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LMI conditions for k-contraction analysis:
a step towards design

Samuele Zoboli1, Andreu Cecilia1,2, Ulysse Serres1, Daniele Astolfi1, Vincent Andrieu1

Abstract—Recently, k-contraction has been proposed as a
generalization of contraction properties for nonlinear time-
variant systems. Existing tools for k-contraction analysis exploit
complex mathematical tools known as matrix compounds. This
prevented the development of related design methodologies. In
this paper, we link k-contraction properties to partial stability
analysis tools. This leads to new, design-oriented sufficient
conditions for k-contraction analysis which do not involve
matrix compounds. We also show that such sufficient conditions
are necessary for the linear time-invariant framework. Finally,
we compare our results to existing methods and highlight their
advantages.

I. INTRODUCTION

Contraction theory is an emerging topic that has been used
in numerous applications, such as observer design [1], multi-
agent system synchronization [2], [3] and controller design
[4]–[8]. Nonetheless, many systems cannot present classical
contractivity properties, e.g. multi-stable systems [9]. This
motivated the study of suitable generalizations. Some no-
table examples are horizontal contraction [10, Section VII],
transversal exponential stability [11] and p-dominance [12],
[13]. Motivated by the results of Muldowney [14], recent
works presented the notion of k-contraction [15], which gen-
eralizes the classical concept of shrinking distances between
system trajectories to contraction of volumes. As such, k-
contraction includes classical contraction as the special case
k = 1. For k > 1, this property can be used to analyze
asymptotic behavior of systems that are not contractive in the
classical sense. For example, for 2-contractive time-invariant
systems, every bounded solution converges to an equilibrium
point (not necessarily unique).

Existing sufficient conditions for k-contraction are given
in terms of a particular matrix compound of the Jacobian of
the vector field dynamics [14], [15]. Although these condi-
tions are adequate for system analysis, their application for
feedback design is limited. First, matrix compounds rapidly
explode in dimension for low value k and systems of large
dimension. This fact drastically increases the computational
complexity of potential feedback design algorithms. Second,
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the use of matrix compounds tools prevents transforming the
feedback design into a tractable LMI problem. Consequently,
a k-contractive design methodology has yet to be developed.

Considering these limitations, this work presents alter-
native design-oriented conditions for k-contraction that do
not rely on matrix compounds but rather on simple matrix
inequalities on the given system dynamics. Moreover, the
connections between k-contraction, horizontal contraction
and p-dominance [12], [13] are discussed.

Notation: R+ := [0,∞) and N := {0, 1, 2, . . .}. Given
x ∈ Rn, y ∈ Rm, we set (x, y) := (x⊤, y⊤)⊤. The
operation

(
n
k

)
:= n!

k!(n−k)! depicts the binomial coefficient,
with n! denoting the factorial of n ∈ N. The inertia of a
matrix P [16, Definition 2.1] is defined by the triplet of
integers In(P ) := (π−(P ), π0(P ), π+(P )), where π−(P ),
π+(P ) and π0(P ) denote the numbers of eigenvalues of P
with negative, positive and zero real part, resp., counting
multiplicities.

II. PRELIMINARIES ON k-CONTRACTION

In this work, we consider nonlinear systems of the form

ẋ = f(x), x ∈ Rn (1)

where f is sufficiently smooth with respect to its argument.
The flow of (1) is denoted by ψt, so that ψt(x0) is the
trajectory of (1) passing through x0 at time 0. In this section,
we formally define the property of k-contraction studied in
this article. Our definition strongly focuses on geometrical
interpretation and it is related to the notion presented in
the works [14], [15]. Moreover, it directly translates to the
definition of contraction presented in [11] when considering
objects of dimension 1, i.e. when k = 1.

In [11], 1-contraction expresses the fact that the length of
any C1 curve from [0, 1] to Rn decreases with time. To extend
such a notion to any positive integer k ∈ [1, n], with n being
the state dimension of (1), we consider a set of sufficiently
smooth functions Ik defined on [0, 1]k, namely

Ik :=
{
Φ : [0, 1]k → Rn | Φ is a smooth immersion

}
. (2)

Let P ∈ Rn×n be a positive definite symmetric matrix. For
each Φ in Ik, we define the volume ℓk(Φ) of Φ as

ℓk(Φ) :=

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤P

∂Φ

∂r
(r)

}
dr . (3)

Note that, since f in (1) is sufficiently smooth, for each
forward invariant set and for each t in R+ it yields that the
corresponding flow ψt is also sufficiently smooth in this set.



Consequently, for each Φ in Ik such that Im(Φ) is in a
forward invariant set, ψt ◦ Φ is in Ik. Hence, we can now
define k-contraction properties for nonlinear systems of the
form (1), which will be used throughout all the article.

From now on and throughout the rest of the paper, we let
k be a fixed integer between 1 and n.

Definition 1 (k-contraction). System (1) is said to be k-
contractive on a forward invariant set S ⊆ Rn if there exist
strictly positive constants γ, η > 0 such that

ℓk(ψt ◦ Φ) ⩽ γe−ηt ℓk(Φ), ∀t ∈ R+

for all Φ ∈ Ik such that Im(Φ) ⊂ S.

In simple words, we say that a system is k-contractive if,
for any parametrized k-dimensional submanifold of Rn from
which trajectories are complete, its volume is exponentially
shrinking along the system dynamics. A scheme of this
condition is depicted in Fig. 1. When k = 1, this means that
the length of any sufficiently smooth curve is exponentially
decreasing, matching the definition in [11]. Moreover, this
definition includes the ones in [14], and [15, Section 3.2].

Remark 1. When Φ is injective and P is the identity
matrix, (3) gives the Euclidean k-volume of the submanifold
Φ([0, 1]k) ⊂ Rn. Note that 1-volumes are lengths, 2-volumes
are areas and 3-volumes are standard volumes.

III. MAIN RESULT

In this section, we present conditions for k-contraction.
For nonlinear systems, we provide sufficient conditions.
For linear time-invariant systems, necessary and sufficient
conditions are established. The proofs of the theorems are
given in Section V.

A. Nonlinear systems

Consider a nonlinear system of the form (1). The following
theorem provides sufficient conditions for k-contraction.

Theorem 1. Let A ⊂ Rn be a compact forward invariant set
and assume there exist symmetric matrices P0, Pk−1 ∈ Rn×n
of inertia In(P0) = (0, 0, n), In(Pk−1) = (k−1, 0, n−k+1)
and µ0, µk−1 ∈ R such that, for all x ∈ A

∂f

∂x
(x)⊤P0 + P0

∂f

∂x
(x) ≺ 2µ0P0, (4a)

∂f

∂x
(x)⊤Pk−1 + Pk−1

∂f

∂x
(x) ≺ 2µk−1Pk−1 (4b)

µk−1 + (k − 1)µ0 < 0 (4c)

Then, system (1) is k-contractive on S := A.

A detailed discussion of Theorem 1 is postponed to Sec-
tion V-B, along with the relative proof. Intuitively, inequality
(4a) bounds the expansion rate of the lifted system by a factor
µ0 (the concept of lifted system will be properly introduced
later in (14)). Differently, the second inequality (4b) bounds
the contraction rate of a subspace of the tangent bundle
by a factor µk−1. Consequently, inequality (4c) constraints
the contraction rate to be faster than the expansion rate.
For a deeper insight into the link between condition (4c)

Fig. 1. Scheme of a 2-contractive system. The initial submanifold, described
by Φ, is some surface with vertices at x1

0, x
2
0 and x3

0. The volume of
this submanifold ℓk(·) decreases exponentially along the trajectories of the
system.

and k-contraction, consider the case of surface-contraction,
namely k = 2. To ease intuition, consider a rectangle
with an expanding and a contracting side. If the contracting
side shrinks faster than the expanding one, the area of the
rectangle goes to zero. Conversely, if the contracting side
shrinks at a lower rate, the area diverges in time. A similar
intuition relates (4c) to Definition 1.

Theorem 1 provides sufficient conditions for k-contraction.
For linear time-invariant dynamics, sufficient and necessary
conditions can be established.

B. Linear systems

Consider now a linear system of the form

ẋ = Ax, x ∈ Rn. (5)

We provide now a set of sufficient and necessary conditions
to establish the k-contractivity property of (5). First, we
consider the case of a matrix having only distinct real
eigenvalues. This simplifies the statement and its readability.
The general case will follow, and its proof will be omitted
for space reasons.

Proposition 1. Assume that A has only distinct real eigenval-
ues. Then, system (5) is k-contractive on S := Rn if and only
if there exist a set of symmetric matrices Pi ∈ Rn×n, i =
0, . . . , k − 1, with In(Pi) = (i, 0, n − i), and a set of real
numbers µi ∈ R, i = 0, . . . , k − 1, such that

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , k − 1 , (6a)
k−1∑
i=0

µi < 0 . (6b)

The proof of Proposition 1 is postponed to Section V-C.
In the linear case, the previous interpretation of inequalities
(4) bounding expansion and contraction rates directly maps
to µi bounding the k largest eigenvalues of matrix A. Then,
condition (6b) states that the sum of the k largest eigenvalues
of A is negative. As discussed in Section IV-C, this condition
is necessary and sufficient for k-contraction in linear time-
invariant systems. Inequalities in Theorem 1 are in general
conservative, since we ask the slowest stable dynamics to
dominate k−1 times the fastest unstable one (4c). For linear
systems, this condition is relaxed with (6b).

For the general case of arbitrary eigenvalues the previous
result needs to be modified. To this end, consider the matrix



A in (5) and let Π : C → R denote the canonical projection
onto the real axis. Let σ(A) be the spectrum of A and
suppose Π(σ(A)) = {α1, α2, . . . , αm} (m ⩽ n) with
α1 > α2 > · · · > αm. Set hi = card

(
Π−1(αi)

⋂
σ(A)

)
,

where eigenvalues have been counted with their algebraic
multiplicities (so that h1 + h2 + · · · + hm = n). Finally,
let d0 = 0, di =

∑i
j=1 hj , i ∈ {1, . . . ,m} and de-

fine pk := max ({d0, d1, . . . , dm−1}
⋂
[0, k − 1]) , ck :=

card ({d0, d1, . . . , dm−1}
⋂
[0, k − 1]) .

Theorem 2. System (5) is k-contractive if and only if there
exist symmetric matrices Pi ∈ Rn×n of respective inertia
(di, 0, n− di) and constants µi ∈ R such that

A⊤Pi + PiA ≺ 2µiPi, ∀i ∈ {0, . . . , ck − 1},

(k − pk − hck)µck−1 +

ck−1∑
i=0

hi+1 µi < 0 .
(7)

Intuitively, Corollary 2 is a rephrasing of Theorem 1 where
inequalities corresponding to eigenvalues having the same
real part are merged. This is a necessary step since the
constant µi in (6a) cannot be used to separate eigenvalues
of A that have overlapping real parts. As it will be shown in
Lemma 5, the matrices Pi have inertia that is opposite to the
one of A − µiI (i.e. the number of eigenvalues of A − µiI
with negative real part is the number of positive eigenvalues
of Pi). If some eigenvalues of A have identical real parts
(e.g. Re(λi) = Re(λi+1)), we cannot find a constant µi
which separates each eigenvalue individually. Consequently,
instead of varying by one eigenvalue at a time, the inertia of
A− µiI may jump as we change the value of µi.

To improve clarity, we propose an example. Consider
system (5) with n = 7 and eigenvalues satisfying Re(λ1) =
Re(λ2) > Re(λ3) > Re(λ4) = Re(λ5) > Re(λ6) =
Re(λ7). For this case, we have Π(σ(A)) = {α1, α2, α3, α4}
with α1 = Re(λ1), α2 = Re(λ3), α3 = Re(λ4), α4 =
Re(λ6), and h1 = 2, h2 = 1, h3 = 2, h4 = 2. Moreover,
d0 = 0, d1 = 2, d2 = 3, d3 = 5, d4 = 7. Consider now the
conditions for 6-contraction. We have p6 = 5 and c6 = 4.
Consequently, conditions in Theorem 2 are evaluated for
i = 0, 1, 2, 3, with matrices P0, P1, P2, P3 having inertia
(0, 0, 6), (2, 0, 4), (3, 0, 3) and (5, 0, 1) respectively, and
the sum 2µ0 + µ1 + 2µ2 + µ3 < 0. Notice that the term
(k − pk − hck)µck−1 in (7) reads as (6 − 5 − 2)µ3, which
removes one of the two identical eigenvalues with smallest
real part (i.e., λ6, λ7). This accounts for the fact that 6-
contraction requires any sum of 6 eigenvalues to be negative.
Consider now the conditions for 2-contraction. Then, pk = 0
and we obtain A⊤P0 + AP0 ≺ 2µ0P0, µ0 < 0. These
conditions are identical to the ones obtained when k = 1. As
a matter of fact, a sufficient condition for k-contractivity is
(k−1)-contractivity. However, given the eigenvalues of A, the
system cannot be 2-contractive without being 1-contractive.
Hence, the condition becomes necessary.

IV. RELATIONSHIP WITH EXISTING RESULTS

In this section, we propose a comparison with existing
works in k-contraction analysis. First, we clarify the differ-

ences between k-contraction and the notion of p-dominance
[12], [13]. Then, we compare our results to existing works
that exploit matrix compounds [14], [15], [17]. In particu-
lar, we highlight the main advantages of our result when
compared to matrix compound methods, e.g. [15] and [18].
Finally, we compare our definition of k-contraction provided
in Definition 1 to the one used in [19]. We refer to the latter
as infinitesimal k-contraction.

A. Relation to p-dominance

In what follows, we link our main result to recent de-
velopments in p-dominance analysis [12], [13]. We start by
recalling the definition of p-dominance.

Definition 2 (p-dominance). System (1) is said to be strictly
p-dominant on S ⊆ Rn if there exist a real number µ > 0
and a symmetric matrix P ∈ Rn×n with inertia In(P ) =
(p, 0, n− p) such that

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P ≺ −2µP , ∀x ∈ S. (8)

It is natural to see the similarities between matrix in-
equalities (8) and (4b). The property of p-dominance has
been related to various differential properties [13, Section
V], such as differential positiveness [20] and monotonicity
[21]. Condition (4b) sheds light on the relationship between
k-contraction and p-dominance. To the best of the authors’
knowledge, this link is not found in the literature.

To better understand this relation, consider the variational
system of (14). Then, the p-dominance condition (8) splits
the tangent space in a vertical subspace of dimension p and a
horizontal subspace of dimension n− p. More precisely, for
each initial condition x0 ∈ S the tangent space can be divided
in a horizontal distribution Hx and a vertical distribution
Vx. The property of p-dominance can be interpreted as a
form of horizontal contraction [10, Section VII], in the sense
that contraction is only imposed in the horizontal subspace.
However, horizontal contraction is not a sufficient condition
for k-contraction [19], and a bound on the expansion rate
of the vertical subspace has to be imposed. This bound is
obtained via (4a) paired with (4c).

This relationship between p-dominance and k-contraction
explains why both properties share similar convergence re-
sults for systems evolving in a bounded set. Consider system
(1) and assume S is compact and forward invariant. In
[22] it is shown that any bounded solution converges to an
equilibrium point if the system is 2-contractive. Similarly,
in [13, Corollary 1], it is proven that any bounded solution
converges to a fixed point if the system is 1-dominant.

B. Sufficient conditions based on matrix compounds

Sufficient conditions for k-contraction were originally
given in the seminal work by Muldowney [14] and were
recently rediscovered in the works [15], [23]. The remainder
of this subsection focuses on briefly describing these suffi-
cient conditions in the context of k-contraction as presented
in Definition 1 and comparing them to the ones presented
in Theorem 1. As previously stated, sufficient conditions



provided in [14], [15] strongly depend on the use of matrix
compounds. Consequently, first, we introduce the notion of
multiplicative and additive compound of a matrix. More
details on their computation can be found in [24].

Definition 3 (Multiplicative Compound [14]). Consider a
matrix Q ∈ Rn×m and select an integer k ∈ [1,min{n,m}].
Moreover, define a minor of order k of the matrix Q as the
determinant of some k×k submatrix of Q. The kth multiplica-
tive compound of Q, denoted as Q(k), is the

(
n
k

)
×
(
m
k

)
matrix

including all the minors of order k of Q in a lexicographic
order.

Definition 4 (Additive Compound [14]). Consider a matrix
Q ∈ Rn×n and select an integer k ∈ [1, n]. The kth additive
compound of Q is the

(
n
k

)
×
(
n
k

)
matrix defined as

Q[k] :=
d

dε
(I + εQ)(k)|ε=0.

Bearing these definitions in mind, we now reframe the
sufficient condition for k-contraction presented in [14], [15]
in the framework of this paper. In this case, we can consider
time-varying systems of the form

ẋ = f(t, x), x ∈ Rn (9)

where f is sufficiently smooth with respect to its second
argument and continuous with respect to the first one. Note
that Definition 1 applies similarly to the case of time-varying
systems (9).

Theorem 3. Assume there exists a compact forward in-
variant set A ⊆ Rn, a symmetric positive definite matrix
Q ∈ R(

n
k)×(

n
k) and a real number µ > 0 such that for all

(t, x) ∈ R+ ×A it holds

Q

(
∂f

∂x
(t, x)[k]

)
+

(
∂f

∂x
(t, x)[k]

)⊤

Q ⪯ −µQ. (10)

Then, system (9) is k-contractive on S := A.

The proof is postponed to Section V-D.

Remark 2. Inequality (10) is equivalent to the condition in
[15, Theorem 9] using the logarithmic norm induced by the
weighted ℓ2 norm (e.g. [25, Equation 2.56]). However, in our
statement, we allow the set A to be non-convex. Furthermore,
for the case k = 1, we recover the well-known Demidovich
conditions (e.g. [26]) and the proof in [11] for contraction
of lengths in the context of Euclidean metrics.

We now compare results in Theorem 3 to the ones in
Theorem 1 and Proposition 1. We start by considering com-
putational complexity. First, notice that the inertia constraint
in our condition can be relaxed to obtain an unconstrained
LMI, see [13, Section VI.B]. Hence, we focus on the
linear system framework with distinct real eigenvalues, as
Proposition 1 provides a larger set of matrix inequalities
with respect to Theorem 1 and Theorem 2 (ck ⩽ k). Let
M ∈ Rr×r be an arbitrary square matrix and Q ∈ Rr×r be
a symmetric matrix. Since Q is symmetric, each condition
of the form QM +M⊤Q ⪯ µQ requires the computation of
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Fig. 2. Number of variables to be estimated Proposition 1 (solid) and by
Theorem 3 (dashed) in function of k. Different colors refer to different n.

N = r(r− 1)/2 + 1 variables, namely the entries of the top
triangular portion of Q and the scalar µ. Then, Theorem 3 re-
quires N1 =

(
n
k

)((
n
k

)
−1
)
/2+1 variables while Proposition 1

requires N2 = kn(n−1)/2+k variables. To better understand
how the number of variables scales with different values of
k and n, see Fig. 2. Clearly, for large dimensional systems
and low k, the condition in (4) is of significantly smaller
computational complexity. Moreover, even in the worst case
of k = n, Proposition 1 typically requires between 102 and
103 variables. Differently, Theorem 3 can easily reach 104

variables in the worst case.
Now we compare the results in terms of feedback design.

We claim that the lack of matrix compounds in Theorem 1
and Proposition 1 simplifies the process of k-contractive
feedback design. Consider a linear system of the form
ẋ = Ax + Bu, where u ∈ Rq is the control input. Assume
we want to design a state-feedback controller of the form
u = −Kx, with K a constant matrix of adequate dimension
and such that the closed-loop system is k-contractive. On one
hand, Theorem 3 reduces to designing K such that condition
(10) is satisfied for the closed-loop system. That is,

Q
(
(A−BK)[k]

)
+
(
(A−BK)[k]

)⊤
Q ⪯ −µQ.

However, this is a highly nonlinear and non-convex matrix
inequality, due to the strong coupling between the matrices
B,K imposed by the additive matrix compound. Conse-
quently, even for a simple linear case, a design methodology
for the gain K cannot be straightforwardly derived. On the
other hand, also Proposition 1 asks for conditions (4) to be
verified by the closed-loop system. However, this can be
transformed to a set of linear matrix inequalities by means
of standard transformations [27]. For this reason, we believe
that condition (4) will be crucial in the development of k-
contraction design tools.

C. Comparison with condition in [18]

Consider the linear case. Previous works already inves-
tigated sufficient conditions for k-contraction that do not



require the computation of the k-additive compound. As a
matter of fact, [18, Theorem 17] shows that a system is k-
contractive if there exist an invertible matrix T ∈ Rn×n and
q ∈ {1, 2,∞} such that

tr(A) + (n− k)µq(−TAT−1) = τ(A) < 0 (11)

where µq(·) represents the logarithmic norm of a matrix, see
e.g. [28], [29], and tr(A) denotes the trace of the matrix A.
We highlight that Proposition 1 provides necessary and suf-
ficient conditions while the condition (11) is only sufficient.
This is made evident by the first example presented in [18,
Section V], where the authors consider a diagonal matrix
A = diag(λ1, . . . , λn) satisfying Re(λ1) ⩾ . . . ⩾ Re(λn).
Then, for any invertible matrix T and any q ∈ {1, 2,∞}, the
left-hand side in (11) reads as

τ(A) = −(n− k − 1)λn +
∑n−1
i=1 λi

Thus, condition (11) reduces to

λ1 + · · ·+ λn−1 < (n− k − 1)λn < 0. (12)

Recall that a spectral property of the additive compound
matrix is that the eigenvalues of the matrix A[k] are all
the possible sums of the form λi1 + λi2 + · · · + λik , with
i ⩽ i1 ⩽ . . . ⩽ ik ⩽ n, see [15]. Thus, a necessary and
sufficient condition for k-contraction is

k∑
i=1

λi < 0. (13)

For k = n− 1, equation (12) reduces to (13). Consequently,
(12) is necessary and sufficient for (n − 1)-contraction.
However, for n − k > 1, it is always possible to fix a
sufficiently negative eigenvalue λn such that (12) is not
satisfied even if (13) is satisfied. Thus, condition (11) is
sufficient but not necessary.

D. Infinitesimal k-contraction

Inspired by classical works on contraction theory [30],
we now provide a result linking the exponential stability
properties of the lifted system to the k-contraction property
proposed in Definition 1. The definition of k-contraction
for the lifted system was used in [19]. In this section, we
recall this definition and we provide further geometrical
interpretation of it, along the lines of Section II.

The linearization of (9) about the trajectory ψt(x0) is

δ̇x =
∂f

∂x
(t, ψt(x0))δx, (14)

where δx belongs to the tangent space Tψt(x0)Rn = Rn.
Then, ∂ψ∂x

t
(x0)δx0

is a trajectory of (14) at time t initialized at
δx0 at t = 0. From linearity, it can be deduced that ∂ψ∂x

t
(x0) is

the state transition matrix of (14). Then, ∂ψ∂x
t
(x0)δx0

depicts
the infinitesimal displacement with respect to the solution
ψt(x0) induced by the initial condition x0 + δx0

.
Pick any x0 ∈ Rn and k initial conditions of the variational

system in (14) δ1x0
, . . . , δkx0

. Following [19], we define

XNL(t, x0) :=
[

∂ψ
∂x

t
(x0)δ

1
x0

· · · ∂ψ
∂x

t
(x0)δ

k
x0

]
.

Note that XNL(0, x0) =
∂Φloc

∂r (r), where Φloc is a function
whose image is an infinitesimal k-order parallelotpe with
vertices at x0 and δix0

+ x0, namely

Φloc(r) =

k∑
i=1

ri(δ
i
x0

+ x0) +

(
1−

k∑
i=1

ri

)
x0, r ∈ [0, 1]k.

We have the following result relating [19] to Definition 1.

Lemma 1 (Infinitesimal k-contraction). Consider a set A ⊆
Rn and strictly positive constants γ and η such that the
following holds for all (t, x0) ∈ R+ ×A

|(XNL(t, x0))
(k)| ⩽ γe−ηt|(XNL(0, x0))

(k)|, (15)

Then, system (9) is k-contractive on S := A.

The proof is omitted for space reasons.

V. PROOFS

A. Preliminary results

We provide in this section some preliminary results that
will be used in the proof of Theorem 1. First, we recall (with
a mild reformulation) the following result on p-dominance
[13, Theorem 1].

Theorem 4. Suppose that system (1) is strictly p-dominant
on a compact forward invariant set A ⊂ Rn with rate µ > 0
and symmetric matrix P with inertia In(P ) = (p, 0, n− p).
Then, for each x ∈ A, there exists an invariant splitting
TxRn = Vx ⊕ Hx, i.e. there exists a continuous mapping
T : Rn → Rn×n invertible for any x ∈ A and satisfying

T(x) :=
[
Th(x) Tv(x)

]
, (16a)

where Th : Rn → Rn×n−p and Tv : Rn → Rn×p satisfy

Im Th(x) = Hx, Im Tv(x) = Vx. (16b)

Moreover, there exist a scalar ch > 0 such that∣∣∣∂ψ∂x t(x) [Th(x) 0
]
δx

∣∣∣ ⩽ che
−µt ∣∣[Th(x) 0

]
δx
∣∣ (16c)

holds for all (t, x, δx) ∈ R+ ×A× TxRn.

With this in mind, it is clear that if µk−1 is strictly negative,
LMI (4b) imposes a form of horizontal contraction on the
system [10, Section VII]. Nonetheless, horizontal contraction
is not a sufficient condition for k-contraction [19]. This
motivates (4a). We clarify the effects of (4a) via the following
Lemma.

Lemma 2. Consider system (1) and assume there exist a
forward invariant compact set A ⊂ Rn, a positive definite
matrix P0 ∈ Rn×n and a scalar µ0 satisfying (4a) for all
x ∈ A. Then there exists a constant cv > 0 such that∣∣∣∂ψ∂x t(x) [0 Tv(x)

]
δx

∣∣∣ < cve
µ0t
∣∣[0 Tv(x)

]
δx
∣∣ (17)

for all (t, x, δx) ∈ R+ ×A× TxRn, with Tv as in (16b).

Proof. Consider the function, W := δ⊤x P0δx. It satisfies

λ(P0)|δx|2 ⩽W ⩽ λ(P0)|δx|2, (18)



where λ(·) and λ(·) represent the minimum and maximum
eigenvalue of their argument, respectively. By (14), its time-
derivative satisfies

Ẇ = δ⊤x

(
P0
∂f

∂x
(x) +

∂f

∂x
(x)⊤P0

)
δx

< 2µ0δ
⊤
x P0δx = 2µ0W.

Then, by Grönwall–Bellman inequality, we obtain

W (t) < W (0)e
∫ t
0
2µ0dτ = e2µ0tW (0), ∀t ∈ R+.

Invoking (18), we obtain for all (t, x, δx) ∈ R+×A×TxRn∣∣∂ψ
∂x

t
(x)δx

∣∣ <
√
λ(P0)

λ(P0)
eµ0t|δx|.

As
[
0 Tv(x)

]
δx ∈ TxRn, the result trivially follows. 2

Given the above results, condition (4c) can be seen as
imposing a bound on the maximum expansion rate of the
vertical subspace with respect to the contraction rate of the
horizontal one. In particular, (4c) holds if the first is smaller
than the latter. We now relate this property to infinitesimal
k-contraction. As a first step, we present a technical lemma
related to matrix compounds.

Lemma 3. Consider a time-varying matrix M(t) ∈ Rn×n

M(t) =
[
H(t) V (t)

]
,

with H(t) ∈ Rn×n−p, V (t) ∈ Rn×p and p ∈ [0, n). Assume
there exist real numbers ch, cv, α, β > 0 such that

|H(t)| ⩽ che
−αt, |V (t)| ⩽ cve

βt, ∀t ∈ R+. (19)

If α > (k − 1)β for some integer k ∈ [p + 1, n], there exist
some real numbers c, ε > 0 such that

|M(t)(k)| ⩽ ce−εt, ∀t ∈ R+. (20)

Proof. Consider the elements of the compound matrix
M(t)(k). Each one is a kth-order minor of the original matrix
M(t), i.e., it is the determinant of a k×k submatrix of M(t),
see Definition 3. Since k ⩾ p + 1, each k × k submatrix
contains at least one column composed of elements of H(t).
That is, in the minimum case

Mk(t) =
[
h(t) v1(t) . . . vk−1(t)

]
, (21)

where Mk(t) ∈ Rk×k is a submatrix of M(t), h(t) ∈ Rk
is a vector with components of H(t) and vi(t) ∈ Rk for
i = 1, . . . , k − 1 is a vector with components of V (t). In
what follows, we show the elements of M(t)(k) are bounded.
Hence, we focus on submatrices of the form (21), since their
determinant represents the worst-case scenario in a stability
sense. Recall that, by definition of the wedge product,

det(Mk(t)) = h(t) ∧ v1(t) ∧ · · · ∧ vk−1(t).

The wedge product can be represented using a basis ei, where
ei depicts the ith canonical vector of Rn. More specifically,
by bilinearity of the wedge product, we have

det(Mk(t)) =

n∑
i=1

hi(t)(ei ∧ v1(t) ∧ · · · ∧ vk−1(t)),

where hi(t) is the ith element of h(t). By performing similar
operations on the remaining vectors we deduce

det(Mk(t)) =

k∑
i1=1

· · ·
k∑

ik=1

hi1(t)vi22 (t) . . . vikk−1(t)Ek,

(22)
where Ek := (ei1 ∧ ei2 ∧ · · · ∧ eik). By (19), we have

|hi(t)| ⩽ che
−αt, |vi(t)| ⩽ cve

βt.

Moreover, the factor Ek will be either zero or an element of
the canonical basis in Rn multiplied by plus or minus one.
Thus, using the triangle inequality, one obtains

|det(Mk(t))| ⩽ κchcve
(−α+(k−1)β)t

where κ > 0 is a positive constant related to the number of
non-zero instances of Ek. Now, since α − (k − 1)β > 0 by
assumption, by continuity there always exists ε > 0 such that
α− (k − 1)β − ε > 0. Then,

|M(t)(k)| = |e−εteεtM(t)(k)| ⩽ e−εt|eεtM(t)(k)|.

By considering the worst-case (21), we have

eεt|det(Mk(t))| ⩽ c̄e(−α+(k−1)β+ε)t,

for some c̄ > 0. Hence, since α − (k − 1)β − ε > 0, each
element of eεtM(t)(k) is exponentially decreasing and the
norm |eεtM(t)(k)| is uniformly bounded for all t ∈ R+, thus
concluding the proof. 2

Leveraging on the previous Lemmas, we now provide
a bound on the k multiplicative compound of the state
transition matrix of the lifted system (14).

Lemma 4. Consider system (1) and assume there exist a
forward invariant compact set A ⊂ Rn, constants µ0, µk−1

and matrices P0, Pk−1 ∈ Rn×n such that (4) is satisfied.
Then, there exist ε, c > 0 such that∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ ce−εt, ∀(t, x) ∈ R+ ×A. (23)

Proof. Consider (16a) in Theorem 4. Invertibility of T(x)
yields

∂ψ
∂x

t
(x) = ∂ψ

∂x

t
(x)T(x)T(x)−1 = Ψt(x)T(x)−1,

with Ψt(x) :=
[
∂ψ
∂x

t
(x)Th(x)

∂ψ
∂x

t
(x)Tv(x)

]
. Given any

δx ∈ TxRn, consider the decomposition δx = (δhx , δ
v
x), where

δhx ∈ Rn−p and δvx ∈ Rp. Then, for an arbitrary δhx , inequality
(16c) of Theorem 4 implies

|∂ψ∂x
t
(x)Th(x)δ

h
x | ⩽ che

µk−1 |Th(x)δ
h
x | .

Recall the definition of matrix norm,∣∣∣∂ψ∂x t(x)Th(x)
∣∣∣ := max

|u|=1

∣∣∣∂ψ∂x t(x)Th(x)u
∣∣∣ .

By selecting vector u⋆ such that |u⋆| = 1, the previous
exponential relation and the triangular inequality yield∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ = ∣∣∣∂ψ∂x t(x)Th(x)u
⋆
∣∣∣

⩽ che
µk−1 |Th(x)u

⋆| ⩽ che
µk−1 |Th(x)|.



Since A is compact and T is continuous, |Th(x)| is bounded
for all x ∈ A. Then, by (16c), and by (17) we obtain∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ ⩽ che
µk−1 |Th(x)| ⩽ c̄he

µk−1∣∣∣∂ψ∂x t(x)Tv(x)
∣∣∣ < cve

µ0 |Tv(x)| ⩽ c̄ve
µ0

for all x ∈ A. Finally, by boundedness of T(x) and
Lemma 3, we obtain∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ |Ψt(x)(k)||T(x)−1(k)| ⩽ ce−εt

for all x ∈ A, concluding the proof. 2

B. Proof Theorem 1
Consider the kth multiplicative compound of matrix

XNL(t, x0) defined as in Section IV-D. A simple computation
shows:

XNL(t, x0)
(k) =

[
∂ψ
∂x

t
(x0)δ

1
x0

. . . ∂ψ
∂x

t
(x0)δ

k
x0

](k)
= ∂ψ

∂x

t
(x0)

(k)XNL(0, x0)
(k),

where the second inequality is derived from the Cauchy-Binet
formula [31, Chapter 1]. From (4) and Lemma 4 we obtain

|(XNL(t, x0))
(k)| ⩽ ce−εt|(XNL(0, x0))

(k)|.

Hence, the system is infinitesimally k-contractive and the
result follows by Lemma 1.

C. Proof Proposition 1
Following Theorem 3, a sufficient condition for k-

contraction in linear systems is stability of A[k]. Moreover,
(13) shows that this condition is also necessary for k-
contraction. Then, the remainder of the proof is based on
showing that (6a)- (6b) in Proposition 1 are equivalent to
A[k] being Hurwitz. First, we recall [32, Lemma 1, Section
3].

Lemma 5. Assume there exists a symmetric matrix P ∈
Rn×n with In(P ) = (p, 0, n − p) and a constant µ such
that

A⊤P + PA ≺ 2µP . (24)

Then, matrix A has p eigenvalues with real part strictly
bigger than µ and n−p eigenvalues real part strictly smaller
than µ.

We now present the main arguments proving sufficiency
and necessity of the result in Proposition 1.
Sufficiency. Let the eigenvalues of A be ordered such that
λ1 > λ2 > · · · > λn. A spectral property of the additive
compound matrix is that the eigenvalues of the matrix A[k]

are all the possible sums of the form λi1 + λi2 + · · ·+ λik ,
with i ⩽ i1 ⩽ . . . ⩽ ik ⩽ n, see [15]. Therefore, (13) is
a necessary and sufficient condition for k-contraction. Now,
by Lemma 5, inequality (6a) implies λi+1 < µi for all i =
0, . . . , k − 1. Then, by (6b) and since the eigenvalues are
scalars, we have

k∑
i=1

λi =

k∑
i=1

λi <

k−1∑
i=0

µi < 0 ,

and (13) is satisfied.
Necessity. As stated in the previous step of the proof, if A[k]

is Hurwitz, (13) is verified. Hence, by continuity, there exist
a set of scalars εi > 0 such that

∑k
i=1(εi + λi) < 0 . Select

µi−1 = εi + λi > λi, for i = 1, . . . , k − 1. We have

k−1∑
i=0

µi =

k∑
i=1

(εi + λi) < 0.

Now, define matrices Âi = A − µiI with i = 0, . . . , k − 1.
It is clear that, by the definition of µi, each matrix Âi has i
negative eigenvalues and n− i positive eigenvalues. Then, by
[16, Theorem 2.5], there exist symmetric matrices Pi such
that

Â⊤Pi + PiÂ = −Gi ∀i = 0, . . . , k − 1 ,

with Gi ≻ 0 and In(Pi) = In(Âi) = {i, 0, n − i}. Then, as
Gi ≻ 0 and by using the definition of Âi, we have

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , k − 1 ,

thus concluding the proof.

D. Proof of Theorem 3

Consider Φ ∈ Ik, where Ik is defined in (2). To simplify
notation, let us denote for all (r, t) in [0, 1]k × R+

Γ(r, t) = ψt ◦ Φ(r) , Γr(r, t) =
∂Γ

∂r
(r, t),

v(r, t) =
(
Γr(r, t)

(k)
)⊤
P (k) Γr(r, t)

(k).

For all (r, t) in [0, 1]k × R+, we have

d

dt
Γ(r, t) = f(t,Γ(r, t)).

Then, by the chain rule, it follows that the point Γr(r, t)
evolves according to

d

dt
Γr(r, t) =

∂2Γ

∂r∂t
(r, t) =

∂f

∂x
(t,Γ(r, t))Γr(r, t)

for all (r, t) in [0, 1]k×R+. Since these dynamics are linear,
following similar steps to the ones presented in [15, Section
2.5], we obtain

d

dt
Γr(r, t)

(k) =
∂f

∂x
(t,Γ(r, t))[k]Γr(r, t)

(k). (25)

Next, fix a symmetric positive definite matrix P such that
Q = P (k). Then, since Γr(r, t) ∈ Rn×k, from the Cauchy-
Binet formula [31, Chapter 1] the following equality holds

det
(
Γr(r, t)

⊤P Γr(r, t)
)

=
(
Γr(r, t)

(k)
)⊤

P (k) Γr(r, t)
(k) = v(r, t). (26)

Then, using the previous notation, the volume ℓk(ψt ◦Φ) of
ψt ◦ Φ computed according to (3) takes the form

ℓk(ψt ◦ Φ) =
∫
[0,1]k

√
v(r, t)dr .



In turn, for all (r, t) in [0, 1]k ×R+, it evolves according to

d

dt
ℓk(ψt ◦ Φ) =

∫
[0,1]k

d

dt

√
v(r, t) dr

=

∫
[0,1]k

He
{(

Γr(r, t)
(k)
)⊤
Q d

dtΓr(r, t)
(k)
}

2
√
v(r, t)

dr

with the compact notation He {A} := A + A⊤. Hence, for
all (r, t) in [0, 1]k × R+, we obtain

d

dt
ℓk(Φ) =

∫
[0,1]k

1

2
√
v(r, t)

(
Γr(r, t)

(k)
)⊤

× He
{
Q
∂f

∂x
(t,Γ(r, t))[k]

}
Γr(r, t)

(k) dr .

Invoking inequality (10), the previous relation implies

d

dt
ℓk(ψt ◦ Φ) ⩽

∫
[0,1]k

− µ v(r, t)

2
√
v(r, t)

dr

⩽ −µ
2

∫
[0,1]k

√
v(r, t) dr ⩽ −µ

2
ℓk(ψt ◦ Φ)

for all (r, t) in [0, 1]k×R+. The result follows by Grönwall’s
lemma.

VI. CONCLUSIONS

We presented new alternative conditions for k-contraction
that do not rely on matrix compounds. The proposed con-
ditions reduce the k-contraction analysis to solving a set
of LMIs. Moreover, these conditions provide a direct link
between the p-dominance theory and k-contraction one.

Future works will focus on extending the proposed condi-
tions to the context of time-varying systems and Riemannian
metrics, similar to the context of 1-contraction, see, e.g. [11],
[30]. Furthermore, we believe that the proposed conditions
can be used to develop new tools for k-contractive feedback
design, so that to extend existing conditions for standard 1-
contraction, see, e.g. [4], [6], [7] and references therein.
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