )〉∝√
1−η ∣∣φ0

〉+p
η

∑
k >1

ck e−i(ϵk−ϵ0)nT ∣∣φk
〉

2This minimum time can be compared to an estimation of the lower bound that is independent of the specific shape
of the control parameter ϕ(t ), such as, e.g., the Mandelstam and Tamm derivation [20]. Using in first approximation the
fact that the control has time reversal symmetry, this bound can be roughly estimated as

TQSL = 2ħarccos
(∣∣〈Ψtg

∣∣Ψ(
T⋆/2

)〉∣∣)
∆H

where the standard deviation ∆H = (〈H2〉−〈H〉2)1/2 is a time-averaged value over the control duration. In the case of
Figure 2, we obtain TQSL ≃ 0.15T0. This is indeed smaller than T⋆ = 0.86T0, but it highlights the impact that the detailed

dynamics can have on the limits of the control.
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Figure 3. Other stroboscopic stabilizations. (a) Numerical Husimi representation of an
initial Gaussian state with squeezing ξ = 0.5 centered on x0 = 0, p0 = p

s/2 in the phase-
space, obtained using an optimal ramp with fidelity F > 0.995, for s = 5.84. (b) Corre-
sponding experimental stabilization during ten periods (T = 1.5T0), in a lattice of depth
s = 5.84±0.08. (c) Numerical Husimi representation of an initial superposition of two non-
squeezed Gaussian states centered in x0 = ±π/2, p0 = ±ps in the phase-space, obtained
using an optimal ramp with fidelity F > 0.995, for s = 5.8. (d) Corresponding experimental
stabilization during ten periods (T = 0.86T0), in a lattice of depth s = 5.8±0.07.

Finally, the direct target-to-target control method allows for the stabilization of states that
do not exhibit specific symmetries. This is demonstrated by the results shown in Figure 3:
a first considered target state is a Gaussian state with squeezing ξ = 0.5, centered at x0 =
0 and p0 = p

s/2. The associated Husimi distribution is represented in panel (a), and the
experimental results over ten periods for T = 1.5T0 are presented in (b). The measurements
show that the distribution remains nearly identical over the observation times. Similarly, a state
corresponding to a superposition of two non-squeezed Gaussian states

∣∣g (±π/2,±ps;1)
〉

, for
which the preparation ramp cannot be re-used, is represented in (c). The experimental results
for stabilizing this state with a period T = 0.86T0 are shown in (d). Once again, the distribution
remains quasi-stationary at stroboscopic times, demonstrating the efficiency of our stabilization
method.

5. Conclusion

In this work we have presented how quantum optimal control can achieve the stroboscopic
stabilization of quantum states, in the context of a Bose–Einstein condensate in an optical lattice
potential. An optimal control ramp can be derived from a state preparation ramp under certain
conditions of symmetry, otherwise a direct optimization is possible. In the latter case, numerical
calculations show a smooth transition, as a function of the control time, from a regime where the
control cannot be optimized to a regime of efficient state stabilization, highlighting the existence
of a minimal time or quantum speed limit. Our experimental results demonstrate the efficiency
of the protocol for the stabilization of a variety of states.

In the continuation of these results, an interesting perspective is to further characterize the
quantum speed limit and the corresponding solutions: we indeed observe that while several
controls perform equivalently when the control time is long, the optimization for the minimum
time T⋆ mostly converges to a unique control shape, with an apparent time-reversal symmetry
(see Figure 2(b)), in spite of the latter not being a constraint. This work could also be extended to
the simultaneous stabilization of several Floquet states, or a Floquet subspace with a degenerate
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quasi-energy. This latter extension has the advantage of stroboscopically stabilizing any state
of this subspace. Through this approach, the search of effective Hamiltonian [3] can be re-
framed as the optimization of the evolution of states: as an example, in the case of driven ratchet
transport in a modulated lattice [28], the transport of the lattice ground state can be directly
optimized, rather than depend on the variation of parameters of a harmonic modulation. Finally,
similar optimization methods can readily be applied in the presence of non-negligible mean-
field interactions, to stabilize specific nonlinear solutions (such as Thomas-Fermi profiles) [29].
In that case however, the non-applicability of Floquet’s theorem means there is no guaranteed
lower-bound on the stroboscopic fidelity, and in some circumstances the long-term evolution
may exhibit chaotic and unstable behavior with respect to small changes in the stabilizing ramps.

Appendix A. Evolution under time and parity-reversed controls

We denote by Π̂ the parity operator, the linear operator defined by its action in the position or
momentum bases:

Π̂ |x〉 = |−x〉 , Π̂
∣∣p〉= ∣∣−p

〉
.

It is its own inverse, and its action on the position and momentum operators is given by:

Π̂X̂ Π̂=−X̂ , Π̂P̂Π̂=−P̂ .

From the definition of the Husimi distribution (7), a density matrix invariant under the action of
parity Π̂ρ̂Π̂= ρ̂ has a Husimi distribution with central symmetry.

From the Hamiltonian (3), the action of parity corresponds to a change of ϕ(t ) into −ϕ(t ).
Therefore we can deduce the action of parity on the evolution operator corresponding to the
piecewise constant phase ϕ(t ) = {ϕ(0),ϕ(∆t ), . . .ϕ((N −1)∆t )}:

Π̂Û [ϕ(t )]Π̂= Π̂
N−1∏
j=0

exp
(
−i ̂̃H [

ϕ( j∆t )
]
∆t

)
Π̂

=
N−1∏
j=0

Π̂exp
(
−i ̂̃H [

ϕ( j∆t )
]
∆t

)
Π̂

=
N−1∏
j=0

exp
(
−i ̂̃H [−ϕ( j∆t )

]
∆t

)
= Û [−ϕ(t )]

Likewise, we denote by Θ̂ the time reversal operator, the anti-unitary operator which can be
defined by its action on the wavefunction for the external degree of freedom:

〈x|Θ̂ |Ψ〉 = 〈Ψ|x〉∗ ,

corresponding to complex conjugation. The position and momentum operators are transformed
as:

Θ̂X̂ Θ̂= X̂ , Θ̂P̂Θ̂=−P̂ .

From the definition of the Husimi distribution (7), a density matrix invariant under time rever-
sal Θ̂ρ̂Θ̂ = ρ̂ has a Husimi distribution with axial symmetry with respect to the x-axis. Further-
more the Husimi distribution of a state exhibiting the combined parity-time reversal symmetry
Θ̂Π̂ρ̂Π̂Θ̂= ρ̂ has an axial symmetry with respect to the p-axis.
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The operator Θ̂ is its own inverse, and leaves the control Hamiltonian (3) invariant. However
due to the antilinearity of Θ̂, its action on the evolution operator corresponding to the piecewise
constant phase ϕ(t ) = {ϕ(0),ϕ(∆t ), . . .ϕ((N −1)∆t )} is:

Θ̂Û [ϕ(t )]Θ̂= Θ̂
N−1∏
j=0

exp
(
−i ̂̃H [

ϕ( j∆t )
]
∆t

)
Θ̂

=
N−1∏
j=0

Θ̂exp
(
−i ̂̃H [

ϕ( j∆t )
]
∆t

)
Θ̂

=
N−1∏
j=0

exp
(
i ̂̃H [

ϕ( j∆t )
]
∆t

)
= Û †[ϕflip(t )]

We can conclude from the preceding results that:

• the application of the time-reversed phase control ϕflip(t ) yields an evolution operator
Û [ϕflip(t )] = Θ̂Û †[ϕ(t )]Θ̂,

• the application of the time-reversed phase control with the opposite sign −ϕflip(t ) yields
an evolution operator Û [−ϕflip(t )] = Θ̂Π̂Û †[ϕ(t )]Π̂Θ̂,

both results being used in the main text.
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