Samuele Zoboli 
  
Andreu Cecilia 
email: andreu.cecilia@upc.edu
  
Ulysse Serres 
  
Daniele Astolfi 
  
Vincent Andrieu 
  
  
LMI conditions for k-contraction analysis: a step towards design

Recently, k-contraction has been proposed as a generalization of contraction properties for nonlinear timevariant systems. Existing tools for k-contraction analysis exploit complex mathematical tools known as matrix compounds. This prevented the development of related design methodologies. In this paper, we link k-contraction properties to partial stability analysis tools. This leads to new, design-oriented sufficient conditions for k-contraction analysis which do not involve matrix compounds. We also show that such sufficient conditions are necessary for the linear time-invariant framework. Finally, we compare our results to existing methods and highlight their advantages.

I. INTRODUCTION

Contraction theory is an emerging topic that has been used in numerous applications, such as observer design [START_REF] Sanfelice | Convergence of Nonlinear Observers on R n With a Riemannian Metric (Part I)[END_REF], multiagent system synchronization [START_REF] Russo | Solving the rendezvous problem for multi-agent systems using contraction theory[END_REF], [START_REF] Aminzare | Synchronization of diffusivelyconnected nonlinear systems: Results based on contractions with respect to general norms[END_REF] and controller design [START_REF] Manchester | Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design[END_REF]- [START_REF] Zoboli | Deep learning-based output tracking via regulation and contraction theory[END_REF]. Nonetheless, many systems cannot present classical contractivity properties, e.g. multi-stable systems [START_REF] Angeli | Detection of multistability, bifurcations, and hysteresis in a large class of biological positivefeedback systems[END_REF]. This motivated the study of suitable generalizations. Some notable examples are horizontal contraction [10, Section VII], transversal exponential stability [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] and p-dominance [START_REF] Forni | A dissipativity theorem for p-dominant systems[END_REF], [START_REF]Differential dissipativity theory for dominance analysis[END_REF]. Motivated by the results of Muldowney [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], recent works presented the notion of k-contraction [START_REF] Wu | k-contraction: Theory and applications[END_REF], which generalizes the classical concept of shrinking distances between system trajectories to contraction of volumes. As such, kcontraction includes classical contraction as the special case k = 1. For k > 1, this property can be used to analyze asymptotic behavior of systems that are not contractive in the classical sense. For example, for 2-contractive time-invariant systems, every bounded solution converges to an equilibrium point (not necessarily unique).

Existing sufficient conditions for k-contraction are given in terms of a particular matrix compound of the Jacobian of the vector field dynamics [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], [START_REF] Wu | k-contraction: Theory and applications[END_REF]. Although these conditions are adequate for system analysis, their application for feedback design is limited. First, matrix compounds rapidly explode in dimension for low value k and systems of large dimension. This fact drastically increases the computational complexity of potential feedback design algorithms. Second, the use of matrix compounds tools prevents transforming the feedback design into a tractable LMI problem. Consequently, a k-contractive design methodology has yet to be developed.

Considering these limitations, this work presents alternative design-oriented conditions for k-contraction that do not rely on matrix compounds but rather on simple matrix inequalities on the given system dynamics. Moreover, the connections between k-contraction, horizontal contraction and p-dominance [START_REF] Forni | A dissipativity theorem for p-dominant systems[END_REF], [START_REF]Differential dissipativity theory for dominance analysis[END_REF] are discussed.

Notation: R + := [0, ∞) and N := {0, 1, 2, . . .}. Given x ∈ R n , y ∈ R m , we set (x, y) := (x ⊤ , y ⊤ ) ⊤ . The operation n k := n! k!(n-k)! depicts the binomial coefficient, with n! denoting the factorial of n ∈ N. The inertia of a matrix P [16, Definition 2.1] is defined by the triplet of integers In(P ) := (π -(P ), π 0 (P ), π + (P )), where π -(P ), π + (P ) and π 0 (P ) denote the numbers of eigenvalues of P with negative, positive and zero real part, resp., counting multiplicities.

II. PRELIMINARIES ON k-CONTRACTION

In this work, we consider nonlinear systems of the form

ẋ = f (x), x ∈ R n ( 1 
)
where f is sufficiently smooth with respect to its argument. The flow of (1) is denoted by ψ t , so that ψ t (x 0 ) is the trajectory of (1) passing through x 0 at time 0. In this section, we formally define the property of k-contraction studied in this article. Our definition strongly focuses on geometrical interpretation and it is related to the notion presented in the works [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], [START_REF] Wu | k-contraction: Theory and applications[END_REF]. Moreover, it directly translates to the definition of contraction presented in [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] when considering objects of dimension 1, i.e. when k = 1.

In [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF], 1-contraction expresses the fact that the length of any C 1 curve from [0, 1] to R n decreases with time. To extend such a notion to any positive integer k ∈ [1, n], with n being the state dimension of (1), we consider a set of sufficiently smooth functions I k defined on [0, 1] k , namely

I k := Φ : [0, 1] k → R n | Φ is a smooth immersion . (2)
Let P ∈ R n×n be a positive definite symmetric matrix. For each Φ in I k , we define the volume ℓ k (Φ) of Φ as

ℓ k (Φ) := [0,1] k det ∂Φ ∂r (r) ⊤ P ∂Φ ∂r (r) dr . (3) 
Note that, since f in (1) is sufficiently smooth, for each forward invariant set and for each t in R + it yields that the corresponding flow ψ t is also sufficiently smooth in this set.

Consequently, for each Φ in I k such that Im(Φ) is in a forward invariant set, ψ t • Φ is in I k . Hence, we can now define k-contraction properties for nonlinear systems of the form (1), which will be used throughout all the article. From now on and throughout the rest of the paper, we let k be a fixed integer between 1 and n.

Definition 1 (k-contraction). System (1) is said to be kcontractive on a forward invariant set S ⊆ R n if there exist strictly positive constants γ, η > 0 such that

ℓ k (ψ t • Φ) ⩽ γe -ηt ℓ k (Φ), ∀t ∈ R + for all Φ ∈ I k such that Im(Φ) ⊂ S.
In simple words, we say that a system is k-contractive if, for any parametrized k-dimensional submanifold of R n from which trajectories are complete, its volume is exponentially shrinking along the system dynamics. A scheme of this condition is depicted in Fig. 1. When k = 1, this means that the length of any sufficiently smooth curve is exponentially decreasing, matching the definition in [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF]. Moreover, this definition includes the ones in [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], and [15, Section 3.2].

Remark 1. When Φ is injective and P is the identity matrix, (3) gives the Euclidean k-volume of the submanifold Φ([0, 1] k ) ⊂ R n . Note that 1-volumes are lengths, 2-volumes are areas and 3-volumes are standard volumes.

III. MAIN RESULT

In this section, we present conditions for k-contraction. For nonlinear systems, we provide sufficient conditions. For linear time-invariant systems, necessary and sufficient conditions are established. The proofs of the theorems are given in Section V.

A. Nonlinear systems

Consider a nonlinear system of the form (1). The following theorem provides sufficient conditions for k-contraction. Theorem 1. Let A ⊂ R n be a compact forward invariant set and assume there exist symmetric matrices P 0 , P k-1 ∈ R n×n of inertia In(P 0 ) = (0, 0, n),

In(P k-1 ) = (k -1, 0, n-k +1) and µ 0 , µ k-1 ∈ R such that, for all x ∈ A ∂f ∂x (x) ⊤ P 0 + P 0 ∂f ∂x (x) ≺ 2µ 0 P 0 , (4a) 
∂f ∂x (x) ⊤ P k-1 + P k-1 ∂f ∂x (x) ≺ 2µ k-1 P k-1 (4b) µ k-1 + (k -1)µ 0 < 0 (4c)
Then, system (1) is k-contractive on S := A.

A detailed discussion of Theorem 1 is postponed to Section V-B, along with the relative proof. Intuitively, inequality (4a) bounds the expansion rate of the lifted system by a factor µ 0 (the concept of lifted system will be properly introduced later in ( 14)). Differently, the second inequality (4b) bounds the contraction rate of a subspace of the tangent bundle by a factor µ k-1 . Consequently, inequality (4c) constraints the contraction rate to be faster than the expansion rate. For a deeper insight into the link between condition (4c) Fig. 1. Scheme of a 2-contractive system. The initial submanifold, described by Φ, is some surface with vertices at x 1 0 , x 2 0 and x 3 0 . The volume of this submanifold ℓ k (•) decreases exponentially along the trajectories of the system. and k-contraction, consider the case of surface-contraction, namely k = 2. To ease intuition, consider a rectangle with an expanding and a contracting side. If the contracting side shrinks faster than the expanding one, the area of the rectangle goes to zero. Conversely, if the contracting side shrinks at a lower rate, the area diverges in time. A similar intuition relates (4c) to Definition 1.

Theorem 1 provides sufficient conditions for k-contraction. For linear time-invariant dynamics, sufficient and necessary conditions can be established.

B. Linear systems

Consider now a linear system of the form

ẋ = Ax, x ∈ R n . (5) 
We provide now a set of sufficient and necessary conditions to establish the k-contractivity property of [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF]. First, we consider the case of a matrix having only distinct real eigenvalues. This simplifies the statement and its readability.

The general case will follow, and its proof will be omitted for space reasons.

Proposition 1. Assume that A has only distinct real eigenvalues. Then, system (5) is k-contractive on S := R n if and only if there exist a set of symmetric matrices P i ∈ R n×n , i = 0, . . . , k -1, with In(P i ) = (i, 0, n -i), and a set of real numbers µ i ∈ R, i = 0, . . . , k -1, such that

A ⊤ P i + P i A ≺ 2µ i P i ∀i = 0, . . . , k -1 , (6a) 
k-1 i=0 µ i < 0 . ( 6b 
)
The proof of Proposition 1 is postponed to Section V-C. In the linear case, the previous interpretation of inequalities [START_REF] Manchester | Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design[END_REF] bounding expansion and contraction rates directly maps to µ i bounding the k largest eigenvalues of matrix A. Then, condition (6b) states that the sum of the k largest eigenvalues of A is negative. As discussed in Section IV-C, this condition is necessary and sufficient for k-contraction in linear timeinvariant systems. Inequalities in Theorem 1 are in general conservative, since we ask the slowest stable dynamics to dominate k -1 times the fastest unstable one (4c). For linear systems, this condition is relaxed with (6b).

For the general case of arbitrary eigenvalues the previous result needs to be modified. To this end, consider the matrix A in (5) and let Π : C → R denote the canonical projection onto the real axis. Let σ(A) be the spectrum of A and suppose

Π(σ(A)) = {α 1 , α 2 , . . . , α m } (m ⩽ n) with α 1 > α 2 > • • • > α m . Set h i = card Π -1 (α i ) σ(A) ,
where eigenvalues have been counted with their algebraic multiplicities (so that

h 1 + h 2 + • • • + h m = n). Finally, let d 0 = 0, d i = i j=1 h j , i ∈ {1, . . . , m} and de- fine p k := max ({d 0 , d 1 , . . . , d m-1 } [0, k -1]) , c k := card ({d 0 , d 1 , . . . , d m-1 } [0, k -1]) .
Theorem 2. System (5) is k-contractive if and only if there exist symmetric matrices P i ∈ R n×n of respective inertia (d i , 0, n -d i ) and constants µ i ∈ R such that

A ⊤ P i + P i A ≺ 2µ i P i , ∀i ∈ {0, . . . , c k -1}, (k -p k -h c k )µ c k -1 + c k -1 i=0 h i+1 µ i < 0 . (7) 
Intuitively, Corollary 2 is a rephrasing of Theorem 1 where inequalities corresponding to eigenvalues having the same real part are merged. This is a necessary step since the constant µ i in (6a) cannot be used to separate eigenvalues of A that have overlapping real parts. As it will be shown in Lemma 5, the matrices P i have inertia that is opposite to the of A -µ i I (i.e. the number of eigenvalues of A -µ i I with negative real part is the number of positive eigenvalues of P i ). If some eigenvalues of A have identical real parts (e.g. Re(λ i ) = Re(λ i+1 )), we cannot find a constant µ i which separates each eigenvalue individually. Consequently, instead of varying by one eigenvalue at a time, the inertia of A -µ i I may jump as we change the value of µ i .

To improve clarity, we propose an example. Consider system [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF] with n = 7 and eigenvalues satisfying Re(λ 1 ) = Re(λ 2 ) > Re(λ 3 ) > Re(λ 4 ) = Re(λ 5 ) > Re(λ 6 ) = Re(λ 7 ). For this case, we have

Π(σ(A)) = {α 1 , α 2 , α 3 , α 4 } with α 1 = Re(λ 1 ), α 2 = Re(λ 3 ), α 3 = Re(λ 4 ), α 4 = Re(λ 6 ), and h 1 = 2, h 2 = 1, h 3 = 2, h 4 = 2. Moreover, d 0 = 0, d 1 = 2, d 2 = 3, d 3 = 5, d 4 = 7.
Consider now the conditions for 6-contraction. We have p 6 = 5 and c 6 = 4. Consequently, conditions in Theorem 2 are evaluated for i = 0, 1, 2, 3, with matrices P 0 , P 1 , P 2 , P 3 having inertia (0, 0, 6), (2, 0, 4), (3, 0, 3) and (5, 0, 1) respectively, and the sum 7) reads as (6 -5 -2)µ 3 , which removes one of the two identical eigenvalues with smallest real part (i.e., λ 6 , λ 7 ). This accounts for the fact that 6contraction requires any sum of 6 eigenvalues to be negative. Consider now the conditions for 2-contraction. Then, p k = 0 and we obtain A ⊤ P 0 + AP 0 ≺ 2µ 0 P 0 , µ 0 < 0. These conditions are identical to the ones obtained when k = 1. As a matter of fact, a sufficient condition for k-contractivity is (k-1)-contractivity. However, given the eigenvalues of A, the system cannot be 2-contractive without being 1-contractive. Hence, the condition becomes necessary.

2µ 0 + µ 1 + 2µ 2 + µ 3 < 0. Notice that the term (k -p k -h c k )µ c k -1 in (

IV. RELATIONSHIP WITH EXISTING RESULTS

In this section, we propose a comparison with existing works in k-contraction analysis. First, we clarify the differ-ences between k-contraction and the notion of p-dominance [START_REF] Forni | A dissipativity theorem for p-dominant systems[END_REF], [START_REF]Differential dissipativity theory for dominance analysis[END_REF]. Then, we compare our results to existing works that exploit matrix compounds [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], [START_REF] Wu | k-contraction: Theory and applications[END_REF], [START_REF] Ofir | A sufficient condition for k-contraction of the series connection of two systems[END_REF]. In particular, we highlight the main advantages of our result when compared to matrix compound methods, e.g. [START_REF] Wu | k-contraction: Theory and applications[END_REF] and [START_REF] Dalin | Verifying k-contraction without computing k-compounds[END_REF]. Finally, we compare our definition of k-contraction provided in Definition 1 to the one used in [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF]. We refer to the latter as infinitesimal k-contraction.

A. Relation to p-dominance

In what follows, we link our main result to recent developments in p-dominance analysis [START_REF] Forni | A dissipativity theorem for p-dominant systems[END_REF], [START_REF]Differential dissipativity theory for dominance analysis[END_REF]. We start by recalling the definition of p-dominance.

Definition 2 (p-dominance). System (1) is said to be strictly p-dominant on S ⊆ R n if there exist a real number µ > 0 and a symmetric matrix P ∈ R n×n with inertia In(P ) = (p, 0, n -p) such that

P ∂f ∂x (x) + ∂f ∂x (x) ⊤ P ≺ -2µP , ∀x ∈ S. (8) 
It is natural to see the similarities between matrix inequalities ( 8) and (4b). The property of p-dominance has been related to various differential properties [13, Section V], such as differential positiveness [START_REF] Forni | Differentially positive systems[END_REF] and monotonicity [START_REF] Angeli | Monotone control systems[END_REF]. Condition (4b) sheds light on the relationship between k-contraction and p-dominance. To the best of the authors' knowledge, this link is not found in the literature.

To better understand this relation, consider the variational system of [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF]. Then, the p-dominance condition (8) splits the tangent space in a vertical subspace of dimension p and a horizontal subspace of dimension n -p. More precisely, for each initial condition x 0 ∈ S the tangent space can be divided in a horizontal distribution H x and a vertical distribution V x . The property of p-dominance can be interpreted as a form of horizontal contraction [10, Section VII], in the sense that contraction is only imposed in the horizontal subspace. However, horizontal contraction is not a sufficient condition for k-contraction [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF], and a bound on the expansion rate of the vertical subspace has to be imposed. This bound is obtained via (4a) paired with (4c).

This relationship between p-dominance and k-contraction explains why both properties share similar convergence results for systems evolving in a bounded set. Consider system (1) and assume S is compact and forward invariant. In [START_REF] Li | On R.A. Smith's Autonomous Convergence Theorem[END_REF] it is shown that any bounded solution converges to an equilibrium point if the system is 2-contractive. Similarly, in [13, Corollary 1], it is proven that any bounded solution converges to a fixed point if the system is 1-dominant.

B. Sufficient conditions based on matrix compounds

Sufficient conditions for k-contraction were originally given in the seminal work by Muldowney [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF] and were recently rediscovered in the works [START_REF] Wu | k-contraction: Theory and applications[END_REF], [START_REF] Angeli | A robust lyapunov criterion for nonoscillatory behaviors in biological interaction networks[END_REF]. The remainder of this subsection focuses on briefly describing these sufficient conditions in the context of k-contraction as presented in Definition 1 and comparing them to the ones presented in Theorem 1. As previously stated, sufficient conditions provided in [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], [START_REF] Wu | k-contraction: Theory and applications[END_REF] strongly depend on the use of matrix compounds. Consequently, first, we introduce the notion of multiplicative and additive compound of a matrix. More details on their computation can be found in [START_REF] Fiedler | Special matrices and their applications in numerical mathematics[END_REF]. Definition 3 (Multiplicative Compound [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF]). Consider a matrix Q ∈ R n×m and select an integer k ∈ [1, min{n, m}]. Moreover, define a minor of order k of the matrix Q as the determinant of some k×k submatrix of Q. The k th multiplicative compound of Q, denoted as Q (k) , is the n k × m k matrix including all the minors of order k of Q in a lexicographic order.

Definition 4 (Additive Compound [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF]). Consider a matrix

Q ∈ R n×n and select an integer k ∈ [1, n]. The k th additive compound of Q is the n k × n k matrix defined as Q [k] := d dε (I + εQ) (k) | ε=0 .
Bearing these definitions in mind, we now reframe the sufficient condition for k-contraction presented in [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], [START_REF] Wu | k-contraction: Theory and applications[END_REF] in the framework of this paper. In this case, we can consider time-varying systems of the form

ẋ = f (t, x), x ∈ R n ( 9 
)
where f is sufficiently smooth with respect to its second argument and continuous with respect to the first one. Note that Definition 1 applies similarly to the case of time-varying systems [START_REF] Angeli | Detection of multistability, bifurcations, and hysteresis in a large class of biological positivefeedback systems[END_REF].

Theorem 3. Assume there exists a compact forward invariant set A ⊆ R n , a symmetric positive definite matrix

Q ∈ R ( n k )×( n k
) and a real number µ > 0 such that for all

(t, x) ∈ R + × A it holds Q ∂f ∂x (t, x) [k] + ∂f ∂x (t, x) [k] ⊤ Q ⪯ -µQ. (10) 
Then, system (9) is k-contractive on S := A.

The proof is postponed to Section V-D.

Remark 2. Inequality (10) is equivalent to the condition in [15, Theorem 9] using the logarithmic norm induced by the weighted ℓ 2 norm (e.g. [25, Equation 2.56]). However, in our statement, we allow the set A to be non-convex. Furthermore, for the case k = 1, we recover the well-known Demidovich conditions (e.g. [START_REF] Davydov | Non-euclidean contraction theory for robust nonlinear stability[END_REF]) and the proof in [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] for contraction of lengths in the context of Euclidean metrics.

We now compare results in Theorem 3 to the ones in Theorem 1 and Proposition 1. We start by considering computational complexity. First, notice that the inertia constraint in our condition can be relaxed to obtain an unconstrained LMI, see [13, Section VI.B]. Hence, we focus on the linear system framework with distinct real eigenvalues, as Proposition 1 provides a larger set of matrix inequalities with respect to Theorem 1 and Theorem 2 (c k ⩽ k). Let M ∈ R r×r be an arbitrary square matrix and Q ∈ R r×r be a symmetric matrix. Since Q is symmetric, each condition of the form QM + M ⊤ Q ⪯ µQ requires the computation of 4) is of significantly smaller computational complexity. Moreover, even in the worst case of k = n, Proposition 1 typically requires between 10 2 and 10 3 variables. Differently, Theorem 3 can easily reach 10 4 variables in the worst case. Now we compare the results in terms of feedback design. We claim that the lack of matrix compounds in Theorem 1 and Proposition 1 simplifies the process of k-contractive feedback design. Consider a linear system of the form ẋ = Ax + Bu, where u ∈ R q is the control input. Assume we want to design a state-feedback controller of the form u = -Kx, with K a constant matrix of adequate dimension and such that the closed-loop system is k-contractive. On one hand, Theorem 3 reduces to designing K such that condition [START_REF] Forni | A differential lyapunov framework for contraction analysis[END_REF] is satisfied for the closed-loop system. That is,

Q (A -BK) [k] + (A -BK) [k] ⊤ Q ⪯ -µQ.
However, this is a highly nonlinear and non-convex matrix inequality, due to the strong coupling between the matrices B, K imposed by the additive matrix compound. Consequently, even for a simple linear case, a design methodology for the gain K cannot be straightforwardly derived. On the other hand, also Proposition 1 asks for conditions (4) to be verified by the closed-loop system. However, this can be transformed to a set of linear matrix inequalities by means of standard transformations [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF]. For this reason, we believe that condition (4) will be crucial in the development of kcontraction design tools.

C. Comparison with condition in [18]

Consider the linear case. Previous works already investigated sufficient conditions for k-contraction that do not require the computation of the k-additive compound. As a matter of fact, [START_REF] Dalin | Verifying k-contraction without computing k-compounds[END_REF]Theorem 17] shows that a system is kcontractive if there exist an invertible matrix T ∈ R n×n and q ∈ {1, 2, ∞} such that tr(A) + (n -k)µ q (-T AT -1 ) = τ (A) < 0 [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] where µ q (•) represents the logarithmic norm of a matrix, see e.g. [START_REF] Aminzare | Contraction methods for nonlinear systems: A brief introduction and some open problems[END_REF], [START_REF] Strom | On logarithmic norms[END_REF], and tr(A) denotes the trace of the matrix A.

We highlight that Proposition 1 provides necessary and sufficient conditions while the condition ( 11) is only sufficient. This is made evident by the first example presented in [18, Section V], where the authors consider a diagonal matrix

A = diag(λ 1 , . . . , λ n ) satisfying Re(λ 1 ) ⩾ . . . ⩾ Re(λ n ).
Then, for any invertible matrix T and any q ∈ {1, 2, ∞}, the left-hand side in [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] reads as

τ (A) = -(n -k -1)λ n + n-1
i=1 λ i Thus, condition [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF] reduces to

λ 1 + • • • + λ n-1 < (n -k -1)λ n < 0. ( 12 
)
Recall that a spectral property of the additive compound matrix is that the eigenvalues of the matrix A [k] are all the possible sums of the form [START_REF] Wu | k-contraction: Theory and applications[END_REF]. Thus, a necessary and sufficient condition for k-contraction is

λ i1 + λ i2 + • • • + λ i k , with i ⩽ i 1 ⩽ . . . ⩽ i k ⩽ n, see
k i=1 λ i < 0. (13) 
For k = n -1, equation ( 12) reduces to [START_REF]Differential dissipativity theory for dominance analysis[END_REF]. Consequently, ( 12) is necessary and sufficient for (n -1)-contraction. However, for n -k > 1, it is always possible to fix a sufficiently negative eigenvalue λ n such that ( 12) is not satisfied even if ( 13) is satisfied. Thus, condition ( 11) is sufficient but not necessary.

D. Infinitesimal k-contraction

Inspired by classical works on contraction theory [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF], we now provide a result linking the exponential stability properties of the lifted system to the k-contraction property proposed in Definition 1. The definition of k-contraction for the lifted system was used in [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF]. In this section, we recall this definition and we provide further geometrical interpretation of it, along the lines of Section II.

The linearization of (9) about the trajectory

ψ t (x 0 ) is δx = ∂f ∂x (t, ψ t (x 0 ))δ x , (14) 
where δ x belongs to the tangent space

T ψ t (x0) R n = R n .
Then, ∂ψ ∂x t (x 0 )δ x0 is a trajectory of ( 14) at time t initialized at δ x0 at t = 0. From linearity, it can be deduced that ∂ψ ∂x t (x 0 ) is the state transition matrix of [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF]. Then, ∂ψ ∂x t (x 0 )δ x0 depicts the infinitesimal displacement with respect to the solution ψ t (x 0 ) induced by the initial condition x 0 + δ x0 .

Pick any x 0 ∈ R n and k initial conditions of the variational system in (14) δ 1 x0 , . . . , δ k x0 . Following [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF], we define

X NL (t, x 0 ) := ∂ψ ∂x t (x 0 )δ 1 x0 • • • ∂ψ ∂x t (x 0 )δ k x0 .
Note that X NL (0, x 0 ) = ∂Φ loc ∂r (r), where Φ loc is a function whose image is an infinitesimal k-order parallelotpe with vertices at x 0 and δ i x0 + x 0 , namely

Φ loc (r) = k i=1 r i (δ i x0 + x 0 ) + 1 - k i=1 r i x 0 , r ∈ [0, 1] k .
We have the following result relating [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF] to Definition 1.

Lemma 1 (Infinitesimal k-contraction). Consider a set A ⊆ R n and strictly positive constants γ and η such that the following holds for all (t,

x 0 ) ∈ R + × A |(X NL (t, x 0 )) (k) | ⩽ γe -ηt |(X NL (0, x 0 )) (k) |, (15) 
Then, system (9) is k-contractive on S := A.

The proof is omitted for space reasons.

V. PROOFS

A. Preliminary results

We provide in this section some preliminary results that will be used in the proof of Theorem 1. First, we recall (with a mild reformulation) the following result on p-dominance [13, Theorem 1].

Theorem 4. Suppose that system (1) is strictly p-dominant on a compact forward invariant set A ⊂ R n with rate µ > 0 and symmetric matrix P with inertia In(P ) = (p, 0, n -p). Then, for each x ∈ A, there exists an invariant splitting T x R n = V x ⊕ H x , i.e. there exists a continuous mapping T : R n → R n×n invertible for any x ∈ A and satisfying

T(x) := T h (x) T v (x) , (16a) 
where T h : R n → R n×n-p and T v : R n → R n×p satisfy

Im T h (x) = H x , Im T v (x) = V x . (16b) 
Moreover, there exist a scalar c h > 0 such that

∂ψ ∂x t (x) T h (x) 0 δ x ⩽ c h e -µt T h (x) 0 δ x (16c) holds for all (t, x, δ x ) ∈ R + × A × T x R n .
With this in mind, it is clear that if µ k-1 is strictly negative, LMI (4b) imposes a form of horizontal contraction on the system [10, Section VII]. Nonetheless, horizontal contraction is not a sufficient condition for k-contraction [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF]. This motivates (4a). We clarify the effects of (4a) via the following Lemma.

Lemma 2. Consider system (1) and assume there exist a forward invariant compact set A ⊂ R n , a positive definite matrix P 0 ∈ R n×n and a scalar µ 0 satisfying (4a) for all x ∈ A. Then there exists a constant c v > 0 such that [START_REF] Ofir | A sufficient condition for k-contraction of the series connection of two systems[END_REF] for all (t, x, δ x ) ∈ R + × A × T x R n , with T v as in (16b).

∂ψ ∂x t (x) 0 T v (x) δ x < c v e µ0t 0 T v (x) δ x
Proof. Consider the function, W := δ ⊤ x P 0 δ x . It satisfies

λ(P 0 )|δ x | 2 ⩽ W ⩽ λ(P 0 )|δ x | 2 , ( 18 
)
where λ(•) and λ(•) represent the minimum and maximum eigenvalue of their argument, respectively. By [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF], its timederivative satisfies

Ẇ = δ ⊤ x P 0 ∂f ∂x (x) + ∂f ∂x (x) ⊤ P 0 δ x < 2µ 0 δ ⊤ x P 0 δ x = 2µ 0 W.
Then, by Grönwall-Bellman inequality, we obtain

W (t) < W (0)e t 0 2µ0dτ = e 2µ0t W (0), ∀t ∈ R + .
Invoking [START_REF] Dalin | Verifying k-contraction without computing k-compounds[END_REF], we obtain for all (t, x, δ

x ) ∈ R + × A × T x R n ∂ψ ∂x t (x)δ x < λ(P 0 ) λ(P 0 ) e µ0t |δ x |.
As 0 T v (x) δ x ∈ T x R n , the result trivially follows. 2

Given the above results, condition (4c) can be seen as imposing a bound on the maximum expansion rate of the vertical subspace with respect to the contraction rate of the horizontal one. In particular, (4c) holds if the first is smaller than the latter. We now relate this property to infinitesimal k-contraction. As a first step, we present a technical lemma related to matrix compounds.

Lemma 3. Consider a time-varying matrix M (t) ∈ R n×n M (t) = H(t) V (t) , with H(t) ∈ R n×n-p , V (t) ∈ R n×p and p ∈ [0, n). Assume there exist real numbers c h , c v , α, β > 0 such that |H(t)| ⩽ c h e -αt , |V (t)| ⩽ c v e βt , ∀t ∈ R + . ( 19 
)
If α > (k -1)β for some integer k ∈ [p + 1, n], there exist some real numbers c, ε > 0 such that

|M (t) (k) | ⩽ ce -εt , ∀t ∈ R + . (20) 
Proof. Consider the elements of the compound matrix M (t) (k) . Each one is a k th -order minor of the original matrix M (t), i.e., it is the determinant of a k ×k submatrix of M (t), see Definition 3. Since k ⩾ p + 1, each k × k submatrix contains at least one column composed of elements of H(t).

That is, in the minimum case

M k (t) = h(t) v 1 (t) . . . v k-1 (t) , (21) 
where

M k (t) ∈ R k×k is a submatrix of M (t), h(t) ∈ R k is a vector with components of H(t) and v i (t) ∈ R k for i = 1, . . . , k -1 is a vector with components of V (t).
In what follows, we show the elements of M (t) (k) are bounded. Hence, we focus on submatrices of the form [START_REF] Angeli | Monotone control systems[END_REF], since their determinant represents the worst-case scenario in a stability sense. Recall that, by definition of the wedge product,

det(M k (t)) = h(t) ∧ v 1 (t) ∧ • • • ∧ v k-1 (t).
The wedge product can be represented using a basis e i , where e i depicts the ith canonical vector of R n . More specifically, by bilinearity of the wedge product, we have

det(M k (t)) = n i=1 h i (t)(e i ∧ v 1 (t) ∧ • • • ∧ v k-1 (t)),
where h i (t) is the ith element of h(t). By performing similar operations on the remaining vectors we deduce

det(M k (t)) = k i1=1 • • • k i k =1 h i1 (t)v i2 2 (t) . . . v i k k-1 (t)E k , (22) 
where E k := (e i1 ∧ e i2 ∧ • • • ∧ e i k ). By [START_REF] Wu | From partial and horizontal contraction to k-contraction[END_REF], we have

|h i (t)| ⩽ c h e -αt , |v i (t)| ⩽ c v e βt .
Moreover, the factor E k will be either zero or an element of the canonical basis in R n multiplied by plus or minus one. Thus, using the triangle inequality, one obtains

| det(M k (t))| ⩽ κc h c v e (-α+(k-1)β)t
where κ > 0 is a positive constant related to the number of non-zero instances of E k . Now, since α -(k -1)β > 0 by assumption, by continuity there always exists ε > 0 such that α

-(k -1)β -ε > 0. Then, |M (t) (k) | = |e -εt e εt M (t) (k) | ⩽ e -εt |e εt M (t) (k) |.
By considering the worst-case (21), we have

e εt | det(M k (t))| ⩽ ce (-α+(k-1)β+ε)t ,
for some c > 0. Hence, since α -(k -1)β -ε > 0, each element of e εt M (t) (k) is exponentially decreasing and the norm |e εt M (t) (k) | is uniformly bounded for all t ∈ R + , thus concluding the proof.

2

Leveraging on the previous Lemmas, we now provide a bound on the k multiplicative compound of the state transition matrix of the lifted system [START_REF] Muldowney | Compound matrices and ordinary differential equations[END_REF]. Lemma 4. Consider system (1) and assume there exist a forward invariant compact set A ⊂ R n , constants µ 0 , µ k-1 and matrices P 0 , P k-1 ∈ R n×n such that (4) is satisfied. Then, there exist ε, c > 0 such that

∂ψ ∂x t (x) (k) ⩽ ce -εt , ∀(t, x) ∈ R + × A. (23) 
Proof. Consider (16a) in Theorem 4. Invertibility of T(x) yields

∂ψ ∂x t (x) = ∂ψ ∂x t (x)T(x)T(x) -1 = Ψ t (x)T(x) -1 , with Ψ t (x) := ∂ψ ∂x t (x)T h (x) ∂ψ ∂x t (x)T v (x) . Given any δ x ∈ T x R n , consider the decomposition δ x = (δ h x , δ v x )
, where δ h x ∈ R n-p and δ v x ∈ R p . Then, for an arbitrary δ h x , inequality (16c) of Theorem 4 implies

| ∂ψ ∂x t (x)T h (x)δ h x | ⩽ c h e µ k-1 |T h (x)δ h x | . Recall the definition of matrix norm, ∂ψ ∂x t (x)T h (x) := max |u|=1 ∂ψ ∂x t (x)T h (x)u .
By selecting vector u ⋆ such that |u ⋆ | = 1, the previous exponential relation and the triangular inequality yield

∂ψ ∂x t (x)T h (x) = ∂ψ ∂x t (x)T h (x)u ⋆ ⩽ c h e µ k-1 |T h (x)u ⋆ | ⩽ c h e µ k-1 |T h (x)|.
Since A is compact and T is continuous, |T h (x)| is bounded for all x ∈ A. Then, by (16c), and by [START_REF] Ofir | A sufficient condition for k-contraction of the series connection of two systems[END_REF] we obtain

∂ψ ∂x t (x)T h (x) ⩽ c h e µ k-1 |T h (x)| ⩽ ch e µ k-1 ∂ψ ∂x t (x)T v (x) < c v e µ0 |T v (x)| ⩽ cv e µ0
for all x ∈ A. Finally, by boundedness of T(x) and Lemma 3, we obtain

∂ψ ∂x t (x) (k) ⩽ |Ψ t (x) (k) ||T(x) -1 (k) | ⩽ ce -εt
for all x ∈ A, concluding the proof. 2

B. Proof Theorem 1

Consider the k th multiplicative compound of matrix X NL (t, x 0 ) defined as in Section IV-D. A simple computation shows:

X NL (t, x 0 ) (k) = ∂ψ ∂x t (x 0 )δ 1 x0 . . . ∂ψ ∂x t (x 0 )δ k x0 (k) = ∂ψ ∂x t (x 0 ) (k) X NL (0, x 0 ) (k) ,
where the second inequality is derived from the Cauchy-Binet formula [START_REF] Fallat | Totally nonnegative matrices[END_REF]Chapter 1]. From (4) and Lemma 4 we obtain

|(X NL (t, x 0 )) (k) | ⩽ ce -εt |(X NL (0, x 0 )) (k) |.
Hence, the system is infinitesimally k-contractive and the result follows by Lemma 1.

C. Proof Proposition 1

Following Theorem 3, a sufficient condition for kcontraction in linear systems is stability of A [k] . Moreover, [START_REF]Differential dissipativity theory for dominance analysis[END_REF] shows that this condition is also necessary for kcontraction. Then, the remainder of the proof is based on showing that (6a)-(6b) in Proposition 1 are equivalent to A [k] being Hurwitz. First, we recall [32, Lemma 1, Section 3]. Lemma 5. Assume there exists a symmetric matrix P ∈ R n×n with In(P ) = (p, 0, n -p) and a constant µ such that A ⊤ P + P A ≺ 2µP .

Then, matrix A has p eigenvalues with real part strictly bigger than µ and n-p eigenvalues real part strictly smaller than µ.

We now present the main arguments proving sufficiency and necessity of the result in Proposition 1. Sufficiency. Let the eigenvalues of A be ordered such that λ 1 > λ 2 > • • • > λ n . A spectral property of the additive compound matrix is that the eigenvalues of the matrix A [k] are all the possible sums of the form λ i1 + λ i2 + • • • + λ i k , with i ⩽ i 1 ⩽ . . . ⩽ i k ⩽ n, see [START_REF] Wu | k-contraction: Theory and applications[END_REF]. Therefore, ( 13) is a necessary and sufficient condition for k-contraction. Now, by Lemma 5, inequality (6a) implies λ i+1 < µ i for all i = 0, . . . , k -1. Then, by (6b) and since the eigenvalues are scalars, we have

k i=1 λ i = k i=1 λ i < k-1 i=0 µ i < 0 ,
and ( 13) is satisfied. Necessity. As stated in the previous step of the proof, if A [k] is Hurwitz, (13) is verified. Hence, by continuity, there exist a set of scalars ε i > 0 such that k i=1 (ε i + λ i ) < 0 . Select µ i-1 = ε i + λ i > λ i , for i = 1, . . . , k -1. We have

k-1 i=0 µ i = k i=1 (ε i + λ i ) < 0.
Now, define matrices Âi = A -µ i I with i = 0, . . . , k -1. It is clear that, by the definition of µ i , each matrix Âi has i negative eigenvalues and n -i positive eigenvalues. Then, by [16, Theorem 2.5], there exist symmetric matrices P i such that

Â⊤ P i + P i  = -G i ∀i = 0, . . . , k -1 ,
with G i ≻ 0 and In(P i ) = In( Âi ) = {i, 0, n -i}. Then, as G i ≻ 0 and by using the definition of Âi , we have

A ⊤ P i + P i A ≺ 2µ i P i ∀i = 0, . . . , k -1 ,
thus concluding the proof.
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D. Proof of Theorem 3

Consider Φ ∈ I k , where I k is defined in [START_REF] Russo | Solving the rendezvous problem for multi-agent systems using contraction theory[END_REF]. To simplify notation, let us denote for all (r, t)

For all (r, t) in [0, 1] k × R + , we have

Then, by the chain rule, it follows that the point Γ r (r, t) evolves according to

for all (r, t) in [0, 1] k × R + . Since these dynamics are linear, following similar steps to the ones presented in [15, Section 2.5], we obtain

Next, fix a symmetric positive definite matrix P such that Q = P (k) . Then, since Γ r (r, t) ∈ R n×k , from the Cauchy-Binet formula [31, Chapter 1] the following equality holds

Then, using the previous notation, the volume ℓ k (ψ t • Φ) of ψ t • Φ computed according to (3) takes the form

In turn, for all (r, t) in [0, 1] k × R + , it evolves according to

with the compact notation He {A} := A + A ⊤ . Hence, for all (r, t) in [0, 1] k × R + , we obtain

Invoking inequality [START_REF] Forni | A differential lyapunov framework for contraction analysis[END_REF], the previous relation implies

for all (r, t) in [0, 1] k ×R + . The result follows by Grönwall's lemma.

VI. CONCLUSIONS

We presented new alternative conditions for k-contraction that do not rely on matrix compounds. The proposed conditions reduce the k-contraction analysis to solving a set of LMIs. Moreover, these conditions provide a direct link between the p-dominance theory and k-contraction one.

Future works will focus on extending the proposed conditions to the context of time-varying systems and Riemannian metrics, similar to the context of 1-contraction, see, e.g. [START_REF] Andrieu | Characterizations of global transversal exponential stability[END_REF], [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF]. Furthermore, we believe that the proposed conditions can be used to develop new tools for k-contractive feedback design, so that to extend existing conditions for standard 1contraction, see, e.g. [START_REF] Manchester | Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design[END_REF], [START_REF] Giaccagli | LMI conditions for contraction, integral action and output feedback stabilization for a class of nonlinear systems[END_REF], [START_REF]Infinite gain margin, contraction and optimality: An LMI-based design[END_REF] and references therein.