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Andreu Cecilia, Member, IEEE, Daniele Astolfi and Ramon Costa-Castelló, Senior Member, IEEE

Abstract—Fuel cells are electrochemical devices with some
internal variables that cannot be measured, but have to be
monitored in real-time. That is the case for the liquid water
inside the fuel cell catalyst layer. This motivates the development
of online algorithms, i.e. observers, able to estimate such variables.
Nonetheless, fuel cell dynamics are strongly nonlinear, with
significant parametric uncertainty and significant sensor noise.
Therefore, typical observers, as the extended Kalman filter, usually
underperform or are unstable in such systems. To overcome such
limitation, this work proposes a novel nonlinear observer to
estimate the liquid water saturation in fuel cells based on an
inherent differential detectability of the liquid water dynamics.
The stability of the proposal is formally analysed and is validated
through numerical simulations and in an experimental prototype,
where noise and uncertainty are considered.

Index Terms—Polymer electrolyte membrane fuel cell (PEMFC),
Nonlinear observer, uncertain system

I. INTRODUCTION

C ritical energy challenges have motivated the introduction
and the use of hydrogen in energy systems. In this

context, polymer electrolyte membrane fuel cells (PEMFC) are
remarkable devices to convert the chemical energy of hydrogen
into electrical energy, due to its low operating temperature, lack
of moving part, zero emissions, quick start-up and high-energy
density [1].

In its most basic form, a PEMFC consists of a solid polymer
that is used as an electrolyte between the anode and the cathode.
The fuel cell anode is constantly delivered with pure hydrogen.
This hydrogen is processed at a platinum based catalyst layer,
which separates the H2 into protons and electrons. The protons
travel to the cathode catalyst layer through the membrane.
However, due to the membrane ionic properties, the electrons
are forced to travel through an external circuit, which generates
the electrical load of the device. In parallel, the cathode is feed
with pure oxygen or air, which flows to the cathode catalyst
layer. In this layer, the oxygen is combined with the protons
to generate water and heat, which closes the overall reaction.
A general scheme of the operation of a PEMFC can be found
in Fig. 1.
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Fig. 1. General scheme of a single PEM fuel cell operation.

Although PEMFCs present promising properties, the econom-
ical viability of these devices is limited by degradation issues
[2]. Indeed, fuel cell operation is related to thermal, chemical
and electrical processes with internal states that will vary during
the operation. Improper managing of these internal states will
eventually lead to performance loss and system degradation [3].
Consequently, there is a necessity of monitoring and controlling
such internal variables [4], [5].

A critical variable in PEMFCs is the water inside the
device [6]. Specifically, during its operation, there is a natural
generation of water in the cathode due to the reduction reaction.
If too much water accumulates in the channels, the reactants
cannot efficiently reach the catalyst layer, potentially leading to
unstable voltages and performance losses. However, if too much
water is removed and the fuel cell membrane dries out, the
membrane conductivity decreases, resulting in increased ohmic
losses in the system. Therefore, there is a need of monitoring
the water inside the PEMFC in real-time.

However, measuring the water in real-time is not a straight-
forward task. Indeed, direct measurement techniques such as the
current distribution method [7], neutron radiography [8], or x-
ray radiography [9] are too slow and invasive to be implemented
in real-time. This reality has driven the development of online
water estimation algorithms. In control theory, these algorithms
are often referred to as state observers. See, for instance, [10]
for a recent survey on this topic.

The objective of this work is to develop a state observer
to estimate the liquid water of a PEMFC cathode catalyst
layer using easily measurable signals. This problem presents
several challenges that must be taken into account. First,
PEMFC dynamic models are associated with highly nonlinear
processes. Typically, this challenge is addressed by approximat-
ing the system using Taylor linearization and subsequently
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implementing a linear observer within the resulting linear
system. This approximated approach is akin to the common
extended Kalman filter (EKF), as seen in references such as
[11] and [12]. Nevertheless, this linear approximation remains
valid only when the observer states are initialized sufficiently
close to their true values, which is often unattainable in
electrochemical systems. Consequently, EKFs exhibit fragile
stability properties and limited accuracy in electrochemical
systems, as noted in [13]. Second, PEMFC mathematical
models entail significant parametric uncertainties; that is,
there are model parameters that are challenging to accurately
identify. As a result, the mathematical model generally exhibits
substantial discrepancies in relation to the true physical process.
Observers are model-based estimation algorithms; consequently,
parametric uncertainties must be considered and addressed
during the observer design process. It’s worth noting that this
aspect has already been taken into account in some prior
research, which has led to the utilization of robust observer
techniques [14] and sliding-mode observers [15].

Previous studies have proposed various observers for estimat-
ing liquid water saturation in PEMFC. For example, a high-gain
observer approach was introduced in [16], [17], a sliding-mode
observer can be found in [18], [19], and an adaptive observer
was implemented in [20]. Nevertheless, all of these works had
two significant drawbacks. Firstly, the observers necessitated
high-gain feedback terms, which negatively affected the tran-
sient performance of the estimator and significantly increased
the algorithm’s susceptibility to noise. Secondly, all of these
observers required the inversion of an ill-posed matrix, which
could potentially lead to numerical issues during practical
implementation. An alternative estimation approach can be
found in [21], where liquid water saturation is treated as a
constant parameter and estimated through a robust parameter
estimation algorithm. However, the accuracy of this approach
may be compromised in scenarios where liquid water content
varies over time.

This work proposes a new observer that solves the afore-
mentioned limitations. The specific contributions of this work
are:
• Propose a simple nonlinear observer, that exploits the

differential detectability property of the system, in order
to estimate the liquid water in the cathode catalyst layer
of a PEMFC using only a temperature sensor.

• Include the voltage signal in the proposed observer to
improve the settling time1, the robustness in front of
parametric uncertainty and the noise sensitivity of the
algorithm.

• Validate the overall observer through numerical simula-
tions and in an experimental prototype, where sensor noise
and uncertainty are taken into account.

The rest of this paper is organized as follows. Section II
introduces a PEMFC model that will be used to design the
observer and formulates the estimation problem to be solved.
Section III presents the equations of the observer. Section IV
validates the proposal through a set of numerical simulations

1The settling time of the observer is defined as the time required for the
observer states to reach a 5% error band around its steady-state.

while Section V validates the technique in a real experimental
prototype. Finally, some conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

A. PEMFC model

The proposed observer is developed employing the control-
oriented lumped parameter model presented and validated in
[22]. This model has been used to solve multiple control
problems in PEM fuel cell systems [23] and has been previously
used to solve similar estimation problems [20]. Specifically,
the model can be depicted in the following state-space form:

ẋ = f(x, I, vair) (1)
y1 = cx = Tfc

y2 = vfc(x, I).

The state vector, x, is defined as: x = [Tfc, s]
>, where Tfc [K]

is the temperature in the fuel cell cathode catalyst layer and
s [−] is the liquid water saturation in the cathode catalyst
layer. The model includes two control inputs: the load current,
I [A], and the cathode air velocity, vair [m s−1]. Finally, it is
assumed that that there are two measurable outputs, [y1, y2]>:
the temperature in the cathode catalyst layer, Tfc, and the stack
voltage vfc [V ].

Furthermore, the function f is defined as:

f(x, I, vair) =[
K1(Eocvncell − vfc)I +K2(Tamb − Tfc)vair −K11fp(Tfc, s)

K3I −K4fp(Tfc, s) +K5fd(s)

]
where Eocv [V ] is the open-circuit voltage, ncell [−] is the
number of cells, Tamb is the ambient temperature, the constants
K1, ..,K5 are defined as:

K1 =
1

mscp,s
, K2 =

ρairAinletcp,air
mscp,s

, K3 =
MH2O

2FAcellKs
,

K4 =
MH2OKevap

RKsApore
, K5 = σH2O cos(θCL)

√
εKeff

l

ρl
Ksµl

,

K11 =
K4∆Hvap

mscp,s
,

where ms [kg] is the overall stack mass, cp,s [J kg−1 K−1]
is the effective stack heat capacity, ρair [kg m−3] is the
air density, Ainlet [m2] is the inlet cross-sectional area,
cp,air [J kg−1 K−1] is the air heat capacity, F [C mol−1]
is the Faraday constant, Ks [kg m−2] is an ionomer ac-
cumulation coefficient, σ [N m−1] is the surface tension
of water, Kevap [m3 s−1] is the evaporation time constant,
Apore [m2 m−3] is the effective pore surface area per unit
volume, MH2O [kg mol−1] is the water molar mass, θcl [◦] is
the effective contact angle of the catalyst layer, ρl [kg m−3]
is the liquid water density, µl [kg m−1 s−1] is the water
dynamic viscosity and δCL,c [m] is the catalyst layer width,
R [J K−1 mol−1] is the ideal gas constant, ∆Hvap [J mol−1]
is the enthalpy of vaporization.

The nonlinear functions fp and fd are computed as:

fp(Tfc, s) =
s

Tfc
(p0e−K6/(Tfc) −K7),

fd(s) = s(−0.96 + 3.32s− 3.78s2).
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where K6 =
Ea

kb
, with Ea [eV ] being the activation energy

of the evaporation, the factor kb [eV K−1] being the Boltzmann
parameter, p0 [Pa] is a pre-exponential factor and K7 [Pa]
being the water vapour pressure in the CCL.

Relative to the electrical side, a function that relates the
states, x, and the fuel cell output voltage, vfc, is included in
the model. Specifically, the voltage is computed as:

vfc(x, I) = ncell(Eocv − ηact − ηohm). (2)

The factor ηohm depicts the ohmic losses which are computed
through the ohm’s law,

ηohm = RohmI

where Rohm [Ω] accounts for the ionic conductivity of
the membrane and the resistance of the fuel cell’s electric
conductive components. In this work, we employ a simplifying
assumption by treating the ohmic resistance, Rohm, as a
constant parameter. It is worth noting that the conductivity
of the fuel cell membrane is known to depend on factors
such as the membrane’s water content and temperature, as
documented in references [6, Section 2.1] and [24]. These
factors can potentially vary during the operation of the fuel
cell. However, adopting this assumption serves to streamline
the observer design and analysis processes. Furthermore, the
experimental validation presented in Section V of this paper
provides empirical evidence that, even with this assumption in
place, the observer still demonstrates satisfactory accuracy and
performance.

Remark II.1. It’s important to distinguish between two distinct
variables: the membrane water content and the liquid water
saturation. The membrane water content specifically pertains
to the quantity of water absorbed by the hydrophilic clusters
containing H+SO−3 in the membrane, as outlined in [6, Section
2.1]. On the other hand, the liquid water saturation relates to
the volume fraction of liquid water within the porous regions
of the catalyst layer and at the interface between the catalyst
layer and the membrane, as detailed in [6, Section 2.3]. While
these variables are interconnected—more liquid water can
lead to increased water absorption by the membrane—they are
not equivalent. It is essential to underscore that the primary
objective of this paper is to estimate the liquid water saturation
within the catalyst layer.

Certainly, the accuracy of the observer presented in this
paper may be affected by the model simplification regarding
the ohmic resistance. To enhance the accuracy of the observer in
real-world scenarios, it’s possible to incorporate mechanisms for
real-time estimation of the ohmic resistance. One approach to
achieve this is by coupling the observer with a system designed
explicitly for estimating the membrane water content, such as
the one proposed in [25]. Once this water content estimation is
obtained, the relationship between water content, temperature,
and ohmic resistance, as described in [24], can be employed to
estimate the ohmic resistance. Alternatively, a current interrupt
strategy, as discussed in [26], can be implemented to directly
acquire an estimation of the ohmic resistance. These strategies
can contribute to improving the accuracy of the observer in

real-world applications where the ohmic resistance varies with
changing conditions. However, these strategies are out of the
scope of this paper.

The factor ηact accounts for the activation losses which is
computed as:

ηact = K8Tfcln

(
I

Ageoj0(x)

)
where Ageo [m2] is the effective area of the cathode catalyst
layer. The parameter K8 is computed as

K8 =
R

2αF

where α is the fuel cell transfer coefficient. The factor j0
depicts the exchange current density which is computed as
[23],

j0(x) = K9

(
1−

(sopt − s
sopt

)1/3)
e

(
−K10

Tfc

[
1−

Tfc
Tref

])

where Tref [K] is the stack temperature at a reference operating
conditions, sopt [−] is the liquid water saturation in which the
effective electrochemically active surface area is maximum.
The parameters K9 and K10 are computed as

K9 = jref0 ac, K10 =
∆G∗

R

where jref0 [A m−2] and ac [−] are the reference exchange
current and electrode rugosity, respectively, at a reference
operating conditions, and ∆G∗ [J mol−1] is the activation
barrier for the oxygen reduction reaction on platinum.

Finally, it is important to emphasize that the states and
controlled inputs of the presented fuel cell model are assumed
to be bounded, positive, and non-zero. Otherwise, the studied
fuel cell system could encounter severe degradation and security
issues. Consequently, the model states, denoted as x, are
expected to evolve within a compact set X ⊂ R2, while the
controlled inputs, represented as (vair, I), are defined within
another compact set U ⊂ R2. For this work, we assume that
the fuel cell operates within the region where I > 0, vair > 0,
Tfc > 0, and sopt > s > 0.

B. Main Objectives

The primary objective is to design an observer that utilizes
the information from the measured outputs, Tfc and vfc, as
well as the control inputs I and vair, to generate an estimation
of the states, denoted as x̂. This estimation should converge
asymptotically to zero, meaning we aim for the following
condition to hold:

lim
t→∞

|x(t)− x̂(t)| = 0. (3)

There are multiple techniques that can be employed to address
this problem. However, to design an observer suitable for
practical implementation, it’s crucial to consider the presence
of unmodeled elements during the observer design phase.
In particular, fuel cell sensors typically exhibit a significant
amount of sensor noise. Moreover, due to the challenges
associated with measuring fuel cell liquid water saturation,
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identifying parameters related to liquid water dynamics is
a formidable task. Therefore, it’s reasonable to assume that
significant parametric uncertainty will be associated with the
parameters Ki, ∀i ∈ 3, .., 7. Naturally, in the presence of such
unmodeled elements, achieving the objective outlined in (3)
becomes unattainable. Instead, we can only ensure practical
convergence, denoted as limt→∞ |x̂(t)− x(t)| ≤ ε, where ε is
a positive constant. Consequently, the proposed observer must
minimize the impact of sensor noise and parametric uncertainty
on the quality of the estimation.

III. OBSERVER PROPOSAL

A. Observer Dynamics

Considering the strong nonlinear nature of the model
dynamics, it is advantageous to design a nonlinear observer
by directly analyzing the dynamics of the PEMFC model.
This approach avoids relying on approximations based on
Taylor linearization [27], [28]. Such approximations typically
lead to local observers, where the observer states must be
initialized “close enough” to the true values to ensure that
the Taylor linearization adequately approximates the model,
as discussed in detail in [11]. Notably, in PEMFC systems,
accurately determining the value of liquid water saturation is
particularly challenging, rendering such initialization unfeasible.
Therefore, this work introduces a nonlinear observer capable
of accurately estimating the states of the PEMFC system,
regardless of the observer’s initial conditions. For a more
comprehensive exploration of nonlinear observer design for
general nonlinear systems, readers are directed to [10].

An interesting property of the studied model is that the
system is differentially detectable with respect to a constant
metric P ∈ R2×2 taking the stack temperature, y1, as the
measured output. For an introduction to the concept of differ-
ential detectability with constant metrics and its connection
to the classical notion of detectability, we refer the reader to
Appendix A.

Precisely, for any value K3,K4,K5,K6,K7 > 0, there
exists a positive definite symmetric matrix P and some positive
constants q and µ such that

P
∂f
∂x

(x, I, vair) +
∂f
∂x

(x, I, vair)>P− µc>c ≤ −qP. (4)

for all (x, I, vair) ∈ X × U , where c = [1 0]. The proof that
such condition is satisfied can be found in Appendix B. The
reader is also referred to [10, Section 4], [29], [30] for a formal
definition of differential detectability and its use in observer
design. In practice, differential detectability can be understood
as a nonlinear extension of the classical notion of detectability
of linear systems.

The main advantage of differential detectability is that, it
can be shown (see [10, Section 4]) that the following observer

˙̂x = f(x̂, I, vair) + κP−1c>(y1 − cx̂) (5)

satisfies the condition (3) in all X , namely, independently of
the initial conditions of the plant and observers. In (5), P is
the matrix computed in (4) and κ is a positive parameter to
be chosen large enough. The formal proof of such a statement
is included in Appendix C.

B. Comparison with Extended Kalman Filter

The presence of the Jacobian of the function f in (4) and
the structure of the observer in (5) bears a resemblance to the
deterministic Extended Kalman Filter (EKF) [11], [12], [31].
However, there are some significant differences that need to
be taken into consideration. In the system under consideration,
the deterministic EKF exhibits the following structure

˙̂x = f(x̂, I, vair) + PKF c>R−1(y1 − cx̂) (6)

ṖKF =
∂f
∂x

(x̂, I, vair)PKF + PKF
∂f
∂x

(x̂, I, vair)> + Q

− PKF c>R−1cPKF ,

with R = R> > 0 and Q = Q> > 0 being matrices to be
tuned. The main differences between the proposed observer in
(5) and the EKF (6) are summarized in the following list.
• The matrix P in (5) remains constant, whereas the matrix

PKF in the EKF (6) is time-varying. Analyzing the
transient behavior of an observer with a constant feedback
term is much simpler compared to observers with time-
varying gains.

• The stability of the EKF (6) necessitates the existence of
constants p, p > 0 such that [11], [12], [31]

pI ≤ PKF (t) ≤ pI, ∀t. (7)

However, the trajectory of PKF depends on the value
of the observer state x̂. Therefore, the assumption in (7)
introduces a loop in the observer analysis, which can
only be resolved by imposing additional conditions on the
system and ensuring that x− x̂ is initially small enough.
This is why the EKF (6) is considered a local observer
and requires initializing the observer states close to their
true values. On the other hand, the proposed observer in
(5) does not involve this analysis loop, is global, and does
not demand precise initialization.

• The proposed observer in (5) has a dimension of 2 and
only requires tuning a single matrix, P. In contrast, the
Extended Kalman Filter is of dimension 4 and involves
tuning two matrices, Q and R.

• The Extended Kalman filter does not leverage the advan-
tageous property of differential detectability (4).

For these reasons, this work has found it more convenient
to implement the observer in (5) than the more common EKF
(6).

C. Limitations of the proposal

While the previous subsection has highlighted some benefits
of the proposed observer, it is important to acknowledge that the
proposal is not without drawbacks. Primarily, since the observer
is based on a detectability assumption, the settling time of the
observer cannot be arbitrarily adjusted and depends on the
system dynamics. As liquid water dynamics are relatively slow,
typically taking around 100-1000 seconds to reach a steady
state [6], the observer’s convergence is also relatively slow.
Additionally, the detectability assumption (4) in the proposed
observer implies that the observer is sensitive to parametric
uncertainty in the liquid water equation dynamics. In other
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words, small uncertainties in the parameters Ki, ∀i ∈ 3, .., 7,
can lead to significant estimation errors, and these errors cannot
be mitigated through observer tuning. It’s worth noting that
this drawback also applies to an EKF. Moreover, it’s important
to highlight that, as mentioned in Subsection II-B, a significant
amount of parametric uncertainty is expected in the liquid water
dynamics, making this drawback particularly critical. A more
detailed explanation is provided at the end of Appendix C. For a
more in-depth analysis of the relationship between detectability,
settling time, and robustness for generic nonlinear systems,
readers are encouraged to refer to [32].

These limitations render the proposed observer (4) impracti-
cal for implementation. However, there exists a straightforward
modification that addresses the aforementioned settling time
and parametric sensitivity issues. The next subsection will
concentrate on introducing this modification.

D. Observer improvement by adding the voltage signal
An interesting design choice is that the observer (5) does

not incorporate the voltage signal y2 = vfc(x, I). Intuitively,
incorporating additional sensor information could enhance the
quality of the observer’s estimation. Therefore, in this work,
we investigate the possibility of leveraging the voltage sensor
to address the limitations of the observer (5).

It should be noted that, in general, there is no established
methodology for integrating additional sensors into already de-
signed nonlinear observers. In other words, designing nonlinear
observers when dealing with multiple outputs is a challenging
task, and there is no universal approach to solve this problem.
However, the voltage equation under consideration exhibits
a property that is particularly advantageous for this task.
Specifically, the voltage equation is monotonic with respect to
the liquid water saturation, s. That is, for any Tfc, s and I in
the considered operating region, the following is satisfied

(s− ŝ)
[
vfc(x, I)− vfc(x′, I)

]
≥ |s− ŝ|2, (8)

where x′ = [Tfc, ŝ]. Monotonicity has a clear interpretation.
Specifically, the voltage value increases whenever the liquid
water saturation, s, also increases, and vice-versa.

This work proposes to exploit the monotonic condition in (8)
to include the voltage signal in the observer (5). Specifically,
the observer in (5) is modified as follows

˙̂x = f(x̂, I, vair) + κP−1c>(y1 − cx̂)

+ ρP−1
[
0
1

]
(y2 − vfc(x′, I)), (9)

where P is a constant matrix that satisfies (4), ρ and κ
are parameters to be tuned and x′ = [y1, ŝ]. As shown in
Appendix D, the observer (9) is an asymptotic observer for
the plant (1) satisfying the condition (3).

Introducing the second term in (9) leads to a significant
reduction in the settling time of the observer and decreases its
sensitivity to parametric uncertainty in the parameters Ki, ∀i ∈
3, .., 7, all without increasing the dimension of the observer or
introducing additional parameters to be tuned. A proof of this
assertion is provided at the end of Appendix D. Furthermore,
the enhancement in the observer’s performance will be validated
through numerical simulations in Section IV.

IV. NUMERICAL SIMULATIONS

The viability and advantages of the proposed observer
(9) were initially validated through a series of numerical
simulations. In the first set of simulations, we compared the
performance of the observer in (9) with that of the observer
in (5) under various case scenarios. In the final simulation, we
compared the performance of the observer in (9) with that of
the EKF in (6).

In all case scenarios, a fuel cell digital twin modelled
through the equations in (1) and the parameters in Table II of
Appendix E (Value (simulation) column) will be excited with a
periodic current profile that oscillates between 5 A and 3.8 A,
and a constant cathode air velocity, vair = 0.9. Consequently,
the model will generate some signals Tfc and vfc that will be
used in the observers to generate an estimation of the liquid
water saturation, ŝ. To assess the quality of the estimation, the
signal ŝ generated by the observer will be contrasted with the
true value of the liquid water saturation, s, generated by the
digital twin. In all case scenarios, the observer parameters have
been fixed to an arbitrary value κ = ρ = 1. The matrix P has

been selected as P =

[
2 1
1 1

]
, which satisfies the condition in

(4). Further details on how to tune the matrix P are included
in Appendix B.

A. Case scenario 1: Perfect model and sensors without noise

In the first case scenario, we assume that the equations of
the observer share the same model parameters as the digital
twin responsible for generating the measured signals. In other
words, the factor f(x̂, I, vair) in the observers is implemented
using the parameters from Table II (Value (simulation) column).
Additionally, we assume that the sensors can provide perfect
measurements of the system. Consequently, the measured
signals, y1 and y2, remain unaffected by measurement noise.

The results of the simulation are illustrated in Fig. 2. As
observed, both observers converge to the true value. However,
the observer in (5) exhibits a relatively lengthy settling time,
requiring approximately 30 seconds to converge. This can be
attributed to two factors. First, the settling time of the observer
in (5) cannot be adjusted. Second, the liquid water dynamics
are relatively slow. Conversely, the observer in (9) achieves
convergence significantly faster, taking only 15 seconds to
settle.

It should be remarked that, as discussed before, the settling
time of the observer in (5) cannot be reduced by increasing or
decreasing the factor κ. Nonetheless, the settling time of the
observer in (9) can be reduced by increasing ρ.

B. Case scenario 2: Perfect model and sensors with noise

In the second case scenario, we once again assume that the
factor f(x̂, I, vair) in the observers is implemented with the
parameters from Table II, meaning that the observers utilize
a perfect model with no parametric uncertainty. However, in
this scenario, we assume that the sensors are not perfect. More
precisely, the measured temperature is subject to white noise
with a variance of 0.05, and the measured voltage is affected
by white noise with a variance of 0.001.
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Fig. 2. Evolution of the model liquid water saturation (s), estimation of the
observer in (5) (ŝ) and estimation of the observer with the voltage signal in
(9) (ŝ with vfv). In both observers, the tunable parameters have been fixed at
κ = ρ = 1.

The results of the simulation are illustrated in Fig. 3. The
observer in (5) converges to an error with a variance of
1.0338 · 10−4, whereas the observer in (9) converges to an
estimation error with a variance of 6.9139 · 10−7, which
is approximately 150 times smaller. Remarkably, it can be
concluded that incorporating the noisy voltage signal into the
observer significantly reduces the impact of sensor noise on
the quality of the estimation.

Fig. 3. Evolution of the model liquid water saturation (s), estimation of the
observer in (5) (ŝ) and estimation of the observer with the voltage signal in
(9) (ŝ with vfc). In both observers, the tunable parameters have been fixed at
κ = ρ = 1. This simulation takes into account the presence of sensor noise.

C. Case scenario 3: Model with parametric uncertainty

In the third case scenario, we assume that the sensors are free
of noise. However, in this scenario, we introduce parametric
uncertainty into the models. Specifically, while the fuel cell
digital twin is implemented with the parameters from Table
II, the factor f(x̂, I, vair) in the observers is implemented with
parameters K3,K4,K5,K6, and K7 as detailed in Table I. It’s
important to note that the parametric uncertainty ranges from
a minimum of a 10% relative error2 to a maximum of 50%.

The results of this third simulation are depicted in Fig. 4.
It can be seen that the observer in (5) converges to a relative
error of around 85%, and the observer in (9) converges to a
relative error of around 14%. This result confirms that adding
the voltage signal reduces the sensitivity of the observer in
front of parametric uncertainty.

2The relative error is computed as
|x− x̂|
x

· 100 (%).

TABLE I
PARAMETERS OF THE DIGITAL TWIN MODEL AND OBSERVER

Parameter Value (DT) Value (Observer) Rel. Error (%)
K3 2.37 · 10−5 2.137 · 10−5 9.83
K4 5.33 · 10−5 4.79 · 10−5 10.13
K5 1.218 · 10−4 6.09 · 10−5 50
K6 5210 4429 14.99
K7 2380 1904 20

Fig. 4. Evolution of the model liquid water saturation (s), estimation of the
observer in (5) (ŝ) and estimation of the observer with the voltage signal in
(9) (ŝ with vfc). In both observers, the tunable parameters have been fixed
at κ = ρ = 1. This simulation takes into account the presence of parametric
uncertainty.

D. Case scenario 4: Comparison with the EKF

In the last case scenario, the proposed observer in (9) is
compared with a set of EKFs of the form (6). This simulation
considers the sensor noise presented in the Case scenario 2
and the parametric uncertainty in the Case scenario 3. In this
simulation, two different parameter tunings for the EKF are
considered. The first, denoted as EKF 1 in Fig. 5, is tuned

with Q =

[
10 0
0 0.1

]
, R = 0.1. The second, denoted as EKF

2 in Fig. 5, is tuned with Q =

[
10 0
0 0.1

]
, R = 100.

The results of the simulation are depicted in Fig. 5. It can
be seen that the EKF 1, presents larger noise sensitivity as
the observer in (9), and presents significant bias during the
steady-state due to the model uncertainty. In the EKF 2, the
value of R has been tuned to reduce the effect of the sensor
noise. In Fig. 5 it can be seen that this tuning reduces the noise
sensitivity of the algorithm, but, increases the bias generated
by the model uncertainty.

Fig. 5. Evolution of the model liquid water saturation (s), estimation of the
observer in (9) (ŝ with vfc) and estimation of two EKFs. This simulation
takes into account the presence of parametric uncertainty and sensor noise.
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V. EXPERIMENTAL VALIDATION

A. Experimental Set-up

The proposed observer has been validated in an experimental
prototype. The setup features a PEMFC stack model H-100. In
the setup, air is delivered to the PEMFC cathode through a fan
that controls the air velocity, vair. The air velocity is measured
using a hot film sensor model EE75 from E+E Elektronik, and
the fan is controlled using a National Instruments NI-9505
PWM module. On the anode side, a compressed hydrogen
cylinder provides pure hydrogen. The setup eliminates the
need for a flow controller, thus allowing the PEMFC to operate
in dead-end mode [33]. This means that a pressure regulator
maintains the anode inlet at 0.4 bar, and periodically, a 500
ms purge is introduced into the anode. It’s worth noting that
these purges introduce periodic disturbances in the measured
voltage signal, as evident in Fig. 7, where periodic downward
’spikes’ are observed in the voltage signal.

As the fuel cell is fed with ambient air (open-cathode
architecture), the system is very sensitive to ambient conditions.
Consequently, to make the experiments reproducible and
repeatable, the system is enclosed in an environmental chamber
that regulates oxygen concentration, humidity, and temperature.

The temperature of each cell of the stack is measured by
means of a type K thermocouple. The temperature of the stack,
Tfc, is taken as the average temperature measured in each cell.

The exchange current can be modified through a pro-
grammable load that emulates some external energy demand.
Finally, an isolation amplifier AD215 from Analog Devices is
used to measure the stack voltage, vfc and a Hall effect sensor
model LTS 6 NP is implemented to measure the exchange
current.

A scheme of the set-up and a photography can be found in
Fig. 6.

B. Experiment 1: Methodology

In the first experiment, the fuel cell system is excited using
a specific input signal to generate the output signals utilized
in the observer. More precisely, a constant exchange current,
I , of 3.95 A, is applied to the fuel cell. Additionally, a step
change in cathode air velocity, vair, is introduced, transitioning
from 0.21 to 0.19 by adjusting the fan input. This step change
induces variations in the fuel cell stack temperature, Tfc, and
voltage, vfc, which are subsequently used in the observer to
estimate the unknown liquid water saturation, s.

The fuel cell model parameters have been identified in the
proposed experimental set-up and are summarized in Table
II (Value (exp.) column). It should be mentioned that, as the
liquid water cannot be measured, the parameters related to the
water dynamics, K3,K4,K5,K6 and K7, may have not been
accurately identified. Nonetheless, as discussed in Section IV,
the proposed observer presents low sensitivity to uncertainty
in these parameters.

A challenge in validating the proposed observer arises
from the absence of real-time liquid water sensors capable of
measuring this variable. Consequently, the observer’s estimation
cannot be directly compared with any measured signal. To
address this limitation, the following methodology will be

employed. Firstly, for an initial validation, the temperature and
voltage estimations generated by the observer will be compared
with the actual measured signals. If the error between the
estimation and measurement is low, and assuming the model is
correct, we can reasonably infer that the liquid water estimation
is also accurate. Secondly, for a secondary validation, the
water estimation produced by the proposed observer in (9)
will be compared with the water estimation generated by the
experimentally validated observer in [18]. If both observers
converge to similar values, then it can be concluded that the
proposed observer is providing accurate estimations.

Finally, to evaluate the advantages of the proposed method
compared to alternatives in the literature, the estimation from
the observer (9) will be compared to the one presented in [18],
which is based on a chattering-free higher-order sliding-mode
approach, as well as the extended Kalman Filter discussed in
Section III.

C. Experiment 1: Results and Discussion

The main results of the experimental validation are summa-
rized in Fig. 7. First, subfigures a) and b) of Figure 7 show
that the proposed observer rapidly converge to a relative error
of 0.05% in the voltage signal and 0.005% in the temperature
signal. Consequently, if we assume that the model is accurate,
the liquid water saturation estimation in subfigure c) of Fig. 7
has to be also accurate. Second, subfigure c) compares the
estimation of the proposed observer and the one presented in
[18]. It can be seen that both observers converge (at around
1400 s) to a similar value, therefore, the accuracy of the
proposed observer is similar to the one of state-of-art algorithms
in the literature. These results validate the estimation quality
of the observer in a practical scenario.

In addition, the primary benefit of the proposed method
becomes evident when comparing the transient behavior of
the observer (9) with that of the observer in [18]. In all
subfigures of Fig. 7, it can be observed that both observers
exhibit similar noise sensitivity. However, the settling time
of the proposed observer is significantly superior. Specifically,
while the observer in [18] requires approximately 1400 seconds
to converge, the proposed observer converges in around 10
seconds. This outcome holds particular significance in the
considered experiment, as the slow convergence of the observer
in [18] hinders the ability to observe the effect of the air
velocity step on the liquid water saturation. Nevertheless, when
examining the estimation of the proposed observer in subfigure
c), the impact of the air velocity change becomes clearly evident
at around 320 seconds.

Finally, the infeasibility of the EKF in the proposed exper-
imental setup is evident in subfigures a) and c). Specifically,
the EKF yields estimations of the liquid water saturation and
voltage that differ significantly from those of the proposed
observer and the observer in [18]. This difference can be
attributed mainly to the local nature of the EKF and the fact
that the observer was initialized far from the true value of the
states, preventing robust convergence of the observer.
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Fig. 6. (a) Environmental chamber and H-100 PEMFC. (b) H-100 experimental set-up scheme.

Fig. 7. a) Trajectory data of the measured stack voltage, estimation the
proposed observer in (9) and estimation of the observer proposed in [18] and
estimation of the EKF. b) Trajectory data of the measured stack temperature,
estimation the proposed observer in (9), estimation of the EKF and estimation
of the observer proposed in [18]. c) Liquid water saturation estimation of the
observer proposed in [18], the EKF and estimation of the proposal in (9).

Fig. 8. Exchange current signal in the second experiment.

D. Experiment 2: Methodology

Note that the first experiment only provides data at two
operating points with a small change in the cathode air velocity.
In this context, the error of the EKF could potentially be
reduced by (somehow) correctly initializing the observer close
to these operating points. However, this is no longer applicable
in the second experiment discussed in this section. Specifically,
in the second experiment, the fuel cell is excited with a
constant air velocity of 0.918, and the exchange current profile
is depicted in Fig. 8. It should be noted that in this case,
the current exhibits large oscillations of low frequencies and
three set-point changes towards the end of the experiment.
Consequently, any linear approximation around an equilibrium
point of the fuel cell dynamics would be entirely incorrect.

This second experiment will implement the same model
parameters and validation methodology as the first experiment
in order to compare the proposed observer (9) and the EKF in
(6).

E. Experiment 2: Results and Discussion

The main results of the second experimental validation are
summarized in Fig. 9. First, subfigures a) and b) demonstrate,
once again, that the proposed observer (9) rapidly converges to
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a low relative error in the voltage signal and the temperature
signal. Consequently, if we assume that the model is accurate,
the estimation of liquid water saturation in subfigure c) should
also be accurate.

Moreover, in subfigure c), noteworthy differences emerge in
the liquid water estimation between the proposed observer (9)
and the EKF in (6). However, upon closer examination of the
voltage estimation in subfigure b, it becomes evident that the
EKF estimation is fundamentally flawed.

Firstly, in the final 400 seconds of subfigure b), we observe
that the proposed observer provides a voltage estimation with
a relatively small error, while the EKF (9) exhibits an apparent
bias. This bias can be attributed to the fact that during the last
400 seconds, the EKF generates a liquid water estimation with
a smaller value compared to the one produced by the proposed
observer (9). This observation validates that the proposal offers
an estimation that aligns more coherently with the measured
data.

Secondly, at the 1200-second mark, there is a sudden drop
in the voltage, caused by an increase in the exchange current
and its corresponding ohmic losses, as depicted in Fig. 8.
Subsequently, there is a gradual rise in the measured voltage due
to the generation of liquid water. This behaviour results from the
increase in the reduction reaction, which humidifies the device
and reduces the activation losses of the fuel cell. As illustrated
in subfigure c), the proposed observer (9) exhibits this behaviour
of increasing the liquid water saturation. Consequently, the
estimated voltage also experiences a gradual increase following
the sudden current increase. In contrast, the EKF’s liquid water
estimation fails to follow this trend, resulting in its voltage
estimation not increasing accordingly.

VI. CONCLUSIONS

This work has presented a nonlinear observer for estimating
the liquid water saturation in the cathode catalyst layer of PEM-
FCs. It has been demonstrated that the liquid water dynamics
satisfy a specific differential detectability property that can be
leveraged to design a straightforward observer. Furthermore, it
has been shown that by exploiting a monotonic condition from
the voltage equation, the settling time and parametric sensitivity
of the observer can be significantly improved. The proposed
observer has been validated through numerical simulations and
in an experimental prototype. Additionally, the proposal has
been compared with the EKF through numerical simulations
and has been experimentally compared with the state-of-the-art
observer proposed in [18] and the classical EKF.

APPENDIX A
ON DIFFERENTIAL DETECTABILITY

Consider a generic plant described by finite-dimensional
continuous-time dynamics of the form

ẋ = f(x,u), y = Cx, (10)

where x ∈ Rnx is the state, y ∈ Rny is the measured output and
u ⊂ U ∈ Rnu are (known) inputs, where U is a compact set. We
assume that f is sufficiently regular. Additionally, and driven
by the practical application of the paper, we only consider

Fig. 9. a) Trajectory data of the measured stack voltage, estimation the
proposed observer in (9) and estimation of the EKF. b) Trajectory data of
the measured stack temperature, estimation the proposed observer in (9) and
estimation of the EKF. c) Liquid water saturation estimation of the EKF and
estimation of the proposal in (9).

solutions which we know that evolve in a certain compact set
X0.

Assumption 1. The system (10) is forward invariant in a
compact set X0 ⊂ Rn uniformly in all u ∈ U .

Naturally, we restrict ourselves to initial conditions of (10)
in X0 ⊂ Rnx .

In this section, we are interested in the concept of the
differential detectability for a constant metric case as studied
in [34] (see also [29] for the Riemannian metric case). This
concept is formalized through the following definition.

Definition 1. The system (10) is differentially detectable (with
constant metric) if there exists a positive definite symmetric
matrix P ∈ Rnx×nx some positive constants q, µ > 0 such that

P
∂f
∂x

(x,u) +
∂f
∂x

(x,u)>P− µc>c ≤ −qP. (11)

for all x ∈ X0 and u ∈ U .

To better understand the consequences derived from dif-
ferential detectability and its link to the classical notion of
detectability, consider now two solutions x, x′ ∈ X0 of (10)
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with the same input u ∈ U and define the difference between
these trajectories as x̃ := x′ − x. Moreover, consider that by
means of the mean value theorem for vector valued mappings,
we have the following identity

˙̃x = f(x,u)− f(x− x̃,u) =

(∫ 1

0

∂f
∂x

(x + (s− 1)x̃,u)ds

)
x̃.

(12)
With this in mind, the inequality in (11) establishes that
solutions to

ẋ = f(x,u), ˙̃x =

(∫ 1

0

∂f

∂x
(x + (s− 1)x̃,u)ds

)
x̃

with x, x′ initialized at X0 and verifying Cx̃(t) = 0 satisfy
[34],

lim
t→∞

|x̃(t)| = 0. (13)

Indeed, equation (13) is strongly related to the notion
of detectability. Hence, the name differential detectability.
Precisely, consider any pair of solutions x, x′ ∈ X0 of (10)
with the same input u ∈ U giving the same output y= Cx=Cx’.
That is, consider any two trajectories indistinguishable from the
output. Notice that these two trajectories satisfy the condition
Cx̃ = 0. Therefore, differential detectability and (13) imply
that indistinguishable trajectories converge asymptotically one
to the other, thus, the system is detectable.

In summary, differential detectability (with constant metric)
can be used as a tool to analyse the detectability of a nonlinear
system. Additionally, as the next appendices will show, this
property can also be used to directly design an observer.

Remark A.1. We emphasize that differential detectability only
implies that any pair of trajectories that are indistinguishable
from the output will converge to each other. However, it does
not provide any insight into the existence or non-existence of
such indistinguishable pairs. Therefore, this property does not
guarantee observability of the states.

Remark A.2. It is noteworthy that the Jacobian of the vector
field is utilized in the definition of differential detectability.
However, it’s important to clarify that differential detectability
is not reliant on system linearization around any specific
equilibrium point or trajectory. Consequently, the property
of differential detectability is global in nature, meaning that
the system will exhibit detectability for any trajectory that stays
within X0, and there are no constraints preventing X0 ⊆ Rnx .

APPENDIX B
DIFFERENTIAL DETECTABILITY OF THE FUEL CELL MODEL

For the considered measured output equation, any constant
δx = [0 δ′x]> satisfies the condition δ>x c>cδx = 0. Now,
consider a constant symmetric matrix P ∈ R2×2 partitioned as

P =

[
p1 p2
p2 p3

]
. (14)

Then, the inequality in (4) reduces to

δ′x

[
2p2((K11(K7 − p0 exp(−K6/x1)))/x1

+ (IK1K8ncellx1)/(3sopt(((sopt − x2)/sopt)
1/3 − 1)

∗ ((sopt − x2)/sopt)
2/3))− 2p3(K5((189x22)/50

− (83x2)/25 + 24/25)

+K5x2((189x2)/25− 83/25)

− (K4(K7 − p0 exp(−K6/x1)))/x1)

]
δ′x < 0.

It should be remarked, that the term multiplying the factor
p2 is always negative for the operating region I > 0, Tfc > 0
and 0 < s < sopt. The term multiplying p3 may change sign
depending on the value of the states, inputs and parameters.
Nonetheless, as the states, Tfc, s and the current I are bounded,
it is always possible to select a sufficiently small p3 > 0 and
a large p2 > 0 to satisfy the inequality.

Moreover, once p2 and p3 have been fixed, p1 > 0 can
always be tuned such that

det(P) = p1p3 − p22 > 0, trace(P) = p1 + p3 > 0

which makes the matrix P positive definite. Finally, invoking
the Finsler’s lemma [10, Section 4] and the fact that the system
evolves in a bounded set, we deduce the existence of a positive
constants q and µ such that (4) is satisfied.

APPENDIX C
OBSERVER (5) STABILITY PROOF

Define the estimation error as x̃ = x−x̂. Consider the system
(1) and the observer (5), the error dynamics are computed as

˙̃x = f(x,u)− f(x− x̃,u)− κP−1c>cx̃. (15)

where u = (I, vair). Now, by means of the mean value theorem,
we are going to exploit the following identity that holds for
any C1 function g.

g(1)− g(0) =

∫ 1

0

∂g
∂s

(s)ds.

Therefore, by denoting g(s) := f(t, x+(s−1)x̃), the following
equality holds

f(x̂,u)− f(x− x̃,u)

=

(∫ 1

0

∂f
∂x

(x + (s− 1)x̃,u)ds

)
x̃. (16)

Now, consider the following Lyapunov function candidate V =
1

2
x̃>Px̃. The derivative of V along (15) results in

V̇ = x̃>P(f(x,u)− f(x− x̃,u)− κP−1c>cx̃). (17)
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Recalling the equality in (16), the right-hand side of (17)
reduces to

x̃>P(f(x,u)− f(x− x̃,u)− κc>cx̃)

= x̃>
(∫ 1

0

P
∂f
∂x

(x + (s− 1)x̃,u)ds

)
x̃− x̃κc>cx̃

= x̃>
∫ 1

0

(
P
∂f
∂x

((x′, s),u) +
∂f
∂x

((x′, s),u)>P

− µc>c
)
dsx̃− (κ− µ)x̃c>cx̃

where the compact notation x′ = x + (s− 1)x̃ have been used.
Consequently, by using (4), the following is obtained for all
κ > µ

V̇ = x̃>P(f(x,u)− f(x− x̃,u)− κP−1c>cx̃)

≤ −q|x̃|2 − (κ− µ)x̃c>cx̃ ≤ −q|x̃|2. (18)

Next, as the proposed Lyapunov functions is upper and lower
bounded as

λmin(P)|x̃|2 ≤ V ≤ λmax(P)|x̃|2

where λmin(·), λmax(·) are the minimum and maximum
eigenvalue, respectively, it can be shown that

V̇ ≤ −q
λmax(P)

V.

Therefore, according to Lyapunov’s second method, see, e.g.
[35], the bound in (3) is satisfied.

The next step consists in showing that the observer in (5)
does not have tunable settling time and is sensitive to variations
in the parameters Ki, ∀i ∈ 3, .., 7. It should be stated that,
in this work, having tunable settling time and low sensitivity
to parameter uncertainty means that the parameter κ of the
observer (5) can be tuned to arbitrarily increase the settling
time of the system or arbitrarily reduce the effect of parametric
uncertainty on the estimation error. To see this fact, consider the
error dynamics in (15) and the matrix P from the detectability
condition in (4), which can be decomposed as in (14). Now,
consider the following set of new coordinates:[

z1
z2

]
=

[
x̃1

x̃2 + p−13 p2x̃1

]
, (19)

where x̃1, x̃2 are the components of the estimation error vector
x̃. The next step consists in showing that the z2-dynamics do
not present a feedback term, thus, evolve in open-loop and are
independent from κ. Specifically, the z2-dynamics are defined
as follows

ż2 = f2(x,u)− f2(x− x̃,u)

+ κ

(
p2

p1p3 − p22
− p−13 p2

p3
p1p3 − p22

)
cx̃

= f2(x,u)− f2(x− x̃,u), (20)

where f2 is the second component of the vector f. As the z2-
dynamics are independent from the feedback term, the settling
time of z2 does not depend on the value of κ. Moreover, any
uncertainty in the factor f2(x,u) will directly appear in the
z2-dynamics and cannot be reduced by any value of κ.

TABLE II
PARAMETERS OF THE FUEL CELL MODEL IN NUMERICAL SIMULATIONS

AND EXPERIMENTAL VALIDATION

Parameter Value (simulation) Value (exp.) Units
K1 0.0025 0.0025 K J−1

K2 0.0255 0.0153 m−1

K3 2.37 · 10−5 2.37 · 10−5 C−1

K4 5.33 · 10−5 5.33 · 10−5 K m3 s−1J−1

K5 1.218 · 10−4 1.218 · 10−4 m3 s−1

K6 5210 5210 K
K7 2380 2380 atm
K8 3.59 · 10−5 3.59 · 10−5 J C mol−1

K9 3.477 0.0012 A m−2

K10 8419 8419 K
K11 0.0059 0.0059 Pa−1s−1

Eocv 22.23 22.23 V
ncell 20 20 −
Tamb 298 298 K
p0 1.196 · 1011 1.196 · 1011 Pa

Rohm 1 0.05 Ω
Ageo 0.00225 0.00225 m2

α 1.2 1.2 −
sopt 0.196 0.196 −
Tref 298 298 K

APPENDIX D
OBSERVER (9) STABILITY PROOF

Define the estimation error as x̃ = x−x̂. Consider the system
(1) and the observer (9), the error dynamics are computed as

˙̃x = f(x,u)− f(x− x̃,u)− κP−1c>cx̃

− ρP−1
[
0
1

]
(y2 − vfc(x′, I)) (21)

where u = (I, vair). Now, consider the following Lyapunov

function candidate V =
1

2
x̃>Px̃. The derivative of V along

(21) results in

V̇ = x̃>P(f(x,u)− f(x− x̃,u)

− κP−1c>cx̃− ρP−1
[
0
1

]
(y2 − vfc(x′, I))). (22)

Therefore, according to (18), the following bound is obtained

V̇ ≤ −q|x̃|2 − (κ− µ)|cx̃|2 − ρ(s− ŝ)(y2 − vfc(x′, I)).

Finally, exploiting the monotonic condition in (8) and selecting
κ = ρ+ µ, the next bound can be deduced

V̇ ≤ −q|x̃|2 − (κ− µ)|cx̃|2 − ρ|s− ŝ|2 = −(q + ρ)|x̃|2.

Therefore, similar to Appendix C, this shows that the bound in
(3) is satisfied. Moreover, the convergence rate of the observer
is determined by

ρ+ q

λmax(P)
, which can be arbitrarily increased

by increasing ρ.

APPENDIX E
PEM FUEL CELL MODEL PARAMETERS

The fuel cell model parameters are presented in Table II.
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